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1. Introduction,

Common agency refers to a situation in which many principals have an
interest in the actions of the same agent and therefore may try to compete
for the agent’s attention via various inducements or incentive schemes. As
Bernheim and Whinston (1986) note, common agency is prevalent in our economy
both formally (as in sales agency) and informally (through tbe multitude of
interdependent relationships within a hierarchy, say). To the extent
principals cannot enforce a cooperative design of incentives for the agent,
common agency generally incurs social costs (because of externalities between
principals). In this paper we will present a rather specific model in which
those costs can be assessed in order to study when it would be desirable to
restrict the scope of common agency by eliminating some of the principals,
and in particular when exclusive dealing is a rational organizational
response to the problems of common agency.

A common instance of exclusive dealing is the standard employment
relationship. An employee is expected to work for his employer, not for
others, at least during regular working hours. We attribute the benefits of

an employment relationship at least partly to reduced common agency costs. A



single principal has better control of the agent’'s incentive structure. He
can fashion a contract that is relatively free from distracting inducements
from competing activities. The employment contract reduces the opportunity
cost to the agent, and thereby incentives can be provided less expensively.
0f course, the gains in incentive design must be compared with the potential
losses from not being able to exploit valuable outside opportunities. It is
the trade-off between productive benefits from being engaged in more ac-
tivities versus the raised agency costs that such options bring, which
determines the choice between exclusive dealing (eg. regular employment) and
common agency (eg. self-employment).

This perspective contrasts sharply with Alchian and Demsetz’'s (1972)
provocative view that an employment relationship is no different from arms-
length market exchange: "It is common to see the firm characterized by the
power to settle issues by fiat, by authority, or by disciplinary action
superior to that available in the conventional market. This is delusion.

The firm does not own all its inputs. It has no power of fiat, no authority,
no disciplinary action any different in the slightest degree from ordinary
market contracting between any two people. I can 'punish’ you only by
withholding future business or by seeking redress in the courts for any
failure to honor our exchange agreement. That is exactly all an employer can
do." This may well be true, but that does not make the two forms of exchange
equivalent. The employment relationship is placed in a distinctly different
legal framework than the service relationship. From our perspective, a
central distinction is that the grocer is entitled to do business with
whoever enters his store, while the employee is expressly restricted to serve
his employer alone; the employee’s fiduciary duty is such unless otherwise

agreed to. Moreover, as seems apparent, the common agency costs in the



grocery setting are small relative to the gains from servicing more than one
customer; customer incentives to influence the grocer in a way that imposes
externalities on other patrons are relatively small.

Our perspective is much closer and complementary to Simon’s (1951)
(remarkably modern) view of the employment relationship. Simon identified
employment with the contractual rights that an employer has in assigning the
employee to a relatively broad set of tasks. The rationale for this,
according to Simon, is to be found in an asymmetry of information between the
employer and emploxee. The employer knows relatively more about the marginal
returns to employee activities, while the employee’s opportunity costs are
more easily identified (and typically relatively insensitive to the assign-
ment). Like Simon, we stress the advantages that an employment contract
confers, because it permits the employer improved control of the employee’s
activities.

We will use a simple model of moral hazard (adapted from Holmstrom and
Milgrom, 1987) to study the costs of common agency. We envision a risk
averse agent who potentially may service several principals. The agent has
to decide on how he allocates his service efforts across principals. Prin-
cipals compete for the agent’s services by offering him independently (ie.
non-cooperatively) designed incentive schemes. The nature of a Nash equi-
librium in contracts is the first object of study. Its properties will
depend on what one assumes the principals can observe and hence include in a
contract. In Bernheim and Whinston (1986) it was assumed that all principals
observe the same performance signals. In the context of independent service
relationships, that assumption is not as natural. We will also consider the
opposite case in which principals only observe the agent’s performance in

their own service relationship. These informational assumptions have bearing



on common agency costs. Interestingly, it is not always the case that
observing more signals is better overall; for instance, if the two service
activities are independent (stochastically and technologically) then in-
dividualistic contracts (contracts that only depend on the agent's perfor-
mance in one relationship) are efficient, while contracts that can be made
contingent on performance in all activities will lead to inefficiencies.

Our chief objective is to gain an understanding of the technological
conditions under which there is a strong desire to restrict the number of
principals/activities of the agent. Our main result (at present) is that
some activities, which would be desirable in a world of perfect information,
will be dropped in a world of imperfect information. More generally, the
number of activities will be reduced when agency considerations enter.

The paper’s outline is as follows. We begin with a brief description of
the linear model that we employ. For further details on this model the
reader should consult Holmstrom and Milgrom (1986). In section 3 we present
the common agency situation and define the notion of equilibrium to be
employed and prove that linear incentive schemes form an equilibrium.
Section 4 is devoted to the case in which principals observe the same
information, while section 5 deals with the case of independent observations,
Section 6 presents the results on reduced and exclusive dealings. Section 7
discusses organizational interpretations and potential responses to common
agency. We conclude with a discussion of connections to the related, but

broader issue of collusion in multi-person agency.

2. A review of the linear model.



Applications of agency models have been limited by the paucity of simple
examples that yield tractable solutions. Typically, moral hazard analyses
result in complicated, non-linear incentive schemes, which make extensions to
richer economic settings cumbersome. Some studies have resorted to ad hoc
restrictions on incentive schemes, for instance by assuming that incentive
contracts are linear. The problem with such ad hoc restrictions is that one
does not know which predicted responses are induced by the restrictions and
which reflect the genuine economics of the situation one is interested in.

We will apply the moral hazard model in Holmstrom and Milgrom (1987),
because it leads to linear second-best incentive contracts. It may be useful
to recall the setting and main results of the paper to see how they extend to
COmmOT agency.

The paper analyzes a model of repeated moral hazard. An agent works for
a prineipal for T periods, each period independent (stochastically and
technelogically) from the others. Periods are to be construed as short so
assume the agent is only interested in what he is paid at the end of the
horizon (this can be rationalized by a permanent income hypothesis, which can
be shown to apply in this context). The agent’s preferences over payments at

the end are described by an exponential utility function:

(1) u(s(x) — c(u)) = —~ exp{-r(s(x) — clu)l]},

where r is the agent’s constant absolute risk aversion, s(x) is what the
agent receives as a function of the observables x and c(p) represents the
costs incurred in operating the technology as a function of the agent's
action u. As usual, the moral hazard problem enters because the agent’s cost

c(p) is not observed (nor can it be fully inferred from x) by the prinecipal.



The agent must be compensated indirectly for his efforts, forcing him to bear
some uncertainty.

Initially, assume the technology can be described by a Bermoulli
process. In each period the agent may produce a high (xg = 1) or a low
outcome (xt = (). The probability of a high outcome in period t is deter-
mined by the agent's choice by, with the veector p = (4 ) resulting in the
overall cost functionm c(u) = Zc(pt) (without loss of generality one can think
of ty as the preobability of success). Suppose further that x = (X, - -,%7),
ie. the observable vector x consists of the individual outcomes in each of
the T periods. Finally, assume that the agent can observe the outcome X,
before choosing what to do in period t+l. Then it is relatively straightfor-
ward to show that the optimal incentive scheme is one which only depends on
Xy = Z Xy, le. the pumber of successes, and furthermore is of the linear

form:

(2) s(x) = aXp + 4.

This result follows from the more general proposition that the multi-
period problem is solved by summing up the solutions to the single period
problem. In a single period the agent would be paid a fixed amount for
participating and a bonus if a favorable outcome occurred. In the repesated
situation above, the agent iIs paid a fixed amount 8 and a bonus a for each
favorable outcome during the T periods. The bonus is the same irrespective
of the period in which the favorable outcome occurred.

The result that the multiperiod problem decomposgs into a set of single
period problems is based on the fact that the agent’'s preferences for risk

are independent of wealth and that the agent can observe the past before



acting further. With those two conditions, the agent’'s preferences over
future lotteries are not dependent on history. In terms of certain e-
quivalents, the agent and the principal face identical problems in each
period, leading to a repetition of the solution for the single-period
problem. In the Bernoulli case the result is (2).

The logic of decomposition extends considerably. Suppose the agent
operates a general technology (the same in each period). With a finite
number of outcomes, the most general technology is the multinomial one, where
By can be taken to represent the probability vector over possible outcomes in
peried t. Again one finds that the optimal scheme aggregates over single
period outcomes:

(3) s@x) = T agXp(i) + 8,

i
where Xr(i) is the number of times that outcome i occurred during the
horizon. It is particularly relevant to notice that this general formulation
covers both situations in which the agent observes some private information
before acting in each period, as well as situations in which the agent’s
action for some other reason is multi-dimensional (eg. he has several
activities),

The results above say nothing about the size of a;. While it is
conceptually easy to solve for these coefficients, a much more attractive
analysis obtains if we consider the limiting situation where the length of
periods goes to zero and the problem can be represented approximately as a
situation in which the agent controls the drift vector of a Brownian process.
As is intuitive, the Bernoulli solution (2) converges to a one-dimensional
Brownian process. The optimal incentive scheme is linear in the end of

period position of the process, in analogy with (2). Corresponding to the



Bernoulli case in which the agent chooses the same action in each period
irrespectively of history, the agent will choose a constant drift-rate. That
in turn implies that the distribution of the end-of-period position of the
Brownian process is normally distributed and that the agent is simply
choosing the mean of that normal distribution. Hence, the whole problem,
conditional on knowing that the optimal scheme is linear, can be solved as a
static agency problem in which the principal tries to pick out the best
linear scheme when the agent operates a normally distributed technology.

That static problem is straightforward to solve.

To illustrate, let x = u + ¢, where ¢ is normal with zero mean and
variance o? and p is the mean of x, chosen by the agent. The optimal
incentive scheme is of the form s(x) = ax + 8. To find the coefficients,
note that the objective of the agent can be described in terms of the agent's

certain equivalent:

(4) Max op + 8 - (l/2)ra202 - c(u).

The agent will choose p so that:

(5) a = c'(p).

The principal’s certain equivalent is,

(6) (1 —a)u - 8.

A Pareto optimal choice of a will maximize the joint surplus (sum of (4) and

(6)):



(7 Max p - (1/2)ra’c? - c(u), subject to the constraint (5).

If, for instance, c(u) = (l/2)p2, then (5) reduces to @ = u and the solution

to (7) becomes:

(8) a = (1 + o2y L,

This solution reflects the moral hazard constraints in a very intuitive
way. In the first-best solution (ome in which the agent would not care about
risk or there was no uncertainty about his action), one would set « = 1, that
is franchise the activity to the agent, who would just pay a constant rental
fee 8 to the principal. But in the second-best situation, the agent does not
want to carry all the risk. The optimal trade-off between risk and incen-
tives is given by a in (8). The agent’s share is bigger the smaller is the
risk and the smaller is his risk-aversion. The agency cost in this example
is easily seen to be: 1/2 - (1/2)(1 + raz)’ll

The case in which the agent has several activities is equally easy to
solve., The multinomial process with frequent small periods is approximated
well by a multi-dimensional Brownian process, with fixed covariance matrix
and a drift vector controlled by the agent. The optimal scheme is linear in
each component of the Brownian process, corresponding to (3). Consequently,
the agent will act the same in each period and the dynamic incentive problem
reduces to & static problem in which the principal has to decide on the
coefficients of a linear scheme, given that the agent controls the means of a
multivariate normal distribution.

To illustrate, consider the case in which the agent operates two

processes.:




(9 Xy = My + €5 i=1,2,

The optimal linear scheme is of the form s(xl,xz) = ajX] + ayXy + 8. The

agent’'s certain equivalent is

(10) appy + aguy + B = (1/2)t(a12012 + ay20y? + 2a1ag01,] - c(u),

where g10 = cov(el,ez). The agent will choose g so that
(11) a; = cg(p), 1 = 1,2,

where c; refers to the partial derivative of ¢ with respect to pi. The

1

optimal choice of coefficients is determined again by maximizing joint
surplus subject to incentive compatibility conditions in (11).

Denote the function in (10) by CE{a,u). Then joint surplus is
(12) S(a,pu) = CE(a,u) + } (1 - ey)p;.

Maximizing over a, recognizing that u depends on a through (11) and that the

envelope theorem therefore applies, gives
(13) 8CE/8a; — py + L (1 - a3)duy/8e; = 0, 1 =1,2.

This can be written out as:

(14) I (1= ay)apy/da; = rlajo;? + agop), 1= 1,2.
i
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Equation (14) expresses in a simple form the system of equations that
determines the optimal coefficients when the incentives to allocate the
agent's efforts across activities are provided in a coordinated fashion.
This is the best one can do considering the informational constraints. We
will shortly contrast this gecond-best solution with the situation that
obtains if the agent’s two activities are performed for separate principals

who can influence the agent independently.

A couple of observations on the second-best solution.

1. Denote by subscripts partial derivatives of the cost function. From (11)

follows
aui/aai el ij/A
(15)
a,uj/aai = -Ci‘]/ﬂ
where A = c{1Cgn — (clz)2 > 0 (by the second order condition). If ¢ = 0,

and cov = 0, ie. if the two activities are technologically and stochastically
independent, then the design of ay will not interact with the design of ag

and we will have from (14):

(16) a; = (1 + rog%e;0°L, 1=1,2.

It is worth noting that even if the two activities are technologically
identical (¢qq = cpp whenever B1 = p9), the ay coefficients will not be the

same unless the performance measures %y are equally noisy. The activity
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which can be measured with less noise will be relatively favored.

2. Suppose cyp and ¢y; is zero whenever p; 1s zero. Suppose further that
the activities are stochastically independent. In that case the first-best
and the second-best solution both have the feature that each activity is
relevant in the sense that it is operated on a positive scale. (The state-
ment also holds if the activities are negatively correlated, but it need not
hold if they are positively correlated.) The reason we make this observation
is that we will see that with two principals acting independently it may be
desirable to close out a minor activity which is relevant both in first-best

and second-best,

3. 1If the agent is risk neutral then a) = ap = 1, of course. The same is
true if there is no uncertainty (¢4=0, i = 1,2). A bit less obvious is the
fact that even if o1=0, one will not have a1=1 unless oy=0 or c1p = 0 as
well., The point is that the principal will use ay to affect the agent's
opportunity cost for choosing up, which remains a problem incentive wise
because o9 > 0. 1In typical second-best fashion all instruments will come
into play. It is not optimal to try to influence the agent's choice of po by
rewards alone. Some incentives will be provided by manipulating the oppor-
tunity cost (if cig > 0 then a; < 1 to lower the marginal cost of u2; a; > 1

if ¢yp < 0, assuming this is feasible when all other considerations are taken

into account).

4. By writing the technology in the form (9) the cost function captures all
the technological features of the model. A "generalization" that can be

brought immediately back into the form (9) is the following: =xj; = f;(u;) +
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€5 where fi is some monotone transformation. (The transformation cannot

involve x.

i itself, because then we would lose normality, which is essential

for linearity.)

3. Common agency.

We consider a common agency situation in which two principals deal with
the same agent independently of each other. The principals are aware of each
other, but they cannot coordinate their transactions with the agent, because
they are assumed unable to observe each other’s contracts, For simplicity
we begin with the two-activity case discussed above; extensions will be
considered later.

be as in (9); =x; defines the agent’'s delivered service to

Let x: i

i
principal i (measured in monetary units). Let zy denote what principal i can
observe and use in a contract with the agent. We will mainly be interested
in the two cases: (a) zy = %y and (b) z3; = (Xy,%9) . In the first, each
principal can observe the agent’s performance only in the activity performed
for principal i. We refer to this case as one with disjoint ohservations. In
the second, both principals can observe the service delivered to each of

them. This case, which was studied originally by Bernheim and Whinston

(1.986), we refer to as one with joint observations.

Let s;(z;) be the contract offered to the agent by principal i. Define:
U(sy,s9,p4) = Ey(ulsy(zy) + splzpd)- (),
the agent's utility given the contracts and an action p;
@(51,52) = max U(sl,sz,y) over u,

the maximum utility the agent can achieve given the two contracts;

- 13



B(sq,s9) = argmax U(sl,sz,ﬁ) over u,
the set of actions that are optimal for the agent given contracts;
Ry(sy,p) = E (xy = 55(23)),
principal 1’s expected profit, given u;
Ri(SI’SZ) = max Ri(si,p) over u € B(sy,s5),
principal i’s expected profit if the agent is offered the contract pair
(s1,sp) and he chooses principal i’s most favored action among those that

maximize his expected utility.

A missing contract will be indicated by the symbol @. The equilibrium

concept we employ is the following:

Definition. Let
S = {(s1,s9)] U(s1,s9) 2 max[0(2,s,),0¢s1,2), 008,811,
denote the set of contract palrs, such that the agent will find both con-

tracts acceptable. The pair (s1(21),s9(23) ) constitutes a Contractual Nash

Equilibrium (CNE), if:
(a) (s1,s9) € S, and
(b) for either i, there does not exist a contract éi’ such that (éi,sj)

€ S and Ri(si’sj) > Ri(Si,Sj).

Note that in an equilibrium one principal may offer no contract (ie. s;
could be @Y. Consequently, the definition above assures that principals earn
at least zero profits. On the other hand, the definition of § assures that
the agent gets at least as much utility as he could get without any con-

tracts.
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Proposition 1: If one principal uses linear contracts, it is optimal for the

other principal to do likewise.

This result follows from noting that linearity in the continuous time
model is the same as stationarity in the discrete version. In the discrete
version, if one principal offers the agent a stationary contract, the other
principal will find it optimal to offer a stationary contract as well, since
each peried will look contracting-wise the same by virtue of stochastic
independence and exponential utility. Proposition 1 says of course nothing
about the possibility of equilibria in non-linear contracts. Nor does the
result say anything about existence of equilibria in linear contracts. For
existence we will rely on constructing a pair of linear equilibrium con-

tracts.

4, Common agency with disjeoint observations.

In this section we consider the case Z; = X3, ie. the case in which
principals only observe the service they receive and not what the other

receives.
By Proposition 1 we look for equilibrium in linear sharing rules s;{x;)
= ajX; + f;. Let S; denote the joint surplus available to principal i and

the agent. Then, given the contract offered by principal 2:

(4.1) S1 = By + aguy - c(u) - (1/2)r[e;%01? + ap?0,? + 2ajay01,],

Principal 1 will choose a; to maximize Sy, recognizing that the agent'’s
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action u depends on the a-vector, ie. u = p(a); @y is here to be treated as

a parameter. We have:

(4.2) 8S1/8ay = 8uq/ay + agdpg/8ay - cqdpp/8ay - cpdpy/dey
- r[alalz + 020’121 .

Recall that c-

; denotes partial derivative of cost with respect to py. From

the agent's first-order condition on the choice of u, ¢y = aj. Substituting
this into (4.2) (and recognizing that the symmetric analysis applies to S4)

gives as equilibyium conditions for the disjoint observation case:

(4.3) (1 - a;)dni/da; = rlajos? + ajorp], 1= 1,25 j=i.

To get a slightly better feel for the equilibrium, let us use a Taylor

approximation for the cost function. In that case:

(4.4) (1 - a)eyy = rAlago;? + ajorpl, 1= 1,25 j=i,

where, recall, A = c11C29 - (clz)z. Compare this to the second-best condi-

tions:
(4.5) (1= apdegy = (1= ajegy = ralajo;® + ajoppl, i o= 1,25 jei.

First we notice that if the two activities are technologically indepen-
dent, ie. if ¢qp = 0, then there will be no harm from common agency with
disjoint observations. (Somewhat surprisingly, stochastic dependencies do

not cause problems alone.) Another case without common agency costs arises
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if second-best has a; = 1, i = 1,2, That occurs with full observability of
the agent’s action (in both activities; see remark 3 above) or if the agent
is risk neutral (r = 0). {(The risk neutral case is treated in Bernheim and
Whinston, 1986). On the other hand, if c12 is not zero, then we have
distortions from common agency. Let §; denote the difference between the
second-best value of a; (as defined by (4.5)) and the value in a common
agency equilibrium (as defined by (4.4)). Assume that the two activities are

stochastically unrelated (g1 = 0). Then

(4.6) (ij + roiza)Si = -(1 — aj)cl2' i=1,2, i#j, where ay is second-

best.

Consequently, if ¢35 > 0 (< 0} then uncoordinated bidding for services will
lead to too high (low) incentive provision. This is intuitive. When a
principal raises the agent’s incentive in order to attract more services, the
agent will reduce his services to the other principal if c1p2 > 0. Since only
a fraction of that loss is borne by the agent, there will be inadequate
consideration of the loss, resulting in an excessively high commission
(conversely if there is a positive externality between the principals, ie if

cyp < 0). We summarize our discussion in:

Proposition 2: There will be no losses from common agency with disjoint

observations if the agent is risk neutral {r = 0), if actions can be observed
fully (al=02=0) or if there are no technological links between the two
activities (012)'

If the two activities are stochastically independent (012 = () then

there will be too much (too little) incentive provision (relative to second-
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best) if c35 > 0 (<0).

An extreme form of excessive competition between the principals is given

by the following cost function:

Example 1: c¢(p) = O 1f py,uy 2 0, p1 + pp =1 and = otherwise. With
this cost structure the agent is happy to work a full unit in any combination
and is unable to work any more. At the critical point, this cost function is
not differentiable so the calculus above does not apply. But it is easy
encugh to see what the equilibrium outcome is. Assume g19 = 0 and that oq <
o9. The equilibrium will have the agent accept only one of the two offers
(since the agent will at best be indifferent between the two activities).

Let 32 be the lowest ap value such that the agent gets no surplus if he were
to operate the second activity alone with such a share; ie. the risk 32
imposes will offset all the benefits from producing. Then the contractual
equilibrium has beth principals offer the agent a share equal to min (&2,1}
with the agent accepting the first principal’s offer (since it has less
risk). The second principal’s offer, while rejected, prevents the first
principal from reducing the commission rate ;. The bidding between
principals will spoil effectively all the rents, Thig is all the more
remarkable since the agent is perfectly content with working without any
incentive at all. The example suggests that bidding for the agent’s services
is more detrimental the more easily the agent’'s choices can be affected.

Parametrized versions of the cost function does support such an intuitiom,
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5. Common agency with joint observations.

It is of interest to go through common agency under the informational
hypothesis that both principals observe the same, that is, Zy = (Xq,%y).
Bernheim and Whinston (1986) have dealt with this case in considerable

generality.

Let ajj denote the share on X offered by principal i. Then the agent's

incentives are determined by the aggregate share

(5.1) er - a]_J + (223

The joint surplus of principal 1 and the agent is given in this case by:

(5.2) S1 =(1 + appluy + agaup - c(w) - (1/2)x[ay%01? + ay20,2 + 2aja907,]

The choice variables here are the aggregate shares a;. Correspondingly we

have the surplus expression for principal 2 and the agent:
5.3 S + (1 + - - (172 2512 + ay20,2 + 2
(3.3) 2 =x1ip + (L Herpdup - elw) - (A/2)x[a%01” + agoy 12991 ]

In equilibrium both principals wish the same aggregate share (ay,a9) for the

agent. Therefore it must be the case that:
{(5.4) ay] = 1+ asq and Qg = 1+ X175,

Combining (5.1) and (5.4) we can express the four coefficients of the

incentive schemes in terms of the aggregate shares alone:
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(5.5) aj3 = (1 +a;)/2 and  ayq = (ay - 1)/2, 1§ = 1,2.

Assuming that aggregate shares a; > 0, i=1,2, we see that aj; > 1/2 and

ajj < 0. The logic is this. Principal i offers the agent more than 50% of
the returns, since much of it will be passed onto principal j (aij < 0).
Effectively, the principals offer each other side-payments via the agent. An
alternative would be to write a contract between the principals. With secret
side-payments to the agent the ultimate outcome would be the same.
Substituting expressions (5.5) back into (5.2) (or alternatively by

adding (5.2) and (5.3) sinece both expressions have the same maximizer), we

sea that oy and @y must maximize:
(5.6) (L +apuy + (L +apy - 2¢(w) - rlag?oy? + aploy? + 2aqam09,].

Here we have put a bar on the equilibrium values, which the optimal variable
choices must equal. Taking first-order conditions and using the agent’'s
optimality conditions as before, we get that the equilibrium with joint
observations is characterized by:

(5.7) L (1 - a;)dpi/éay = 2rlasos? + ajoppl, 1 = 1,2.

3%3

Put in terms of a Taylor approximation of cost:

(5.8) (1 - al)c22 - (l - az)clz - 2r[a1012 + azdlz],

- (1 - al)c12 + (1 - az)cll - 2r{a2012 + alalz].



Compared with the second-best solution, aggregate shares in the common agency
case are set as if the agent were twice as risk averse (or the risk was

doubled). Naturally, this leads to smaller aggregate shares:

Proposition 3: The aggregate shares offered to the agent in the case of
symmetric observations are smaller than in second-best unless second-best
equals first-best in which case all three have settings have identical

solutions.

The last part of the proposition holds more generally as proved by
Bernheim and Whinston. Thus, if we consider Example 1 in this setting,
first-best will obtain, since second-best equals first-best given that the
agent has nothing against working. On the other hand, it is noteworthy that
second-best will not obtain in some of the situations where it does obtain

given disjoint observations. Consequently, we have:

Proposition 4: Having one or the other or both principals receive more

information about the agent’s doings may lead to a strictly worse equilibrium

outcome,

The most striking case of this occurs when c1p = 0. With disjoint
observations one would reach second-best. However, with joint observations,
we do strictly worse. The explanations is as follows: If principal 1 can
observe x, he can offer to insure the agent partly against the excess risk
that principal 2 is trying to impose on the agent to provide better incen-
tives. Such side-contracting destroys the socially optimal comtract that

principal 2 would otherwise have designed. Recognizing the problem, the
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first principal will raise the commission rate with the second principal
carrying a larger and larger share of the first principal’s project. This
will induce the second principal to have an interest in the first principal’s
project. Eventually an equilibrium is reached, but since both principals
have a shared interest in the project, free riding will cause too little

incentive provision in the aggregate for the agent.

6. Exclusive dealing.

Given common agency costs, will it ever be better to engage in exclusive
dealing by eliminating one or the other principal? More generally, will it
be desirable to reduce the number of principals to fewer than what is
technologically efficient? The answers to these two questions are not a
priori obvious in the case activities are all relevant as defined earlier.

We will answer these questions by first considering a related one:
Suppose that the agent has an outside option - a project in which he holds a
fixed share A (instead of the share interpretation one can see A as a
productivity parameter). Will it ever be desirable to remove that option, if
possible, when contracting with a single principal?

Let the outside option return Axy and let x; stand for the return from
activities related to the principal. The principal cannot observe the return
from the outside option. By proposition 1 a linear sharing rule is among the
optimal schemes that the principal can offer the agent. The joint surplus

1s:

6.1 S = py + App - c(p) - (1/2)r[a2012 + Azazz + 2aioqg],
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where the incentive scheme is s(x3} = axy + f. The optimal choice of a is

determined by:

(6.2) (1 = @)apy/da = rlaoy? + doypl.
We have:
(6.3) 8S/8X = (1 - a)du1/dX + sy - T{Aoy? + agy,],

using the envelope theorem twice. If cj, > 0 so that the two activities are
substitutes in the cost function, then the first term is negative as are the
last two terms provided the covariance is positive. It follows that at A =
0, 858/8x < 0. Conéequently, it would be better to be entirely without the
outside option for small enough A, even though the option is productively
valuable.

The externality responsible for this outcome is that the agent ignores a
portion of the lost returns that come from engaging in the outside option.
Hence the agent will always invest excessively in that activity. One might
think that this will induce the principal to use stronger incentives to get
his share of the agent’s attention as )\ increases. That need not be true.
For instance, if we consider the quadratic cost case with g1p = 0, then (6.2)
tells us that the principal will offer the same a irrespective of A. In this
case, using (6.3), one finds that for A < X, X > 0, it is better to shut out
the outside option.

We can apply the analysis rather directly to the common agency situation

(with disjoint observations). Suppose there is a gecond principal with a
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project that returns y = Xy, where A is a scale parameter and x; is as

before. Since ap; < 1, we have:

Proposition 5: For sufficiently small A, it is better to drop the second
principal and deal exclusively with the first. For a quadratic cost function
and stochastically independent activities, there is a A > 0 such that for all

XA < X, exclusive dealing will be preferred.

The results on exclusive dealing remind us that there are two means for
providing incentives to an agent. One is by designing suitable financial
rewards. The other is by altering the agents opportunity cost. Exclusive
dealing is a method of the second kind. The agent’s temptation to misallo-
cate his efforts across various tasks is removed by reducing his options.
That is cheaper in marginal cases than trying to influence his allocation via
financial rewards. This may be another reason for bringing employees to a
joint workplace. Even in cases where it may be technologically as good or
better to have the employees work at home, the incentive costs may make such
an arrangement undesirable. Correspondingly, we would expect piece rates or
other incentives to be used when work is conducted at home, whereas time

rates are commont for office workers.

{To be continued)
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