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0. Introduction

The subject is the use of phrases such as “I promise” given in the course of
economic .exchange. The such as in the preceding sentence is ambiguous, and a
large part of this project is to try to figure out just what (in economic terms) is
the essence of a promise, and what are economic alternatives to promises.

To give the story away at the start, it is relatively easy — embarrassingly
so, perhaps — to cook a story in which (cheap-talk) promises are given. The
mathematics of these stories turns out to be messy, but if you don’t mind some
less-than-complete characterizations, we can put together a story.

The story has problems, however. Chief among them is that there would
seem to be alternatives to “promises” that are at least as efficient as promises, at
least in simple settings. We conclude (at this stage) that the simple models we are
about to sketch are inadequate to explain the prevalence of promises, although
they might be helpful in undérstandimg a bit about the structure of equilibria
based on promises, once we accept that promises are used. At the end, we will
try to indicate what more adequate explanations might look like; as you will see,

they aren’t very “economic,” hence the question mark in the title.

I. Theme: A minimal model of promises

As far as computations and formal models go, we will embed our examples

in the following simple situation:

(I.1) There are two parties, 4 and B. B can enter into an “exchange” with

! Preliminary. We are grateful to John Macmillan and Ennio Stachetti for helpful conversations
and ideas.



A, where, at some future date, A is called upon to perform some service for
B . If A performs that service well, B will be better off for having entered into
the exchange and having obtained A’s services. But if A performs the service
badly, B will be worse off than if he had not entered into the arrangement. A
is better off for making this exchange whether she performs it well or not, than
if B does not enter into the exchange. But she (A) is best off if she doesn’t
perform the service well.

In a picture, we have the standard “Trust” game depicted in figure 1. B
must decide whether to trust' 4 or not (enter into the exchange or not), and then
if B enters into the exchange, A must decide whether to honor or abuse B’s
trust. Note that the payoffs depicted in figure 1 correspond to the story in the

previous paragraphif 1 > 2 >0 and y < 0.

A's payoff  B's payoff
hionor B's trust

S 1
- trust A A /
B .\abuse B's trust — 1 'y

don’t trust A

Fic. 1. The trust game.

(1.2) The standard analysis. This simple situation has been studied exhaustively by

theorists, with the following a summary of standard equilibrium analysis.

(I.2a) Aslong as 1 >z and y <0, and if this game is played once, then 4 will

abuse B's trust if B trusts A (in equilibrium). Hence B will not trust A.

(I.2b) Butif A and B engage in this ritualized exchange repeatedly, say at dates
t=0,1,2,..., and if A discounts her payoffs at some rate o > 0 that is close

to one, then we can sustain frust-honor in a supergame equilibrium: B will
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begin by trusting 4 and will continue to do so as long as 4 honors B's trust;
but if A ever abuses B, then B will forego trusting 4 for N periods. And
A honors trust if given and if she has not abused B anytime in the last N
periods; otherwise she will abuse B . This isn’t quite subgame perfect (although
it is easy to modify things so that it is}, but it gives a Nash equilibrium: The
crucial calculation is: Along the path of play prescribed by these strategies, A
gets z per period for a discounted value of z/{1—a). If A ever abuses B’s
trust, A gets 1 immediately, 0 for the next N periods, and then (assuming A

returns to the equilibrium) = thereafter, for a payoff of
i+ aN[J:/(l — o).

As long as

which will happen for large enough N if z > 1—a,* A would (weakly) prefer
not to abuse B; by a standard dynamic programming argument, one can show
that A cannot find a strategy that improves on the one posited, and hence A is
playing a best response to B. Along the path A always honors B's trust, and
so B’s best response is to trust 4, hence B is playing a best response, and we

have a Nash equilibrium.

(1.2¢) It is unimportant that the same B plays against 4 repeatedly, but only
that 4 plays this game at a sequence of dates and discounts the future as a low
enough rate (with large enough o), as long as B s who face A in the future can

observe far enough (N periods) back how A has behaved.

(1.3) This is all {nowadays) the stuff of first year theory courses (perhaps even

less). What we wish to do is to find some way to inject into the story the notion

2 We allow N =co.



that A will greet B with the statement, “I promise not to abuse you if you trust

me,” and have this be something more than window dressing economically.

(I.4) One easy way to do this is to attach some direct cost to A of breaking a
promise once given. We think this raises some interesting issues, but for the time
being we instead presume that A’s promise, if she gives it, is cheap-talk. That
is, it costs her nothing to say it, and it will cost her nothing directly whether she

keeps or breaks her promise.

(I.5) If this sort of promise is going to be more than window dressing, then it
is clear that the model will have to be fancied up. We are led by the following
consideration:

If the promise has any economic role to play, it must be that B doesn't
always expect to hear it. Moreover, it must be that B can’t anticipate whether
he will hear it or not with information he possesses at the moment it is stated. ?
This means that 4 must possess (at the time of utterance of the speech) some

information that B lacks.

(I.6) The minimal model. Which leads to the following minimal model. We suppose
that A encounters B in the game depicted in figure 1 at dates ¢ =10,1,.... The
value of y is fixed, but at date ¢ the value of = is z;, drawn independently
from some fixed distribution F. We will assume that z; has finite expectation
Ez > 0 and support that is bounded above by 1 (with no mass at 1, if in fact
1 is in the support), so that abuse is always better in the short run for A than

is honor. Let z denote the lower bound of the support of F. We will generally

3 At this point, we'd better cover ourselves and say: This is meant to be an exetcise in general
persuasion and not a tight logical argument. It can't be a tight logical argument because the opera-
tive term is more than window dressing deesn’t have a tight definition. Notwithstanding that, we don’t
mean to claim that there isn't some definition of more than window dressing for which our arguments
will not apply. But we hope to persuade you that a reascnable interpretation of the phrase leads to
the conclusions we reach.



assume B can never observe z, {although at times we will discuss how things

change if he can see z; ex post).

(1.7) Always trust, always honor (ATAH). Suppose the game is strictly that in figure
1, where B must decide (at date ) whether to trust A or not with no com-
munication from A. We can sustain the “always trust, always honor” (hereafter,

ATAH) outcome as an equilibrium as long as

Ex

z>1-— )
L= al—a

The logic here is: The most severe punishment that B can mete out is relevant
(since we want to sustain the always-trust equilibrium), and this is N = co. Then
the worst case for sustaining the equilibrium is where A has a current high cost
of honor {z; is very low). The expected value to A of honor this period and
continuing with the equilibrium is z, + aEx /{1—a), so to get honor as a (weak)

best response in all circumstances, we need

’E:z:

(since A canget 1 by abusing B in the current round) which gives the inequality

above. For the sake of later discussion, we let

¥ =1—-w

1—a
That is, the condition for ATAH to be sustainable as a Nash equilibrium is that
z=2zt.

To keep an example in mind, suppose that Ex = .5. Then, as a function
of o, we get z* as graphed in figure 2. Note that we start with a = 1/2, as
otherwise we cannot support ATAH, even if z, has a degenerate distribution.
In particular, for « =.9, the g* = -3.5.

To fix matters very firmly, we will use until futher notice the parameterization

where o = .9, and z; = -3 with probability .1 and 8/9 with probability .9.
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0.5 0.6 0.7 0.8 0.9

Fic. 2. Values for z~.
We graph the function £” as a function of «, for the case where Ez = .5. The
value of o is on the abscissa, and z* is measured on the ordinate.

Thus Ez = .5, and ATAH can be supported. For later purposes, we note that
this equilibrium gives player B a payoff of 1 per period (the most he can hope

for} and thus is certainly on the efficient frontier of all equilibria.

(1.8) A simple equilibrium with promises. Now suppose that player A observes z,
prior to the time that B must decide whether to trust 4 or not, and A is able
to make the simple statement “I promise to honor your trust” before B acts.
This statement is pure cheap talk, in terms of payoffs. We consider the following
pair of strategies: A observes z; and promises not to abuse B’s trust as long
as z; 2 0. B trusts A (along the equilibrium path) as long as 4 makes this
promise, and only if A makes this promise. A keeps her promise along the
path of play; she honors B'’s trust as long as she has promised to do so. If B
trusts A when a promise has not been given, A abuses B’s trust. If A abuses

B after trust has been given, B never again trusts A.

For large enough discount factors, these strategies constitute a Nash equi-
librium. B'’s actions have ro affect on A4’s future strategy, and B is choosing

short-run best responses, so (of course) B's strategy is a best response to A’s.
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As for A, we first compute her equilibrium value a priori (before learning the

value of z;): It is the solution to
v = /max(;c, 0) F(dz) + av,

which gives
Ez~

zl—a

A has four possible contingent deviations:

v

, Where Ez" = /max(m,O) F{dz).

(a) If A learns that z; = = > 0, by following the prescribed strategy she nets
(contingently) z+av. One deviation she can attempt is to refrain from promising,

which nets 0+ av, which is no better as long as z > 0.

(b) Or if A learns that z; = z > 0, she can give the promise and then abuse B.
This nets here 1 immediately and zero thereafter. Following the equilibrium is
at least as good if = +awv > 1, so a sufficient condition for this is that av > 1, or

o> 1/(1+Ez*).

(c) If A learns that z; =z < 0, her contingent payoff from following the strategy
above is av. If she deviates by making the promise and then honoring B ’s trust

(which will be given), she nets z + av, which is worse,

(d) And if A learns that z, = 2z < 0, makes the promise, and then abuses B,

she nets 1. The same condition on « that works for (b) works here.

We can also write out the equilibrium payoff for B, assuming B is long-

lived and applies the same discount factor a: B nets

1—
U= _Pe, where pg = Prob(z; < 0).
11—«
(1.9) Can simple promtises be Pa%eto-improving? For our particular parametric exam-

ple, the simple promise equilibrium nets 8 for A and 9 for B. For the example,

ATAH nets 5 for A and 10 for B, so the simple promise equilibrium is better
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for A thanis ATAH, but worse for B. We are interested in the question, Is there
some equilibrium without promises that does as well (in the Pareto sense) as this
one? (We do not allow for side-payments, yet.)

By an equilibrium (or, more generally, an outcome) without promises, we mean
one in which B must decide (at date ¢) whether to trust 4 uncontingently on
the value of «;. That is, the essence of a promise by A (in our story so far) is
that it allows A (in incentive compatible fashion) to warn B that circumstances

are not propitious for trust.

(I.9a) In our parametric example, as long as y < ~1/3, it is very easy to see that
the simple-promise equilibrium is Pareto undominated by any feasible outcome
without promises. The argument is simple: B has two (uncontingent) strategies
in any stage: to trust A or not. A has four stage-strategies: To honor trust (if
given) regardiess of z;, to abuse regardless of z,, to honor if z, = -3 only,
and to honor if z; = 8/9 only. The stage-expected payoffs for each of the eight
possibility stage-strategy combinations are recorded in figure 3{(a). Any feasible,
let alone equilibrium payoff vector (for the repeated game) will be a positive
affine combination of these eight vectors with weights summing to 10, and in
figure 3(b) we graph the polygon of such combinations, under the assumption
that y = —1/3; note that (8,9) (indicated by the sqare) is just on the boundary
of the set. Since y < ~1/3, this strictly overstates what is feasible (as long as our

combination involves any use of abuse, which (8,9} does). This gives the result.

(L9b) If y isjust a bit bigger than —1/3, it will still be the case that the simple-
promise equilibrium is Pareto-undominated by any payoff that can be obtained
in an equilibrium without promises (without contingent actions by B). A sloppy
rendition of the argument runs as follows: In order to get (8,9) (even allowing
for public randomizations, which will convexify the set of equilibrium payoffs),
we need to be able to implement the point (9,26/3*). To obtain this payoff, 4

must be allowed to abuse B when =, = -3, yet still be trusted. Thatis, B must
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trust A don’t trust A

honor regardless 5,10 0,0
abuse regardless 10,-10/3 0,0
honor if x = -8 6,-2 - .0
honor if x = B/9 8,26/3 0,0

(a} Stage game expected payoffs

—

hi{)OMAO’)mO

2 4 & 8 10 _
(b) The feasible region without promises

Fic. 3. Pareto undomination of the simple-promise equilibrium.

be willing to trust 4 no matter what transpires earlier. But in response o this -
strategy, A would abuse B inall cases. Put differently, if A is to honor B ‘s trust
when z, = 8/9 (which is essential to this payoff), the continuation payoff for A4 if
A honors trust must exceed the céntinuation payoff for A if A abuses trust. In
fact, we can bound the difference in the continuation payoffs (the computation
isn’'t important, but the difference must be at least .1234567890. .. ). Since the
same difference must apply when =, = —3, the overall equilibrium payoffs to A
and B must be strictly within the feasible (no-incentive-compatibility-constraint)
sets (and we can put a bound on how much inside). Thus if (8, 9) is just inside
the boundary of the feasible set (which it is if y is a bit greater than —1/3), it

will necessarily be outside the equilibrium set.

The sloppy argument just given raises the question, What is the set of

equilibrium-feasible payoffs without promises? After very helpful discussion
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with Ennio Stacchetti, we're fairly sure that an Abreu-Pearce-Stacchetti style value
iteration algorithm will produce the set; which in prinéiple is a calculation one
could do. We are a bit less sure, but still optimistic, that a similar computa-
tion would give all the equilibrium-feasible payoffs with promises. But neither
calculation is straightforward [unless we are missing a trick], and a brute-force

approach was not attempted.

(1.10) What do promises add? Now that we know that promises can give otherwise

infeasibie payoffs, our task is to explain why this happens and what they add.

Since we are unable fo supply the precise sets of equilibrium payoffs without
and then with promises, what follows should be regarded with some suspicion,
But it seems to us that there are (at least) three qualitative ways in which the

simple-promise equilibrium would add to what is feasible between A and B.

(I.10a) The first is that promises allow A tosignal to B instances in which giving
trust will be (jointly) too costly to be worthwhile. There are two ways in which
the costs might be manifest: If B trusts A and A honors that trust, A receives
z¢. Even if we assumed that 4 could verifiably reveal to B the value z; and
B could compensate 4, aslongas z,+1 <0, the giving of trust that is honored
is worse than foregoing trust in the current period. Second, if B trusts 4 and A4
abuses B, A getsland B,y Aslongas y+1 <0, this is worse than foregoing
trust. So if z; < =1 and y < —1, it is clearly in interests of neither A nor B to
have B trust A. A4, through the expedient uses of promises, can reveal to B

(in self-enforcing fashion) that it is in neither’s interests to have trust this period.

(I.10b) In addition, without promises and insofar as z; cannot be reliably re-
vealed to B, incentive-compatibility (making sure that 4 doesn’t abuse B in
all instances and blame it on low values of z;) will lower what is feasible in
equilibrium. Promises, by removing the need to enforce honor with continuation

payoffs in case of abuse, will therefore be of some aid.
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(I.10c) The third reason why promises can be valuable in the current setting
is well outside the theoretical constructs considered so far. Think of a case in
which y is fairly close to zero, close enough so that (perhaps) the simple-promise
equilibrium is Pareto dominated by the set of no-promise equilibria. Even so, to
sustain any efficient no-promise equilibrium outcome except for ATAH will take a
fairly complex set of strategies, public randomizations (or something equivalent),
and the like. The simple-promise equilibrium is very straightforward and (one

presumes) would be relatively easy to learn.

(1.11) Efficiency, sidepayments, and liquidated damages. In the forgoing discussion,
we have skirted the issue of sidepayments between A and B . The possibility of
sidepayments, especially contingent on whether 4 abuses or honors B's trust,
will pose significant interpretational problems for our results, problems that we
will confront only at the end (when we lapse into arm-waving). But since the
problems presented by sidepayments are bound to come up, it is probably better
for us to head off those questions by taking a small detour and acknowledging

the problems here.

(1.11a) We measure efficiency by sum-of-payoffs, under the hypothesis that pay-
offs are in monetary equivalents and sidepayments are theoretically possible. *
We do not worry overmuch about the bargaining strength of the two sides, and
(correspondingly) won’t worry about the distribution of the sum-of-payoffs —
insofar as (noncontingent) sidepayments are feasible, distributional issues are a
side issue.

Then it is clear that overall efficiency depends on z; and y as shown in

figure 4. That is, we compare

1+zy, 1l+y, and 0,

* To take this seriously, we ought to renormalize payoffs so that the benefits to B of honored
trust and the benefits to A of abuse are not necessarily equal. But for now, we won't bother with this.
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finding that trust and honor is efficient if the first is largest, trust and abuse is

efficient if the second is largest, and no trust is efficient if the third is largest.

-1 1

trust and abuse optimal _E

B -1 o

~ trust and honor optimal

no trust optimal

Fic. 4. Efficient outcomes depending on z: and y.

(I.11b) To set the benchmark, in cases where z, can be revealed to B ex post,
there is nothing standing in the way of a fully efficient outcome (subject to the
usual individual rationality constraints). So we will proceed assuming that =z,

cannot be revealed to B.

(1.11c) The case y < ~1. We tend to think in terms of cases where y < —1; ie,
where the injury done to B by abuse (relative to a base of no trade) is greater
than the benefit B gets from trade.® Insofar as B could deal with other trading
partners, and the benefit from dealing with this particular A reflects some slight
comparative advantage in this trading relationship over others, this would tend

to be true. We will proceed under this assumption, and then come back to it.

Under this assumption, trust and abuse is never efficient. Now in the simple

promises equilibrium, we get trust (and honor) when z; > 0. In our parame-

5 In a more general formulation, the idea is simply that the benefits that A gets from abusing
B less the cost to B from abuse should be such that this outcome is inefficient relative to no trade
between the two.
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terization, we had zero probability of z; € (—1,0), so as long as y < —1, the
simple-promise equilibrium is fully efficient {(and will do better than any non-
contingent choice by B, as long as the support of z, intersects both (—oo, —1)
and (0,1]). But if there is positive probability of ~1 < z; < 0, simple promises
falls short of the socially efficient outcome.

With sidepayments contingent on whether a promise is given or not, this is
easy to fix: We simply suppose that B compensates A with 1 if A promises
good behavior, unless and until 4 abuses B after giving a promise. In this
case, A, looking at z,, will choose to give the promise as long as 1+z; > (;
her incentives to carry out the promise then will turn on the value of continuing
relationship, much as before. (The cut-off discount factor is larger than before,
since in this case she can get 2 immediately by giving a promise and then abusing
B, while the value to her of the ongoing relationship doesn’t increase by 1/« or

even by 1.)

(L1id) If y > —1. Whatif y > 17 If sidepayments can be made contingent
on honor/abuse, the obvious thing to do is to have a “liquidated damages”
arrangement, in which A pays B the amount —y if A abuses B, and B pays
1to A if A is honorable. (To leave B with some surplus, simply shift these
amounts up and down, respectively, by the same constant.) In the equilibrium,
B always trusts A4 (no trust is never efficient if y > —1), so A’s choices are
between honoring B s trust, netting z; + 1, or abusing B, netting 1+y. That
is, with liquidated damages and a reward for honor, A fully internalizes the

consequences of her actions, and we have full efficiency. ®

(I.11e} To close off this excursion into contingent payments and liquidated dam-
ages, let us say the following: It is clear that efficiency can be enhanced within
our models with these sorts of payments. Especially when y < —1, the enhance-

ment is easy: A must be compensated for the simple act of giving a promise.

® What if y changes from period to period? We'll get to this later.
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Notwithstanding this, we will proceed with the main lines of our analysis in a
schizophrenic manner: we will assume that sidepayments are not possible, but

at the same time we will measure efficiency with a sum of the payoffs approach.

(1.12) Other no-promises equilibrig. In our previous analysis, we argued that promises
can improve the situation over what we can get without contingent choices
(whether to trust) by B in two ways: by comparing with ATAH, and by looking
at the set of feasible payoff vectors. Idéal]y, we should be computing the set of all
eguilibrium payoff vectors, assuming that B doesn’t get any information about
z; . As we noted, in theory this can be done, at least for pure strategy equilibrium
(except for convexification with publicly observable randomizations); one would
use the general results of Abreu, Pearce, and Stachetti (about self-generation) to
compute the equilibrium set by value iteration. But as a practical matter, the
computations are difficult, and it seems hard to guess the structure of efficient
equilibria because of A’s possession of private information which, by assump-

tion, cannot even be revealed ex post.

Notwithstanding these difficulties, it will be helpful to expand our under-
standing of what can be achieved when B must act at date ¢ without any
signal from A about z,, and so we proceed in this subsection to describe a
one-dimensional family of equilibria of this character. But to reiterate (since it is
easy to lose this in the welter of details to come): There is no reason to believe
that any of these equilibria are efficient in the set of all equilibria.

To keep computational complexity to a minimum, we will assume that 4
and B have access to a publicly observable randomizing variable at the end of
cach period, which will be used in the implementation of these equilibria.

In these equilibria, there are two “states,” a trust state and a nontrust state,
which describe the actions of B. In the trust state, B trustsl A. If A honors
B’s trust, the state is trust again in the following period. If A abuses B ’s trust,

the state moves to nontrust with probability 1 — 4 (which is parametric to the
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equilibrium, and which is determined, for simplicity, by a publicly observable
randomization). A’s decision whether to honor B’s trust is determined by a
comparison of z; with some z, (which is also parametric to the equilibrium) ~-
if z; > z,,then A honors B's trust. If the state is nontrust, then B does not
trust A, and the state next period is trust with probability 7 and nontrust with
probability 1— §. N.B., z. will be determined by 7 and A’s optimal-strategy
constraint; the equilibrium is essentially parameterized by £ alone.

Let p. be the probability that z; < z,. Assuming this describes a Nash
equilibrium, the payoffs to A starting in the trust and nontrust states, denoted
by v and v’ respectively, are determined by the following functional equations:

v=p.[1+a(Bv+ (1= Bw)]+ (1 - p)av +/ T F(dz),

[z4,1]
and v’ = o[fv + (1 — 8p'].
(The usual logic applies.) The second of these can be rewritten -

. af
CET T -p”

which, substituted into the first, gives

_ Pe + EI_}”:Lu?‘(d:c)
T T alpBrp.(— BB/l - al = Al + (1= p)]

As for the payoffs to B, writting u and u' for his values in the trust and no-trust

state, we have the functional equations
u=(1-p.){1+au)+p.fy +a(fu+ (1 - Fu')

and u' =0+ a{fu+ (1 - Bu').
After some manipulation, we get

- «f
S 1-a(l-5)

P+l +(1 —P*)
(1~ a)* 1+ [p(1 - B)/{1—a(l =B+ (1 —pI]
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Note that we do not get an equilibrium if z, is set so high that, for the corre-
sponding p., we have

p*y+(1 —P*) < O;

in this case B would refuse fo play along.
To compute these equilibria (or, at least, the efficient ones among them), it is
easiest to take z. as parametric and derive f. We won't take you through the

derivation, but it turns out that, fixing z.,

' . z) F(d _
mf_mmzru((x z) (x),andﬁzl—— 11—z,

T —w

[Well, let us say something about why we can, somewhat miraculously, write
down the equilibrium value as a function of one of two defining variables. The
key comes in our parameterization, and more specifically in the fact that if z; <
z. (so A will abuse B), A's contingent payoff is independent of z;. Since
we set A so that A is indifferent between abuse and honor at z., we can
effectively replace outcomes of =, less than z, with =z, (this takes a martingale
continuation argument to be made precise). Thus we can compute the value
under the assumption that we never meet z; < «,, in which case there is never
any abuse, and things are very simple — the formula for u should now be
obvious.] This applies as long as § so computed is positive; at the point where

f becomes negative, an equilibrium (with critical value =, ) cannot be supported.

(1.12b} For example, in the simple example from before, we have z; = 8§/9 with
probability .9 and = —3 with probability .1. Setting z, = -3 is essentially
recovering ATAH.” We know that this equilibrium gives values 5 to A and 10
to B. It is relatively straightforward to calculate the equilibrium for z, = 8/9;

we get v = 80/9 and § = .8765.... The value of v depends on y, of course;

B ; you caiculate § from the formulae above, you will get the largest value of 8 needed to
enforce honor when z, = —3; an infinite punishment is not needed.
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if y=—2, we get u=6.9136. Compare with the (first-best, as long as y < —1)
simple-truth equilibrium, which gives payoffs 8 and 9 for A and B.

(1.12¢) A comparison of these equilibria (and their value functions) with the
simple-promise equilibrium does not give very clean or clear results: The only
clear comparison is for the case z. = 0. Then simple-promises is clearly superior:
A gets precisely the same payoff in both equilibria, but B is worse off in the
z, = 0 equilibrium on two grounds: He pays —y in cases where z, < 0, and
his (presumably) profitable subsequent trades with A are forgone, at least for a
while. (In terms of the value function u, the first lowers the numerator, and the

second lowers the denominator.)

Moving away from z,. = 0 muddies the waters. A unambiguously prefers
to raise z., and if left to choose among these equilibria, she would choose =,
corresponding to a zero value for B (where p.y + (1 - p+) = 0). But increasing
P decreases the numerator in B’s value function; and while it also decreases
the denominator {by raising #), in all cases we've computed B unambiguously
prefers lower z,. But the sum of the two payoff values takes on no particular
pattern. Examples can be found where the sum of values rise with z., where
they fall with z., and where they are not monotonic in z.. (As y gets more
and more negative, lower z, are relatively favored, of course; in all examples
we've examined with y < —1, the sum falls in z., but if this is a proposition,

we am far from a proof.)

Finally, there is no clear pattern between the payoffs or their sum in the
simple-truth equilibrium vs. the “best” of the z, equilibrium. Examples can
be produced where the sum in the best z, equilibrium exceeds the sum in
simple-truth, for z, at the top of its distribution; where the sum in the best z.
equilibrium exceeds the sum in simple-truth for z, at the bottom of its distribu-
tion; and where simple-truth dominates. (For the latter, take any case in which

y < —1 and the support of z, excludes (—1,0). Then we know simple-truth
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will be first best.)

(1.13) Post mortems for the simple model. As noted earlier, the simple model sug-
gests three roles for promises. The first, and clearest, is that they allow 4 to
communicate in self-enforcing fashion with B information that is in both their
interests. We can think of this as relating to two extant literatures:® (1) The use of
cheap-talk communication in games with some, but not complete, commonality
of interests. This goes back to Crawford and Sobel (Econometrica, 1982). For a
contextual application, see recent work by Farrell and Gibbons. (2) More specifi-
cally the use of cheap talk in repeated interactions: Ben Porath and Kahnemann
(1993) analyze a case in which players take actions that (all) others do not see,
and they obtain conditions {on the observability by one or by two other parties)
under which the folk theorem still holds. Lehrer has done a very general analy-
sis of cases with hidden actions, although we are unsure whether he investigates
the role of cheap talk. We are vaguely away of general work on this subject
by Matsushima and Matsui (which is to say, Kreps has seen a .pfesentatien, but
can’t find a copy of the preprint). And this has been the subject of some analysis
in specific contexts: such as Sobel’s credibility game (although this isn’t for an
infinitely repeated game), and the study of the revelation of insider information,
by Benabou and Laroque (1992).

The second role for promises is that because they allow for communica-
tion, they remove to some extent the need for inefficient “punishment” of A by
B when A abuses B. These punishments are not always needed — without
promises, 4 and B have access to ATAH — but in general ATAH is itself in-
efficient (and, for z low enough, ATAH isn't an equilibrium outcome), so that
without communication, B must do something to keep A from abusing him all
the time and claiming low z;.

Third, and somewhat related to the second (although not in terms of formal

$ We would appreciate any additicnal references.
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theory), promises give us relatively simple equilibria. (We'll lose that virtue in a
minute.)

The problem with simple promises in the forgoing model is that they them-
selves are inefficient. Essentially, A has no incentive to give a promise in cases
where the cost to him of honoring the promise makes him worse off than in the
no-trade outcome but not so worse off that, together, A and B are jointly better
off (using a sum of payoffs). Also, for cases where y > —1, it might be efficient
to have breach of a promise, but except for the possibility of liquidated damages,
we haven't got a grip on how to allow for this.

We'll return to these general postmorfems in a bit. But before doing so, we

want to enrich the basic model a bit.
II. Broken promises

In the very simple models above, promises given are always kept. This is
not much in accord with observation of the real world, and as a first variation
on the basic model, we consider what it will take to get promises that are not
always kept.

One route to this end is to consider more complex equilibria than the ones
we've looked at, but without changing our formulations. Réther than do this,
we will complicate the formulation, so that it is inevitable that promises will

sometimes be broken.

(IL.1) The complication runs as follows. Up to this point, we've assumed that
A knows z; at the time when she can offer her promise or not. Hence she
knows what her later costs and benefits of honor will be, and (in a pure strategy
equilibrium) she can forecast whether she will honor or abuse B.

Suppose instead that she only has some indication of what will be the even-
tual value of z,. To keep matters as simple as possible (they will still be fairly

complex), suppose that z, will take on one of two values, ¥ or gz; think of
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z < -1 and 0 <7 <1, sothatif z, =g, it is socially inefficient to honor trust
(relative to not having trust offered), but if =, =%, A would prefer to be trusted
(and horor that trust) to forgoing trust. In fact, we will go a step further and
assume that z is so low that A will, more or less automatically, abuse B if B

trusts herand z; =z.

(I1.2) We assume that at the time that B must decide whether to trust 4 or not,
A does not observe z;, but instead receives some private information which
allows A to reassess the probability that =, = z. Welet p; denote the probability
assessed by A on the basis of her information; so that p, has expectation equal
to the prior probability of z. If B frusts A, then A learns the true value of

z:, and either honors B s trust or not.

(IL.3) The form of the equilibrium we will investigate runs as follows. Play begins
in a “possible-trust” phase: A observes p;. If p; < p,, A issues a promise to
B that she will honor his trust if he trusts her. If p; > p., A does not give
this promise. B trusts A if and only if the promise is given. If no promise is
given, we move to the next date, remaining in the possible trust phase. If the
promise is given, so that B trusts A, A observes z; and responds accordingly:
if 2, =2, A abuses B;if ¢, =7, A honors B's trust. If 4 honors B’s trust,
we again move into the next stage in the possible-trust phase. If A4 abuses B,
however, we enter the next period in the possible-trust phase with probability
§; with probability 1 — § we enter a “punishment phase.” In the punishment
phase, B does not trust A, regardless of what A4 says, and the phase in the
subsequent period is the “possible-trust” phase with probability #. Random

phase transitions are according to a publicly observable randomization.

(I.4) This equilibrium is effectively parameterized by 5, which is a surrogate
for the length of punishment inflicted on A if she ever abuses B’s trust. The

smaller is 7, the more sure 4 will have to be that she will be able to honor B ‘s
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trust, before she will promise to do so. Thus 7 will endogenously determine p,
(much as A endogenously determined z, in the previous section).

Letting v be A’s value starting in the possible-trust phase, and letting '
be her value starting in the punishment phase, we have the following functional

equations for v and ' (in terms of p. and §):
v =aBv + (1 — B)'), and

v=(1-GEN0+av)+ f (1~ p)(T + av) + p(1 + a(Bv + (1 - B)] G(dp).

[0,p.}
The first of these is

r_ af "
Cl-a(l-8)"

As for the second, we write I{p,) for fw o) p G{dp), and the second functional

v

equation (replacing v’} becomes

o[- B
1—a(l-75)

1@*)] v+ Gp)FE +1(p)(1 ~ 7).

Thus
v = [G(p*)m I(p.)(1 — f)} / [ﬂ - ) (1 ¥ %N '

A given p, and S constitute an equilibrium if, when p, = p., 4 is just indif-
ferent between giving the promise or not. If she fails to make the promise, she

nets cw. If she does make the promise, she nets
p(1+a(Bv+{1— )+ (1 - p)F +av)).

Equating these two gives the equilibrium condition®

ot -pr =n G

? With the following warning: This is the equilibrium condition for an interior value of p. if
the support of p; extends to a bit to right of p. . If there is some interval (p*,p” +¢) that has null
intersection with the support of p;, then the equality should be an inequality {lhs > rhs) with the
reverse inequality at the next highest point in the support of p¢, changing p. butnot v.
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After manipulation, this gives

_ p- +(1-p.)7
a(pyG(py)E + po + T — puT — U(p,)T)

p=1

In addition, we have to check that 4 will be willing to honor B’s trust if z,
turns out to be 7 : This is the inequality condition

af

'x‘+cxv21+g(ﬁv+(1—ﬁ)v’):1+mv

which is
g o(l-a)1-8)
— 1-a(l-p5)

And when we have an equilibrium pair p. and j, the value function for B

(saving you the algebra) is

a(1- ﬁ)l(p*)ﬂ_

o= 6o+ 1606 - )] /|- 1+ S

(If this is negative, we don't have an equilibrium.)

Although it is not evident from the algebra, it seems fairly clear that 7 will
be rising in p. . It also seems fairly clear that A will prefer higher cutoffs and B
will prefer lower ones. But we have not had time to do the analysis to support

this intuition.

(II.5) We close with an example. We confinue with the parametric example in
which z, = 8/9 with probability .9 and —11 with probability .1. This means
that Ez is negative — ATAH is certainly not an equilibrium - although this
is unimportant; the main thing is that A will certainly not honor B’s trust, no
matter what this means for the future, if z; = z (as long as o = .9, which we
assume).

To set benchmarks, if A manages to learn z, prior to B having to decide
whether to trust A or not, and if A can give a promise, we have the simple

promise equilibrium with gives the (first-best) outcome of 8 for A and 9 for B.
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And, without communication, we have the z, = 8/9 equilibrium; to enforce
honor when z; = 8/9, we need 3 = .87654.... The payoff for A is 80/9. The
payoff for B depends on y: We will consider the case y = ~8, in which case
we get u = .9876543..., and the sum of the payoffs is 9.876543....

We assume that at the time B must decide whether to trust A (in period
t), 4 has information that permits her to assess probability p, that z; will
equal —11 (and she will be forced to breach her promise}. We assume that p,
has distribution function G(p) = p/® for p € [0,1]; this has expectation .1. We
spate the detailed calculations, and summarize the results in figure 5. In figure
5(a) we graph A’s values (solid boxes), B’s values (open boxes), and the sum
(diamonds), for different cutoff values; in 5(b} the corresponding values of 3 are
graphed, for the range p. > .1548303 (approximately). (For p. < .1548303, S
becomes negative, so this is the lowest cutoff that can be enforced). The sum of
payoffs is largest in the interior, but at a relatively low cutoff level of around .2.

(It is potentially interesting that the values for p. = 1, where A always
promises B and B always (in the potential trust phase) trusts A, give lower
payoffs than does the z. = 8/9 equilibrium. This happens (as far as we have
been able to tell) because the additional constraint that A is just content to make
the promise at p. = 1 is binding and the constraint that she will be willing to
honor B's trust when z, = 8/9 is slack. In fact, if we increase the value of
53 above .38 or so, A will still want to make the promise for all p;, and the
second constraint remains slack until 3 = .87654.... See the previous footnote

concerning this point.)

II1. Private info about y and promises of varying strength

To this point, we have assumed that A knows y. Hence unless B, hearing
a statement from A4, is just indifferent between trusting A and not, A will know

in equilibrium the consequences of the statements she makes.

Suppose we enrich the story a level further by supposing that, in period
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t, the payoff to B if he trusts A and she breaches is y;, a random variable,
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(b) £ as a function of p.

Fic. 5. An example with broken promises.

observed by B but not by A. Assume that the {y;} form an iid. sequence,
with H the distribution function of y,.

It might be that there is some role for cheap-talk by B concerning v, given

at the same time that A makes her speech based on z;. But we will ignore that

possibility and consider instead the following structure of actions: A receives

some information about the future value of =, and makes a cheap-talk statement
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about that. B, hearing and interpreting A ‘s statement, and aware of the current
value of y;, decides whether to trust A. A then learns the value of z,, and
decides (anticipating future actions} whether to honor or abuse B (if B has
trusted her this round).

We will also keep to the relatively simple case of section II, in which z, is
either T or z, and A’s information about z; takes the form of a probability
assessment p;, drawn according to some distribution function G. We assume
that z is so low that A is bound to breach if z; = 2, and we will be constructing

equilibria in which A will honor B's trust if =, =7.

Up to this point, A’s cheap talk have been bivariate; either A promised
good behavior (with high probability) or not. And in the equilibria, B trusted
A when and only when A promised good behavior. In the new story, things
are richer in two ways. First, B may trust A absent a promise, if y; is close
enough to zero, and he may decide against trust even in the event of a promise, if
y. is very far from zero. Second, now there is a role for more than two possible
messages from A; A will (in general) want to induce B into trust when A’s
information p, is close to zero, and 4 may want to give stronger assurances

that she can be trusted for very low values of p;.

(II1.1) Form of the equilibrium. We look for equilibria taking the following form.
We begin in a “potential trust” phase. A has a vocabulary of messages {m}
she can send. We do not preclude the possibility that the Janguage is as rich as
the real line; perhaps A ‘s message is “I'm looking at p, = p” for all p in the
support of &¢. B acts myopically in period ¢ (hence this story works best if
you think of there being a sequence of B s, although we will compute values for
B with a discounted sum); in equilibrium, corresponding to each message m is
a (measurable) set of p;, and B correctly infers from m what is the probability
that A will breach. B takes this message-dependent probability and decides,

on the basis of y;, whether to trust A. If he does not trust A, then we proceed
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to the next period in the potential-trust phase. If he does, then A4 sees z; and
decides whether to honor B’s trust or not. If she honors B's trust, we move to
the next date in potential-trust. If she abuses his trust, then a publicly observable
randomization is conducted such that with probability £, we stay in potential
trust while with probability 1 — 8, we move to “punishment-m.” While in
the punishment-m phase, B refuses to trust A no matter what is y, (and A
would abuse B for sure and without penalty if he did trust her); and at the end
of the period we use the f, randomization to determine whether potential trust
is restored or punishment continues. We also allow for one message m® which
inspires distrust; i.e, if A sends the message m°, she is announcing that she
will abuse B whether her z, is T or z. In equilibrium, B will certainly refuse
to trust A in this instance (we assume that y; < { with probability one). And
should B besilly enough to trust A after hearing m®, once she abuses him, the

next stage begins in the potential trust phase.

It should be noted that the equilibria of section II take the form of these
equilibria, but with only two messages, m® and some message which definitely
inspires trust. If there is no uncertainty about y,, we aren’t quite forced into
an equilibrium of this form — we might have one more message, which makes
B just indifferent between entering or not, and B randomizes in consequence.
Notwithstanding this somewhat perverse possibility, we assert that in spirit if
not in fact, if we are going to have a theory with promises of different strengths
(calling for different levels of punishment if they aren’t kept), then we essentially
must have some uncertainty about how B will respond to them; i.e., uncertainty

about y,; is virtually necessary.

Concerning the publicly observable randomizations: In a more realistic for-
mulation, we would suppose that different strength promises would result in
punishments for varying but deterministic lengths of time. Thatis, if A promises

good behavior and subsequently abuses B, B forgoes exchange for 5 periods;
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whereas if A promises on the souls of her parents that she will behave and
then subsequently abuses B, B foregoes exchange for 25 periods. But it is an-
alytically more convenient to set (approximately) # = 1/5 in the first case and
B =1/25 in the second. Obviously, with a discrete set of punishment levels, we
won't be able to get separating equilibria. But the spirit of what one gets (we

assume) isn't much different, and the analytics are much more complex.

Concerning the formal game model: As part of the game, we have to spec-
ify the set of messages available to A in advance, and as part of any strategy
profile, we have to say how B will react to messages that are unsent in equilib-
rjum. Because the talk is cheap {except endogenously), we will not worry about
such things, thinking (formally, at least) that unsent messages lead to infinite
withdrawal from trade. Hence as long as some message is sent in equilibrium,

unsent messages will be avoided.

Finally, we note in advance the strong stationary character of the equilibrium.
It is easy to imagine strategies in which A’s use of the messages depends on
how trustworthy she has been in the past. But the stationarity we have assumed
is essential to our abilities to make progress on the equilibria, so we ignore all

such (alternative) possibilities.

(II1.2) Structural properties of the equilibrium. The resemblance of an equilibrium of
the sort described above to a standard signalling model should be clear. Suppose
we have an equilibrium, with messages m! through m*, arrayed so that the
corresponding #s, which I will denote by 4! through 8%, are strictly decreasing.
(The case where two signals have the same 3 requires some special pleading
which we won't bother with for now.) Corresponding to each m* is a set of p,
that would choose this message, anc_i we write p* as the conditional probability
that z, = z, conditional on this set. (If for some p, a randomized message is sent,

compute p* in the obvious fashion.) Since {by assumption) B acts myopically,
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the probability that he will trust A having heard m"® is the probability that
yp* +(1—-p") 20, or 1 H((p"* - 1)/p").

(If there is positive probability that y; = (p* —1)/p*, some randomization may be
employed. It is therefore evident that the sequence p* will be strictly decreasing
in k;if p* < o for k < k', then the signal m* would never be send, since
m¥* gives no smaller probability that B will offer trust this period, and strictly

lower penalties for failing to honor trust. Moreover:

Proposition. ' In any equilibrium of the sort under investigation, for messages ordered
as described above, if A will send m* when p, = p, then she will send a message with

no higher index whenever p; < p.

In other words, the “types” of A separate into neat intervals, with the highest

cost types sending lower index messages.

(I[1.3) Fully separating equilibria? Following Crawford and Sobel (1982), it is natural
to wonder how finely we can divide up the “types” of A in an equilibrium.
Recall that in their setting, there was a limit to number of elements in the the

cheap-talk partition that could be induced in an equilibrium.

Conjecture. ' For some specification of this model, where p; and y, each have

nonatomic distribution, we can get a fully separating equilibrium.

Recall that in Crawford and Sobel, the reason for the limit on the size of the
partition is, essentially, that the receiver and sender had different interests. In
a fully separating equilibrium, the receiver would know the sender’s type, but

then the sender would wish to dissemble af least to some extent. That reasoning

0 We haven’t written out a complete proof, so this is only a fairly strong conjecture at this stage.

™ If section IIL5 to follow is correct, we assign this conjecture probability .8 of being true. But we
are not quite there yet.
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doesn't apply here because in this case, the “signalling” is somewhat based on

endogenous waste; ie., the delay in return to potential trust, once breach has

occurred.

(IT1.4) Efficiency? Crawford and Sobel also find that the finest of their equilibria is
the most efficient, ex ante. We conjecture '* that this will fail to be the case here or,
rather, parameterizations can be found for which the most efficient equilibrium
(sum of the expected payoffs) involves an intermediate (finite) number of signals
— even if complete separation is possible, it will involve too much wasteful

separation by £.7

(ITIL5) Construction? In the equilibria of sections I and I, we were able to write
down in essentially closed form what they must be. We don't rule out the pos-
sibility that this can be done for the equilibria described here — at one point we
were convinced that we couldn’t write down the equilibria in part II in closed
form, so our intuition on these things is not so good — but as we write this, we
can’t do it.

Nonetheless, we believe we have an algorithm that computes equilibria of
this sort, assuming they exist. (The algorithm will tell you when a particular
“equilibrium” cannot be constructed.) Begin by partitioning the support of p;.
(We'll assume that p; has nonatomic distribution, although handling atoms is not
too big a problem. Also, We'll proceed as if we are aiming for a finite partition
equilibrium) For each interval, compute the value of p* and find the probability
that the B will deal with this interval in the equiiibrium. Decide whether the

“no trust” message m® is to be sent by the bottom partition.

Conjecture v = 1/(1 — «). (This is obviously too high.) Take the interval

12 Probability = .55.

13 On the other hand, if signalling could be done via liquidated damage amounts, it seems likely
that among equilibria of this sort, perfect separation would be relatively the most efficient. But we're
really shooting from the hip at this point.
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sending the message m!, and find £' just low enough so that (given v as above)
these types are induced to honor trust when z; = =. Then use the right-hand
endpoint of the interval and the probability of trade given by the next interval to
find the value of #* that just keeps this endpoint value of p; indifferent between
m! and m?. And proceed up the ladder. Note that we are computing a “most
efficient” equilibrium for the prespecified partition of the support of p;. This
can terminate one of two ways: Either we “run out of room” in the sense that
B% goes through zero before the last interval in the partition is considered, or
we get through to the last group. In the first case, we must give up. In the
second, compute v using these values of #*. Clearly the value of v that you
will get will be less than 1/(1 — o} ; use the new value of v to redo the process.
We believe (and, we stress, we believe) that the lower is the guessed at v, the
smaller will be each 8% in turn, hence the smaller will be v that is derived at
the end. If in any iteration you run out of room in the fs, no equilibrium with
this partition can be constructed. Otherwise, this will converge mondtonically to

the most efficient equilibrium for this partition.

IV. Discussion: Promises, transfer payments, liquidated damages

From the perspective of a mathematical development, it seems reasonably
clear that there is potentially enough in the forgoing analysis to, say, get a publica-
tion in a middle-level theory journal. To make it into a top-level theory journal,
we will probably need to sharpen up our characterizations, and even figure out
how to extend Abreu-Pearce-Stacchetti fully to these contexts, so we aren’t in
the somewhat infra dig business of spending time and pages analyzing a class of
nicely structured but probably inefficient equilibria.

Notwithstanding this, we believe the forgoing analysis falls on its face along
a different dimension. We have already noted that, in the case where y < -1
and z; is known to 4, we would get the first best outcome by paying A for

the making of a promise (which would then, of course, put A’s reputation in
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jeopardy). It is easy to imagine that when we relax these strong assumptions on
y and x:, we would still promote efficiency by paying A to make a promise; the
idea is clear: A’s decision to promise or not depends on her own evaluation of
the chances she will be punished as against the surplus she forgoes if she doesn’t
make the promise (and get the business this period). But from a social point of
view, she ought to give some consideration to the surplus she will (potentially)
provide B. A payment for making a promise {(with a corresponding increase in

the penalty for breach) would push in this direction.

Moreover, and worse, in the models or, more precisely, in the equilibria
above, breach is penalized by a withdrawal of trade for some length of time.
This is manifestly inefficient, relative to a system of penalty transfers from A
to B in the event of breach — something like a system of liquidated damages.
Both A and B suffer by a suspension of trade (assuming we have an equilibrium
where both obtain surplus from the outset). Why this sort of penalty, when/if

direct compensatory damages can be paid?

N.B., this problem is one that goes far beyond the current context of a theory
of promises. In many applications of the folk theorem, we have to wonder
why the punishment will be carried out, if it will hurt both sides. The obvious
gratujtous reference to the sizeable literature on renegotiation is in order, but we
think it goes beyond this: In some applications of the folk theorem — ie., to
implicit cartels — compensatory sidepayments are illegal. Depending on what is
observable by the players, in other contexts they may be hard to implement. In
standard agency problems, risk aversion may prove a problem. (References both
to Fudenberg-Holmstrom-Milgrom and to Polinsky (JL.S, 1983) come here.) But
we feel fairly comfortable in saying that in some contexts, direct compensatory
damage payments are too quickly dismissed. The current context is particularly
favorable for thinking about why/how they can be dismissed on more solid

grounds.
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(IV.1) The discussion should begin with a proposition. We'll dignify it with that

name, although it isnt in state to be proved, just yet.

Proposition. In any of the models above, if A and B can engage in sidepayments
contingent on the observables (whether A makes a promise to B and, in the multi-
strength case, what is the strength of the promise given; whether B trusts A or not;
whether A honors B's frust or breaches), if A and B's payoffs are measured in
those sidepayments (so, in particular, A and B are risk neutral in the sidepayments), if
neither A nor B face immediate liquidity constraints, and if there is no frictional loss in
making sidepayments, then self-enforcing contracts calling for contingent sidepayments
can do no worse than “promises.” Moreover, insofar as the promises-equilibrivm involves
positive probability of breach and (hence) positive probability of some punishment of A
by the withholding of trade, contingent sidepayments can do strictly better.

This needs to be made more precise, but we think it has content, lent to it by
the list of assumptions and by the term self-enforcing. To take the latter part
first, we have in mind a case in which the “contracts” are not enforced by the
courts but instead by self-interested behavior by A and B. In particular, when
A is called upon to pay compensation to B, then A will do so, under the threat
of a withdrawal of trade from B . The point, and the content, is that Whenever
{(without sidepayments) A is to suffer a loss in payoff from a withdrawal of trade
by B, it is better for B and no worse for A to take a direct payment in that
amount, where if A reneges, B can always resort to the withdrawal of trade.
Indeed, insofar as this increases the efficiency of the A-B relationship and
those gains are shared between A and B, it enhances the value of the ongoing
relationship and so makes the (never-to-be-used) second level of punishment-by-
withdrawal all the nﬂore to be avoided.

Obviously, frictional losses in making sidepayments will compromise this
result. If 4 and/or B faces short-run liquidity constraints, such that they can’t

borrow (at rate «) against the value of their ongoing relationship, punishments
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stretched out over time may be more powerful. (See Boot, Greenbaum, and
Thakor, 1993)

As for the assumption about risk neutrality, we leave it there in case it is
needed (although we don’t quite see the need) — if we want to extend this
result to say that, with these contingent sidepayments we can reach the first-best
efficient outcome, then risk neutrality will certainly play a role: cf. Fudenberg-

Holmstrom-Milgrom and Polinsky, for example.

(IV.ZZ) Yet when X asks Y whether she would give a seminar at some date six
months hence, Y promises to do so without any discussion of the damages that
would be paid if Y fails to show up (or if, after the seminar, X announces that he
has been had). Although X is a forgiving soul, Y may well imagine that had she
phoned in sick the morning of the seminar, X would have considered fhis the
breaking of a promise, and Y would have suffered a withdrawal of “trade” with
X for some period of time. Why don’t we have a simple schedule of damage

payments — phone in sick, and send X a check for whatever is appropropriate?

To put the matter fairly strongly, all those earlier functional equations aren’t

much of a theory of promises unless we can explain this.

(IV.3) The first thing to say is that if Y breaks her promise, there are ways she can
(presumably) accelerate X's forgiveness and end the inefficient punishment cycle.
That is, a check in compensation may not be called for, but that doesn’t mean
that compensation can’t be (and isn’t) given when a promise is broken. (Just to
be clear, We are not concerned here with promises that are broken for reasons
that can be credibly explained. We want to stick, in these ramblings, to a case

where, effectively, z, is and remains private information to the promise giver.)

(IV.4) In a related vein, observe that the efficiency gains that might accrue if X
could be paid for making a promise may actually be present as well. Y asks

X to give a talk, and it was clear to both parties that this would be somewhat
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costly to X. By promising to give the talk, X hopes to cause Y to-entertain warm
and friendly feelings, so that if at some future date when X asks Y for a favor, Y
would compensate with a promise of his own. Putting this more strongly than is
(perhaps) appropriate, we are probably less concerned about payments for giving
promises when the parties involved have a mutually beneficial relationship, in
which each does things for the other. In such cases, the compensation needed to
get us closer to first-best may be there in somewhat “hidden” form. (In terms
of a formal model, imagine in the simple-promises setting that at alternate dates
X asks favors from Y which put X in jeopardy, and think of constructing an
equilibrium in which X and Y are more inclined to give a promise (consent to do
a favor) the more the other has done so; hence (looking forward) each is more

inclined to give a promise in order to build up credit.)

(IV.5) The previous two paragraphs essentially argue that promises may not be as
inefficient as our simple formal models have suggested, but they do not change
the basic observation that direct sidepayments would be at least as efficient and
perhaps even more so. So we return to the questions, Why doesn’t X give Y
a check when she promises to give a talk, and why don’t they set (or at least

understand) that Y can, for some predetermined amount, gracefully bow out.

One argument might be that the cost of negotiating these amounts would
soon swamp the two, particularly insofar as in most cases the promise will be
kept and negotiations over compensatory damages will be wasted. But this isn't
convincing; since the equilibria we have described involve both parties under-
standing how long a withdrawal from trade is required in the event of breach.
There is no reason we can think of why one computation would be easier than

the other.

A second argument is that contract law gets in the way. We would want to
set compensatory damages in a way that depends on Y’s incentives and not on the

damage done to X, while courts award damages based on damages done {or so we
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understand). But if we set the damage level in the contract a priori, as a level of
liquidated damages, the courts will not intervene. (Can party Y, having signed a
coniract with a large level of liquidated damages called for in the event of breach,
go to the courts and ask that the contract be set aside because the level of damages
does not correspond to the damage done? Any legal scholars reading/hearing
this?) Moreover, court enforcement shouldn’t be an issue, insofar as we are

looking for self-enforcing compensatory damage payments.

(IV.6) While we do not like either of the previous two arguments, we can offer
three and one-half possible explanations, all of which are easy to model in an
economic model, but only if you assume the conclusion.

The first involves incomplete information about “type” and reputation. Sup-
pose there are saints out there who keep promises even when it is personally
costly to do so. Such saints avoid relationships that are tied up with negotia-
tions about liquidated damages on the like, because they find such things to be
too crass and materialistic. Even if the percentage of saints in the population is
small, in the usual way we can find a larger percentage of members of a society
acting saintly, in order to leave open the possibility that they are really saints.
And their desire to protect this reputation gives their trading partners a measure
of assurance. Of course, to act saintly (we are assuming, and it is nothing more
than that) is to forgo liquidated damage negotiations and payments. Hence Y
wouldn’t dream of sending X a check for canceling; to do so would reveal her as

being the sort... who would do so.

(IV.7) Explanation number 2 concerns pure expectations. In both the promises
and the compensatory-damage award “equilibria,” A’s motivation to keep her
promises/pay called-for compensation is based on the expectation that B will
continue to trade with her if she does so (and will call a halt to trade, at least
temporarily, if not). Y is motivated to keep her promise to give a paper because

she puts a value on her future relationship with X, based on an expectation that
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he will be around to trade with in the future. This is purely expectational, and it
is entirely possible that her expectations concerning her future relationship with
X are colored by the character of that relationship. That is, as long as X and Y
engage in trade based on promises, small i::ersonai gifts (Y buys the coffee today,
X does tomorrow), and the like, then we both expect that we will continue to have
this sort of relationship. But if, when X asks Y to give a seminar, he also begins
to specify damages to be paid to him if Y breaches, Y might have constructed this
as an indication that X was thinking of early retirement. Accordingly, Y might
have given the promise, fully intending to breach if the costs of fulfilling were
moderately high, and expecting as well that when/if X came for his liquidated
damages, she would tell him to take her to court. X, understanding all this,

would not trust a promise backed by negotiations over liquidated damages.

This is something like the previous explanation, except the previous argu-
ment is based on a “seed”; a small percentage of saints within the population.
This argument is completely self-starting; based on the idea that all these equi-
libria depend to some extent on individuals’ expectations of the future; and the
social context in which a relationship is conducted can affect those expectations.
Of course, there isn't much of an economic theory to this, at least unless and
until we take this into some sort of adaptive learning story, since the story turns

on the idea that form affects expectations, and thus content, in a particular way.

(IV.8) The half-story builds on number 2. We have considered models in which
Y deals with a single X, and Y’s incentive to keep her promises are that X will
withdraw his trade. Imagine that X engages in the relationship only once, to
be replaced by a new X next time. Or imagine that X’s trade doesn’t matter all
that much to Y; X alone doesn’t have the power to materially harm Y. Even so,
we know that we can construct reputational equilibria in which Y is held to her
promises by the threat that all the X's in the world will punish her for a while (at

least) if she mistreats any one of them. The standard models of this phenomena
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are where Y deals sequentially with the X’s, but models of simultaneous exchange

also exist and are not very much more complex.

Of course, the key to these constructions is that X3 will refrain from trade
with Y if Y abuses X3, . If Y suspects that other X’s won't pay much mind to
Y’s dealings with Xsy , Y loses the incentive to honor her promise. And Xy,

fearing this thought will enter Y's mind, will not find Y’s promise credible.

As in the previous stories, the key is Y’s (and the Xs') expectations about the
actions of other X’s. Y may not fear the wrath of Xy, but if it extends to the
wrath of Xy, Xaps, and Xys Y might be more mindful of the consequences of
stiffing Xop -

Now imagine two cases: First, X, hears Y promise Xy to give a talk and,
on the appointed day, Y fails to show up. Second, Y promises Xy she will give
this talk, with a payment of $150 if she fails to do so, and then on the appointed
day, both Y and the check were missing. Our expectations {which, if they maich
the expectations of Xy, are what matters here, together with Y’s expectations
of Xy 's expectations) are that in the first case, X;p3 will think Y is a jerk and
treat her accordingly. In the second case, however, Xy;; might consider that Xy,
entered into a commercial transaction with Y, and it is up to X, to collect his
damages; no concern of Xy. Of course the problem is that X 's ability to
collect his $150 depends either on court enforcement (which is costly, and which
requires detailed negotiation of a contract), or on Xy, etc. threatening Y that

they will treat her as a jerk if the check doesn't arrive.

The point is that insofar as a compensatory-damages clause affects how third
parties react to the contract (a good-faith handshake promise between Xy, and
Y should be kept, but a commercial contract between them is none of Xap’s
business), the good-faith handshake may be backed with greater social fofce than
the contract. In theory, there is no reason why expectations/behavior should be

this way. But we believe that they are.
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(IV.9) Finally, X's welfare to some extent may enter Y's utility function. If Y
doesn’t show up, X will be adversely affected, and to some extent, Y may inter-
nalize this. Y may do so because she and X have dealt with each other over a
period of years without the need for formal negotiations, damage clauses, and
the like. At times Y may have to disappoint X (this may be one}, and X will have
withdrawn somewhat as a result. But their bond — which is reflected in Y's utility
function — may be stronger as a result.

Again, there is a strong element of assuming the answer here, at least as far
as "economic” reasoning goes. We would be happier deriving this than assuming
it. But it seems to us likely to be true, and insofar as it provides a reason for
the sort of promise-based constructions of earlier sections, it gives us somewhat

more motivation for studying those functional equations.

(IV.10) Nencalculative trust? To finish up, a word about Williamson's recent work
on calculative vs. noncalculative bases for trust is in order. The latter two and
one-half stories have the ring of his noncalculative trust, but we imagine he
would say that they fall short, since people are still doing calculations. Taking
a descriptive view of rational choice would seem to square the two accounts to
some extent; if X and Y don’t really sit down and do their sums unless and until
they get into the business of computed liquidated damages and the like — but
because their actions are nearly rational, they act nearly as if they did — then we
have a bit of a basis for the stories; those who don’t do explicit calculations but
act as if they did are “kinder” to each other, either on the basis of what seems like
more generous expectations or what seems like a greater concern for the welfare

of others.
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