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ON INCENTIVES AND CONTROL IN ORGANIZATIONS
Bengt Robert Holmstrom, Ph.D.
Stanford University, 1977

The dissertation deals with incentive problems in organizations,
particularly those problems which arise due to asymmetric information among
members of the organization. The incentive problem is studied in the frame-
work of a general game-theoretic formulationl Three specific topics are dis-
cussed: delegation, coordination of information, and supply of productive
inputs. These topics, though closely related, are treated essentially inde-
pendently, and can be read separately.

Delegation is a decentralized decision process in which a principal
lets an agent make the final decision from a restricted set of alternatives,
which the piincipal determines. The delegation problem, from the brincipal's
point of view, is to find the optimal set of decision alternatives to dele-
gate to the agent. The agent is given decision-making responsibility because
he has superior information about the principal's decision problem, but his
freedom is generally restricted because his preferences differ from the
principal's. How these two conflicting factors determine an optimal solution
to the delegation problem is one of the central issues addressed. The main
results on delegation demonstrate this relationship in the context of one-
dimensional quantity controls. The analysis is applied to the control of
centrally planned economies. It is shown that a mixed price and quantity
control scheme for each agent dominates pure price schemes or quantity orders.
The tightness of economic control depends on both the curvature of the bene-
fit and cost functions, as well as the information gap between the central

planner and the economic agents.




Other issues analyzed in the chapter on delegation problems include
the use of general price schedules, existence of optimal delegation sets,
the value of delegation, and efficiency under differential information.

Delegation is characterized by lack of communication between agents.
More general decentralization mechanisms attempt to utilize simultaneously
the information possessed by members of the organization. One such mechanism
has been proposed by Groves. If agents have additively separable and linear
preference functions, Groves' scheme will yield an efficient decision outcome.
We study uniqueness properties of Groves' scheme, which complement and ex-
tend recent uniqueness results by other authors. A new technique is used to
derive Groves' scheme, and this technique is subsequently employed to study
the possibility of reaching efficient decisions in more complex environments.

When the supply of productive inputs cannot be observed, problems of
"moral hazard'" arise. Two kinds of moral hazard problems are analyzed:
team production under certainty and productive services of one agent under
state uncertainty.

In the case of team production it is shown that the resulting outcome
will be inefficient if the outcome is shared among the input suppliers, unless
a sufficiently rich measurcment system is available which will discern dys-
functional behavior of agents. The problem can be avoided if an outside
party is introduced, which will be used to balance the budget in a more
efficient way. This amounts to a separation of ownership and labor, which
provides one explanation for the existence of corporate organizations as
opposed to cooperatives.

If there is uncertainty about what state of nature obtains, separa-

tion of ownership and labor will not suffice to remove inefficiencies. This



is shown 1in the context of a two-person principal-agent model with the agent
supplying a productive input, which together with the state of nature deter-
mines the outcome. The existence of an optimal sharing rule (of the outcome)
1s proved and subsequently characterized. A key assumption for proving
existence is that the share that goes to the agent has to be bounded. This
makes the optimal sharing rule nondifferentiable. Properties of this second-
best solution are studied. The analysis is extended to cases where additional
observations of the agent's action and/or the state of nature are available.

A necessary and sufficient condition is derived for such observations to yield
Pareto-improved contracts. Verbally, the condition states that observations
are of value if and only if they provide some new information about the

agent's act which cannot be obtained by observing the outcome alone.

Approved for publication:

For Major Department
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CIIAPTER I

INTRODUCTION

1. Introduction

1.1 Incentive Problems in Organizations

This dissertation deals with incentive problems in organiza-
tions. There is hardly any need for motivating a study of incentive
problems. The recent boom in the literature on incentives should
stand as sufficient general support, and a glance at it shows that
the theory is only in its initial stage with a vich sct of issues
uninvestigated. A study of the literature also indicates a need to
unify many of the apparently diverse contributions 1nto a more general
framework, and in this way lead the research towards the central
issues related to incentives. Such an attempt has becn part of the
objective of this dissertation, in addition to a study of some speci-
fic topics as described below.

Incentive problems arise in various organizational contexts.
The incentive problems we will study, are a consequence of differen-
tial information among members of the organization. These members
arc viewed as sclf-intercsted cconomic agents who provide two kinds

of services for the organization: they supply information for

decision-making and inputs for production.
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Because agents bechave according to their own interests and
since these generally differ from those of the organization, the two
tasks the agents perform have to be controlled._ Appropriate incen-
tive (or control) schemes must be designed so that agents will con-
form as closely as possible to the organization's objectives. The
difficulty lies in the asymmetry of information. In making deci-
sions one cannot rely on the agents to tell their true information
unless they are induced to do so for their own benefit. Similarly,
one cannot trust the agents to provide the proper amount of inputs
for production when these actions are nonobservable, unless incentive
schemes are employed.1

In many respects the two categories -- (1) incentive prob-

lems in decision-making and (2) incentive problems in the supply of

productive inputs -- are different. In the first situatlion asymmetric

information about state uncertainty is the cause of problems; in the

second situation the problem is strategic uncertainty. Since the
analysis of the two problem types differ, the research on incentives
has almost exclusively dealt with one or the other type in 1its pure
form,2 even though both types are usually present simultancously in
practice, and often intertwined in a rather complicated way.3 This
dissertation follows the same approach with a few exceptions. Chap-
ters Il and I1I1 deal cssentially with pure docision—muking incentives,
and Chapter IV with pure production incentives.

To introduce the reader to the incentive problems we will be

studying, as well as to present a unified framework for the special




models we will be analyzing, we turn to a genceral formulation of the

incentive problem.

1.2. A General Formulation of the Incentive Problem

Suppose there is a decision d to be made such that it belongs

to a prespecified set of alternatives D, called the decision space.

A decision process can quite generally be described as a mapping

d : M+ D, from inputs meM to final decisions d(m)eD.

We will here be concerned with decision processes that have n
participants and can be described as follows. Each participant i
chooses a message m. from his set of alternative messages Mi’ called

i's message space. The final decision is determined by the message

n-tuple m = (ml, e, mn) via a decision function d : M > D, where
n

M= X Mi is called the joint message space. If the decision func-
i=1

tion d depends on more than one m. we have a decentralized decision

process. The pair N = (d,M) is called a decision mechanism.

We are looking at the problem of a single decision maker,
called the principal, who has to choose a decision deD facing some
uncertainty. The uncertainty is described by a probability space

(Z2,F,P), where zeZ is the state of nature and P is the principal’s

subjective probability measure on events in 7. A key feature of our
problem structure is that the principal has available n agents
(indexed by i = 1, ..., n), who possess some private information

about the state of nature. Each agent 1 has observed the outcome

of a random variable }i’ defined on the probability space (Z,F,P),




which provides information about Z. For this rcason the principal

1s interested in using the agents in the decision process by defining
a decision mechanism N = (d,M), which decentralizes the decision as
described above. The agents' messages will normally correspond to
part or all of their private information.

To bring out the production side of the problen explicitly,

. . . 4
let each agent furthermore decide on a productive input a. ¢ Ai.
n
Ai is called i's production set and A = X Ai 1s called the joint
1=1
production set. We write a = (al, e, an) as a generic element of A.

It is assumed that the decision d is made known to the agents before
they choose a.

What decision mechanism should the principal use? This is
the main question to be addressed. The problem that the principal
faces is that each agent will act in his own self-interest according

. - 1 . .
to a preference function F. : D x A x Z > R, 1 = 1, ..., n, which
i

may differ from the principal's prefcrence function FO D x A X Z~+R1‘

Any particular choice of decision mechanism will result in a non-
cooperative game among the agents. We will model this as a game of
incomplete information (sce Harsanyi [1967-1968]), so that an agent's
strategy 1s a pair of functions (mi(yi), aj(yi,d)). It 1s assumed
that a Nash equilibrium provides the appropriate description of the
agents' behavior, and gives the principal the basis for evaluating
different decision mechanisms.

Let us now formulate the principal’s problem precisely.

For this we will assume that the agents know each other's preference




functions Ei and the functional form of each other's private\infor—
mation (but not the outcomes, of course).- They should also agree on
the specification of the probabiiity space (Z,F,P). These-assump-
tions can be defended as.in Harsanfi [1967-1968], and rest on the idea
that the probability space can be augmented sufficiently to incorporate
all differences in information. In some cases, however, the agents
will have dominant strategies, so that these assumptions need not be
made. -In that case agents may be completely ignorant about other
agents' information structure and preferences.

. Given a decision mechanism N = (d,M), a Nash equilibrium is
defined as a set of function pairs or strategies
{(ﬁi(yi;N), ai(yi,d;NJ)}2:l; satisfying:

(1.1) E[F,(d(n(y;N)), aly,d;N), 2)]y;] >

o -1 .
E[F, (d(m (y;N), my), a (y,d;N), a;,2) |y;],
for every (mi, ai) € Mi.x A, for every Yi» and
for every i = 1, ..., n.

Here, m(y;N) = (m (y5N), .op m (v 5N)), a(y,dsN) = (a;(y;,dsN), ..oy
én(yn,d;N]). A superscript i denotes a vector with the ith component

deleted, e.g., mt = (ml, sy M v 5 mn). We will sometimes write

147
s
m= (m, mi).

We will assume that there exists a Nash equilibrium for each

N, since this will be the case in all situations we will be studying.



In choosing among different decision mechanisms, the princi-

pal 1is restricted to a set of admissible decision mechanisms #. We

will have more to say about this set shortly. The principal's prob-

lem can now be stated as follows:

Decentralization Problem: Choose a decision mechanism Ne//,

such that i1t maximizes

(1.2) E[F (dm(y;N)), al(y,d(m(y;N)); N), z],

where (m(y;N), a(y,d;N)) is a Nash equilibrium for each N as defined
in (1.1).

If there is more than one Nash equilibrium, we assume the
principal will choose one of them as a basis for his optimization
problem. The existence of a solution to the decentralization problem
will only be discussed in connection with the special cases we will
study later.

There 1s another way of viewing the principal's problem
defined above. Let dy(y) = d{(m(y;N)) and ag(y) = é(y,do(y); N).

The function part (do(y), ao(y)), which is a mapping from the range
2 Yi to D x A, is called an outcome

i=1
function. The outcome function tells what decision-production pair

of agents' observations Y

will result when a particular decision mechanism is employed and a

particular information state yeY obtains. An outcome function is

called attainable if there exists a decision mechanism Ne¥, which




yields that particular outcome function at a Nash equilibrium. The

set_of attainable outcome functions is denoted 0. The principal's

problem can then be stated equivalently as follows: find the outcome

function (do(y), ao(y)) e ¥, which maximizes

(1.3) E[FO(dO(y), ag(y)), z];

or verbally, find the best attainable outcome function.

Since the decentralization problem is generally quite compli-
cated, if not impossible, to solve, we will sometimes merely charac-
terize the set of attainable outcome functions. This problem is
simplified considerably by the observation that an outcome function
(do(y), ao(y)) is attalnable, if and only if the decision mechanism

N = (dO,Y) has a Nash equilibrium such that &i(yi) =Y i=1, ..., n,

t

and é(y,do(y)) = ao(y).7 In other words, one can check for attain-
ability by letting the decision part of the outcome function, do(y),
be the decision function and see if agents will tell the truth at a
Nash equilibrium. It also follows that the principal may always take
M =Y in the decentralization problem, so that his problem reduces to
a search over decision functions alone. These simple but important
facts will repeatedly be used in the sequel.
Notice that our formulation does ngt‘include any explicit

costs for employing different decision mechanisms. Presumably more

elaborate decision mechanisms, in particular with respect to the

message space M, will cost more, but have omitted such considerations.




1.3 Special Cases of the General Formulation

We now turn to some special cases of the general model

described above.

Decentralization in Teams

If all‘preference functions Fi, 1=20,1, ..., n, are identi-

cal, then the principal and the agents are said to form a team. The

team problem has been discussed primarily in Marschak and Radner
[1972] and leads to a rich theory in itself. In the team problem each
agent i is in charge of a decision di’ i =20, ..., n, so that d can be

. 3 . . .
written d = (d . dn). Agents receive signals Y about the state

0’
of nature z, and subsequently may communicate some of that information
to other agents according to a specific communication structure.
Together the original information and the communicated information
form an information system, which is simply a mapping from states of
nature to states of information for cach agent (1L.e., n + 1 partitions
of 7).

The central problem in team theory is to determine the tecam's
best decision function d for different information systems. Based on
this, alternative information systems can be compared to get an evalu-
ation of the overall best decision mechanism.

In our framework, restriction to a particular information
system can be taken into account by constraining the set of admissible

decision mechanisms ¥. Since each agent has the same prefecrence func-

tion, it is clear that for any optimal team decision function, the




agents' message strategies constitute a Nash equilibrium.9 It is
also clear that we are not making any effective changes in the prob-
lem structure by letting the principal choose the decision functions
di(-) rather than the agents. Hence, the team problem is indeed
subsumed in our general formulation.

Notice that no incentive problems arise in a team, by defi-
nition. We will not study team theory in this dissertation, but it
is appropriate to give a brief description of the problem, since team
theory is a predecessor to recent work on incentives. Team theory for
the first time recognized and modeled differential information ex-
plicitly in the context of decentralized decision-making, and this

has been the basis for the development of a theory of incentives.

Delegation
Another special case arises when we restrict the decision
function to have the form d(m) = (dl(ml)’ R dn(mn)). This means
that each agent is assigned a separate part of the decision, which
he can affect through his message. No coordination of information
takes place. This corresponds to the team problem with a null
comnunication system. Obviously, the team solution provides an upper
bound for how well the principal g¢an do with the help of his agents.
For reasons that will become evident from the discussions
ahead, decentralization via a scparable decision function of the form
above, will be called delegation. It is a very commonly employed

decentralization procedure, and will be discussed in more detail in

Chapter ITI.




Revelation of Preferences for Public Decisions

Recently, much research has centered around the problem of
designing a mechanism for public decisions, which results in Pareto
optimal outcomes even when the preferences of individuals are unknown
(see Groves and Loeb [1975], Groves and Ledyard [1977], Grecen and
Laffont [1977]). The basic idea is to ask individuals for their
preferences, which are parameterized by Y make the public decision
according to a decision function do(m),'which would be Pareto opti-
mal if the individuals told the truth (i.e., if m. = yi); and
finally, induce individuals to tell the truth by a proper choice of
tax functions di(m), which are payments from individuals to the
government. Since individuals are assumed by these authors to have
preference functions which are linear in wealth, the transfer pay-
ments do not affect the Pareto optimality of do.

. . 10
In our framework we would write this problem as:

d = (dO, dl’ ceey dn),

[

(yl, s YY)

Fi(d,Z) = Fi(doyyi) - d

i)

Fo(d, z) Fo(dgy,)

1
i~z

1=1
Groves has shown that there exist tax functions {di}, such that it

will be a dominant strategy for each individual to reveal his truc

preferences. llence, we need not nccessarily look at the problem as




a game of incomplete information. However, if individuals can submit
only partlial information about their prefercnces, or if we want to
eliminate one of the difficulties with Groves' scheme, called the
budget-balancing problem (see footnote 10), the appropriate formula-
tion takes the form of a game of incomplete information (sece Groves
[1973], d'Aspremont énd Gerard-Varet [1975]).

Chapter III is devoted mostly to an analysis of revelation of
preferences as described above, with a few extensions regarding the
attainability of efficient outcome functions for more gencral

preference profiles.

Moral Hazard

Moral hazard represents a pure problem of incentives for
supply of productive inputs. Let us call the input to production
"effort" for simplicity. There is only onc agent, and both the prin-
cipal and the agent have the same beliefs about the state of nature.
The agent's effort a determines a monetary outcome x(a,z), which also
depends on the state of nature z. The problem is to determine an
incentive or sharing rule s{x) for the agent, which will balance
gains from risk-sharing with gains from incentives to supply effort.

Formally, let G(w) and U(w,a) represent the principal's and
the agent's utility functions over wealth and effort. The principal’'s
decision, dO (which he can make himsclf, since the agent has no

superior information about z) is the choice of the sharing rule s(x).

The preference function can be written:




"

Fo(d,a,z) E[G(x(a,z) - s(x(a,z)))],

Fl(d,a,z) E{U(s(x(a,z)), a)].

The principal's problem can bc stated as follows. Choose

s(x) so that it maximizes:
E[G(x(a,z) - s(x(a,2)))],
s.t. a = argmax E[U(s(x(a,z)), a)],
E[u(s(x(a,2)), a)] > U.

The first constraint 1s our Nash equilibrium condition. The second
constraint is a restriction on the admissible decision s(x), imposcd
by an equilibrium in the labor market.

In Chapter IV we will study this problem in detail and char-

acterize the efficient sharing rules s(x).

1.4 Outline of the Dissertation

The last three special structures described above represent
the main topics to be analyzed in this dissertation. These topics
arc cssentially independent. For this reason, an overview of the
contents and the main results, as well as a review of the literature,
nave been postponed to the introduction of each chapter. Each of the

Chapters II, III, and IV can also be rcad separately without much

difficulty.




The outline of the dissertation is as follows. Chapter II
deals with delegation problems, focusing particularly on the use of
quantity controls in management and economic planning. Chapter III
analyzes the coordination of information, mainly in the context of
additive linear preference profiles as discussed above. Chapter IV
studies issues of moral hazard due both to team production.and to

the presence of state uncertainty. Chapter V contains concluding

remarks with some suggestions for future research.
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Footnotes to Chapter I

1This may reflect an unduly restrictive view of the hchavior
of an agent. In particular, the possibility that moral and other
reasons can make the agent conform to the organization's objectives
without the use of incentive schemes is largely ignored. This is truc
especially when the agent's preferences are assumed to be over wealth
alone.

2By a pure decision-making incentive problem we mean that no
productive inputs are present or are assumed to cause any difficulties.
By a pure production incentive problem we mean that there is no dif-
ferential information about state uncertainty, so that the agents are
only used for their productive inputs.

3. . . - . . .

Consistent with the two problems being intertwined, we find
that the same incentive scheme may be used both to induce agents to
tell the truth and to supply productive inputs properly.

4ai could also be modeled as part of the decision d, with the
agent being able to set the level of a independentiy. This formula-
tion will be used in Chapter II.

5 : :
a. will depend on d, since we assumed the agent knows d at
the time he detcrmines a..

6 . .
Usually the game is no longer called a game of incomplete
information when dominant strategies give thc solution.

7To see this, let (m(y;N), a(y,d;N)) be a Nash cquilibrium ~
with a decision mechanism N = (d,M). Take NO = (do, Y), with dO::dOo;n,

and this will have a Nash equilibrium with mi(yi) =Y é(y,do(y)) =

ao(y). These Nash equilibria are essentially identical, since they
result in the same outcome function. From a practical point of view,
they are, of course, different in terms of communication costs. Often
the decision function is such that not all of the private information
of agents 1is needed.

8. . . ..
Since everybody has the same objective function, we can take
the ai's to be part of the decisions di'

9. . . -
With concave preferences the reverse is true. A Nash equilib-
riun gives the optimal team decision function. This is onec of the
main theorems in team theory (see Marschak and Radner [1972]).




1OThe tax functions are not included in F , and consequently
only d, will be efficient, unless the taxes happen to sum .to zero.
The question whether there exist taxes which sum up to zero and achieve
an efficient outcome function d. is known as the budget-balancing
problem. Generally it cannot be solved, as we will see in Chapter III.




CHAPTER I1
DELEGATION

2.1 Introduction

In this chapter we will look at a special but important type
of decentralized process, called delegation. Delegation is formally
defined by the characteristic that the decision function separates so
that each agent affects only his own decision and no coordination of
information takes place. As we will see shortly, this is equlvalent
to a process in which agents are given a set of alternatives from
which they can choose according to their own preferences; in other
words, the agents are delegated the final decision, possibly subject
to some constraints imposed by the principal.

Recently, many authors have discovered and explained the dele-
gation process in various economic contexts; sometimes so well dis-
guised that it has not been immediately clear that the same basic
phenomenon has been studied. One of the earliest, if not the earliecst,
paper on this subject is by Mirrlees [1971] and deals with optimal
taxation. The government delegates partly the decision of how much
taxes individuals are to pay, by tying the taxes to the amount

individuals earn. The reason is that the government, according to

Mirrlees' welfare criterion, ideally would tax individuals based on




their abilities. But the government does not know these abilities,
and so by delegating the decision it can improve on a centralized
solution.

More familiar is the interpretation that the government will
screen individuals by levying an income tax. Individuals with dif-
ferent abilities will choose different levels of income and thus
differentiate themselves according to ability. This self-screening
process can also be called signaling. Individuals will reveal their
abilities via their choice behavior.

The research into screening and signaling phenomena (which
are cases of delegation) gained substantial impetus with the path-
breaking dissertation of Spence [1973] on signaling in labor markets
and with independent work on screening in insurance markets by
Rothschild and Stiglitz [1976]. These studics differ from Mirrlees'
taxation problem in that they analyze informational equilibria in
markets, and how market performance is affected by asymmetric infor-
mation.l Both Spence and Stiglitz (together with scveral others)
identify a large number of instances in which signaling or screening
play a crucial role, for example in labor markets, insurance markets
and capital markets. This should come as no surprise, since infor-
mational asymmetry is the rule rather than the exception in the real
world.

The results of thesc studies into the cffects of asymmetric

information on market operation have been surprising in many respects.

One finds that ordinary price cquilibria are no longer viable and arc




replaced by prices supplemented with quantity rationing, or more
generally by nonlinear price schedules. The market outcomes are
inefficient with respect to the standard of perfect information,
because transmission of information becomes costly in contrast to
costless information transmission (about prefercnces) in classical
markets.2 Multiple equilibria may exist, but what is more puzzling
and controversial, there may be no cquilibrium. This, of course,
suggests that the models used must be incomplete in some respect,
since nonexistence of equilibrium is hardly acceptable. But aside
from this issue, the models have greatly enriched our views of how
delegation operates in the economy as a means of transmitting infor-
mation and overcoming informational gaps. They have explained many
of the peculiar institutions formed in markets with incomplete
information.

Though signaling and screening arc cases of delegation, we
will not be studying the market models referred to above. Our in-
terest here lies in the use of delegation in centrally planned
economies and in management of firms. But similar processes are at
work in both types of economies.

Since information is not coordinated when delegation is used,
much insight can be gained by studying a simple two-person principal-
agent relationship. This we will do for a large part of the chaptcrz
OQur objective is to understand how delegation improves on decision-

making and what determines the forms it takes.

The outline of the chapter is as follows. We begin by




formulating the delegation problem from the principal's point of
view, and prove some general theorems about the existence of an
optimal solution. Several examples of delegation are given to
illustrate the formulation. The core of the chapter is an analysis
of a particularly simple form of delegation; namely quantity con-
trols. ‘Because of their simplicity and minimal informational re-
quirements, they play an important role in management and economic
control. We also look at more general price schedules to see to
what extent economic agents can be controlled, and apply the results
to a problem of economic regulation. Finally, we analyze the
efficiency properties of the solution to the delegation problem, and
discuss in general the difficulties of finding a viable notion of
efficiency under differential information. The chapter concludes
with some remarks about extensions to dynamic problems and issues of

observability.

2.2 The Two-Person, Principal-Agent Case

2.2.1 Formulation of the Delegation Problem

The delegation problem can be written somewhat differently
than our general problem formulation in Chapter I, in order to emphasize
the specific nature of dclegation and to get a more convenient model.
We will give the delegation formulation first and later show that it is,
in fact, equivalent to the general formulation given earlicr. To this

end, define the following concepts (some of them known from before):

|



D - the decision set; a compact subset of a com-
plete metric space. A generic clement of D
i1s denoted by d and called a decision or

~

. . S
alternatively an action.

the set of admissible controls; a closed set

[
1

of nonempty bounded closed subsets of D, where

closedness of ¢ is w.r,t., the lausdorff-metric.
As 1s seen in Appendix 2A, C is then compact in
this metric. A generic element of ¢ is denoted

C and called a control (or control sct).

(Z,F,P) - a probability triple, describing the state of
nature z, with Z a topological spacce.

p

F(d,z)

A . . . .
(F ' (d,z)) - the principal's (the agent's) prefercnce function,

which 1is assumed jointly continuocus in both

arguments and uniformly bounded.

Y - the agent's private information; a random variable

on (Z,F) (possibly vector valued). The range of
y is denoted ¥, and assumed to be a subset of a

topological space.

We will generally use the symbol P for probability measures.
The argument should reveal which particular probability measure is
relevant. For instance P(y) is the induced probability measurec of y.
P(z[y) 1s the conditional probability measurc of z given y = y, and

so forth.

I't 1s assumed that the principal and the agent agree on the




structure of (Z,F,P). However, the agent has superior information
about z, in that he has observed. the outcome of ?.4

With these definitions the delegation process can be described
as follows:

1. The principal chooses a control Ce(C;

2. Then, knowing C and y, the agent cﬁooses an action deC.

Subsequently payoffs Fp(d,z) and FA(d,z) are realized.

Schematically this looks like:

FP(d, 2)

p p A <
7 4 N, 2)

y z

The principal delegates the final decision to the agent by choosing
a control set C, from which the agent is allowed to pick any action
he wants.
What C should the principal choose? To formulate this prob-
lem, we examine the agent's reaction to a particular control C. Given

- . . .5
the outcome of y, the agent will determine d by solving

A
(2.1) max E[F (d,z)]|y].
deC
This maximization is well defined since C is a closed subsct of a.com-
pact set D and FA 1s continuous. The solution may bec non-unique, in

which case we have to specify how the agent makes his final choice.

Let d(y,C) be the solution set to (2.1), called the solution




correspondence. For a fixed C it is a correspondence in y. Any

particular representation of d(y,C), i.e., any function of v which
for each y takes a value in the solution sct d{(y,C), will be called

a controlled response function and denoted d(y[C). If C =D, we will

write d(le) = d(y) and call it the uncontrolled response function

{wvhen no confusion will arise we omit the qualifiers '"controlled" or
"uncontrolled"). Notice that even if the principal does not observe
Y, a response function can still be defined for him corresponding to
(2.1), and this fact will frequently be used.

Two particular response functions one could think of as a

basis for the principal's choice of C, are:
p P

Argmin {E[Fp(d,z)]y]]dad(y,C)}, vy,

il

(2.2) d . (y]C)

or

Argmax {E[Fp(d,z) y]lded(y,C)}, vy.

dmax(ylc)

In (2.2) the principal is pessimistic about the agent's
choice in case of multiple maxima in (2.1), and calculates according
to the worst possibility. 1In {2.3) the principal is as optimistic as
possible.

We will always assume, unless otherwise stated, that the
agent's as well as the principal's uncontrolled responsc function is
continuous in the signal y. This would be implied by the assumption
that E(FA(d,z)ly) (E(Fp(d,z {y)) is continuous in d and y and strictly
concave in d for each y, and D is convex.

The principal's problem can now be stated as follows:

__——————————-



Delegation Problem (DP)

Find C*cC, which maximizes

(2.4) E[F (d(y]C),2)],

where d(y|C) is a controlled response function of the agent.

For notational convenience we will write:

F(d,y) = E[F (d,2)]y], i= A, P

Note that fi(d,y) 1s continuous in both arguments and uniformly
bounded. Also, if Fi 1s concave in d for each y, so is fi.
Occasionally, we will work with loss functions rather than preference
functions. These are defined as the negatives of the preference func-

tions and denoted by L' respectively L',

2.2.2 Existence of a Solution

It is not a priori clear that a solution C* exists; in fact,

it does not in general, as the following counter example shows.

Example 2.1: Let the agent respond according to (2.2). Take
Y = Z; ¥ can take on two values, 0 or 2, with equal probabilities.

D= [0, 10], ¢ = {{d,z}]a = 0, beD}. The only control parameter is

thus beD.  Let F(d,2) = ~(d- z- 1)2, and ' (d,2) = ~(d-2)%. The

—



agent's and the principal's uncontrolled response functions are
g P I

depicted below.

.
d
3
d, (v)
2
d (y
. p(.)
y=0 y=2 y

The supremum of the control problem is 0. It can be approximated
arbitrarily closely by taking b = 2 + €. With the response function
dmin’ however, the supremum cannot be attained, since b = 2 will
result in the agent picking d = 2 both if y = 0 and if y = 2. The
problem is that as b -~ 2 from above, the agent's response function
will make a jump at b = 2. Moreover, this discontinuity occurs on

a set of probability measure 1/2, and so the discontinuity is carried

over to the principal's objective function. (]

The cxample indicates two ways of amending the problem. One
way 1s to assume that the agent responds according to the optimistic
function in (2.3). In the example this would have implied that the
agent would have chosen d = 0 for y = 0 and d = 2 for y = 2 given
the control {0,2}, and this would have attained the supremum value.

The other way is to assume that discontinuities occur only on sets
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of measure zero. For instance, if the principal would have been
uncertain about the agent's prefercnce function, described by an added
- . A ) . . .
term of uncertainty in F, say a uniformly distributed noisc term,
then it is readily seen that there would have existed an optimal con-
trol in the example.
In the appendix the following two theorems are proved. They

show that both ways of amending the problem work.

Theorem 3.1: Assume that Prob {d(y,C) is not a singleton} =0
for every CeC. Then there exists an optimal solution to the delegation
problem (2.4), regardless of which particular response function the

agent uses.

Theorem 3.2: For the response function dmax(ylc)’ there exists

an optimal solution to the delegation problem.
The assumption in Theorem 3.1 is generally satisfied if the

principal's model about the agent's behavior is imperfect (see toot-

note 4).

2.2.3 Connection to the General Decentralization Formulation

Before discussing some cxamples of delegation, let us compare
the delegation formulation (2.4) with the general decentralization

problem (1.2) and check that the former is a special case of the




latter. In the decentralization problem the principal is looking

for a decision mechanism N = (d,M). For any particular choice of N,
write
(2.5) C = {d(m)eD|meM} =D.

Since the agent can choose any message meM he wants to according to
the decentralization formulation, he has in effect the freedom to
pick any decision in C defined by (2.5). Hence, a decision on N
amounts to specifying a control set C, which is a subset of D. The
ensuing game of incomplete information, defined in (1.1), degenerates
to the agent's maximizing behavior {2.1), and the set of admissibie
decision mechanisms in the decentralization problem is represented by
the set of admissible controls in the delegation formulation.

On the other hand, it is immediate that a delegation problem
can be formulated as a decentralization problem by taking the decision
itself as a message. That is, for an arbitrary control set C, let
M = C and take d(m) = m as the decision function.

This discussion shows that in the context of a principal-agent
game, decentralization through communication and through delegation are

equivalent.

2.2.4  Some Examples of Delegation

As formulated, the delegation problem is quite gencral. We

have written it as compactly as possible to reveal the basic structure

——___



of delegation. It also allowed us to prove quite gencral theorems
on existence of a solution. On the other hand, it may be somewhat
confusing to work with preference functions directly defined over
decisions and states of nature, since in general these are measures
derived from some underlying problem structure, combined with pref-
erence measures independent of the problem itself (like a utility

function over wealth alone). To clarify the situation as well as to

show the applicability of our formulation let us look at some examples.

Example 2.2: A Production Problem

In this example, the agent is a divisional manager and the
principal is a representative for the headquarters in a firm. The
problem is to decide on the production level d for one of the divi-

sion's products. The price of the product is known and for simplicity

assumed equal to 1. The cost function is uncertain and defined by
-~ 2 ~
C({d,z) = a° - 2z+d,

where Z is a random variable.7 The agent has superior information
about z in that 7 = Y + X, and the agent knows the outcome of .
The principal does not know ¥ and neither one knows X.

The principal would like the agent to makc the decision, since
tﬁe agent 1is better informed, but the problem is that the agent's and
the principal's preferences differ. Both have a multi-attribute

utility function of the form b - sales + profit, but with differing




weights b on sales. In particular, we will assume that the division
puts more weight on sales than the center, since it looks narrowly
at 1ts own growth objectives, whereas the center 1s concerned with
the firm's overall performance (this assumption plays no crucial
role; only the fact that preferences differ is important). We can

then write the preference functions as
P ]
(2.6) F(d,z) =b_=d-d°+ 2z« d,
FA(d,z) =b, = d - d2 + 2z » d.

The principal's problem is to decide on how much freedom the agent
should be given in choosing d. We will return to the solution of
this problem in section 2.3.2, which will illustrate the basic trade-
off between differences in information and in preferences when

delegating. U]

Example 2.5: An Insurance Model

As we mentioned in the introduction of this chapter, screening
and signaling models can be viewed as particular forms of delegation.
Though these models deal with more than two persons, they normally
involve only bilateral trade, which can be put in the framcwork of
our principal-agent paradigm. In order to be sbecific, we will look
at the case of an insurance market and mention in passing how our

framework applies to other models of screening.

-;
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The insurance company is the principal and the insured the
agent. In the simplest case, the agent faces a risk of having an
accident, described by a random variable ¥ (= 0 if no accident, = 1
if accident). The agent knows his probability of having an accident,
denoted by y, whereas the ingurance company is uncertain about y.

We can then take z = (X,y¥). The decision is what insurance policy d
should be offered to the agent. d can be written as d = {a,t), where
a is the level of insurance (payment in case of an accident, net of
premium) and t is the premium. The company is assumed to be risk-

neutral, and has a preference function

»
i1
<

FPid,z) = ¢ ) if

The agent is risk-averse, with a utility function U and conscquently

a preference function

FAd,2) = Uit , if X =0

=
H
—

U(a) , if

Since the company does not know y, it turns out that it is
beneficial to delegate the choice of an insurance policy to the agent
by offering him a set C of insurance policies, rather than a single
one. The agent prefers, for any fixed level of insurance a, smaller

premiums to larger, so the company only needs to consider delegation




of sets of the form C = {(a,s(a))}. This can be scen from the

picture below.

a

s(a) is the price the agent has to pay for the level a of insurance
which he chooses from C. We sece that the company's optimal pricing
problem is one of optimal delegation.

The labor market model treated by Spence [1973] and the taxa-
tion problem of Mirrlees [1971; are very similar to the 1insurance model
above. In Spence's model the principal is a firm, and the agent 1s a
worker. y is the "ability" of the worker, which only he knows; a is
the level of education he chooses to purchase. The company will screen
individuals by offering a nonlinear wage schedule s{a) based on
education.

In the taxation problem the government is %he principal, and
a citizen is the agent. Yy stands again for ability, a for income, and
the problem is to design an optimal tax function s(a). The objective

for the government is some welfare function, which it tries to maximize



subject to the constraint of breaking even.

It should be noted that the market models under incomplete
information have a special feature, which does not appear 1n a cen-
trally planned economy. The agent always has available a set of
contracts offered by the other firms, and this means that when
one company plans for its optimal set of offers, it has to consider
the other companies' current offers. Our formulation should be
slightly changed to take this into account. Simply redefine the
agent's response function so that he chooses among CUCO, where C is
the principal's set of offers and CO 1s the set of offers from the
other companies. If the agent picks dECO, this implies that no
trade occurs between the principal and the agent. The existence
of CO is a source of problems for the market models, since it leads
to nonexistence of equilibria (sce Riley [1976]).

We will be discussing screening models in more detail in

Section 2.4.

‘Example 2.4: Management by Participation

In Weitzman [1976a] we find a description of a new incentive
structure that has been introduced in the Soviet Union for control
of production units. Originally, the center in the planned economy
announced fixed targets for each production unit, Qith bonuses for
overfulfillment and penalties for underfulfillment. In 1972 the sys-
tem was changed so that the production units could make changes in the

targets at a certain cost. Weitzman cxplains this as an attempt to



solve the dynamic incentive problem more efficiently. In our inter-
pretation the reason for the change is that the optimal production
target is a function of information that only the production unit
knows. In particular, it is a function of the current output poten-
tial and the disutility of effort, and as an optimal way of eliciting
effort the targets are partly allowed to be set by the units them-
selves. This is what goes on in most western companies and can be
called management by participation.

Briefly described, the Soviet scheme looks as follows. The

final reward to a unit is given by:

(2.7) R(t,g,x) = B+ B(g-t) +oalx-g) , if x> g,
=B+ B(g-t) -y(-x) ,if x<g,
where
x = final production,
g = the goal, set by the production unit,
t = the original target, set by the center,
B = fixed bonus.

The parameters satisfy 0 < a < 8 < y. From (2.7) we can sce that the
original target t can be changed to g at a price £ per unit. Overful-
fillment is rewarded at a rate «, and underfulfillment is penalized

at a rate y. If the production function is x = x(e,z) where ¢ is

effort (or other inputs) and Z is uncertainty, and u(w,e) 1is the agent's

utility function over wealth and effort, we get a delegation problem with



(2.8) F g e 2) = UR(t,g,x(e,2)),¢),

Il

p
F' (g,e,z)

x(e,z).

(The center may, of course, have some other objective than this.)
The decision is d = (d,e), of which only g 1s controllable by the
center. This problem can also be seen as an example of screening,
but with a linear trade-off function between the primary decision
variable g and the compensation R. It will become clear later that

with (2.7) and (2.8) as our analytic model, it is rational to let

the production units partly decide on their own goal.8 ]

Our final example deals with a generalization of onc of the

earliest incentive models studied.

Example 2.5: Risk Incentives (sce Wilson [1968], Ross [1973]).
. . . . A . ,
The agent's utility function is U (.) and the principal's
P . L
U (.); both are defined over wealth alone. The principal faces a
decision a with an uncertain monetary outcome x(a,z). This decision
is delegated to the agent, since he has superior information about 7.
To provide the agent with proper incentives he is given a share in the
outcome, written s(x,a), which may depend on the decision a directly

only if it is observable. The problem is then:
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(2.9) max  JU' (x(a(y),2) - s(x(a(y),2), a(y)))dP(z,y),
s(x,a)
s.t. a(y) = argmax fUA(s(x(a,z),a))dP(z,y) Vy,

a

1t (s(x(aly),2),a(y))dP(2,y) > 0.

Previously, in the work of Wilson [1968] and Ross [1973],
differential information has only been considered implicitly. The
reason is that their interest has been focused on choosing s so that
the agent's and the principal's induced utility functions become
identical. In that case the distribution of y does not matter.
Moreover s need not have a as an explicit argument. If there is no
asymmetry in information, then the principal himself can specify the
best sharing rule s (and the best act a to be taken, 1if a is observ-
able); i.e., pick the best decision d = (s,a), where s is a function.
With differential information it pays in general to decentralize both
decisions.

The derived preference functions FA and Fp are clear from the

expressions in (2.9). ]

From this list of examples it should be clear that the delega-
tion problem is quite general. It could have been written in a more
extensive form earlier, but we chose a compact formulation for ease of
exposition. From the examples we sce that the decision can generally

be written as d = (a,e,w(X)), where a is the primary decision to be



made (e.g., production level, anmount of insurance), e 1s a nonobserv-
able act of the agent which cannot be controlled (e.g., effort), and
w 1s compensation of some form (e.g., tax payments, insurance premiums),
which may depend on a random variable X, which is obscrvable CX post

(as in Example 2.5).

2.2.5 The Admissible Set of Controls

A number of considerations influence the specification of
the admissible control set €. Observability is one. The principal
cannot restrict the agent to a set C unless he can observe whether
the agent takes a decision in C or not; and naturally the agent has
also to be able to observe the same. Secondly, market forces may
impose restrictions on ¢ (as was seen in Example 2.3). The principal-
agent model is a partial-equilibrium model and one would normally sup-
pose the agent (or the principal) will have requirements on a minimum
expected utility level. Thirdly, one might want to restrict £ to con-
tain only certain simple forms of controls, due to costs of using
other and more complicated forms or due to the fact that the delegation
problem is too hard to solve in general. This is, for instance, the
approach taken in the theory of teams, in the Soviet incentive model
(Weitzman [1976a]), and in Weitzman [1974], where only prices and
quantities are compared.

Likewise, we will look at some special control forms and prob-
lem structures. We start by studying the one-dimensional control

problem.



2.3 Quantity Controls

In the simplest form of delegation the control parameter is
. . 1
one-dimensional and the controls are subscts of R°. Such controls

we call quantity controls. Quantity controls are widely used in

practice. We see them in the management of firms; for instance:
when a division is allowed to make investments up to a certain limit
on its own, but beyond it only with the center's approval; or when a
division's production is required to lie within certain limits for
coordination with other divisions. Other examples would be a person
who lets a broker manage a limited amount of his funds, or a bank
which regulates the amount a person can borrow. Quantity controls
are also implicit in the market economy; whenever the market 1s in
disequilibrium the long side is rationed by the short side.

Various reasons can be given for the use of quantity controls.
Our main interest was in explalning them as tools for utilizing the
agents' information and expertise in organizations, as well as for
coordination of decision making. Quantity controls lend themselves
well to studying how the two central components of decentralization
-- the difference in information and the difference in preferences --
affect the optimal delegation decision, and this is a point we will
stress throughout.

We mentioned alrcady that delegation economlzes on comnuni-
cation costs. The agents need not communicate with the principal in
order to know what they should do. However, the principal should

still be able to observe the agents' decision d to make sure it lies
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in the control set C, though with quantity controls such monitoring
may well be less costly than when more elaborate controls are used.9
Though we will deal predominantly with differential informa-
tion as described in the basic model of delegation, we start with
showing that quantity controls have a natural place as complements
to prices in an imperfect market. We will then study extensively
the case where preferences are or can adequately be approximated by
quadratic functions, and give interpretations of the results in the
context of management control. The same model will be applied to
analyze an extension of Weltzman's well-known paper on comparison of
prices vs. quantities [1974]. We also ask to what extent the intuitive
results from the special quadratic cases generalize, and study the
basic question: when does it pay to decentralize via quantity controls.
Finally, we exhibit the role of delegation as a motivator for the agents
to collect more information (thus giving an analytic interpretation of
one often stated advantage of decentralization), and as a tool for re-

ceiving information about the agents' characteristics.

2.3.1 Quantity Controls as Substitutes
for Market Imperfections

Kurz [1976] has studied rationing in credit markets as an
example of how quantity controls can be used to compensate for a mar-
ket imperfection. We will be brief and only discuss the main point
in the argument.

Consider a. firm which wants to borrow money from a bank for




a given project. The project yields constant stochastic returns to
scale, and is characterized by the state variable 7 = 1 + rate of
return; ze[0,®), G(z) is the distribution function and g(z) the
density of z. The firm can put up K dollars for the projecct, which
also represents its maximum liability for repaying the loan. If the
state falls below a critical value z, which depends on the amount of
the loan d, the interest rate r, as well as K, the firm will go bank-
rupt, and this possibility causes the market imperfectlion, since there
is no market for bankruptcy insurance. The bank is assumed risk
neutral and the firm risk-averse with utility function U; U' > 0,

U' < 0. Denote the payoff functions of the bank and the firm FB’ FF’

respectively. We have

{:r' d , L2z,
F =
B (z-1)d + z-K , 2 <z
(z(d+}\’)—(]+r)'d—}( , z >z,
F. =
F ‘\—K , z <z,
where
- d
z = (1+71) d—;—}z .

If the bank could only charge a certain interest rate r, but
not control the amount the firm borrows, the firm would demand a loan

of size d, which solves the program:




Ulz(d+K) - (1 +71)d- K]JdG(z).

max E.(d,r) = U(-K) - P(z <z) +
d

NI B

The first-order condition is:

U'[z(d+K) - (1+1)d-K](z- (1+71))dC(z) = 0.

NS 8

This equation describes the demand function d(r), which decreases

. 10
in r.

d(r)

Each point in the (d,r) - space pictured above corresponds to an
expected utility pair (EB(d,r), EF(d,r)) of the bank and the firm,
respectively. With purc interest contracts only points along the
demand curve can be reached, whereas with quantity controls, any
point in the (d,r) - space is available. The purpose is to show

that almost every contract (r, d(r)) can be strictly Parcto-dominated
by a contract of the more general form (r,d).

For this to be true, it suffices to show that the gradients

of the cxpected utility functions EB and EF are lincarly independent



along the demand curve. And this is the case if BEB/Sd # 0 along

d(r), since by definition BEF/Bd = 0 along d(r). We compute:

d

E, z
e =r*P(z>2z) + [ (z-1)dG(z).
(r,d(r)) 0

The first term is positive whercas the second term may be negative so,
indeed, this expression can equal zero. However, this happens on a
negligible set in the appropriate space of probability distributions
G(z) and utility functions U. For this reason, almost every point
along the demand curve d(r) can be dominated by a contract which in-
cludes quantity constraints. This scems a convincing reason for the
presence of quantity controls in the loan market. Moreover, it 1is
readily checked that if we are at an equilibrium in a market which
uses only prices (i.e., interest rates), then the zero profit condi-
tion for the bank will imply that

oF
gag-— i%— z+ K-dG(z) < 0.

S ol

Hence, a pure price equilibrium can always be improved upon by addi-
tional rationing.

Note that there is no differential information about the
return of the project. If the firm would have superior information
about z, this would give a further reason for using quantity controls,

in particular interval controls, as will become clear shortly.




2.3.2 Quantity Controls in Management

We begin by analyzing extensively the production problem

formulated in Example 2.2.

Example 2.2 (continued):

The preference functions that were defined for the center and

the division by (2.6) can be rewritten as the following loss functions:

2
(d—bp—z))

Lp(d,z)

1
—~
jal
{
c
SN
~—
M

LA(d,z)

by completing the square (constants will not affect the decisions}),

. 1 = . ~ ~ ~ -
and letting bi =5 bi’ 1 = A,P. Recall that z = X + y and the divi-
sion knows the outcome of y. We will assume that % and y are inde-
pendent random variables. y has a uniform distribution over (-6,8)
and X has an arbitrary distribution with finite mean m and variance
2

sT.

The uncontrolled response function of the agent and the

principal are:

dy(¥) = by +m o+ oy,

dP(Y) = b, +m+ vy, (if the principal knew y).




Since bA > bp, the agent 1is constantly biased towards choosing a too-

high production level d. In the figure below we have drawn the uncon-

trolled response function dA(y[C) with C = (-=,d;).

dA(y)

dp(y)

dy + - d, r|¢)
/1
{

We will first calculate the optimal interval control. From
the fact that the agent is constantly biased towards higher d values,
it follows that an optimal interval control takes the form (-w,dU].

We only have to find the optimal value for d Since dA(y) 1s increas-

U
ing, this is equivalent to finding a critical value Yy of y, such that
for y f_yU the agent can exercise his preferred act, and for y > Yy he

chooses dU’ where dU = dA(yU). It 'will be morec convenient to find the

optimal value for Yy-
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For a particular Yy» the principal's expected loss is:

Y e
Ep(ry) = T T (00 - d, (¥)) P (x)dP(y)

§ o 5
T @y - dp(y)) TdP(x)dP (y)

YU —-®

2 2 § 2
= (by-bp) " +s+ vf [20b) - bp) (v - ¥) + (v, - ¥) T 1dP(y).
‘U

Since the principal's preference function is quadratic, only the mean
and variance of X are relevant. It is a straightforward exercise to
calculate the optimal yG by differentiating EP(YU)‘ Using d6:=dA(y6),

the result is:

* = ¢ S - -
(2.10) dU bp + m + max (0,98 (bA bp)).
The best centralized act by the principal is d* = bP + m, which is
always contained in (—w,dg). § is a measure of the information gap

between the principal and the agent, and (bA - bP) measures the dif-
ference in preferences. Hence, the result is intuitively appealing:
the agent is given more freedom with an increased information gap or
with closer preferences. This is what we would expect as an illus-
tration of the fundamental tradecoff between differences in objectives
and_in information when decentralizing. It is natural to ask how
generally this conclusion is valid, and this will be discussed in

the later parts of the section.
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We will see that generally the optimal quantity control
does not take the form of an interval. In this particular case,
however, it is easy to see that the interval (-=, df) is the overall
optimal quantity control. Make the contrapositive assumption that an
optimal control has a gap (dl, d2) somewhere, i.e., that the agent is
not allowed to use values in this interval but can use values above or
below. Compare such a control to one where the gap is ''filled in."
Since the agent's response functioﬁ is increasing we can make this
comparison over the corresponding gap (yl, yz), where d1 = dA(yl),
d2 = dA(yZ). A direct evaluation of the principal's losses with the
two controls shows that the control with the gap is inferior by the

1 1 3
amount 45 * oz (y2 - Yl) > 0.

It should be noticed that one has to be somewhat careful with
the interpretation of a change in §. ¢ i1s a measure of the information
gap, but what does it mean that & increases? It cannot be interpreted
so that the agent collects some further information about Z, since with
a change in &, the principal's beliefs about z will change, which is
inconsistent when his information actually stays the same.

The proper interpretation is that we are looking at two
repeated situations. In the second one the principal is less informed
than in the first one, whereas the agent has the same information as
before. An example would be the following situation. The principal
knew yesterday a relevant random variable (e.g., a stock pricej, but
today he only has a uniform distribution on it, whereas the agent has

observed the actual outcome both days. Our example indicates that in
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such a situation the principal will give the agent more freedom today
than yesterday.

When we want to analyze a situation in which the agent gets

o]

more informed, while the principal's information stays the same, we
can look at normal distributions. Think of 7 as the sum of a large
number of independent random variables. The agent observes part of
them, and this part sums up to y while the remainder is x. By

observing in addition a few of the variables that go into %, the
agent gets more informed. Assume the number of random variables in

x and y are so large that they can be considered normally distributed.

i

0 (w.2.0.g), Var (x) Then

Z ~ N(m,s7), 52 = s% + 52.
X Y

(while the principal's knowledge stays the samc), can adequately be
P P g y i

2 2
SX, Var (vy) = Sy.

Let E. = m, E =
X Y

2 , . . L.

The agent's acquisition of new information

. . . 2 . . 2 .
described as an increase in Sy and a similar decrcase in SX, with s

staying constant. On the other hand, if the principal's information

>

2 R Z
changes but the agent's does not, then s~ changes with 5, constant.

This has the interpretation we gave above for the uniform distribution.

2
matters for deter-

With quadratic loss functions only

mining the optimal control, and so
of which interpretation we want to

Let us now verify that the
the uniform case are also true for

above with z = X + ¥, all normally

the change in S;
the analysis is the same regardless
use.

qualitative conclusions we made in

the information structure described
work with a

distributed.l1 We will

more general quadratic preference structure for later applications.
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Let the loss functions for the agent and the principal be:

Lp(d,2) = (d - (ay-z + bp))z,
(2.11)

2
LA(d,Z z+* bA)) -

il
ann
(a9
|
~
o
b

Conditional on the observation y, the expected losses are:

2 2 2
Lpld,y) = (d - (ap(y +m) *bp))T o a, s,
(2.12)

2 2 2
Q'A(d,YJ - (d - (a}\(y*‘m) +bA)) * dAL\ SX'

Consequently, the uncontrolled response functions arec:

dy(y) = aply+m) + by,
(2.13)
dA(y) = aA(y4+m) + bA'

We will assume that a, 2 a, > 0 and b\ > bp. The other cases can be
s - IS -
analyzed in a similar manner.

Let (dL, du) be a control interval. The expected loss for the

principal when he uses this control is:

Y, , Yy ;
Fpldydy) = L dp NS00+ T (00 - 90 50
(2.14) L
” 2 2ac o L 2
+ J’ (dy - dp(y)7dGy) + s,
"y
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where YL and Yy are defined by dA(yL) = dL’ dA(yU) = d Since dA

ik
1s increasing we can again look for optimal values y¥*, yG. It will
suffice to analyze the upper limit because the analysis of the lower
limit is essentially identical.

Differentiating EP w.r.t.'yU gives the first-order condition

for yG:
J (a Frm) + b= a(y +m) - b, )dG(y) = 0.
ST A~ 3pl P
U

With a Normal distribution this Teduces to:

aA(y* +m) + b, - a_, m - bp g(yG .

_ y
(2.15) a, L= GO

We notice that the function:

__eg)
hiy) = TG0y

is the hazard rate for the Normal distfibution; a well-known function
from reliability theory (see Barlow and Proschan [1975]). In Append-

dix 2.B we show the following properties of the hazard rate:
(2.16) hiy) > vy, Vy;

(2.17) 0 < h'(y)- sj <1, Vy;




11

y =+

(2.18)

Thus the RHS in (2.15) has y as an asymptote.

m

can be described as follows:

LHS of (2.15)

Graphically (2.15)

2
1 *5
() y

We assumed a

that (2.15) has a unique solution Yy

which case the principal's and the agent's response functions coincide

A

>

a

P

>
0, bA

>

b

pr

Consequently, (2.16)-(2.18) imply
= b

*

< o
2

and the agent is given complete freedom.

d*

U

b

unless a, = a
A P’ A

Since h(y) - Si > 0,

= aA(yG + m) + bA > ap s m o+ bp = d*,

PJ

in
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where d* is the principal's best centralized act.12 Similarly, we
can show that dE < d* and thus d* is contained in the optimal dele-
gation interval (d¥*, dG).

It 1s readily checked that ya'corresponds to a global minimum
of the expected loss. a, z_ap and (2.17) imply that the sign of the
derivative changes from negative to positive at YG’ which guarantees
a local minimum, and since yG 1s a unique solution to (2.15) it is
also global.

We summarize the preceding discussion in:

Proposition 2.3: With quadratic loss functions defined in

(2.11) s.t. a, > a_ >0, bA >b

> C
A2 Ap O,(?A, h

# (ap, bp), and with

p A)

a Normally distributed information gap ¥, the optimal interval con-
trol 1s nondegenerate and finite and contains the best centralized
act.

Now look at changes in the information gap Y. Only the RHS

of (2.15) changes with si. In Appendix 2.B we show that,
J 2

(2.19) = [h{y) +s°] >0 , for all y.
asy y

Since 3, ap > 0, it follows from (2.15) (by total differentiation
I's

dy* od*
w.r.t. s ) that ) > 0, which implies =— > 0. A symmetric analysis
as ds
ad¥ y Y
shows that §g-< 0. We have thus:

%




Proposition 2.4: Under the assumptions of proposition 2.3,

the agent is given morec freedom with an increase in the information

gap.

As we said before, the change in the information £ap can be
interpreted either so that the prinéipal faces more uncertainty or
the agent gets more informed.

The implications of changes in preference parameters will be
given an exhaustive treatment in Section 2.3.6, so we will not make
any general conclusions from (2.15). For the particular loss func-
tions in Example 2.2 it is, however, immediate from (2.15) and (2.17)
that a decrease in (bA - bp) will increase yG and hence dG. In other
words, when preferences are closer, the agent has more freedom. In
conjunction with Proposition 2.4, this shows that the same conclusions
we made about changes in information and preferences when y was uni-
formly distributed (see (2.10)), are true when y has a Normal
distribution.

Suppose the agent gets more informed while the principal'’s
information stays the same. Does the principal's welfare increase
with this change? The answer is not generally in the affirmative as
we will see later, but for the preference functions in Example 2.2
the statement is true. The argument 1s simple and we will omit
detailed calculations.

Let the agent be able to observe either y, or Yyt Y, The

principal should ask himself the question: conditional on yl; would
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he like the agent to observe also Y5 and make a corresponding change
in the decision? When response functions are parallel as in Example
2.2, the agent has already taken out his bias after he makes a deci-
sion based on Yy- The change in his decision that Y5 will induce
will only reduce the risk for the principal. Morcover, the upper

limit will add to the benefit, since if dA(yl) > d , so that the agent

U
is constrained to dU’ then Y, can only cause him to decrease his re-

sponse, which always is beneficial for the principal.

A graphical illustration will make the point clear:




Yy 1s observed and Y5,

2

be preferred by the principal.

tions of the form (2.11), we do not have a general proof.

A P

L

better off with a more informed agent only if an < ZaP).

mation of more general loss functions.

dA(y1 + y2) > dU so that the agent gets constrained at dU'

the more general loss functions in (2.11) as long as a, <

y; are two tentative outcomes for Yo

that lie symmetrically around Y1 Because the principal's loss func-
tion is quadratic with the same curvature for all y and 2" < &' in
the figure above, the loss from taking dA(yl + yg) rather than dA(yl)
at Y1 +y5, is less than the loss from taking dA(yZ) rather than

dA(yl + yé) at Y1 + y!. Thils difference will only be enhanced if

Conse-

quently, letting the agent observe Y * Y rather than Y1 alone will

This argument can be made algebraically and applies also for

2a,; (this

P)

1s the point where &' becomes greater than &' in the picture above).

Though we conjecture that the statement is true for all loss func-

The com-

plication arises because with a, > 2a, the role of the upper limit
becomes essential and we do not have an explicit expression for it;

(with complete freedom, i.e., d, = 0, dU = + =, the principal is

0f course, the quadratic loss functions we have used in this
example (see (2.11)) are quite special. But they give an indication
of how quantity controls can be employed for improved decision-making
and what determines the optimal amount of delegation. We can also

argue that quadratic loss functions represent a first-order approxi-

Before embarking on an analysis of how far the results of the



example generalize, we will apply the same quadratic model to a studv

of quantity controls in economic planning.

2.3.3 Quantity Controls in Economic Planning

The literature on economic planning has focused predominantly
on iterative planning models for reaching efficient allocations (see
Heal [1973]). This literature owes much to the theory of mathematical
programming, from which various algorithms have been adopted and
applied to planning problems. One of the rewards of this line of
research has been the appealing interpretations of decentralized
planning procedures that can be given to most of the algorithms (see
Jennergren [1971]). To some extent one can also use the convergence
properties of these algorithms as guidelines for designs of practical
planning procedures.

However, many interesting issues cannot be successfully
attacked by this approach. One of the shortcomings is that little
can be said about what should be done if the iterative exchange of
information has to be stopped short of reaching an optimal solution.
And yet this is clearly the common situation in practice. Maybe only
one or two iterations will normally be carried out before a final
decision has to be made, and in that casec hardly anything can be
learned from studying planning algorithms.

In an insightful article, Weitzman [1974] approaches this
question from an entirely new perspective. He recognizes that when

an information gap between economic agents and the center remains at
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the time of decision-making, it matters which instrument of imple-
mentation 1s used. More specifically, he asks: What is the best
mode of implementation -- prices or quantities? This should be
contrasted to the classical result that it is a matter of indiffer-

! ence which of the two modes is used, once the center has received

. . . .. - 13
the necessary information for optimal decision-making.

We will start by describing briefly Weitzman's analysis of
the question, including an important comment by Laffont [1977].
Our main interest lies in extending the analysis to mixed schemes
where agents face both price and quantity controls. Such schemes
are superior to elther prices or quantities alone. Moreover, study-
ing them will aid our understanding of how the tightness of economic
control depends on both the information gap between the center and
the agents, and the structure of preference functions. This stands
in contrast to the results of Weitzman's analysis, which indicates

that the superiority of price or quantity controls is solely deter-

mined by the preference functions.

Prices vs. Quantities

Weltzman analyzes a simple model with one commodity of which
an amount d can be produced at a cost C(d,z) and results in benefits
B(d); z is the state of nature. It is assumed that C'"{(d,z),

B'"(d) ; 0, B"{0) > C'(0,z) for cvery z, and for every z,
B'{d) < C'(d,z) for d sufficiently large. The production unit knows

z; the center knows B{d). The center's problem is to decide on two




alternative modes of operation:

I. Announce a quantity d* to be produced with no other
choice for the production unit.
IT. Announce a price p* and let the production unit deter-
mine d by maximizing profits p*+d - C(d,z).
When Option I is used, the optimal quantity d* is determined
from the first-order condition. Weitzman asks under what conditions

one or the other control mode is preferred.

(2.20) B'(d) = E(C;(d,2)),

where C1 is the partial derivative w.r.t. d. In this case the pro-

duction unit's superior information about costs is entirely ignored.
When a price p is announced (Option I1), the producer maxi-

mizes his profits, which results in a response function d{(z;p) that

satisfies:

(2.21) p = C(d(z,p),2).

The optimal price announcement p* maximizes:

B{d(z,p)) - E[C(d(z,p),2)].

From the first-order condition we get, using (2.20):



E[B,(d(2,p*)) * d,(z,p")]

b

(2.22) p* =

E[d,(z,p")]

where d2 1s the partial derivative w.r.t. p. This condition
determines p*.
The comparative advantage of prices over quantities is

determined naturally by:

(2.23) & = E[B(d(z,p*)) - C(d(z,p*),2)]
- E[B(d*) - C(d*,2)].
If A >0, prices are preferred, otherwise quantities. In order to

arrive at an explicit expression for A, Weitzman makes the following

quadratic approximations of B and C in the neighborhood of d*.14

(2.24) B() = b+ B+ (dedn) + Lepre (doan?,

(2.25) C(d,2) = c(z) + (C'-h(z)) - (d—d*)-#%- e (ded*) 2,

W.&.0.g. we can assume h(z) = z, and Ez = 0, because c(z) will play
no role in the analysis. In that case, z measures marginal costs
with an increase in z corresponding to a decreasec in marginal costs.
In (2.24)-(2.25), B', C', B", C" are constants with B" < 0, C" > 0.
From (2.20) it follows that B' = C'. The producer's response

function when a price p is used will be:
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(2.26) d(z,p) = dr + B2 12
dz(z,p*) = 6%5 and substituting this into (2.22) gives:
(2.27) p* = B' = C'.

Some simple substitutions finally produce the result:

2

» Tt T
(2.28) poo 2B C)
2-C""
2 2 : . . .
where s" =Lz . This formula is the main result in Weitzman's paper.

We can see that the sign of B" + (" alone determines which control
mode should be used. When -B" < C'" prices are preferred; otherwise
quantities. This is intuitive. -B" >> (§ means that the benefit
function is relatively curved at d*, and so small changes in d will
result in large changes in benefits. In this situation the center
does not want to take the risk of announcing a price and have d vary
with the producer's cost function (the expected variation being larger
with small C"), and consequently, prefers direct control of d. On the
other hand, when B" = 0 the benefit function is linear and so a price
will communicate all the center's information to the producer and a
first-best optimum can be achieved.

Less intuitive 1s the result that the information gap between

. . 2
the center and the production unit, measured by s°, does not play any



role in determining the optimal control mode. The information

gap only magnifies the comparative advantage of the superior mode.
From this we may make the inference that the tightness of economic
control, at least as far as the two extreme control modes are con-
cerned, does not depend on how much information the center possesses.
That this statement is false when intermediate control modes can be
used will be shown shortly. We will verify the more intuitive con-
jecture that the less information the center has, the more 1t will
tend toward price-guided control.

Insightful as Weitzman's article is, it has been a source
of inspiration for many subsequent papers.15 Laffont has observed
that Weitzman's analysis is one-sided in that only the control of
suppliers is considered. The center represents the demanders' side.
For some economic activities this is the appropriate model; for
instance, when analyzing pollution control or corresponding public
goods problems. On the other hand, with private goods the center
could possibly use prices on the demand side rather than the supply
side as a control instrument, in order to utilize the demanders'
superior information about benefits.lG

For this reason, assume that the benefit function is

B(d,zl), where z. is only known to the demander. In the preceding

1
analysis we had no reason to include this uncertainty, since only
the expectation of the benefits was of relevance. As before, the

cost function is C(d,zz), with Z5 only known to the supplier.

Three options are now available for the center:
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I[. Order d* from the supplier and announce d* as the
consumption to the demander.

Il. Announce a price p* to the supplier. Let him choose
that d which maximizes his profits and announce this as the CONSWhp -
tion to the demander.

IIT. Announce a price p* to the demander, and order the
amount d he demands from the supplier.

The third mode is new. Using the same approximations as
before (with obvious modifications for B), Laffont derives the

following comparative advantages between the three modes:

Sg(B” + CI')
(2.29) MIL/T) = e,
2Cll
-S?(B” + CH)
(2.30) ACTTI/T) = E ,
ZB'I‘_
2 2
°1 )
(2.31) ACII/IT1) = [ + ] (B + C").
acn? opn?

Here A(I1/1) is the comparative advantage of Option II over Option I,

L2 2 2 2
etc. ; 51 = Ezl, 52 = EZZ'

The important observation is that everything in favor of
quantity orders in Weitzman's analysis is generally in favor of using
prices on the consunption side. Indeed, I is never optimal, so the
choice 1s between using prices for either the producer or the consumer.

As Laffont points out, this result depends on the quadratic




approximations used. With the second-order term random in (2.24)-
(2.25), quantities may be preferred over both price schemes. Re-
gardless of this, Laffont's analysis points out the fundamental
duality between price controls in the two sectors of the economy.

In the context of a firm, Laffont's model applies to the
transfer pricing problem. From (2.31) we can get a tentative answer
to the question: which department should be given the right to deter-
mine the amount of transfer? The answer is: the department with a
more curved benefit or cost function, that is, the department for
which variation in the amount transferred carries a higher cost.

This can also be seen easily from a Marshallian supply-demand diagranm.

Slope B"
S

' Slope C"

[
i
1
t
i
1
1
|

From the quadratic form of the benefit and cost functions we get
linear demand and supply curves. The slopes are B"(<0) and C" re-

spectively. The random variables Z, and zZ, only cause a vertical




shift in these curves. 1In the picture above we have drawn a parti-
cular outcome of (zl, 22), and we can see that if -B" > C", less
losses (in terms of consumer and producer surpluses) are incurred
when dD is taken than when dS is taken, regardless of what price is
used. Hence, the demander's wishes should be followed in this
situation. The opposite is true if C" > -B".

In passing we can compare Laffont's solution to a standard
market outcome in disequilibrium.17 When the price is fixed, but
supply and demand differ, the long side will be constrained, i.e.,

the outcome will be min(dD, d Such a control mechanism is also

S)'
quite natural in a centrally planned economy. The interesting point
is that, with linear demand and supply functions, announcing the same
price to both sides of the market and transferring the minimum of de-
mand and supply, will always produce an inferior solution to cither
Option Il or Option III in Laffont's scheme. Thus, a disequllilbrium

solution can be dominated by letting one side of the market determine

the outcome alone.

Quantity Controls

A natural extension of Weitzman's analysis 1s to look at a
mixed scheme where a price p* 1s announced, and in addition to this,
upper and lower limits on the quantity are imposed. Let (dL’ dU) be
the range in which the producer has frecdom to choose d, when the
price p* is given. As extreme cases we have, of course, dL::dU =d”

and dL = 0, dU = », which correspond to the use of a quantity order



and to a pure price scheme. First, we will show that a quantity
order can always be dominated by using a mixed scheme [p, (dL, dU)].
In other words, some freedom should always be given to the produc-

tion unit.

Proposition 2.3: If d* is the best centralized act,12 then

there exists a nondegenerate interval (dL, dU) containing d*, and a
price p, such that both the center and the production unit are better

off with this control than with d*.

Proof: Let dA(z,p) be the production unit's response function

when a price p is announced, and dp(z) the center's response function;

i.e.,

(2.32) dA(z,p) = argmax [p-+d-C(d,z)],
d

(2.33) d (z) = argmax [B(d) -C(d,z)].

p d

Let d(p) be the solution to B'(d) = p. By our convexity assumptions,

(dp(zp) < d) = d (2) 2 d,(z,p),

(2.34)
dp(2:0) > d(p) = d (2) < d,(z,p).

In other words, the production unit makes a too-small production

decision whenever its decision is below d(p), and vice versa when



it 1s above d(p) (see picture below).

Slope p

B(d)

<

G - -

|
|
i
4

dp(2,p) d (2) d(p) d

Now, set the price p such that d(p) < d*, and take dL = d(p), d, =d*.
Whenever the production unit decides on a d inside the control inter-
val (dL, dU), the center will strictly prefer this decision to d*, by
(2.34) and our convexity assumptions. By definition, the production
unit will prefer its own choice to d*. Since this is true for every

z, both parties will be better off with the interval control (d(p), d*)

and the price p. Q.E.D.

It is of interest to ask when a pure price scheme can be
dominated in a similar way by a price-quantity control pair. Of
course, a necessary condition is that B is not linear, which we

already assumed. A sufficient condition is that for every price p,
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there is an upper limit for the amount the production unit will
produce; 1i.e., sup dA(z,p) < o, This will become clear from the
forthcoming discussion and we will not pursue the topic further here.
Instead, we will turn to quadratic approximations of the benefit and
cost functions in order to analyze propertics of the optimal quantity
control.

Assume (2.24)-(2.25) are valid approximations of B and C,
when z is Normally distributed with mean = 0 and variance = 52. If
d* is large enough compared to 52, we can lgnore therfact that the
producer, according to his response function (2.26), will make nega-
tive production decisions. We could use a truncated Normal distri-

bution, but this would lead to unnecessarily complicated calculations.

The center's response function, if it knew z, is:

z

(2.35) dp(z) = d* * &
and the producer's 1s

- . - C' +z
(2.36) d,(z,p) = d* + B

These are depicted in the figure below.




dA(z,p)

Since C'" - B'" > C", the production unit's response function is steeper
than the center's. The slope is independent of the price, which only
affects the constant term. If the optimal price p* = B' = C' is used,
it is clear by symmetry of the response functions and the distribution
of>z, that for the optimal quantity control (df, da), dﬁ——d*::d*~—dL.
Given these control limits it alsb follows by symmetry of the distri-
bution and the quadratic approximation that p* is the optimal price to
use.

We find that the center's objective function B(d) - C(d,z) and
the production unit's objective function p*+d - C(d,z), when approxi-

mated as in (2.24)-(2.25), are special cases of the quadratic loss
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functions in (2.11). The identification is bA = bP = d*, ay = 1/C',
i ap = 1/(C" - B"). Since B" < 0, we have dy > ap as was assumed in

our analysis. We can then apply directly the results of the previous

section here. We conclude:

Proposition 2.5: With a Normally distributed information

gap z:
(1)} the production unit will be given a finite deorec of
p o

freedom which will include the best centralized act d*. Neither pure

prices nor direct quantity orders are optimal;

(ii) the production unit is given more freedom with a
decrease in the curvature of the benefit function or an increase in
the curvature of the cost function;

(111} the production unit will be given more frecdom with an

increase in the information gap Z.

Proof: (i) is equivalent to Proposition 2.3. (ii) follows
from (2.15) and (2.17), since m = 0 and bA - bP = 0. (111} is equiva-

lent to Proposition 2.4. Q.E.D.

Remark: Even though we have assumed that thec production unit
knows z (in congruence with Weitzman's model), the production unit
could have received an imperfect signal, y. This would allow us to
interpret changes in information as before, both in terms of the center

being less informed or the production unit acquiring more information.




Part (ii) of Proposition 2.5 confirms Weitzman's result. When
IB”] increases or C'" decreases, the response functions in (2.35) and
(2.36) diverge, increasing the need for more rigid control. Part (iii),
however, is distinctly different from Weitzman's formula. We can say
slightly more about the behavior of dG as the information gap increases.

We have:

2
g(0) - s™ _

e 3l . 00 o0
) 2+W(0) s >©, as s > ®,

where g and G are the density and distribution functions of z, and ¥
is the density function of the standardized Normal distribution. Since
the hazard rate is increasing by (2.17), (2.37) implies that the RHS
of (2.15) goes pointwise to infinity with s for positive values of the
argument. Hence, dG > o, as s + «, which means that the bigger the
information gap gets, the closer we get to the pure price mechanism.
This stands in contrast to Weitzman's formula (2.28), which says that
if B + C" < 0, so that quantities are preferred, then the expected
loss from using prices rather than quantity orders goes to infinity
with increased information gap.18 No contradiction is 1involved, how-
ever. Our result merely points out that one should be careful with
interpreting Weitzman's formula in terms of tightness of cconomic
control. Even though quantity orders may be "infinitely better" than

prices because of large variance in z, the optimal quantity control

may give the ecconomic agents a large interval of freedom.

P
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We can take (111) above as an indication that the tightness
of economic control also depends on how informed the center is about
the economic conditions of the agents. The less informed the center
is, the less it should intrude in the cconomic activities via rigid
quantity constraints.

The analysis has only been carried out for the supply side
of the market, but the results are analogous on the demand side.
Hence, Laffont's scheme can likewise be improved by using quantity
controls in addition to prices.

We turn now to a study of general preference functions and

distributions in a principal-agent framework.

2.3.4 Interval Controls

We have worked exclusively with interval controls in the pre-
ceding analysis, and it is natural to ask under what conditions the
overall optimal quantity control is indeed an interval. We saw that
this was the case in the production problem (Example 2.2), when y had

a uniform distribution.

Despite the wide use of interval controls, it does not appear
easy to give natural conditions under which they are optimal in the
model we have presented. Before indicating the problems, it should
be pointed out that there may be other reasons why intervals are used.
Clearly, they are simple to use with a minimal amount of information
and monitoring needed to enforce them. Under certain circumstances

the only relevant controls are intervals because of the enforcement
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problem. A case in point is bank lending. Even if banks used some
type of discontinuous controls with certain loan ranges prohibited,
the borrower could get around this constraint either by using several
banks or by borrowing in excess of his nceds and reinvesting the
extra money in riskless assets.

Let us study only increasing response functions and concave

preferences. In the picture below we have drawn a control with a gap.

ja¥

C
2

The agent is not allowed to pick a dg(dl, d7). It ye(yl, ¥3 he will
choose dl,and if ye(y, yz) he will choose dZ' From the principal's

point of view, the agent's modificd response means an improvement in
the region (yl, ?) but a worse decision in (Y, yz). The net benefit

depends on the distribution of y, on where ; is located and on the

particular form of the principal's preference function. This should




indicate the problems one faces in trying to give general conditions
under which the interval rule 1s optimal.

Very special and simple extensions of the production problem
(Example 2.2) can be given. For instance, if the loss functions are
symmetric around the 6ptimal response and indcpendent of y (or become
uniformly steeper as y increases), and if the response functions are
linear and diverging, then the interval rule is overall optimal for
a uniformly distributed y. It seems intuitively plausible though,
that if the principal is sufficiently uncertain about the response
function of the agent, he will not know where to leave a gap in the
control, and this would give rise to optimality of the interval rule.

In the next sections on one-dimensional controls, we will
continue to restrict attention to interval controls, regardless of
their overall optimality. If the optimal control has gaps, it is
quite hard to derive, and certainly an analysis of interval controls
can be defended on pragmatic grounds.

In our examples we have found that the best centralized act
d* is always included in the optimal control interval. This is
generally true, provided a coherence condition 1s met.

Define the level sets,
(2.38) Y. (d) = {erIdi(y) > d}, ) i =A, P,
of an agent A and the principal P. YA(d) is the set of signal out-

comes under which the agent would prefer a higher action than d.

Obviously, Y, (d) <Y (d'), when d' < d.



~l
ju—
|

Definition: The agent's and the principal's prefercnces

(or preference functions) are said to be coherent, if for every deD:

Y, (d) 0 Y (d) = Y, (d) or Y (d).

To understand this definition better, let us look at a

violation of coherence.

In the situation pictured above the agent's behavior is in direct
conflict with the principal's in terms of how he reacts to y. In
fact, the principal can have no use of the agent as we will argue
later. Even if this case 1s extreme, the value of decentralization
via quantity controls is in doubt when preferences are not coherent.

This is also evident from rephrasing the definition: 1if preferences



are coherent, there cannot be two signals such that the agent takes

the same action for both signals, but the principal prefers a higher
action than the agent's for one of the signals and a lower action

for the other. (If there were two such signals y, and Yoo then for

1
some d, yler(d), yléYA(d) and yZEYA(d), yzer(d), contradicting
coherence).

In all of the examples we have discussed the preferences have
been coherent, since coherence is implied by increasing response func-
tions. It also holds whenever the agent is constantly biased toward
either too high or too low actions. Notice that coherence 1s not re-
lated to the concavity of preferences; it is a property of response

functions alone. In the sequel, we will only deal with coherent

preferences.

Theorem 2.6: Assume that preferences arc concave, coiherent
and continuous. Then there exists an optimal interval control, which

. . . . 19
contains the principal's best centralized decision.

Proof: Let the optimal interval control [a,b] lie above the
principal's best decision d*. The other possibility can be treated
similarily. Let us furthermore assume [a,b] is an optimal interval
with the lowest lower bound. Such an interval exists by our continulty
assumption, and because the set of optimal lower bounds above d* is
closed. We will show that there exists an ¢ > 0 s.t. [a-g; b] is at

least as good as [a,b], unless a = d*. This will prove our claim.



—
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Suppose a > d*, contrary to the assertion in the thcorem.

By coherence, two possibilities exist: (i) Yp(a) E,YA(a)’

(i1) YA(a) < Yp(a). They are pictured in the figures below.

p
F | !
A A A
p
a a :
a- g a-¢ / /
d= d*

Yp(a) € Y, (a) Y, (@) € Y,(a)

It could be that Yp(a) = Y\(a). We will for the moment assume thils
s

is not the case, and come back to it later.

Case 1: Yp(a)<£ \A(a), Yp(a) # YA(a). By coherence and

continuity of preferences, there exists an € > 0
c
S.t. dp(y) i.dA(y), for erA(a-—e) - YA(a), and dp())<i a-g¢, for

yEYi(a-—E). By concavity of the agent's preference function,

a-e <dy(vlfa-e, b]) <d,(v[[a,b]), for yeY, (a),

and

dA(yl[a—~€,b]) = dA(y][a,b]), for yEYA(a).
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It follows that under the control [a-e, b] the agent's response will
{ be pointwise as close to the principal's as under the control [a,b}.
Since the principal’'s preference function is concave, [a-€, D] is at

least as good as {a,b], contradicting the minimality of a.

Case 2: XA(a) c Yp(a), YA(a) # Yp(a). In this case, when we
lower the bound to a- g, it is not true that the agent's response will
become pointwise closer (see figure). We have to argue differently.

By continuity and coherence of preferences there exists an e > 0 s.t.
(2.39) dp(y) z_dA(y), for erA(a-s) - YA(a).

Furthermore YA(a) E}Yp(a) implies

(2.40) dp(y) > a, for yEYA(a).

i By concavity of the principal's preference function, he considers

d = a-¢€ at least as good a constant response as d = a (since the
integral of a pointwise concave function is concave and a-e€ 1s
closer to d* than a). It follows that the principal prefers

d =a-¢eg tod = a on Yi(a), since he prefers d = a tod = a-¢€ on
YA(a) by (2.40). By (2.39) the principal prefers (wecakly)
dA(y][a—~E, b]) to d = a-¢ on Yi(a), since the former 1is pointwise
closer in this region. Combined we get that the principal finds

dA(yl[a—-e, b]) at least as good as dA(y][a,b]) on Yi(a). On YA(a)




these responses coincide so we have shown that [a-€, b] is at least

as good as [a,b] contradicting the minimality of a.

Case 3: YA(a) = Yp(a). By coherence of preferences we get
either into Case 1 or Case 2-above, when we lower the bound to a- g,
and we get a contradiction as before.

Consequently, a > d* is not possible. An analogous proof

shows b < d* is not possible and the theorem is proved. Q.E.D.

We want to stress that nothing was assumed about the dimen-
sionality of y in the thcorem. with coherent preferences most results
that are true for a one-dimensional y and increasing response functions,
will carry over to the general case. This will be seen repeatedly in
the sequel.

Notice that, since the agent is better off when he is given
an extended set of choices, Theorem 2.6 implies that whenever it is
optimal for the principal to use a nondegenerate interval Eontrol, 1t
is also beneficial for the agent. In other words, a Pareto improvement

(from the best centralized act) is guaranteed if it pays to decentralize.

2.3.5 Changes in Information

The fact that the agent has some private information is the
driving force behind decentralization. From this statement it is
natural to conjecture that the '"more'" private information the agent has,

the more he should be given freedom. This was seen to hold true for the



eéxamples in Sections 2.3.2 and 2.3.3. In general it is not true.

As a counterexample we can look at the following discrete case:

Example 2.6: z is uniform on (0,1). In the coarser infor-
mation system the agent has a partition on % which is {(0,1/2),
(1/2,3/4), (3/4,1)}; in the finer information system the partition
is {(0,1/4), (1/4,1/2), (1/2,3/4),(3/4,1)}. The principal's parti-
tion is {(0,1)}. D = {dl’dZ’dS}' The preferences are given in the

table below:

ze(0,1/4)  ze(1/4,1/2) ze(1/2,3/4)  ze(3/4,1)

d, (10,10) i (10,5) (0,0) (0,0) f

!
d, (0,0) ] (0,0) (10,10) (9,9 |
d, (0,0) [ (0,10) (0,0) g (10,10 |

The first number in cach parenthesis indicates the principal's utility
index, the second the agent's. When the agent has the coarser infor-
mation system, he will choose d1 if z2(0,1/2), d2 if ze(1/2,3/4), and
d3 it ze(3/4,1), which is exactly how the principal would decide too.
Hence, the optimal control is C = ]. When the agent has the finer in-
formation system, he will change his previous response if ze(1/4,1/2)
from d1 to dS' This lowers the principal's expectcd utility by 2.5 if
C =D, and since the advantage of having d3 in the control sct was
small before, the optimal control with the fine information system is

C = {dl,dz}.



The conclusion is that the principal gets worse off and gives

the agent less freedom as the agent gets more informed. {]

For continuous response functions similar examples could be
given. For instance, the agent's loss function may be asymmetric so
that when he faces some uncertainty he will decide as the principal,
but with the uncertainty removed he will not. This effect can be made
strong enough to offset the benefits from reduced uncertainty.

A general discussion of the case where the agent gets more
informed is difficult because of the aforementioned feature that his
response function may also change. It is easier to look at the case
where the principal gets less informed (or more generally, changes his
beliefs about y), but the agent maintains his information structurc.
As we mentioned before, the two cases are equivalent for the quadratic
loss functions defined in (2.11).

We will only look at a one-dimensional signal y with increasing

response functions. An illustration is given below.

dpF—-=--- d, (] (d,d)

s T
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Let f(y;e) be a parameterized family of density functions, and (d,d)

the optimal control when € = 0. We are interested in changes in the

optimal control when € increases.

Theorem 2.7: The agent is given more freedom with a differen-

tial change in the distribution of y, if and only if

Y +oo
23 _P, - 3 ) J P - d .
(2.41) -/ 3q b (dy) 5o £(y;00dy < S g b (d,>)gg'f(>,0)dy
71 )
and
y ,\/’r
4 3 P d . 3 8 P N0 e
(2.42) - sy Fdy) e Ts0)dy > ST e (d,y)ee £(y:0)dy
y3 -
assuming ‘these differentials exist. Herc
-1,- S S | A S
yl - dA (d) > /VZ - dp (d) > ) 3 - dp (é) > )4 - d:\ (&)
Proof: We only prove (2.41). Since the response functions

are increasing we have a situation as pictured above, where d inter-
sects dA and dP only once. Hence, the principal decides on the opti-

mal interval limit d(g) by solving d from

¥, (d)
ji,{ﬁl(d) Fp(dA(Y),y)f(y;e)dy-+f2 Fo(d,y)£(y;e)dy
ad y; (d)
Y4
+ f Fp(d,y)f(y;a)dy} = 0.
Y, (d)



Here v, (d) = d;l(d), y,(d) = dl—)l(d). then the diffcrentiation is

carried out, derivatives with respect to the limits cancel, and we

get:
yo (d) .

(2.453) 77 2 P anoiady S S @Gy = 0.
y, () Y, ()

Differentiate (2.43) totally w.r.t. €. By using the second order

condition for a maximum, we get equation (2.41) at € = 0.

The theorem is, of course, only a crude statcment of necessary
and sufficient conditions. The point is that the agent's preference
function only enters the conditions via Yis Yoo V3 and Yq- If we look
at our picture, (2.41) simply says that the loss that occurs to the
principal when he shifts d up, comes from the region (yl,yz), and this
loss has to be less than the gains that occur in the region (yz,WJ.

‘From the proof it should be clear how to state a nccessary and
sufficient condition for more general cases.

From Theorem 2.7 we infer that many factors determinc how the
optimal interval control changes, and so it is not easy to give very

general conditions under which (2.41) and (2.42) hold. Looking only
- 2

. 3 P - , . . .
at (2.41), we see that if gagva {d,y) > 0 ¥y (which is qulte reason-
able to assume with an increasing response function), then a mecan-

preserving spread of the distribution of y will result in an increase

.- ~ . 20 .
in d, when the mean of y 1s below Yy Whether or not the mean 1s
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below Yy depends on the closeness of the agent's and the principai's
response functions. (Even if the mean is above Yy» @ mean-preserving
spread may result in an increased d.) 1In Weitzman's model of economic
control the response functions of the producer and the cneter inter-
sect at the best centralized act d* (see (2.35), (2.36), noticing that
the price is set at p = C'). Thus Y, will always lie above the mean
of y (in Weitzman's model y = Z). Consequently, the result that eco-
nomic control will become less tight with an increase in the informa-
tion gap does not depend on the assumption that y is Normally distri-
buted. Any mean-preserving spread in the information gap will result
in increased freedom for economic agents.

Looking at other examples, it appears that responses must
differ significantly around the mean value of y in order for Yy to
fall Below this mean. We infer then that it is quite often that
increased uncertainty for the principal lcads to increased freedon

for the agent.zl

2.3.6  Comparison of Preference Structure

The other component which determines the amount of delegation
1s the difference in objectives. Suppose we have two agents with the
same information, but the other agent's preferences are in some sense
closer to the principal's. Does this imply he will be given more
freedom? The answer is in the affirmative, if we assume precference
functions are unimodal. The appropriate notion of closeness is given

by the following definition, which will provide a partial ordering



of preference functions in terms of the principal's welfarc.

Definition: Let A and A' be two agents with the same infor-

mation y. We say that agent A:s preferences arc uniformly closer than

agent A':s w.r.t. the principal's, if for every daDO

YA.(d) E}YA(d) < Yp(d),
or

Yo (d) o Y, (d) o Y, (d),
where

Dy = {deDfdP(y) = d, for some y}.

We define uniform closeness only over the set of decisions which the
principal may take (DO), because the optimal interval controls will
always be subsets of DO.

Note that pairwise coherence is implied by the definition of
uniform closeness.

The following lemma will clarify the meaning of uniform

closeness.

Lemma 2.8: Supposc agent A:s preferences are uniformly closer
than A':s w.r.t. the principal's, and that all precference functions

are strictly unimodal. Then, for any intecrval control C,



dy, (7€) < d, (v]0)

iA

dp(¥) 5
or for every yeY.

d,, (v|0) > ¢, (¥|C)

I v

dp(y)

Proof: Make the contrapositive assumption, say,
(2.44) d, (y[C) < dy, (¥[C) < dp(»)

for some y. The other possibility 1s symmetric. Let d' = dA,(le).
By (2.44) and unimodality, yEYP(d'), inA(d'). This implies, by
uniform closeness, yéYA,(d'), SO dA,(y) < d'. Since C 1s an interval,
it contains all points between dA(y[C) and d'. By strict unimodality
of agent A':s preferences he should then choose dA,(le) < d', since
dA,(y) < d', which contradicts the definition of d'.

Q.L.D.

Notice that we have to restrict attention to interval controls.
For controls with gaps the claim would be false 1n general. In that
case we would need more information about the specific preference
structure of the agents. With interval controls the relevant infor-
mation is carried in the uncontrolled response functions alone.

The lemma shows that uniform closensssvimplies that agent A:s
response function always lies between P:s and A':s. An example of
uniform closeness would be the case where all three parties have

exponential utility functions and A:s risk aversion coefficient lies



between P:s and A':s. A picture of uniform closeness is civen below.

In this picture A is uniformly closer than A'.

It should be noted that it is possible that A 1s uniformly
closer in preferences than A' for one information signal Yy, but not
for another. Hence, we cannot define uniform closencss directly

over Z.

The following is the main theorem on comparison of prefercnces.

Theorem 2.9: Assume preferences are concave and continuous.
If agent A is uniformly closer than A' 1in preferences w.r.t. the
principal, then the principal will be no worse off with agent A than
with A', and he will give A at least as much freedom as A', regardless

of the distribution of Y.




|

Proof: The claim that the principal is no worse off with A

than A' follows directly from Lemma 2.8, since A:s controlled response
function is pointwise closer than A':s regardless of the control C.
For the second claim we nced to show that if [a',b'] is an
optimal control for A', then there exists an optimal control [a,b]
for A, which contains [a',b']. By Lemma 2.6 the optimal intervals
overlap, since they contain the principal's best centralized act.
Hence, if [a,b] does not contain [a',b'], then either a' < a or
b* > b.
Assume b' > b. We will show that [a',b] is a strictly better
control of A' than [a',b'], contradicting the optimality of [a',b'].

Two cases are possible by uniform closeness.

Case 1: YA'(b) E?YA(b) E?Yp(b)~/ An i1llustration of the
situation is given below, where we have written Y1 = Y\,(b),

Yy = Y, () - Y, (0), Yo=Y, ().

)




Recall that we write with lower case letters the expected

-

preference functions; e.g., fp(d,y) = E(Fp(d,z)[y). Since Fp is

concave so 1is fP’ and correspondingly for fA and fA"

b £y Ol [t b D) PO = £y, (] b1 D) 42()
(2.45) 1
+ i fp(dA.(yl[a',b*l),y)dp(y)+—§ £,(d,, ([ [a",b" 1), y)dP(y).
2 3

By definition of YA,(b),

(2.46) [ f,(d,, (v|[a’,b' 1), y)dP(y) =/ £,(d,, (v[[a',b]),3)dP ().
Y Y
3 3

On YA,(b) - YA(b), dA,(yI[a',b‘]) > b, whereas dA(Y) < b. Conscquently,
by uniform closeness and using Lemma 2.8, dp(y) i_dA(y) < b. Sincc the
principal's preference function is unimodal, he would prefer d = b to

dA,(yl[a',b']) on Y,, (b) - Y, (b). But on this set, dA‘(yi{a‘,b]) = b,

SO

(2.47) J £,(d,, (y[[a",b D), )dP(y) </ £,(d,, (y[[a’,p]),y)dP().
Y Y
2 2

On YA(b), dA,(y|[a',b']) is no better than dA(y![a,b']) for the prin-

cipal, by Lemma 2.8. On the other hand,

S (d O [a, b 1), ydR () < S £y(d, (v [a, b)), y)dP(y)
\’3 Y ’
S . 9

since [a,b'] was assumed suboptimal, and dA(y![a,b')) = dA(yIGa,b])



on Yg, Consequently,

(2.48) [ £(dy, (y[[a',b']),7)dP(y) < J £,(d,, (y[[a',b]),y)dP(y).
Y, Y, ‘
S )

Combining (2.45)-(2.48),

JEpdy, (]2, b 1), 0)dP () < 1 £,0d,, (v] [at,b]),y)dP(y) .

This contradicts the optimality of {a',b']. Hence, b’ < b in Case 1.

Case 2: YA,(b) - YA(b) E_Yp(b). Proceeding analogously to
Case 1, we can show that b' > b leads to a contradiction of the opti-
mality of [a',b']. Hence, b’ < b also in this case.

Finally, a similar argument shows that a! > a, completing the

proof. Q.E.D.

If we look back at Example 2.2 we find that when two agents,

A and A', have weights b > bA > b,, then A:s preferences are uni-

A - P

formly closer than A':s, and so by the theorem above he is given more
freedom. Similarly, the theorem applies to changes in B" and C" in
Weitzman's model. When B" increases or C'" decreases, the production
unit's and the center's response functions get further apart and the
control is tightened, verifying our earlier conclusions. This result
. . . . L~ 22
is independent of the distribution of y.
If we call two agents similar provided they always take acts on

the same side of the principal's response function, we have the follow-

ing partial converse of Theorem 2.9.



Theorem 2.10: Assume agents are similar and the agents'

and the principal's preferences arc concave and pairwise cohcrent.
If the agents cannot be ordered by uniform closeness, then there
exist two distributions of y, such that for one, agent A is strictly
preferred to and given as much.freedom as A', and for the other, the

reverse holds true.

Proof: We will only outline the proof for increasing response

functions. The coherence condition takes care of the general case.

A
d
A
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P
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By assumption there cxists a region YO such that A is uni-

formly closer (strictly) than A' in YO‘ Make the distribution of ¥y

such that d*%, the principal's best centralized act will intersect

dx(y) in YO; (we can assume dA(y) is not constant on YO by increasing
Vs

YO if necessary and involving the similarity and coherence condition).
This can be done by putting essentially all weight on y* = d;l(d*).

However, let YO have a positive probability mcasurc, too. Then it
pays to decentralize to somc extent; in the picture above by using
[d* - e, d*] as a control. (For an extended discussion, sce the next
section.) By coherence, A will have a uniformly closer response than
A' on YO U {y*}, whatever control is used. On YO it will be strictly
closer. Consequently, A is given at least as much freedom as A' by
Theorem 2.9, and he will be strictly preferred to A'.

Likewise, we can find a region Y!, such that A' is uniformly
closer than A in Yb, and repeat the argument above.

Q.E.D.

As a consequence of Theorems 2.9 and 2.10 wec get:

Corollary 2.11: Assume preferences are concave and pairwise

coherent. Among similar agents, A is preferred to A' for all distri-
butions of ¥ if and only if A is uniformly closer than A' in prefer-

ences w.r.t. the principal.



2.5.7 Decentralization vs. Centralization

When are there gains to decentralization? This is a basic
question of interest. We will provide one simple sufficient condition
for when it pays to decentralize using interval controls. Essentially,
it says that if the agent takes acts both below and above the princi-
pal's best centralized act and preferences are coherent, then the
principal should give the agent some freedom. Later, in Section 2.4,
we will discuss how this condition can be weakened when transfer pay-
ments are allowed.

The following lemma, though obvious, 1is the main principle

behind decentralization.

Lemma 2.12: Let d* be the best centralized act. Assume there

. _ -1 .
exists a control Cel, containing d*, and a set Y dA (C) for which:

0

(1) the principal prefers weakly dA(y]C) to d* for every y;
(1ii) the principal prefers strictly dA(y) to d* for erO;
(111) P(YO) > 0.

Then the control C is strictly preferred to d* both by the agent and

the principal.
Proof: Obvious.
The point is that the agent's decision reveals information

about y (sometimes perfect information) and the lemma says that if

the principal, conditional on the agent's decision, prefers it to the




best centralized decision d*, then the agent should be allowed to

make‘the decision. Notice that if there would be a set of decisions
among which the principal is indifferent, a Pareto improvement would
not be guaranteed by delegating this set to the agent (as is the case
in the world with symmetric information). Conditional on the agent's
choice, the indifference would generally change; possibly so that the
agent's choice always becomes worse than a particular best centralized

decision. This phenomenon is alien to adverse selection.

Theorem 2.13:23 Assume:

(1) the expected preference functions fp and fA are uni-

modal, céherent and continuous;

(ii) the distribution of ¥ is nonatomic;

(111) thé agent takes acts both below and above the best
centralized act d¥*;

(iv) 4, (») # dp(y)  for yely[d,(y) = d*}.
Then there exists an interval control C such that both principal and
agent are strictly better off with C than with d*; i.e., it 1s Parcto

improving to decentralize.

Proof: The picture below indicates the simple idea behind the

proof.



s

Clearly the heavy line dominates d = d* from the principal's and the .
agent's point of view.

We will show that we can find C and Y, as required in Lemma

0
2.12, with C an interval. Let Y(g) = {yld*-¢ §~dA(Y) < d*+¢c}. By
continuity, coherence and (1v), € > 0 can be chosen small =noiigh so0
that either dp(y) > dA(y) or dp(y) < dA(y) on Y(g).

Take the first case, dP(y) > dA(y) on Y(g), as the second case
is symmetric. Let Y (g) = {st(E)[dA(y) > d*}. By (iii) and continuity,

Y+(€) is of full dimension and so by (ii) P(Y+(e)) > 0. By strict uni-

modality the principal prefers strictly dA(y) to d* on A+(€). Take

d, = d*, d, = sup {dA(y) y£Y+(e)}, and define C = [dl’ dz]. Let y by
arbitrary. Three possibilities arise:
(1) y€Y+(€). Then dA(y) is strictly preferred to d* by the

principal.
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d*

2 4,0

O

(3) d,(y d,.
By coherence the third case implies dp(y) > d2 and so by unimodality
the principal prefers d2 to d*. Hence Y+(€) and C satisfy the condi-

tions of Lemma 2.12. Q.E.D.

Let us emphasize that coherence 1s a crucial assumption in
the theoreﬁ, as we already argued in connection with the definition.
Indeed, if we say that the principal and the agent are noncoherent
when Yi(d) E'Yp(d) or Y;(d) E»YA(d) for every d, then the agent 1is
of no value for the principal (see figure following the definition
of coherence). This follows from the observation that 1f C is an
arbitrary control, then the principal prefers any constant decision
in C to the use of the control C.

It should be clear from Lemma 2.12 that condition (11} could
be replaced by a number of variants including some, which apply for
discrete distributions.

We can get a weak converse of the theorem. Since it is
trivially true that a necessary condition for decentralization by
intervals is that the ranges of the principal's and the agent's

response functions are not disjoint, we have:

Theorem 2.14: The agent is of value (i.e., it pays to decen-

tralize) for all nonatomic distributions of y, if and only if prefer-
ences are coherent and the range of his response function contains the

range of the principal's.



As an application of the theorems, let us look at an example

" where the agent 1s given some free-

of "management by participation,
dom in choosing his own objectives as a result of his superior infor-

mation about the complexity of the task.

Example 2:7 The agent's wage 1is determined according to a

goal-based scheme (see Keren [1972]) as follows:

B w + bx, if X > X
(2.49) s (x) ={: B
w s if x < X,

where s = total salary

w = flat wage
b = bonus constant > 0
X = goal

X = output

Assume the production function 1is x(e,z) = x(e) =z, x(0) = 0; e is
the agent's effort and z > 0 is the randomness factor. For simplicity
assume z = y, i.e., the agent knows z, whereas the principal 1s uncer-

tain about 1t.

The agent's utility function 1s

Mis,e) = s - V(e)  ;V(0) =0, V'(0) = O,

where V(e) measures disutility and is convex with a vertical asymptote



at e. The principal's utility function is linear over money without

other attributes.
In our previous terminology the action variables are x and e
(w is kept constant), and the control variable is x alone since e is

assumed nonobservable. The derived preference functions are

1

A - - .
= Y
F (x,e,y) W + bx Vie), if y z—x(e) )
. X
w - V(e) s if y < x(e)
(2.50) )
FP(R,e,y) = x - w - bX if y > X
X,e,)’ = X b )’ - X(e) >
. X
X - W , if y < x(e)

Let us look at response functions of x (i.e., what goal each player

would prefer given y). We have:

x(e*(y)) - v,

1

Xy (1)

x(€(y)) * vy,

xp(¥)

It

where e*(y) is the solution of b - x'(e}) =y - V'(e) 0, and €(y)

solves b+ x(e) - y - V(e) = 0.




V(e)

| __—b - x(e) *y

e*(y) e(y) e(y) e

The principal always prefers a higher goal than the agent. By our
assumptions EP(O) = iA(O) and ,ip(y) - RA(y)[ > 0 as y - «. This

implies that the response functions look like:




For any nonatomic distribution with range [0,»), the agent will be

given some freedom in deciding his goal, since 1t 1s clear that FA

and F written as functions of x and y alone by substituting e(x),

P’

are unimodal in Xx. (]

Going back to Weitzman's model, we see that Theorem 2.13 could
have been used to prove Proposition 2.3. Equation (2.34) implies
coherence, convexity was assumed, and the price p can be chosen so
that (iv) holds. This shows how Theorem 2.13 can be applied even in
a multi-dimensional control problem (both price and quantity are con-
trollable in Weitzman's model), by fixing all but one of the control

variables.

2.3.8 Motivation and Learning Aspects
in the Use of Quantity Controls

It is often held that one of the major advantages of decen-
tralization is the motivation it provides for the subordinate to do
a better job. For instance, in a multi-division organization it is
well-known that prices and quantities are equally good decision modes
when the center has full information (under standard convexity assump-
tions), but prices are generally thought of as superior on motivational
grounds. Exactly how this motivation works is rarely analyzed, rather
it 1s taken as a matter of fact. On the other hand, looking at a model
with fixed information structure, it is hard to find support for this

view. One has to rely on arguments outside the standard economic



framework to explain how motivation could improve the outcome.24

We will here show that if one views information acquisition
4s a main function of managers who participate in decision-making,
then an aspect of motivation enters into the decentralization decision.

A manager performs two tasks. He makes decisions and super-
vises their implementation. Both activities take time and effort. We
are here interested in the effort he spends on decision-making. The
purpose of this effort expenditure is to improve his information about
the decision problem he faces.25 The amount of effort he will spend
on this activity depends on how much freedom he has in making a deci-
sion, that is, how much responsibility he has been delegated. If he
has no freedom and only 1is asked to implement a decision made by
somebody else, he has no direct incentives to collect information
about the problem (at least for decision-making purposes). It is
only when he is delegated some decision-making power himself, that
he will engage in acquisition of information.

Is it good or bad for the superior to have his manager become
more informed? We looked at this question earlier, but could not con-
clude generally that a more informed manager was preferable. Yet, it
seems natural to believe that this is the common case, and we will con-
fine ourselves to situations in which this 1s true. For instance, in
the production problem studied earlier (Example 2.2) we found that the
principal was better off when the agent got more informed.

It is then clear that if the manager will spend more effort on

collecting information when he is delegated more decision-making



responsibility, the optimal amount of delegation will take this
effect into account. In particular, he will be given more freedom
in order to be motivated to acquire information. That the manager
indeed will be motivated to get more informed will be shown below.
For simplicity we will assume that the manager's utility

function is separable,
Fitd,e,2) = F(d,2) - Ve,

where V(e) is disutility from effort. Let }1 and (yl,yz) be two
information systems available to the manager at effort levels ) and
e since the latter information system is strictly finer.

25 €y 7 ey

Let C and C' be two interval controls with C € C'. Suppose the

manager prefers (}1,§2) to ?1 under the control C, so that

(2.51) E[E[F Ay ,y,[0),2) - Fhaty 10,2 ]Iy r,] > Vie,) - V(e

When C is enlarged to C', it follows by concavity of the preference

function that:

(2.52) dy,y,|C") - d(yylC') > dly,y,l0 - dly 1), Y(r.y,).

Since d(yl,yZIC) (d(yl,yZIC')) maximizes the integral in (2.51) (i.e.,
LA . . .
F conditional on (yl,yz)) subject to the constraint C(C'), (2.52)

implies that




E(F Wy y,len, e - ar ey, >
(2.53)
EF A0y, 100,20 - Bt e, o ly Ly, ). ¥,

Taking the expectation of (2:53) and using (2.51) we find that also
under the constraint C', the manager prefers (yl,yz) to ?1.

Assuming increased levels of effort result in increasingly
finer information systems, the argument above shows that with more
freedom the manager will invest at least as much effort into infor-
mation acquisition as before. Generally he will invest more and get
a strictly finer information system, which we assumed is to the bene-
fit of the principal.

Consequently, in determining the optimal level of delegation,
the principal should also make a provision for this motivational
aspect of the problem, and give the agent more freedom than he would
if the agent's information were independent of effort.26 In terms of
price vs. quantity controls we conclude that prices have a comparative
advantage as motivational tools as is often claimed.

Another aspect which may increase the amount of freedom is
learning. We have formulated our problem in a static framework, but
suppose there were two decision periods instead of one. If the
agent's characteristics (his expertise and preferences) were perfectly
known to the principal, nothing would be essentially changed and our

previous analysis would apply to determine the optimal level of



delegation.27 However, if the principal is not fully informed about

his agent, the outcome of the first period will be a signal about the
agent's characteristics, and the principal would have to take this into
account when determining the optimal control set in the first period.
Assuming the agent optimizes his problem period by period without
thinking about strategic behavior, it is clear that the principal will
give the agent at least as much freedom 1in the first period, as he would
have done in a one-period problem. More freedom will provide finer
information about the agent and this can never hurt the principal by
Blackwell's theorem. Since learning in dynamic models has been ex-
plored in several papers,28 and the point is rather obvious anyhow,
we will not analyze the issue further.

To summarize the discussion, we have identified thrce components
of the optimal interval control, schematically described in the picture

below.

juse of agent's superior information;motivation;learning,
I ! i I

First, the principal delegates decision-making responsibility in order
to utilize the agent's superior information. Generally it will be rTe-
stricted because of differences in objectives. Secondly, the principal
may expand delegation to motivate the agent to acquire more information.
And thirdly, the principal can use éelegation for learning about the

agent's characteristics.



2.4 Controls with Compensation

In the one-dimensional control problem, the thrust was on
studying optimal interval controls and their characteristics as a
function of the difference in information and preferences. Extensions
to multi-dimensional control problems are possible, but -much weaker
results will be obtained. This motivates us to look at a particular
case of a two-dimensional control problem, namely one with d = (a,w),
where a is the action variable of the underlying problem structure
and w 1s a compensation variable. We will call this the regulation
problem following Weitzman [1976b]. It has the same structure as
screening and signalling models, but we will look at centralized

solutions rather than market solutions.

2.4.1 The Regulation Problem

As we already saw in Example 2.3, the regulation problem

reduces to finding an optimal control function s(a). Let thc prefer-
. A P A P
ence functions be F (a,w,z) and F (a,w,z). We assume Pz >0, F2 <0,

F11 < 0, F11 < 0. The regulation problem can then be written:

max  E[F' (a(y), s(a(y)),z)]
a(y), s(y)

(2.54)

s.g. aly) =.8rgmax E[FA(a,S(a),Z)fY], vy,
a

assuming the constraint is well-defined for almost every y.

This problem appears generally very difficult to solve. Two
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particular difficulties can be seen directly. First, the constraint

involves a global solution to an optimization problem, and even with
. . A . .

concavity assumptions on F ', we cannot replace the constraint with

the first-order condition:

(2:55) £1@),5@0)) .y + E@m),sa(),y) « st (aly)) - 0, vy,

since s may make the objective function of the agent nonconcave in a.
An additional assumption, used in screening models, will resolve this
problem, as we will see shortly. The other problem is that the con-
trol function s is a function of y via a(y), which is unknown. One
way of approaching this problem, is to ignore it at first and write
s(a(y)) = g(y), letting g(y) vary freely. If the optimal a(y) is
strictly monotone, we can always find the s that corresponds to the
optimal g(y) from the relationship above. However, if a(y) 1s not
monotone we have exceeded our degrees of freedom.

Under certain simplifying assumptions even the sccond problem
can be solved; for instance, if we assume that the agent's utility
function is additively separable and linear in w (see Spence [1977]).
But generally the difficulty remains and we will therefore turn to
another solution approach, which carefully considers the agent's
global maximization and yields a partial solution to the regulation
problem under some further assumptions.29 What we will do is to study
what response functions a(y) the agent can be induced to take with

different control functions s; phrased differently, we will look at



the attainable set of controlled response functions. The work is

based on Riley [1976], and it will be applied to generalize some of
the results in Weitzman [1976b].

Look again at the first order condition for the agent's maxi-
mization problem; Equation (2.55). To find out a'(y), differentiate

(2.55) totally w.r.t. y which gives:
9 Al giye g 2 8 Aoy
(2.56) = (f? Py s a e (f? + ) est) = 0,

If (2.55) is to give a local maximum we must have

We have
T A
9 N, — 9 _l_ ' . Ay __ZL _l
(2.58) gyr(f? . fg 51 =gy L s - 6] = o (fA ,
£ i

since fg > 0 and using (2.55). Substitution in (2.57) gives

£
. fg Cery o L.

1
= () < 0.
a' ay
2

3
(2.59) iy

(2.59) indicates some of the restrictions that one faces when trying

to control the agent. Assume, as is frequently done in the theory of

>
screening, that 5;—(~K) > 0. Then we can only induce the agent to take

2
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increasing response functions. On the other hand, we can prove the

converse too.

] > 0. Then any differentiable

Theorem 2.15: Assume g% [

\JH}> I r—'m>

s

nondecreasing response function is Adttainable. Conversely, any

attainable response function must be nondecreasing.

Proof: We will prove the first part of the theorem assuming
first that a'(y) > 0 for all Y, and then argue that a'(y) = 0 can also

be allowed. If a'(y) > 0, we can equivalently write (2.55) as

(2.60) s,y @)+ sy @) s - o

vac {a=a(y)|yeY},

where Y is the range of y. This is a differential equation which has
a unique solution s(a) under our assumptions. This means that for any
a(y) with a'(y) > 0, there exists a control function s(a), which at
least yields the first order condition (2.55). From (2.59) we know
that it moreover gives a local maximum along a(y). To prove that each

lIocal maximum is, in fact, global, study the picture below:3o
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s(a)

fA(a,w,yl)

l
|

s(a) ’ l
I

l [

a()’l) a(yz) a

A contrapositive assumption would imply that the indifference curve
of fA, which is tangential at a(yl), intersects s(a) at some other
point a = a(y2). By construction of s(a), there is a tangential

1nd1fference curve at af(y ], and this would imply

£ 1@,y ) £ 1@alyy)hys)

» (ify, >y
£(ar,).y,) fz(a(yz),yz) : ¢

contradiction to our assumptionA~— fA
2

is the slope of the indifference curves. From the geometry it is

1 otherwise reversed) in

—) > 0; since note that -

QjDLJﬁ>

also clear that the agent can be kept at a constant a, l.e., a'(y) =0
1s possible, by decreasing s(a) sufficiently rapidly. This proves the
first part of the theorem.

The slope interpretation indicates immediately that the agent
will never take lower values of a when y increases. This proves the

second part of the theorem. Q.E.D.



. 3 . . . .
The assumption 5}»[ ] > 0 is natural 1in many situatlons.

a

For instance, in the insurance model (Example 2.3) it says that

higher-risk individuals have a lower opportunity cost for buying
insurance; in Spence'; model on job market signalling, the assump-
tion is that individuals with higher ability have a lower oppor-
tunity cost for education.

Briefly, Theorem 2.15 says that the attainable set of con-
trolled response functions equals the class of nondecreasing response
functions. Of course, this is only a partial solution to the regula-
tion problem in general, since we have not considered the costs
associated with different controlled response functions. In some
cases it yields a complete solution.

As an application, we look at the case where the preference
functions can be written fA(a,y) + W, fp(a,y) - w; i.e., when there
are no wealth effects and utilities are transferable in money. The

(ex ante) Pareto optimal solution follows by solving the problem:

nax  S{E (a(y),y) + £ (ay),y)}dP(y),
a(y),s(a)

5.t Pa)y) v sT@)) =0 vy

(the weights of fp and fA have to equal 1 with transferable utilities}).

P

Assume f?z >0, le

> 0, which implies that the uncontrolled response

functions are increasing. The first best solution a*(y) can be found




by pointwise maximization of the integrand. It 1s easily seen to be
; . . fA P . . .
increasing, since f ., > 0 and f12 > 0. Hence, Theorem 2.15 implies
that there exists a control function s, which yields a*(y) as the
agent's controlled response. The first best solution can be attained
since s is just a transfer, and so there are no efficiency losses due
to differential information. The statement applies, for instance, to
the production problem (Example 2.2), if we make the assumption of
transferable utilities.
Whenever the principal's preference function 1s independent
of s (which was the case in the economic planning model, Section 2.3.3)
fA
- e ) . . .
and the agent satisfies 5——(—%} > 0, the constraint in the regulation
Yy ¢
2
problem can be replaced by the requirement that a(y)} is nondecreasing.
This is a substantial simplification and it is straightforward to see

that the form of the optimal solution will loock as in the picture below:

Y
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The optimal controlled response will follow the increasing part of
the principal's response function, and take flat jumps over decreasing
parts.

We can apply this discussion to an extension of Section 2.3.3
studied by Weitzman [1976b]. Suppose there are n producers instead
of ope. Each controls one decision di’ and knows its own cost function

C(di;yi). W.l.0.g. we can assume Cl < 0; 1.e., yi reflects decreases

2 —
in marginal costs. yi's are unknown to the center. The producers'
decisions are interrelated through a joint benefit function B(d),

d = (d ces dn). The center can announce price functions pi(di)

1’
with the objective to maximize the expected value of

n
B(d) - ‘Zl C(di’yi)’ given that divisions will maximize
pi(di) f—C(di,yi). An upper bound for what the center can achieve is
given by the optimal team solution without communication (see Marschak
and Radner [1972]). This solution specifies optimal response functions
di*(yi) for the producers. It is quite natural that these functions
are increasing (with our assumption C12 <0). If yi‘s are independent
this is the case, but even with dependencies it is presumably rare
that one producer should decrease the production as the marginal cost
decreases. In any case we can apply Theorem 2.15 to this coordination
problem. We conclude that the organization can be made to perform as
well as a team without communication possibilities, if and only if
the optimal team solution is nondecreasing. This is a generalization

of part of Weitzman's results.

In Chapter IIT we will study Groves' scheme, which is designed



to achieve the optimal team solution under essentially any communica-

tion structure. However, for Groves' scheme to work we have to assume
that the agents' information signals are independent. If we make that
assumption when no communication takes place, the solution becomes
- rather trivial. What 1s interesting is that there are situations
with dependent signals for which the team solution can be achieved.
We will return to this issue in Chapter III.

Usually it is hard to determine the optimal team solution.31
By using quadratic approximations of benefit and cost functions (see
(2.15)-(2.16)), and looking at a restricted class of joint probability
distributions over signals (which includes the joint Normal distribu-
tion), Weitzman shows that the optimal response functions are linear.

Provided they are increasing, one can induce firms to follow them

using quadratic price schedules of the form:

(2.61) p

where d* = (d;, e, d;) is the best centralized decision. The wi's

are weights, which are determined from a set of simultaneous equations.
(2.61) represents another kind of mixed price-quantity con-

trol. If the weights are set very high we have essentially a quantity

order, and if they are equal to zero we have a pure price control.

The weights depend on the curvature of costs and benefits, in a way

which merely confirms our previous conclusions. More interestingly,

Weitzman shows that the weights increase with positive correlation



between marginal costs of firms. The reason is that prices tend
to lead to over-reactions. Whenever one firm 1s increasing pro-
duction because its costs are low, so do the others. Compared
with a situation of independent marginal costs, more stabilization
is needed.

Weitzman's model is not well adapted to an analysis of the
effects of changes in the information gap. This is best understood
by looking at the case of independent signals. Then the quadratic
price schedule can transmit the center's objective function com-
pletely, and this function is independent of how big the information
gap is. There will be some second-order effects when signals are
dependent, but they are not essential. The point is that changes
in the information gap become important only when the center can
transmit incompletely its information, which is the case, for

instance, when it has to use interval controls.

2.4.2 Decentralization vs. Centralization

As in the one-dimensional control problem, we can again ask
under what conditions the agent will be of value to the principal,
i.e., when it pays to decentralize. With an enriched contractual
space, the possibilities for successful decentralization are, of
course, increased. In fact, they are increased rather substantially,
since now the response functions need in no sense be close to each
other. What counts is how the agent's rate of substitution between

acts (a) and compensation (w) changes with y.




In Weitzman's model (Section 2.3.3) we say how we could
manipulate the agent's response function using a price so that it
intersected the principal's best centralized act and made decentral-
ization valuable according to Theorem 2.13. The same technique can

be used for an extension of the result to the following theorem.

s B
Theorem 2.16: Assume 5;-[—K] > 0. If the principal's
2

response function is increasing, then it always pays to decentralize

using a price scheme combined with an interval control.

Proof: Study the picture below. a is the principal's best
centralized act, and w is the agent's wealth without compensation.
Let y = dp(é), i.e., the outcome of y at which the principal would

choose his best centralized act. p 1s the agent's MRS between acts

" £ (2, w,y)

g1

\J

Q) | fromme e ——




and wealth at (a,w,y). If the agent would be faced with a price

A
- - = 3 fl
scheme p+a - p-+a, he would, by our assumption 5—-[~KJ > 0, have
Y of
_ 2
an 1increasing response function, for which dA(y) = a. This may not

yet make the principal better off (even if the agent is restricted

to take acts in an interval around a), since the agent's response
function may be too steep when p is used. However, with a higher
price p', the agent's response function can be made to intersect

a = a to the left of y (sce figure below). Using p'+a - p'-a

as a price and (a - €,a) (for some small € > 0) as a decentraliza-
tion interval, the principal will be better off. He will prefer the
agent's response function to a, since it is uniformly closer, and
moreover he will receive payments from the agent when the agent takes
acts different from a. The agent will be no worse off with this

arrangement, since he can always take a and pay nothing.

\j
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» 5
An obvious corollary of the theorem is that if 5;»[—K] <0
f.
2

and the principal's response function is decreasing, then it pays to
decentralize. The theorem could also have been proved under one of

the two assumptions:

) £ s £
(1) 3y f;x] >0 and 5;’[;51 <0,
2 2
or
) £ =l
(ii) gy'fgxl <0 and g;‘[;g] > 0,
2 2

since (i) implies that the principal's response function is increasing,
and (ii) that it is decreasing when the transfer payment is kept con-
stant. The role of these two conditions is very similar to the
coherence condition we needed in the one-dimensional case. For
instance, (i) says that when y increases, the agent 1s willing to

take higher acts at lower compensation, whereas the principal is
willing to pay more for higher acts.

Consequently, their interests move in the same direction with
changes in y, and this provides an opportunity for Pareto improvements
via decentralization,

There are many situations where either (i) or (ii) are natural
assumptions. One example would be banks lending to firms which have
superior information about the return of their investments (sce
Section 2.3.1). With higher expected returns, the firm would be

willing to buy additional capital at a higher interest rate, at the
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same time as the bank would be willing to sell it at a lower interest
rate. This is equivalent to condition (i).

Another example would be the model of management by partici-
pation, which we presented in Example 2.7. The rationale for letting
the agent change his own target level is the fact that when returns
from increased effort are higher, the agent is willing to raise the
target {(and consequently his effort level) for a lower bonus, whereas
the principal is willing to pay a higher bonus for such a raise.

Notice, however, that neither (i) nor (ii) is generally
satisfied in the screening models. For instance, in the insurance
model (Example 2.3) this is not the case. Normally there will still
be returns to decentralization (though there may not be). This does
not imply that screening will be ineffective or not used in insurance
markets. Our proposition applies in a centrally planned context
where we are looking for Pareto improvements. In the market cconomy,
screening 1s a consequence of firms looking for better alternatives,

and generally some agents would prefer a centralized solution.

2.5 Efficiency with Differential Information

Little has so far been said about the efficiency of the solu-
tion to the delegation problem. The reason is that no unambiguously
correct defiﬁition of efficiency is available under conditions of
differential information. The traditional notions of efficiency are
not normally operative when asymmetric information is present. For

instance, the delegation solution is generally inefficient according
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to the standard of perfect information (i.e., the agent's informa-
tion) and the same holds true for other decentralized solutions as
well. And yet it seems that the delegation solution should be con-
| sidered efficient in a constrained sense, because by definition it
is the best that the principal can expect to attain with the means
at his disposal.

In this section we will discuss the difficulties involved
with a definition of efficiency under differential information. We
will also propose a new notion of constrained efficiency, for which
the delegation solution is efficient. The purpose of this definition
is not so much to advocate that it is the appropriate notion of
efficiency in general (since in our opinion it has some undesirable

features), as it is to characterize those control sets in the dele-

gation problem which cannot be changed for a joint improvement of
the principal's and the agent's utilities after the agent has ob-

served his signal. So far we have only studied the problem from the

principal's point of view, and this analysis will indicate how to
take account of the agent's interests as well.

Verbally stated, a decision (e.g., an allocation) should be
considered efficient only if there is no other decision which every-
body would prefer. In a world where an agent's private information

is of no interest to the others (as is the case when there is no

i state uncertainty and the agent's private information 1is his prefer-
ence ordering), the application of this definition is straightforward,
since each agent can state his preference over decisions independently

of the preferences of other agents.
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Under differential information this is no longer the case.
Now agents' preferences may reveal at least partly their private
information, and consequently be of interest to others. In particu-
lar, when a person is willing to accept a change in the current de-
cision, this will tell something about what he knows. Such implicit
information transmission could be carried out, for instance, by
market prices, and this has been recently studied under the notion
of self-fulfilled expectations equilibria (e.g., Grossman [1976]).

A simple example will illustrate the point (found in Wilson
[1977]). The economy consists of two agents, 1 and 2, whose endow-
ments are contingent on the state of nature, which is either a or b.
In state a agent 1 gets one dollar and agent 2 nothing; in state b
the roles are reversed. We write this as e = (ea,eb), e, = (1,0},

e, = (0,1). Agent one knows the state of nature, agent two does not,
and assesses equal probabilities to both states. The decision in
this case is a sharing rule, which determines how the agents are
going to split the dollar in each of the two states. The structure

is compactly written in the following table:

a b
1 1 0 {a},{b}
2 0 1 {a,b}

1/2 1/2
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We are studying whether there 1s an alternative sharing rule
s = (sa,sb), s, = (1-p,p), Sy = (q,1 - q), which both would prefer to
the endowment e.

Suppose a has occurred. Then agent 1 demands p = 0 (cannot

be negative), requiring q = 0 and so e cannot be dominated by any other

sharing rule. This is in accordance with the traditional notion of
efficiency. Suppose b occurs. Then e is dominated by

s = ((.5,.5),(.5,.5)), if we follow traditional reasoning. Agent 1
prefers .5 to 0, and agent 2 (if risk-averse) prefers his certainty
equivalent to the original lottery. But upon reflection agent 2 will
consider s unacceptable. He should recognize that if agent 1 accepts
s, it must be because state b has occurred. Given this inference,
agent 2 should no longer accept s. Studying any other combination

of p and q gives the same conclusion: agent 1 wants a change only in
the case state b occurs, but this is the state in which agent 2 does
not want any changes. There is no sharing rule s which both agent 1
and agent 2 would prefer simultaneously. In this sense we would be
inclined to say that e is efficient.

The example suggests a definition of efficiency, where agents
condition their acceptance on the information that is revealed by
other agents' joint acceptance. The problem is that this logic leads
to a noncooperative game of incomplete information. In order to know
whether to accept or reject a new proposal, an agent has to form his
beliefs about the other agents' acceptance behavior as a function of

their private information. The natural formation of beliefs implies
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a éet of indicator functions, one for each agent, which tells under
what private information agents accept (respectively reject) the new
proposal, and which moreover constitutes a Nash equilibrium in the
sense that each agent's acceptance function is a best response against

the others!',

Formally, let d be the current decision and d' a new proposal.

Let Ii(yi;d,d'), 1=1, ..., n, be a set of indicator functions and
. . n
define I*(y';d,d') = N I.(y.;d,d"), I(y;d,d') = I I.(y.;d,d").
jApi ) i=1 0t

Assume that these indicator functions form a Nash equilibrium in the
sense that:

Ii(yi;d,d') =1, if and only if
(2.62) E(F(d',2) |y, T'(y'5d,d") = 1) >

i i .
E(Fi(d,2) |y, T 5d,d) = 1), vy, V..

This condition embodies the idea that an agent should have no regrets
when he accepts d' and finds out that the others did the same, as well
as the idea that his acceptance behavior is determined by self-

interest and is a best response against the other agents' acceptance

strategies.

We could then define efficiency as follows:

Definition: A decision deD is inferentially efficient at

y =y, if there does not exist a decision d'eD and a set of indicator
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functions {Ii(yi;d,d')} as defined in (2.62), for which I(y;d,d') =1,
and for which (2.62) holds with strict inequality for at least one
agent 1.

It is clear that the table in the preceding example 1is
inferentially efficient at both s = a and s = b. This property holds
true more generally in cases with two agents, one of which has strictly
superior information; namely, if d is efficient under perfect informa-
tion for each outcome of y, then it is inferentially efficient at each
y = y. The argument is the same as we used in the example.

We have argued that a logical extension of the traditional
notion of efficiency leads to a cumbersome definition, which embodies
a paradoxical element of noncooperative game theory.32 Clearly, this
cannot be considered very satisfactory. Moreover, one can show in
the context of the delegation problem that a decision deD, which 1s
inferentially efficient, can be dominated by a decision mechanism
N* = (d',Y) in the sense that both the principal and the agent can be
made better off by employing N' instead of staying at d. This suggests
that one should talk about decision mechanisms (or their outcome func-

tions) rather than decisions as being efficient. Corresponding to our

previous definition we would have:

Definition: A decision mechanism N = (d,Y) is inferentially

efficient at ¥y = y, if there does not exist another decision mechanism

N' = (d',Y) which everybody would prefer at y = y.jJ

For brevity we have not spelled out mathematically what is



meant by everybody preferring N' to N. From the earlier definition
this should be easily understood. Again, we look for a set of indi-
cator functions which form a Nash equilibrium observing that an agent
should take into account that the information changes both in the case
N' is rejected or accepted. Thus the outcome of the game N will
change when N' is rejected, from what it would have been, had N been
played before voting for the change to N'. For this reason, an agent
may be worse off simply by the proposal of N', even though he can
always veto the implementation of N'.

Using an idea similar to the one employed by Wilson [1977] in
his definition of conditional efficiency one can avoid such problems

of inference employing the following definition:

Definition: A decision mechanism N = (d,Y) is weakly efficient,
1f there does not exist another decision mechanism N' = (d',Y), which

everybody prefers in all states of their private information, i.e.,

E[F (4" (n),2) [y;] > E(F, (dy),2) |y,],

for every ii =Y with strict inequality for some agent i, in some
information state of y.

Here it 1s understood that d(y) and d' (y) are both decision and
outcome functions of N and N'. If N' dominates N.under this definition
it is clear that no information will be revealed from accepting N'.

However, there may be information states y = y such that even though
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N is weakly efficient it is not inferentially efficient. In this
sense weak efficiency is a weaker requirement than inferential
efficiency. 1In particﬁlar, if N is inferentially efficient at each
Y =y, it is, of course, also weakly efficient.

For the delegation problem (with the agent having strictly
superior information) we can show that weak and inferential efficiency
are equivalent notions. As we have argued earlier we can identify

decision mechanisms with control sets in this case. We have:

Theorem 2.17: A control set C is weakly efficient if and

only if it is inferentially efficient for each y = y.

Proof: The sufficiency is obvious. To prove necessity sup-
pose that C 1is not inferentially efficient for some Y = y. Thus both
the agent and the principal would prefer another control set C' to C.
The principal prefers C' to C conditional on the agent's acceptance
of C' over C. Since the agent could choose a decision in C (by
rejecting C'), this implies that C U C' is preferred by the principal
to C. Since C C CUC' the agent prefers C U C' to C for all y = y.
Thus C cannot be weakly efficient. This proves necessity.

Q.E.D.

Theorem 2.17 exhibits a certain stability property of weakly
efficient control sets. Suppose the principal and the agent agree to

use a certain control set C before the agent sees the outcome of V.
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Then there will never be a reason for them to change to another con-
trol set after y is revealed to the agent, since such a move cannot
benefit both parties. On the other hand, it is clearly irrational
for the principal and the agent to employ a control set which is not
weakly efficient. In particular, it is immediate that the delegation
solution is weakly efficient (provided it is unique)}.

If C' dominates C in terms of weak efficiency, it must be that
€C € C' (provided C does not contain decisions, which the agent will not
take under any outcomes of y, in which case C' could be augmented, if
necessary, by those decisions without affecting the game). This fact
makes it generally rather simple to identify weakly efficient control
sets. For instance, in the production problem (example 2.2), the
weakly efficient control intervals are of the form [0, dy + €}, where
€ > 0 and dyj is the upper limit of the optimal control interval to the
principal's problem.

Weak efficiency is very similar to the notion of conditional
efficiency of outcome functions, proposed by Wilson [1977]. An out-

come function d(y) is said to be conditionally efficient if there does

not exist another outcome function d'(y), such that

bl

E[F;(d' (), 2) [y;] 2 E[F;(d),2) ly;] vy, ¥,

with strict inequality for at least one i and some yis:Yi.
The difference between weak efficiency and conditional efficiency

1s that in weak efficiency we require that d(y) should be attainable via



the corresponding decision mechanism N = (d,Y), whereas conditional
efficiency is purely a statement about an outcome function. Thus
weakly efficient outcome functions may not be conditionally efficient.
Howéver, in Wilson's model it is assumed that y 1is observable €ex post,
and thus any outcome function can easily be attained as a Nash equl-
librium. In this sense our definition is an extension of Wilson's
definition to cover situations in which y is not observable ex post.
Following Wilson [1977], it can easily be shown that weakly
efficient outcome functions (i.e., outcome functions corresponding

to weakly efficient decision mechanisms) can be generated by solving:

n
max E[ L A, (y.) E[F.(d(y),2)]y.],
d(+) -1 i1 i 1

s.t. d(y) attainable.

The constraint that d(y) should be attainable, expresses the limita-
tions that are imposed by the presence of differential information,

and in this sense weak efficiency is a constrained efficiency notion.

2.6 Concluding Remarks

In Chapter I we formulated a general model of decentralized
decision-making with the interpretation that agents participate by
sending messages to the principal, who makes the final decision. In
this chapter we have studied a special but important case of the

general model, which we called delegation. Delegation was seen as
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a process where the agent is given freedom to act in his own self-
interest within a constrained set of alternatives.

Delegation can take many forms. We chose to investigate
quantity controls and the use of more general nonlinear price-schedules.
The study of quantity controls allowed us to focus on the relationship
between the key determinants of optimal delegation: differential in-
formation and differences in objectives. For the agent's preference
structures a partial ordering was developed. The optimal amount of
delegation as well as the value of the agent to the principal was a
monotone function of this partial ordering. The results also indicated
that an increase in the information gap was normally accompanied with
greater freedom for the agent.

In the context of a centrally planned economy this can be inter-
preted as saying that the tightness of economic control depends on both
the curvatures of the revenue and cost functions as well as on how in-
formed the center is. If the center is badly informed less rigid con-
trols should be used. This complements Weitzman's results on the impact
of curvatures alone on economic control.

We also found that delegation, in addition to its Tole as an
instrument of information transmission in decision-making, refiected
motivation and learning aspects. We gave an explanation to the much
held opinion that delegation motivates agents to perform better. From
the point of view of economic planning, this gives prices a comparative
advantage over quantities.

The applicability of delegation depends on the preferences of
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the agent as compared to the principal. There has to be a certain
degree of conformity in their responses to the information signal.

For quantity controls a simple sufficient condition was developed;

if the agent takes acts both below and above the principal's best
centralized choice, delegation leads to Pareto impfovements. This
condition may be quite generally satisfied. But if preferences do not
conform as much as is required by this condition, prices can be used
to change the agent's preferences so that delegation becomes valuable.

If interests lie even further apart, observations that are made
ex post can be included in the delegation arrangement so as to allow
successful delegation. An example of this is the goal-based incentive
scheme (Example 2.4). Unless the outcome could be observed afterwards,
there would be no point in letting the agent set his own goal. Tying
the agent's reward to the outcome, makes his information (transmitted
via the goal) credible. The same principle is at work, for instance,
when warranties are used, particularly in markets for used commodities.
Part of the rationale for extensive cost accounting can also be found
in this principle, though we will discuss other reasons later
(Chapter 1V).

Changing preferences, making information credible, measuring
output for extra signals; all are costly activities, which must imply
(with few exceptions) that differential information causes inefficien-
cies by the standard of perfect information. We analyzed the issue
of efficiency with differential information. When trying to apply

the simple principle that Pareto optimality means that nobody can
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be made better off without hurting somebody else, we were led to
introduce a noncooperative Nash equilibrium concept into the defini-
tion. We do not think this is very useful, but conclude from the
analysis that it is plausible that there will be no generally viable
definition of efficiency with differential information. Instead it
may be that one has to find out how efficiency should be measured in
the context of specific models or situations. Our own definition of
weak efficiency should be seen in this light, and similarly Grossman's
work on the efficiency of rational expectations equilibria [1977].
The same can be said about Wilson's notion of conditional efficiency,
which seems best applicable in a situation where markets for signal
outcomes are complete.

An important dimension of a principal-agent relationship is
time. How long the agent is going to work for the principal is an
essential question for determining the optimal control. This is
particularly true when the principal has an imperfect model of the
agent's response behavior. One observation we made, was that with
an imperfect model and a multiperiod time span, the optimal control
will reflect experimentation on behalf of the principal. When quan-
tity controls are used, the principal will give the agent more freedom
in order to learn the agent's characteristics faster.

This result assumed the agent will behave myopically or non-
strategically towards experimentation. Generally, it lcads to a prob-
lem of adaptive control, which is by nc mecans simple to handle (sec

Prescott [1972]). Even more difficulties are encountered if one



assumes the agent behaves nonmyopically.

Another possibility 1s to move to a self-fulfilling expecta-
tions equilibrium directly. It can be envisioned as the agent telling
the principal his characteristics at the outset. The principal selects
his control optimally based on these characteristics, and then merely
checks that the action-outcome pairs he can observe will be consistent
with his beliefs about the agent. An important aspect is that the
agent may choose to lie about his characteristics and then simulate
a behavior consistent with this lie.

If we look at tﬁe production problem (Example 2.2) it is easily
seen that the agent has an incentive to misrepresent his preferences
so that they appear actually closer to the principal's. Both parties
are better off with this arrangement, which reflects the fact that
outcomes are used to validate the agent's information about his be-
havior. With transfer payments available, they could presumably reach
a first-best solution (corresponding to perfect information).

Whether the analysis is so simple for misrepresentation of
information is not clear. One would think, however, that the agent
may have an incentive to appear less informed in order to cover self-
interested actions, at least in some situations.

An issue which is familiar from other models of self-fulfilling
equilibrium, is that there may be multiple equilibria, which can be
Pareto ordered. This is a possibility when the agent's expertise is a
function of his effort. We saw that the control size in this case

determines the effort level, whereas the reverse is true when the
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principal looks for the control given the level of the agent's

expertise. One could imagine that an agent could be inefficiently

utilized, because the principal does not know the agent's potential.



APPENDIX Z2A

EXISTENCE OF OPTIMAL CONTROLS

Recall our earlier assumptions:

Al. D is a compact subset of a complete, separable metric
space.

A2. ( is a closed subset of 2D, w.T.t. the Hausdorff-
metric (see below).

FA and Fp are continuous and uniformly bounded.

A3.
In proving existence, we will take the standard approach of showing
that our problem is one of finding the supremum of a continuous func-
tion over a compact set. Since the argument of the objective function
is a set, we have to define a sultable metric to get the objective

function continuous. For this purpose we will use the Hausdorff (H-)

metric (see Munkres [1975]), which is defined for two sets A,BEZD as

H(A,B) = max {sup inf m(a.b), sup inf m(a,b)}
acA beB beB acgA

where m is the metric of the space containing D. The crucial result,

which gives us compactness is the following (see Munkres [1975]):

Lemma 1: If D is a compact set in the metric m, then the set
of all nonempty bounded closed subsets of D is compact in the Hausdorff-

metric H.
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Since we assumed C 1is closed in the H-metric, Lemma 1 tells

us that ¢ 1s compact, because ZD 1s metrizable.
Lemma 2: d(y,C) is u.s.c. in C for every y.

Proof: Fix y. Let
(1) Cn -+ C (in the H-metric), Cn’ CeC
(i1) dned(y,Cn)

(111) dn -+ d.

We need to show that aed(y,C). d(y,C) 1s nonempty, since C
is compact. Let aed(y,C) be arbitrary. We show that deC and
fA(a,y) = fA(a,y), implying aed(y,C).

Let § > 0 be arbitrary. Cn > C = 3n1 and a sequence

{d(n)}, d(m)eC ¥n, s.t. m(d(n),dn) < § when n E_nl. cln - d = 3n2

s.t. m(d,dn) < 6 when n > n From the triangle inequality we get

-

m(d(n),a) < 28 when n > n, = max(nl,nz). Since 6 was arbitrary, d

0
is a limit point of a sequence in the closed set C and so deC.

dec = fA(a,y)‘i fA(a,y). If moreover fA(a,y) iyfA(a,y) we
are done. C, > C= 3a sequence {d'(m)}, d'(n) ¢ C., ¥n, s.t.

. fA A - . A .
d'(n) - d. We have that (d'"(n),y) » £ (d,y), since f 1is contin-
uous. We also have fA(dn,y) -+ fA(a,y) by (iii). d'(n)s:Cn implies
Fedrm),y) < fA(dn,y) Vn, by (ii). Taking limits on both sides

gives fA(a,y) i»fA(a,y) concluding our proof. Q.E.D.
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Lemma 3: If Prob{d(y,C) is not a singleton} = 0 YCeC, then
Ey{fp(d(le),y)} is continuous in C for any specific choice of response
function from the response correspondence. In particular it is true

for the choice dmin(y]C).

Proof: Let Cn ~» C. Let A = {yld(y[C) is not a singleton}.
By assumption P(yeh) = O. Ey{fp(d(ylcn),y)} = Ey{fp(d(y]Cn),y); yel}

+ Ey{fp(d(ylcn),y); yeA<}.

The first term in the RHS is 0. Let us show that fp(d(y]Cn),y)
- fp(d(le),y) for yeAC. Then, since fp i1s continuous and bounded, the
integral will converge to the desired limit by the bounded convergence
theorem.

Write d_ = d(yjcn); d ed(y,C ). We claimd_~ d(y|C). This
is true if and only if every subsequence {dn,} has a refinement
d, = d(y|C). Since D is compact, any subsequence {dn,} has a con-

n

vergent subsequence dn" + d. Since d(y,C) is u.s.c. by Lemma 2,

aed(y,C), which is a singleton (because yEAC) and so 8 = d(y

7

C).

Hence, dn - d(le). This completes the proof. Q.E.D.

Theorem 3.1: Assume Al-A3 and in addition Prob{d(y,C) is not
a singleton} = 0 V CeC, then there exists an optimal solution C*eC to
the delegation problem regardless of the maximizing response function

the agent uses.
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Proof: The delegation problem is to find a maximizing C*eC,

. . . p .
if it exists, for the function Ey{f (d(y]C),y), where d(yIC) is a par-
ticular maximizing response function of the agent. By Lemma 1 C is
compact and by Lemma 3 the objective function is continuous in C.

This implies there exists an optimal control C*eC. Q.E.D.
Let us now study the particular response function dmax(ylc)'

Lemma 4: If (1) Cn -+ C
(1) B L€ (4, (vlc). ;) >k

= P p .
then E < Ey{f (dmax(y!C),y)}. In other words, Ey{f (dm X(y]C),y)} is

a

u.s.c. in C.

. ~ P
Proof: Write d_ = dmax(ylcn), E = Ey{f (dn,y)}

(A. 1) E=1im E_=1im sup E {fp(d ,¥)} < 1lim E_{sup fp(d YD)}
n y n - k
n->o ko n>Kk

. P
'>Ey{llm sup f (dn,y)}

(the inequality holds for sup's and taking limits, which exist since
the sequences are decreasing, we get the limiting incquality; the last

equality follows by bounded convergence). We claim: 1lim sup fp(dn,y)
p

< £ (d___(y|C),y) for each y.

max
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It is easy to construct a subsequence {dn,} s. t.

fp(dn,,y) + 1lim sup fp[dn,y). Since D is compact there is a converg-
ing refinement dn” > d. Of course, fP(dn”,y) + lim sup fP(dn,y).
Since fP is continuous, we also have fp(dn”,y) > fp(a,y). Hence

lim sup fp(dn,y) = fp(a,y). By Lemma 2 d(y,*) is u.s.c. for every y.
This implies ded(y,C) and so £ (d,y) < fp(dmax(y|C),y) by definition
of the dmax—function. This proves the claim and the lemma follows
directly from (A.1). Q.E.D.

Theorem 2: For the response function dm X(y]C), there exists

a

an optimal control C*eC.

Proof: The theorem is a direct consequence of the u.s.c. of

Ey{fp(dmax(yIC),y)} and the compactness of C (see Luenberger [1968]).

Q.E.D.
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APPENDIX 2B

THE HAZARD RATE FOR A NORMAL DISTRIBUTION

The hazard rate is defined as:

__8y) 2
h()’) - 1 _ G(y) 3 y,\’ N(O)S )'
g' (y) g2
ht(y) = 77 o " o G(y))z = h(y)(h(y) - y).

h'(y) = h(Y) [(h(y)-y)% + h' (y) - 1].

It 1s well known that h'(y) > 0 (see Barlow and Proschan [1975]).

Consequently, (2.16) follows from (B.1).

Let ¢, be the density and distribution functions of a stand-

ardized Normal distribution. Using &' Hospital's rule twice we find

that:

(B.3)

¥ (y) N o o
Yy (L - 30)) 1, as y . Hence,

1
g(y) ) Y(y/s) S L1
y(1 - G(y)) y(1 - ¢(y/s}) G2

as y > o,

which 1is (2.18).

tion.

Let hO be the hazard rate for a standardized Normal distribu-

Suppose hb(}) > 1 for some y, contrary to the claim in (2.17).
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By (B.2) hg(}) > 0, implying hb(y) > 1 for all y > y. This contra-

dicts (B.3), since ho(y) >y for all y. Hence, hb(y) < 1 for all y.
(2.17) follows then from the fact that h'(y) = hb(y); 1/32, since we
already stated that h'(y) > 0.

To prove (2.19) we have:

2 ()« 57 =g (r/s) - 51 =hg(y/5) + 5 = hy(y/s) = (/50

If y < 0, this expression is certainly > O, and when y > 0, we can
minorize it by using (2.16) and (2.17) and conclude:

2w s> /s - 17

NN
|
(o]

This establishes (2.19).
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Footnotes to Chapter I1I

1A word about terminology. Asymmetric information is, of
course, present in classical models of price-mediated markets. What
are unknown are the preferences and endowments of individuals. When
we talk about asymmetric (or differential) information we have in mind
information which is of interest to other agents in the economy. This
is not assumed to be the case in classical models, since preferences
are independent.

2 . . L.

For instance, in Spence's model of labor markets, individuals
purchase education in excess of what would be efficient under symmetric
information.

3 . . . .

For notational convenience we will include the agent's
productive inputs in D, since these do not play a central role in the
analysis.

4? may pertain both to information about the underlying problem
that the principal wants to solve, and to characteristics of the agent
which the principal does not know with certainty; e.g., the agent's
level of expertise and his preferences. If the principal knows the
agent's characteristics fully, we say that the model is perfect.
Otherwise it is imperfect. Though this distinction is not stressed
in the sequel, the assumptions in Section 2.3 make sense only in a
perfect model. However, they can be easily modified to yield the same
conclusions in imperfect models (with few exceptions), and this will
be pointed out later.

SWe will only be concerned with perfect Nash equilibria (sce
Selten [1974]), and omit considerations of possible threats from the
agent.

6., . .
This theorem guarantees the existence of a perfect Nash
equilibrium. See footnote 5.

7 ~ . .

The range of z is assumed to be such that the cost is an
increasing function in d, except when we use the Normal distribution
as an approximation (see later analysis of the example in Section 2.3.2).

8The goal-based incentive scheme described above is an example
of a scheme which simultaneously serves the purpose of providing incen-
tives for productive inputs and truthful communication of information.
For instance, the goal may be taken as a signal for production poten-
tial when making investment decisions (cf. Weitzman [1976a]).



9For instance, if the agent is a firm whose pollution level
is to be controlled, the installment of a filtering device may guarantee
that the level of pollution lies in an acceptable range. No measurement
of the pollution level is necessary, as would be the case if a price
scheme was used.

lod(r) = o 15 a distinct possibility unless we assume U is
unbounded. It will only strengthen the point we are making, namely
that quantity controls are needed.

11 . . . . . . .
The Normal distribution is necessarily an approximation when

we use it in the production problem, since we want the cost function
C(d,z) = q2 - 2+ z°+d to be increasing in d for all z. Similarly, some
responses 1n {2.13) will be negative, which is inconsistent with the
interpretation that d is a production decision. One could work with

a truncated Normal distribution instead, but this would lead to un-
necessarily complicated algebra.

2 . ..
1 By the best centralized act, we mean the decision that the

principal would take if he would not have the agent available.
13 . . .
Under appropriate convexity assumptions, of coursc.

4These approximations can be defended rigorously using the
results in Samuelson [1970]. The assumption is that s is sufficiently
small.

15To mention a few: Ireland [1977], Laffont [1977], Spence
[1977], Yohe [1977a], [1977b].

16Of course, the analysis of controlling the demander is
symmetric to the one given above, but Laffont addresses the issue
of which side should be controlled by prices, which side by quantities
{(or maybe both by quantities).

17Compare this to the recent literature on fixed price equilibria
(see for instance Benassy [1975]).

l8Of course, when s gets large, the quadratic approximations

loose their validity and the results have to be viewed in terms of an
example only.

9 . . . .
As we pointed out in footnote 4, this theorem is true for
both imperfect and perfect models, but the coherence condition as stated
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is only meaningful in a perfect model. An extended coherence defini-
tion would state that each possible response function of the agent is
coherent. Theorem 2.6 would still be true under this weaker coherence
condition as is easily seen from the argument in the proof.

2OLet fl(y) and fz(y) be two density functions such that fz is

a mean-preserving spread of fl' Let y be the mean for both distribu-

tions. Then, by definition of a mean-preserving spread,
/ fl(y)dy < J fz(y)dy, for every y > y. This implies
y y

J e (Y)dy < J g(y)f,(y)dy, for every y > y, whenever g(y) is an
y

y
increasing function.

21Let us stress that this result refers to a perfect model or
to information about the principal's problem. If the principal gets
more uncertain about the agent's characteristics, the implications are
quite the opposite. The agent will be given less freedom when the prin-
cipal knows less about him. Compare this with the discussion in
Section 2.3.8.

2One may ask if Theorem 2.9 would have been valid if uniform
closeness had been defined as follows: A is uniformly closer in prefer-
ences than A' if, for each y, P prefers d\(y) to dA,(y)‘ Clearly, the
+

assertion that A' is given a control which is included in A:s control

set, 1s not generally true. For instance, 1if bA > bp > bA’ in the

production problem (Example 2.2}, the optimal control for A has the form
(-,d), but for A', (d,»). More surprisingly maybe, it is not even true
generally that the principal is better off with an agent whose uncon-
trolled response function he prefers pointwise. Unless the agents!'
response functions lie on the same side of the principal's response
function (as we have required), controls may change the pointwise
closeness in favor of the agent whose uncontrolled response was worse.

23, . e :
Again, the coherence condition could be weakened as discussed
in footnote 19.

4 . . .
2 If effort improves the outcome directly, this does not

explain why prices would be preferred to quantitics. For the agent's
self-interest he would provide equal amounts of effort to improve pro-
duction regardless of whether he made the decision on the level of
production or if it was the principal who did it.
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5. . . . . .

This, of course, includes the processing of information
as well as collecting it. It is not what he has in his portfolio,
but what he has in his head that we count as information.

6 . . . S

Note, though, that this result is not necessarily valid if
the extra effort on information gathering will reduce the manager's
effort expenditure on supervision and implementation of the decision.

7A Nash-equilibrium of the one-period problem remains a
Nash-equilibrium in the multiperiod problem.

28See Prescott [1972] or Grossman, Kihlstrom and Mirman [1977].

9As we saw 1n the section on interval controls, intervals are
generally not optimal. This has the implication that the optimal solu-
tion to the regulation problem may quite easily be nondifferentiable,
which further complicates the analysis.

3OThis part of the proof is found in Riley [1976].

31For a more detailed discussion, see Marschak and Radner

[1972].

It 1s clear that the traditional definition is a special case
of inferential efficiency.

ésRecall from Chapter I that there is no loss in generality to
take the message space equal to Y, the range of the agents' signals.





