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CHAPTER III
COORDINATION OF INFORMATION

3.1 Introduction

In Chapter Il we studied extensively a special type of decen-

tralization called delegation. The characteristic feature of delegation

is that no coordination of information takes place. As a result, agents

need not communicate their information to the center, which normally
means substantial savings in information costs. Another advantage is
that each agent's reward is independent of the other agents' actions
(unless there are externalities); generally viewed as a desirable or-
ganizational feature. The drawback, of course, is that one foregoes
the opportunities of improved decision making via coordination of
information.

In this chapter we will discuss more general decentralization
procedures, which coordinate the information of agents. Our interest
lies in studying the possibilities of achieving efficient outcomes in
each informational state.1 The basic model was introduced in Chapter
As we argued there, efficient outcomes can be achieved if and only if
agents will tell the truth when an efficient decision function is
employed. If an efficient decision function induces truth-telling,

the corresponding decision mechanism is said to be incentive compatible

(i.c.), if truth-telling will be a dominant strategy for each agent,
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then the mechanism is called strongly incentive compatible (s.i.c.);

+if truth-telling will be an ordinary Nash-equilibrium we say that the

mechanism is weakly incentive compatible (w.i.c.). Of course, s.i.c.

implies w.i.c.

We will mainly restrict ourselves to a discussion of Groves'
scheme. In a path-breaking paper [1973], Groves showed that if agents
have preference functions which are additively separable and linear in
money, then there exists a set of monetary compensation rules, based
on messages alone, which will induce agents to tell the truth. In his

original formulation, Groves' scheme was only w.i.c., because of the

possibility of partial communication of information. Later on, Loeb
[1975] and Groves and Loeb [1975] showed that the scheme became s.i.c.
with full communication. Since then, much research has been devoted
to analyzing properties of Groves' scheme; particularly in the frame-
work of full communi;ation. Among other things, it has been proved
(Green and Laffont [1977]) that Groves' scheme is essentially the
unique S.i.c. mechanism under the assumption of a universal domain

of preferences.

Our main results are further uniqueness characterizations.

First, we show that the universal domain assumption can be dispensed

with if a weak differentiability condition is satisfied. Secondly,

we give an analogous characterization for w.iic. méchanisms, which
states that every w.i.c. mechagism equals a Groves' mechanism in ex-
pectation. So even when only limited communication is allowed, Groves'

scheme is essentially unique.
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Groves' scheme has some undesirable features, which also have
received attention. A serious problem is the fact that the monetary
compensations may not net to zero. If they generate a deficit, the
scheme is effectively infeasible; if they generate a surplus, it is
wasteful, and full efficiency is not achieved. We will derive a
necessary and sufficient condition under which the compensation rules
can be chosen so that the budget balances. We will also discuss some
other remedies to the problem; in particular, the work of d'Aspremont
and Gerard-Varet [1975], who show that the budget can always be
balanced when the agents' information is independent and only w.1i.c.

is required.

The technique we use to prove our uniqueness theorems 1is

valuable in revealing the simple rationale behind Groves' scheme.

i e e L

This insight is important when trying to construct i.c. mechanisms

in more complex environments. We will discuss such extensions in the

s

%o

last section. There we show that in a syndicate with members that have
exponential utility functions, revelation of risk-tolerances can be in-
duced so that efficient risk-sharing and decision-making can be achieved.
A negative result, which has been found by Hurwicz [1972], states that
efficient outcomes cannot generally be attained in exchange economies.
We will show this result in a two-person case, using a new argument
which does not rely on Hurwicz's assumption of individual rationality.
The outline of the chapter is as follows: Section 3.2 dis-
cusses strong incentive compatibility; Section 3.3, weak incentive com-
patibility; and Section 3.4, extensions. Section 3.5 contains conclud-

ing remarks.
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3.2 Strong Incentive Compatibility

3.2.1 A Simple Model

We start with a simple model. The purpose is to show how
Groves' scheme can be easily derived from the two conditions that the
decision function 1is efficient and that truth-telling is a dominant
strategy for the agents. Until Section 3.4, we will work under the
assumption that agents have preference functions which are separable

and linear in money; i.e., they can be written:
(3.1) fi(d’yi) ot i=1, ..., n.
d is a decision to be made, the signal Y is a parameter of agent i's

utility function, and t, is a monetary compensation by which the prin-

cipal can change agent i's incentives to communicate information

properly.

The principal's objective is to attain an efficient outcome
function d*(y). The form of the utility functions in (3.1) imply that
d*(y) satisfies:

. n
(3.2) d*(y) = argumax £ f£f.(d,y.), Yy.
. i i
d i=1
To achieve efficiency, the princibal asks the agents for their private
information y, and selects d*(m) as his response to their messages
m = (ml, eeny mn). The agents will tell the truth as a dominant

strategy -- and consequently the outcome function d*(y) can be
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attained -- if and only if there exist compensation rules ti(m) such
that:2
- . N i i .
(3.3) Yy arimax (£, d*(m,y ), yy) +t (my,y)], Yy, Vil
i

Notice that we have written yi rather than mi in (3.3). The reason
is that it does not matter to agent i whether the others tell the
truth or not, because of the form of his preference function. In
particular, it is a consequence of the fact that his preference func-
tion does not depend directly on yi.3 If fi depended on yi, then we
could not hope for a dominant strategy. We will return to this point
later.

Assume now that yieR}, Vi, and that fi(d*(mi,yi),yi) and

ti(mi,yl) are differentiable w.r.t. m., Vi. From (3.2) and (3.3)

follows:
3 n
(3.4) a2 @Oy =0
(3.5) sﬁ—l [£,(d*(¥),yy) *+ t; (0] = 0,

for every y. Substitution of (3.5) into (3.4) yields:

3 9
Bmi ti(Y) T om.

Lof£.(d*(),y),
i g J j

which integrates to the family of solutions:
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i
(3.6) t; () = L £.0d*(y),y.) + ho(y).
.o ] ] i
J#i
The solution is unique up to the arbitrary function hi(yl), which is
independent of Yy
The compensation rules defined by (3.6) for every i is called

Groves scheme, and will be denoted by gi(mi; hi), i=1, ..., n. VWe

have shown, in this simple context, that a compensation rule which
induces truth-telling must be a Groves' scheme. On the other hand,
if Groves' scheme is used, then the agent and the principal will have
identical objectives (when viewed as functions of m. alone). Both

want to maximize:

(3.7) fj(d*(mi,yl), yj), for every y.

H~M3

j=1

Consequently, truth-telling will be a dominant strategy. By telling
the truth, the agent lets the principal solve his problem; or put in
another way, the agent would select the same decision as the principal
would, if the agent knew yi.

Though the derivation above was cafried out in a simple model,
it reveals the essentials of the problem structure and the reason why
Groves' ‘scheme is the orlly compensation rule that can achieve an
efficient decision (excluding monetary compensations) when preferences
are independent and linearly separable in money. The point is that

each agent must carry the total social cost of changing the decision,
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in order for him to behave in a socially optimal way. The separability
of his preference function allows us to impose the total social cost on

him.

3.2.2 Optimality and Uniqueness of Groves' Scheme

The foregoing derivation of Groves' scheme can easily be ex-
tended. We assumed one-dimensional messages for notational simplicity,
and the differentiability assumptions were unnecessarily strong. We
proceed now to a more general statement of the problem.

Let deD be the joint decision, and let each agent in addition
make a local decision aieAi, which does not enter th¢ other agents'
preference functions. The preference functions are assumed additively

separable and linear in money; i.e., of the form:

(3.8) Fi(d,ai,z) t ot i=1, ..., n.

ki
z is the state of nature. Agents observe signals yieﬂl ,i=1, ..., 1,
which may be characteristics about their preferences as well as informa-
tion about some future events that affect their utilities. These sig-

nals are assumed conditionally independent in the following sense:
(3.9) ' E{Fi(d,ai,z)ly} = E{Fi(d,ai,z)lyi}, vy, Vi.

In other words, knowing the other agents' signals does not change agent

i's expected utility (see p. 153 for a discussion of this condition).
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Define the derived preference functions:

(3.10) fi(d,yi) = max E{Fi(d,ai,z)lyi}, vi.
a.eA.
i
Since the agents make their local decisions after the joint decision
d is made, the derived preference functions are the only ones of rele-
vance for the principal in choosing d. We assume that the principal
knows the functional form of the fi's, but not the parameter values.
For each y, we assume there exists a Pareto optimal decision
denoted d*(y). Because of the form of the preference functions (see
(3.8)) it has to satisfy:
n
(3.11) d*(y) = argmax I f.(d,y.) - c(d),
. i i
deD i=1
where c(d) is an external social cost of the decision d. Agents
report their full information to the principal, who uses d*(*) as his
decision function. We are looking for monetary transfers ti(m), which
make truth-telling a dominant strategy for each agent; that is, which

satisfy:

‘ _ . i i .

(3.12) yj = argmax [£.(d*(my,y7 ),y ) + ty(my,y )], ¥y, Vi
: ’ m. € R

Define the following social objective function:

Smyy) = I £,(d*(m),y;) * c(d*(m).

1

™M

i
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We will assume that S is differentiable w.r.t. m at y, for each y.
No differentiability assumptions are made on transfers. By definition
of d*(y) in (3.11), it follows that S(m;y) is maximized at m = vy,

implying:
(3.13) VS(y;y) = 0,

siﬁce the message space is open.

We will show that under the assumptions made above, Groves'
scheme is the unique scheme which achieves efficiency. We start with
a lemma, which shows why no differentiability assumptiops need to be

made for the t.l's.4

Lemma 3.1: Let £ = R°X >R, t = R+ R and assume:

(i) y = argmax £(m,y), VyeR",
meRk
(ii) y = argmax [f(m,y) + t(m)], Vyele s

me Rk

(iii) f is differentiable w.r.t. m,
at y for every y.

Then t(m) = constant.

Proof: Suppbse t is not constant. Then it follows that there
. -k 2 . -
exists an meR" , a sequence {m™} converging to m, and an € > 0, such

that
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(3.14) t@m) - tm) > e- i - @

% (If not t would be differentiable at each m with a gradient equal to 0.)

From (i) and (iii) we know that,
0 < £(0,7) - £@",7) = o’ - m),
where y = m. Consequently, for small ]mg - m|, the difference in the

t-function will dominate the difference in the f-function, and (3.14)

will contradict (ii). | ‘ . Q.E.D.

Using the lemma we can prove the main uniqueness theorem:

Theorem 3.2: If the social objective function S(m;y) is
differentiable w.r.t. m at y, for each y, then truth-telling will be
a dominant strategy if and only if the compensation rules ti('),

i=1, ..., n are Groves' schemes, i.e.:

- % i . + i .
(3.15) ti(m) = gi(m;hi) = Jil fj (d*(m) ,m”) - c(d*(m)) hi(m ), Vi,

for some choice of hi-functions.

Proof: The if-part has been proved by Groves and Loeb [1975]

and is an immediate consequence of the fact that the principal's
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objective function S(m;y) coincides with the agent's, if Groves'
scheme is used (cf. (3.7)).

To prove the only-if part, let

h,(y) = t; () - j;zéi fj(,d*(Y)’Yj) + c(d*(y)).

Agent i's objective function can then be written

[[ I e ]

. i . iy, i
fj(d (mi,y )’yJ) - C(d (mi’y )) hl(ml,)’ ):

j=1

when the others report yi. We need to show that hi(mi,yi) is inde-
pendent of m. . Keeping yi fixed, this follows directly from Lemma 3.1,
since assumption (i) is satisfied by definition of d* (see (3.11));
(ii) is satisfied since we assumed truth-telling is a dominant strategy;

and (iii) is our differentiability assumption. Q.E.D.

Remark: Differentiability is, of course, only needed for the

uniqueness characterization.

Theorem 3.2 is essentially the uniqueness result of Green and
Laffont [1977]. The difference is that they assume a universal domain

for the'fi—functions, whereas we have parametrized these functions in
k. :

R 1

, respectively. In order to prove uniqueness in such restricted
domains, we had to assume differentiability of the social welfare

function. This is crucial when the parameter is one-dimensional, but
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as the dimensionality of the message space is iﬁcreased, it is likely
that the differentiability condition could be weakened. We have not
studied how, but the conjecture is naked, since we know that no dif-
ferentiability is needed when the domain is unrestricted.

We notice in this connection that the proof above could have
been extended to wider parameter spaces than Rk. For instance, Y5
could be an element in some function space. The corresponding differ-
entiability assumption would be that the social objective function
S(m;y) has a derivative in each direction (i.e., it is Gateaux-
differentiable; see Luenberger [1968]).

We want to emphasize that our differenfiability assumption is
rather weak. By no means does it imply that the social welfare func-
tion (‘21 fi(d’yi) - ¢(d)) has to be differentiable w.r.t. d. In fact,
d may i;ry well take on oﬁly a finite number of values, or belong to a
compact set with boundaries binding for some values of y. This can be

illustrated by studying the problem of accepting or rejecting a public

project.

Example 3.1: A 0-1 Public Project Problem.5

The principal (e.g., the government) has to decide on under-

taking a public project, say the construction of a bridge. Let d-= 0
denote rejection of the project and d = 1, acceptance of it. In order
to make a Pareto optimal decision, he asks the individuals in the

society for their willingness to contribute to the cost of the project,

which is ¢ dollars. Let yi be the true value to agent i of the project,
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expressed in dollars, and m. his reported willingness to pay for it.

The Pareto optimal decision function is then:

(3.16) d*(y) =1, if Ly, >c,
: i

= 0, if ? y; ¢
1

The social objective function is:

S(m;y) =2y, - ¢, if I m, > c,
i i

= 0, if X m. <c
i

Here we have scaled the agents' utility functions so that they are
zero when the project is not undertaken. The monetary compensations

with Groves' scheme are:

. n

t.(m) = L m. -c+ h(m), if I m, >ec,

1 s s ] 1 . 11—

J#L i=1
i n

= h.(mY), if I om. <ec.

1 . 1 .

1=1

Despite its discontinuous nature as a function of d, it is
readily checked that S(m;y) is differentiable w.r.t. m at y, for
each y. Indeed, for every y, it is constant in a neighborhood of
m = y (and when Zyi = ¢, S =0). Hence, Theorem 3.2 is applicable,
and we conclude that only Groves' scheme is strongly incentive

compatible in this context.6 O
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From the example it is clear that whenever d takes on discrete
values, and the preference functions are smooth functions of the param-
eters y, differentiability is guaranteed. Likewise, we find that our
differentiability condition holds also for problems where the prefer-
ence functions are smooth functions of the decision d, even if d 1is
Testricted to some compact set whose boundaries may be binding. From
this we conclude that our differentiability assumption is quite
generally satisfied.

0f course, uniqueness is lost if we restrict ourselves to
discrete domains of the preference parameters.

It is easy to see why one needs an assumption about condi-
tional independence, in order for Groves' scheme to work. Without
the independence assumption, the social objective function would

look as follows:
i, B . i
(3'17) S(mi,)’ ;YJ - fl(d (mi,)’ )x)’)

+ 5 £(d%(m,yD)Ly) - c(d¥(mg,y D),
< g ] 1 1
j#i
written as a function of m, . " Here d* is the Pareto optimal decision
function, as before. If Groves' scheme is applied, the agent's objec-

tive function becomes:

(3.18) £ (d*(m;,y"),y) + L £, (@ (ng,y1), mp,yh) - (@ iy, ),
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provided the other agents report truthfully. Because y; appears in
the other agents' preference functions, (3.18) differs from (3.17)
and the optimal message for the agent will no longer be Y- For an
illustration of this point, see Example 3.2.

In Section 3.4 we will give an example which shows that one
can, at least sometimes, find other schemes which induce truth-
telling when preferences are dependent. However, notice that
generally such schemes cannot be expected to achieve strong incentive
compatibility. If other agents lie, agent i would like to compensate
for this in the choice of his message, because the principal will not

act according to his interest.

3.2.3 Budget-Balancing

We have shown that Groves' scheme attains the efficient deci-
sion function d*(y) via dominant truth-telling strategies. But notice
that the total social decision includes the transfér payments t., so
it is false to say that Groves' scheme yields efficient outcomes, un-
less we can show that the pair (d(y), t(y)) can be chosen efficiently
for all y. Because agents' preference functions are separable, we can
determine independently the efficient decision function d*(y) and
efficient transfer payments t.. d*(y) is defined by (3.11), and
transfer payments will be efficient (and feasible in the sense that
they cover the cost c¢) if and only if,

(3.19) 6 = —c@ ), vy

™3

i=1
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This condition is known as budget-balancing.

Because we know from Theorem 3.2 that d*(y) can be attained
only by using a Groves' scheme, it is of interest to ask when there
exist Groves' transfer payments gi(y;hi) such that (3.19) holdé.
Only then can we say that full efficiency is guaranteed using a
Groves' mechanism.

To analyze this question, define the social net deficit

function:

n

(3. 20) P(Y) = - I £,(d*(),yy) + cld*().
i=l1

s R T e T

If agents report y as their preferences, then the principal has to pay
n .

out (n-1)°p(y), including the cost c(d(y)), but excluding = hi(yl).
i=1

We say that p(y) is (n- 1)-separable if we can write:

n
ply) =

o,

i=1

where P is independent of y;- We have:

Theorem 3.3: There exists a set of budget-balancing Groves'

transfer payments if and only if p(y) in (3.20) is (n- 1)-separable.

Proof: Suppose p(y) is (n- l)-separable. Choose

hy) = -(n-D-p,h,  i=1, ...,
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as parameter functions in Groves' scheme. Then

GO LR IR R R COR?

+nec(d*(y)) = -(n-1) *ply) + (n-1) - p(y)

-+

c(d*(y)) = c(d*(¥)),

which is the condition for budget-balancing.
Suppose the transfer payments balance the budget. Since they

are Groves' transfer payments, we have:

L) = (-1 -p) + T h () - el@ ().
1 1

This implies, by budget-balancing (e.g., (3.19)):

-1
n-1

POY) = =27 X h D),
1

and consequently p(y) is (n- 1)-separable.

A corollary of the theorem (observed by Groves and Loeb [1975]
in footnote 8 on p. 219) is that budget-balancing can be achieved if
p(y) has degree less than or equal to (n- 1), since then p(y) must

consist of terms which can contain at most (n-1) of the yi's.
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In the 0-1 public project problem (Example 3.1), we have:

py) =2 y; *+ ¢ if 2y, >c,
i i
=0 , if £ Y3 <c

This function is not (n- 1)-separable, and consequently
budget-balancing cannot be achieved.7

Assume now that we have a problem where budget-balancing can
be achieved when using Groves' scheme. It follows by (3.13) and (3.19)

that:

B i i
y; = argnax {5 (d*(mg,y"),y;) + t5(ng,y )}

m, ]

Using our differentiability assumption, this implies

a * —
gy LU @00y + 4000 = 0,
g%; (£, (@*(.y) + 1,0} = 0,

from which we conclude that:

) {f.(d*(m;,yl),y.) + t.(m.,y )} = constant, vy', Vi.
41 ) i j jHi

In other words, when budget-balancing transfer payments exist and are



=
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used, then the other agents' summed welfare is independent of one
agent's message. Each agent alone carries the social cost of chang-
ing the decision pair (d,t) via his message. In this sense, the
agents are decoupled, and it is exactly this kind of decoupling that
is needed to achieve full efficiency (both w.r.t. d and the transfer
ti). We will meet the same condition when we discuss efficient out-
come functions in more general models.

Eveﬁ though budget-balancing cannot be achieved in all cir-
cumstances with Grovesi scheme, it is always possible to guarantee
that the principal is left with a surplus. Assume for simplicity

c(d) = 0. Then the following scheme will do:

hi(yl) = -max I f.(d,y.), i=1, ..., n.
deD j#i. 7 J

This is called the pivot scheme (see Green and Laffont [1978], Loeb

[1975]). With this scheme each agent pays for the externality he

causes to the organization by changing the decision with his message.

Evidently, the larger the organization gets, the smaller will

" the expected payment by each agent become, since his message will in-

fluence less the joint decision. For example, in the 0-1 public
project problen, suppose.each agent's willingnéss to pay can be
assumed to lie in a finite interval and let the agents' preferences
be independent. Then the probability of anybody being a pivot, i.e.,
changing the social decision with his message, will go to zero as the

number of agents increases. In this limiting sense the pivot scheme
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seems a quite satisfactory approximate solution to the budget-
balancing problem when the decision is discrete. Wifh a continuous
decision variable the individual payments will also be small in ex-
pectation, but the number of agents may make the total expected
payment large, though we have not studied the question closely.
Another way to alleviate the problem of balancing the budget
is to study it in a multiperiod setting. Each period may generate
certain surpluses and deficits, but with some reserves such fluctua-
tions can be accepted. What matters is the expected outcome over a
longer time period. Groves. [1974] has shown that if the probability
distributions of agents' characteristics are independent and identi-
cal, then there exists a Groves' scheme for which the budget will
balance on average. Notice that one cannot make adjustments in the
scheme based on periodical deficits or surpluses, because this will
destroy incentive compatibility (unless agents are assumed to behave
myopically, which may be a fair assumption in many cases).
Budget-balancing can also be resolved by weakening the notion
of incentive compatibility. One approach will be more thoroughly
discussed in connection with the work of d'Aspremont and Gerard-Varet
[1975] in Section 3.3. Here we want to mention the work of Hurwicz
[1976] and Groves and Ledyard [1977]. Both have been successful in
constructing budget-balancing schemes, which require an iterative
process for achieving an optimal solution. These schemes are incen-
tive compatible in the weaker sense that telling the truth is a Nash

equilibrium in the game with messages rather than message functions
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as strategies. In other words, strategic behavior in the iterative
game is not analyzed. The reason budget-balancing can be achieved,

is that the dimensionality of the messages can be reduced in an
iterative process, and this will make the social net deficit function
in (3.20) become (n- 1)-separables (compare to the result that if p(y)
is polynomial with degree less than or equal to (n-1), then budget-

balancing is possible).

3.2.4 Individual Rationality

Another shortcoming of Groves' scheme is that the outcome
function it generates will not be individually rational for all vy,
unless we allow a budget deficit. This means that we cannot guarantee
that a Pareto move is made when Groves' scheme is used. For instance,
look again at the 0-1 public project problem. Individual rationality

requires:

y. + L m, +h.(m) >0, if I m >c,
., i - .
J#L j

| v

h, (n') 0, if Im <ec.
For any mi, there exists an m, such that Z mj < ¢; hence, hi(mi) > 0,
Vmi, Yi. This implies 'a budget deficit, whenever the project is
undertakén.

Groves and Loeb [1975] have tried to get around the problem of
individual rationélity in the case of a continuous public decision in

the following way. They design an incentive compatible scheme, which



- 161 -

1}

(0 ,8), 6. =1, and has

parameterized by 'cost shares" O o n i
i

the property that for any 6 in the unit simplex, a budget surplus is
guaranteed. Next they show that there exists a set of 6-values for
which the scheme is individually rational. The size of this set de-
pends on how far one is from Pareto opéimality currently, but it is
not possible to name the individually rational 6-values before one
knows the exact preference profiles of the agents (which is the in-
formation one is looking for in the first place).

For this reason, they argue, one should let the agents bar-
gain about what 6-value to use. Once they have reached an agreement,
an efficient outcome is guaranteed using Groves' scheme. According
to Groves and Loeb such a bargaining process is a simple way of find-
ing a satisfactory 6-value. We cannot quite agree with this statement.
Why would it be easier to bargain about cost shares than about the
joint decision directly? Notice that in bargaining over his cost
share, an agent does not know what his total cost will be, since this
depends on the other agents' preferences. If agents have subjeétive
beliefs about other agents' preferences and use these as a basis in
their bargaining, then it is perfectly possible that the status quo
is an efficient point in such a game.

Because individual rationality cannot be achieved in the strong
sense described above, a weaker notion has been proposed (see Thomson

[1976]). A scheme is said to be weakly individually rational if each

agent prefers to participate in the revelation game rather than stay

out. That is, once it has been decided that a certain decentralized
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decision mechanism will be used, everybody wants to participate.

Weak incentive compatibility can be achieved by using the pivot

scheme. In fact, it is the unique scheme which is both weakly indi-

vidually rational and feasible (never gives a budget deficit) for all

values of y. This makes the pivot scheme look quite desirable. How-

ever, we observe that using the pivot scheme may lead to a Pareto

inferior state. For instance, in the public project problem, when-

ever the project is rejected and somebody is a pivot, this is the case.
We will return to a discussion of individual rationality in the

next section.

3.3 Weak Incentive Compatibility

3.3.1 Partial Communication

In the preceding model it was assumed that agents can communi-
cate their full information y; to the principal. This assumption is,
of course, fundamental for achieving efficient decisions in each
information state y. We now turn to the case in which only partial
communication is possible. This is the framework in which Groves
originally discovered his incentive compatible mechanism (see Groves
[1973]). We will not be as general as Groves, since we will assume
that messages are finite dimensional, and communication takes place
only from agents to the principal. Our main purpose is to show that
the uniqueness result, appropriately generalized, will still be true.

When communication is restricted, the situation is rather

different from before. We have to view the problem in the framework
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of a game of incomplete information. The reader is referred to
Chapter I for a general description of such a game formulation. The
objective of the principal is to induce the agents to communicate
their information optimally. It will become clear shortly that one
cannot hope for dominant message strategies, so the appropriate notion
of incentive compatibility is based on a standard Nash-equilibrium
requirement.

Let Yi» i=1, ..., n, be the agents' information signals and
fi(d,yi) their preference functions. We assume that each agent's
message m, belongs toZRki. The social optimum entails optimal mess-
age strategies {m;(yi)}, and an optimal decision function d*(m).
Notice that m;(yi) =y is no longer feasible, since it is assumed
that Yy has higher dimension than m, . From the theory of teams (see
Marschak and Radner [1972]}) we know that:

n
(3.21) (m*(y),d*(m)) = argmax E{ X fi(d(m(y)),yi)}.
m(),d(*) i=1

The question is: how should the compensation rules ti(m) be

chosen, so that {mi(yi)} will be a Nash equilibrium in the game of

incomplete information. The answer is given in Groves [1973], under

the assumption that the yi's are independent; choose:

(3.22) t;(m) =g, (m;hy) éE{jii fj(d*(m),yj)]m*(y)=1n}4-hi(mi)’ Vi.

This is the natural extension of (3.15). Because of the independence




- 164 -

assumption, (3.22) can be written:

(3.23) g.(mh.) = T E{f.(d*(m),y)|m¥(y;) =m.} + h. (mY).

1 1 oy J J 173 J 1

J#L

In fact, the step from (3.22) to (3.23) could be taken under the
weaker assumption that Y5 and ml*(yl) are conditionally independent,
given m;(yi). This would also suffice for proving the incentive com-
patibility of Groves' scheme, but we will maintain Groves' assumption
for a simpler uniqueness characterization.8

Our main theorem is the following:

Theorem 3.3: A transfer scheme ti(m), i=1, ..., n, 1is
incentive compatible under partial communication with independent
observations Yis i=1, ..., n, if and only if it equals a Groves'

scheme in expectation, that 1is,
(3.24) E(t. (m.,mi*(y1))} = E{g. [(m.,m*(y"))3h, ]}, vm,, Vi
: ivi’ ity S T i’ ’
for some choice of hi-functions in (3.23).
Before proving the theorem let us define some notation. We

will write ﬁ; for the random variable m;(yi), and m; for its outcomes.

Define the functions:

F: *Yy = ~ee o .
£,(d,m) = E{f;(d,y;) [} = mi}, ¥i.
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By (3.21) we have:

n
(3.25) d*(m*) = argmax Z ?i(d,m;).
. d i=1

This implies:

n -
(3.26) m; = argmax 2 fj(d*(mi,ml ),m}), Ym*, Vi.

m. j=1

As before, we need a differentiability assumption. We will assume

that the functions:

n - 1 %
" ~
E{'Z fj(d (mi,m

(3.27) Si(mi;m;) 2

t

are differentiable w.r.t. m. at m;, for every m;.

Proof of Theorem 3.3:

Sufficiency: Suppose the transfer scheme satisfies (3.24).

The agent's problem is to maximize:
~i* ~i*
E{f, (d*(m, (y;) .M )sy;) + ty(my (), D)),
w.r.t. the function mi(yi); or by (3.24), to maximize

(3.28) E{£; (d*(n(y;),i" ),y + I CIENCAR SR DI HC )



- 166 -

The function hi will play no role in this maximization so we can
ignore it.

From (3.21) we know that mi(yi) maximizes:

n .
. ~1%*
E{jil £,(d*n; (y )i ),y )0

This can be written:

* ~i%* + * ~ 1%
(3.29) E[£; (d*(m; (y;) R ),y.)] jii EL£; (d* (m; (y;),° ),y )]

Comparing (3.28) and (3.29), it suffices to show that,
E[E, (d*(m, (v, 0" ),i0) ] = E[£, (d*(m, (y,) " ).y, ], Viti
j 1),1 > ’mj - J( 1yl > ’yj s J .

But this equality is immediate, because the expectation on the left
hand side is an iterated expectation, which reduces to the expression

on the right.

Necessity: Suppose {ti(m)} is a set of incentive compatible

transfer payments. Define

. = t. - I f.(d* ).
hy(m) = t/(m) iii J(d (m),mJ)

Let Yi(m;) = {yi]m;(yi) = m;}. From the agent's optimality condition

we have that:
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s % _ *
m; = argmax E i{fi(d*(mi,m1 ),yi) + .Z. f.(d*(mi,m ), m*)

mi y j#L

~1% N
+ hi(mi,m )}, VyieYi(mi).
Integration over Yi(m;) yields:

n | .
(3.30) m¥ = argmax {E{ fj(d*(mi,fﬁ1 ),ﬁ;)lﬁ? = m*}

'mi j=1

{ it
+ E hi(mi,m )Bg
From (3.26) follows, by integration over Yi(m;):

n )
- 1% o ~
(3.31) mi argmax E{.Z fj(d (mi,m ),mj)lmi m;}.

m. j=1

It is then clear from (3.30), (3.31) and the differentiability assump-

tion (3.27), that Lemma 3.1 applies, and we can conclude that:
~1%
E{hi(mi, m- )} = constant.

In view of the definition of hi’ this statement is equivalent to (3.24).

This concludes the proof.

Q.E.D.
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The first part of the proof is exactly the same as in Groves
[1973], with apprbpriate simplifications due to our particular assump-
tions. The second part is quite similar to the proof of Theorem 3.2,
except for some complications that arise because the principal and the
agent have different information even after the agent has sent his
message.

It is evident that we cannot generally expect the agent to have

a dominant strategy. This would require that:

i = i
m; = argmax {fi(d*(mi’m ),)’1) + 2 f'(d*(mi’m ):mj)}:

m. j#i

1 *
Ym™, VyieYi(mi).

But in that case m; would provide all the relevant iﬁfofmation about
Yy which is generally false, since we have partial communication.
Secondly, we observe again that if the assumption of condi-
tional independence is not satisfied, then Groves' scheme will not be
incentive compatible. In the proof, (3.28) would not be correct and
the agent's and the principal's preferences would be different. We

can illustrate this with a simple example.

Example 3.2: There are two divisions and a center. The

profit functions are:
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fl(d:yl) = Yl * d’

d =0 or 1. Yy and Y, are perfectly correlated random variables,

which can take on values Y1 = 0 orl, Yy = 0 or 1000. P(y2==0|yl= 0) =1,
P(y2 = 1000[y1 = 1) = 1. Only division 1 communicates with the center.
It is supposed to report the true value of Yy

Obviously, d*(ml) =0, if m;, = 0, and d*(ml) =1, if m, = 1.

1 1

However, with Groves' scheme division 1 will always report Yy =1 to
get a profit of either 100 or 101, depending on the true value of Yy
The point is that with dependence, the agents will not only
affect their payments indirectly via d*(m), but also’directly by
changing the expectation. This will make the principal's and the

agent's preference functions incompatible. g

One of the important implications of Theorem 3.4 is that it

.shows that Groves' scheme is essentially unique even if only approxi-

mations to the true preference functions are communicated. It might
have been tempting to make this conclusion already after Theorem 3.2,
since a natural interprétation of the finite-dimensional parameters

is that they'are coefficients of approximations to the true preference
functions (see for instance Loeb [1975] for an interpretation of this

kind). However, we could not do that, because with incomplete
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communication we loose strong incentive compatibility, and
Theorem 3.2 no longer applies.

This is important to keep in mind. It may be that the pro-
cedures developed in the previous section for strong incentive com-
patibility léad to very small errors when most of the information
can Be communicated, but from a theoretical standpoint, partial com-
munication can only be treated satisfactorily in a game of incomplete

information, as has been done in this section.

3.3.2 Full Communication

Partial communication forced us to model the problem as a game
of incomplete information. We will now study full communication in
the same framework, even though dominant strategies would be available.
The reason is that with the weaker notion of idcenti?e compatibility
we can achieve a balanced budget. This idea is aue to d'Aspremont and
Gerard-Varet [1975], and we will follow their presentation closely.

Since Groves' scheme is strongly incentive compatible, we get

the following sufficient condition:

Theorem 3.4 (d'Aspremont and Gerard-Varet): A transfer scheme

ti(m), i =1, ..., n, which satisfies:

i i . .
(3.32) E{t;(m,y ) |y;} = Edg;my,y 5h) |y}, vmgs vy, Vi,

for some choice of hi—functions, is weakly incentive compatible.
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Proof: Agent i will maximize:

i i,
ELE; (d*(my,y )oyg) + ty(mg,y ) [yy)
= BUE (@ Ly D)y + g g,y vy}, vy,
where d* is defined by (3.6). Since m; =y is a dominant strategy

when Groves' scheme is used, the integrand is pointwise maximized

by m. =Y., and hence truth-telling will be optimal.

To see that (3.32) is not generally a necessary condition,

we can look at the following example.

Example 3.3: There are two agents. Yy and y, are distributed
so that conditional on Yir Yis1 has a normal distribution with mean Y5
and variance oi (addition modulo 2). Then the following parameter

functions hi in the Groves' scheme will work:
hi(m) = ~-(m, - m

i i+l

To see this, note that

(3.33) E(h, (my,y,) [y)) = =05 - (m - y))
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Hence,
2
E(fl(d*(ml,)’z),)’l) + fz(d*(mlxyZ))YZ) - (ml - YZ) |Yl)

will be maximized at m; = y;, SO the scheme is incentive compatible.

However, it does not satisfy (3.32), which is immediate from (3.33).

0

If we assume that observations are independent, and that the
functions:
n .
S.(m;,y.) = E{ & £ (d*(m.,y"),y.)]|y:} i=1, ..., n,
1Y1°71 5=1 J i 3 17’ 7
are differentiable, then it follows directly from Theorem 3.3 that

(3.32) is also necessary.

Theorem 3.5 (d'Aspremont and Gerard-Varet): A transfer scheme
ti(m), i =1, ..., nwhich is weakly incentive compatible with inde-
pendent observations, satisfies
Vi,

f3.34) E{ti(mi;yi)} = E{gi(mi,yi;hi)}, vm ,

for some choice of hi—functions in (3.23).
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Remark: For the case of depéndent observations, we have only
been able to develop the partial differential equation condition:

9 i B i .

With the independence assumption, it is easy to achieve budget-
balancing in addition to incentive compatibility. For instance, pro-
ceed as follows. Start with Groves' schenme, taking hi = 0, Vi. This
leads to a social deficit

‘ n
(3.36) p(m) = -(n-1) I fi(d*(m),mi), ¥n.
i=1
Allocate this function arbitrarily between the agents, so that if

. (m) is agent i's share, then
Py g

p(m) =
1

It ™Mz

pi(m): Ym.
1

Define,

- i )
pi(mi) = E i[pi(mi’y )1, Vi.
y
Allocate each ﬁi(mi) among agents, excluding the ith agent; e.g., give
“each agent j # i an equal share of ﬁi(mi).
As a result of the construction we get the following transfer

payments:
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1
n-1

(3.37) ti(m)==gi(m;0)-fpi(m)-ﬁi(mi)+ z ﬁj(m.), i=1, ..., n.

jF1L )

Taking the expectation of t. we find that:
ivy i,
E(t;(mg,y")) = E(g; (my,y 5h.)),

where hi(yi) = E%I-'i' ﬁj(yj); Hence, (3.37) defines an incentive
compatible transfesziheme by Theorem 3.4.

We can see that there is substantial freedom in choosing
among budget-balancing and incentive compatible transfer schemes,
since both p(m) and ﬁi(mi) could be allocated arbitrarily, and we
could also have started with an arbitrary set of hi—funCtions. A
natural duestion then is: what other desirable properties can we
achieve by a proper choice of transfer payments? In particular,
can we achieve individual rationality?

This question has been studied by Kobayashi [1977] in the
context of a fixed-sized public project problem. Kobayashi shows
that one can choose the functions ts such that no agent pays anything
if the project is rejected; hence, nobody will be Worse off in that
event. However, with such a choice of transfer payments there may
be individuals who will be worse off than before when the project is
accepted. In this sense only partial individual rationality can be

guaranteed. Kobayashi shows further that a weaker notion of individual

rationality can be achieved; namely, the functions t. can be chosen so
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that each agent is better off in expectation (ex ante) when the
scheme is implemented and agents report honestly.

- It is clear that the preceding construction of budget-
balancing schemes cannot be carried out when observations are
dependent. The reason is that the ﬁi—functions will then depend
on y;, which in turn disturbs the other agents' incentives when
reallocated as in (3.37). Of course, it would suffice to have one
agent whose observation is independent of the other agents' obser-
vations, in order to achieve budget-balancing. It is an open ques-
tion whether this can be done when all observations are mutually

dependent.

3.4 Extensions

What is driving the possibility results from the previous
sections? Apparently the fact that agents' preference functions can
be transformed to become equivalent to the social welfare function.
This again rests on the assumption that agents' preferences are addi-
tively separable and linear in money. But linearity is not essential
in itself; only the fact that with linear functions we know precisely
the effects of transfer payments. We could, of course, achieve the
saﬁe results with nonlinear utilities over money, provided the form
of the nonlinearity would be known to the principal. On the other
hand, separability seems fundamental for achieving a possibility
result. Green and Laffont [1977] give an example, which shows that

for a certain-type of nonseparable utility functions, strong incentive
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compatibility can never be achieved.

It is of interest to find more general conditions under which
incentive compatibility can be achieved. In this section we explore
some relaxations of our earlier assumptions. First, we show that some
problems, which do not directly fit the assumptions on preferences that
we have made, can be transformed to be applicable to Groves' scheme.
Secondly, we look at two examples where agents' observations are de-
pendent; one of which works, and the other one not. Finally, we show

an impossibility result related to two-person exchange economies.

3.4.1 Revelation of Risk-Tolerances in a Syndicate

There are n agents, each with an exponential utility function

over wealth:

P> the risk-tolerance of agent i (see Wilson [1968]), is only known
to agent 1. As a syndicate they face the problem of making a decision
a and sharing the outcome x(a,z), where z is a random variable with a
distribution known to each agent.

The question is: can we design a decision mechanism, which
specifies what action a should be taking and what sharing rules si(x),
i=1, cees M should be employed, such that it leads to an efficient
outcome for all preference profiles p = (pl, cees pn)? The answer is

in the affirmative if we do not require that the budget balances.
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The form of the utility functions are such that at first
sight the task may not appear possible. A simple transformation of
the problem shows, however, that we face essentially the same situ-
ation as in the earlier sections. Instead of writing the social
objective function as a weighted sum of expected utilities, we can

. ) . 9
equivalently write it as:

(3.38) A, * ci(a,si), Ai > 0, Vi.

1

i~z

i=1

Here ci(a,si) stands for the certainty equivalent of agent i when a
decision a is taken and he gets a share si(x) in the outcome. Maxi-
mizing (3.38) over g:and {Si} will produce a Pareto-optimal action
and sharing rule.

With exponential utility functions we know that the certainty

equivalent is additively separable in transfer payments, i.e.,

(3.39) c(afsi-+ti;oi)'= c(a,s;ipy) * ty,

where ti is a constant, and c(',°;pi) denotes the certainty equivalent
for an exponential utility function with risk—tolerance_pi. Because

of the form of (3.39), the efficient decision and sharing rule satisfies:

(3.40) (a*(p),{s¥(PM}) = argmax = c;(a,s5505).
i=1

Since the sum of the certainty equivalents of exponential
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utility functions is a certainty equivalent for a surrogate utility
function, (3.40) states the well-known result that the syndicate's
behavior can be characterized by a utility fﬁnction with risk-tolerance
equal to the sum of the agents' risk-tolerances (see Wilson [1968]).

From (3.40) we can immediately see the following result:

Proposition 3.6: In the case of exponential utility func-

tions, a s.i.c. transfer scheme ti(r), i=1, ..., n, takes the form:
(3.41) t.(r) = I c(a*(r),s*(r);rj) + h.(xr"), Vi,
' j# ] )

where hj can be chosen arbitrary, but independent of rj.

Proof: Follows from (3.40) and Theorem 3.2.

Q.E.D.

The efficient action function a*(p) depends, of course, on
the particular outcome function x(a,z) and on the distribution of z.
H}5 The efficient sharing rule, on the other hand, is according to the

syndicate theory always of the form:

o; B
=+ x + k. (p), Vi; Lp, =o0.
p i

(3.42) sE(x;p) =

Here ki(p) may be arbitrary functions which sum to zero.

As ‘an illustration of the proposition we can look at an
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example where the syndicate is only involved in sharing a normally
distributed risk X. Let the mean of X be b and the variance 02.

The incentive compatible transfer scheme becomes (using (3.42)):

i

1 1 2 i .
(3.43) ) = B u- 5. 206%) v, o), vi,
P p
where 51 = ] P, - The term in the Bracket is the syndicate's cer-
j#i

tainty equivalent. Since the agent's certainty equivalent with s;

(letting ki(p) = 0) is:

i 1 1 Pi 2 Py 11 2
- A A P
b i p o p

the transfer payment in (3.43) imposes the syndicate's certainty
equivalent on the agent, and everybody will act in the best interest
of the syndicate as a whole.

We notice that with the transfer payments in (3.43) the budget
cannot be balanced, because the net deficit function (defined in (3.20))

is not (n-1)-separable.

3.4.2  Dependent Observations

We argued earlier that Groves' scheme cannot be used when
observations are dependent, and illustrated the point in Example 3.2.
We will first show that in the syndicafe of the previous section no
scheme can achieve incentive compatibility when agents have some

private information about the distribution of X. Secondly, we give
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an example with dependence for which one can find an incentive
compatible scheme (but not using a Gfoves' scheme, of course).

Look again at the situation where the syndicate only shares
a risk X. Assume now that instead of having homogeneous beliefs about
X, each agent has observed a private signal, say a random sample about
X, and bases his probability beliefs on this signal accordingly. From
the syndicate theory we know that the efficient shares do not depend

on these signals. Consequently, the decision mechanism must be of

the form:
T,
(3.44) s, (m,r) = Lo x o+ k;(mr), i=1, ..., n,
T
where m = (ml, e, mn) are the messages about the signals
y = (yl, cees yn), and r are the messages about the risk-tolerances.

But clearly ki(m,r) cannot depend on m., since the agent would just
pick the.message m, which gave him the highest transfer. Hence, his
outcome is independent of m.. In that case it is evident that he will
distort his risk-tolerance message depending on his signal about x, in
order to get a larger share if the signal is favorable and a smaller
share if it is less favorable.

We conclude that the additional sample observations will
destroy incentive compatibility. The result is a variation of the
well-known theme that additional information destroys insurance

opportunities.
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Let us turn now to a numerical example where it is possible

to achieve incentive compatibility.

Example 3.3: There are two divisions with profit functions:

fl(x,zl) =z, *° X,

fz(x,zz) = -2yt X -5t X

zZ = (zl,zz) is the state of nature. Divisions observe signals Y1 and

Yo respectively. The probabiiity structure is such that:

E(ZZI)’PYZ) = .1y1 + '9)’2 )

A straightforward calculation shows that the scheme:

i 2

if tl(m) = -(.36 L .08 m mz),

;‘ t,(m) = -(.04 m2 + .72 m, *m,)
2 : 2 ’ 1 27

makes truth-telling a best response against any true signal of the
other agent. We underline the word true, because we do not have
dominant strategies, of éourse. However, we do have a Nash equilibrium
- independently of thé distributions of i and Yys which in some sense
could be rega;ded as a semi-strong form of incentive compatibility.

O
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When one tries to study more generally the case of dependent
observations, one runs into the problem that, even though first-order
optimality conditions can be easily guaranteed for truth-telling
strategies, it seems hard to determine the global optimality of such

strategies. We have not pursued the topic further.

3.4.3 A Two-Person Exchange Economy

For a decision function d*(y) to be s.i.c. we must have:

) i .
= *
(3.45) Y arﬁmax fi(d (mi,y ),yi), Vy, Vi.
i
For d*(y) to be efficient at every y it must satisfy (assuming a

convex Pareto frontier):

n
(3.46) d*(y) = argmax I A.(y)f.(d,y.),
q ge1 37

for some Aj(y)-functions which are strictly positive. From (3.46)

we derive the weaker condition:

n .
(3.47) y; = argmax I A ()E;(d*(m,y),y ), Yy, Vi

mi j=1

Our standard technique has been to combine (3.45) and (3.47)
for some implications about d*. We will use it again in the context

of a two-person exchange economy.

Let there be two agents and £ commodities. The total amount
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of resources are assumed known and fixed, and the problem is to
allocate them efficiently between the two agents. The utility func-
tions of the agents are unknown, but assumed to satisfy the standard
convexity and continuity assumptions. As before, a decision mechanism
is employed, which asks for the agents' preferences and takes an
efficient action if the agents tell the truth. Such mechanisms could
be iterative, the price mechanism being one example.

Hurwicz [1972] asked whether we can find a mechanism for which
each agent would tell the truth as a dominant strategy. He showed
first that the price mechanism is not s.i.c. in general with a finite
number of agents, and then extended the argumént to show that no
mechanism which is individually rational could be s.i.c. in a
sufficiently rich domain of utility functions. Hurwicz's argument
is based on the existence of monopolistic prices and is quite dif-
ferent from ours. We will here derive the impossibility result
directly from the two conditions (3.45) and (3.47) without assuming
individual rationality.

Let d0 = (dl’dz) be an interior allocation, such that it is
efficient for a pair of utility functions fl(dl)’ fz(dz). Let
fl(dl;yl), fz(dz;yz) be two families of utility functions, parametrized
by yl,yze]RZQ', such that £ (d;) = £(d;0), £,(d,) = £,(d,;0). MWe will
impose further conditions on this parametrization later; now it is
taken such that f1 and fz are smooth w.r.t. the parameters.

Let d*(y) represent a mapping from the parameter space R?

to efficient allocations for the corresponding utility functions,
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which satisfies d*(0,0) =d We want to show that the parametrization

0
can be chosen so that d*(y) cannot be attained via dominant strategies.
* .
Because of the smoothness of f, w.r.t. y,, fl(dl(ml,yz),yl)
must be differentiable w.r.t. m, in order for (3.45) to hold true (we

omit the proof, which is similar to Lemma 3.1). fz(dg(ml,yz);yz) is

independent of y.. Consequently, using the fact that,
1

(3.48) y; = argmax {A(Y)E (dj(m} ¥, )5y)) + £,(d5(my,y,)5y0 ),

!

for some A(y)-function, we can conclude from Lemma 3.1 that
fz(dE(mlyz);yz) is independent of m, . Likewise,_fl(di(yl,mz);yl)
is independent of my.

Let D (yy) = {d]d = d*(y,,y,) for some yz}, and define
correspondingly Dz(yz). The argument above shows that Dl(yl) and
D2(y2) are subsets of indifference surfaces of fl(dl;yz) and

f2(d ) respectively; (by an appropriate choice of the parametri-

2271
zation we can, indeed, get them to coincide with these indifference

surfaces). From this it is easy to show that d*(y) must be over-

determined. Study the picture below:
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d*(y},0)
¥

Starting from d*(0,0), we determine d*(yi,yé) in two ways,
keeping in mind that Dl(yl) and Dz(yz) are indifference curves.
d*(yi,O) has to lie on the indifference curve Dz(O) through dO'
d*(yi,yé) has to lie on the indifference curve Dl(yi) through d*(yi,O).
On the other hand, d*(yi,yé) has to lie on the indifference curve
Dz(yé) through d*(yé,O). Because d*(yi,yé) is efficient, this must
imply that d*(Yi,O) =vdf(0,yé) = dO. But this is not, of course,
possible for all yi,yé.

We have thus informally shown:
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Proposition 3.8: In a two-person exchange economy, efficient

outcome functions cannot be attained via dominant strategies.

From the construction above we see that budget-balancing is
sufficient to destroy incentive compatibility in the exchange economy.
In@ividual rationality is not needed. The preceding argument does not
extend directly to an n-person economy, and we will not pursue the

issue further here.

3.5 Conclusions

In this.chapter we have studied coordination of information
mainly in the context of additively separable preference functions.
The objective has been to analyze under what conditions efficient
outcome fuﬁctions can be attained. Two tools have been used in this
analysis. First, we noticed that one can check the attainability of
an outcome function by using it as a decision function and see whether
agents will report their information honestly. Secondly, the efficiency
condition could be written in terms of a maximization over each agent's
message. This enabled us to combine'the Nash equilibrium
with the efficiency condition to infer properties of the outcome func-
tion. We found that Groves' scheme and the uniqueness thereof,
appeared naturally from this construction. Moreover, the same
technique provided a new uniqueness result in the case of incomplete
communication.

We think that our methodology is insightful for understanding

when efficiency can be achieved with a decentralized decision mechanism.
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It is apparent that this is only possible in quite restricted environ-
ments, and as an illustration we exhibited an impossibility result by

Hurwicz [1972], which showed that Pareto optimality cannot be guaran-

4; teed in a two-person exchange economy.
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Footnotes to Chapter III

lThe notion of efficiency we will use in this chapter is the
traditional one under perfect information.

2Recall the discussion in Chapter I, which showed that attain-
ability can be checked by choosing the outcome function as the decision
function and see if it induces truth-telling.
The reader is also reminded of the use of superscripts;
i

y = (YI) AR ] Yi_l’ y ey yn) and

i+1’

cees YO)

i
(ml’YJ - (y1’ cesy Y i+]_’ n

i-1> M0 Y
3This can be stated alternatively as: every Nash equilibrium
in the game consists of dominant strategies.

4I'am indebted to Takao Kobayashi for pointing out that the
differentiability assumption on transfer payments can be dropped.
Lemma 3.1 is due to him.

SFor an extensive discussion of various aspects of this prob-
lem, see Green and Laffont [1978].

6Originally, Green and Laffont [1977] proved their uniqueness
theorem for this special case.

7A proof of this can be found in Green and Laffont [1978].

8Though conditional independence rather than full independence
is a minor extension of Groves' work, it is important from a practical
point of view. If we think of resource allocation in a firm, it is
likely that the divisions' information sets are highly dependent, for
instance, due to general economic conditions, but natural that each
division has incorporated this general information in their reports.
This would imply conditional independence in the sense we have
discussed.

9The equivalence follows directly from the definition of a
certainty equivalent and the monotonicity of the utility functions.



CHAPTER IV

PRODUCTION INCENTIVES

4.1 Introduction

In the two previous chapters we have dealt with decentraliza-
tion problems, that is, problems caused by differential information
about state uncertainty. We now turn to the second major source of
incentive problems, namely nonobservability of productive inputs pro-
vided by members of the organization.

Two.situations will be analyzed as representative of the kinds
of problems that may occur. First we look at team production. n
agents jointly determine a monetary outcome by taking private actions
which are nonobservable to the principal. An agent's action is costly
only to himself, and the cost cannot be observed either. The problem
is to induce agents to take efficient actions for optimal team produc-
tion. Since it is not possible to infer from the outcome what action
each individual took, an agent can cover dysfunctional behavior by
blaming the others for the deviation in outcome. We want to know how
agents' rewards should depend on the outcome so that proper behavior
resqlts;

We show first that if the agents form a parfnership and hence

have to share the outcome fully between themselves, there exists no
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sharing rule based on the total outcome alone, which induces proper
incentives for-action. In that case a richer set of observable vari-
ables is needed. In particular, if we impose the restriction that
shares should be monotone, then n independent measures of the outcome
are required, which will effectively discern the actions taken by the
agents.

A similar model has been stﬁdiéd by Kleindorfer and Sertel
[1976], but rather than looking at ways of alleviating the problenm
of inefficiency, they study the optimal second-best solution.

Alchian and Demsetz [1972] also address the question of efficiency

in team production. They conclude correctly that observing only the
total outcome, is insufficient for efficiency. From this they argue
that competition will lead the partnership structure to fall apart and
develop into an organization where there is a monitor who will control
that agents take correct actions. In order to induce the monitor to
perform his job properly, he should be given a residual of the outcome.
This will guarantee-efficiency according to Alchian and Demsetz.

This line of reasoning provides a theory of the firm. Firms
develop since their organizational structure is superior to a partner-
ship as argued above. Their analysis does not explain, however, the
existence of corporations, where.part of the residual goes to stock
owners who do a very limited amoﬁnt of monitoring themselves. We will
argue that monitoring can largely be dispensed with (in the context of
certainty) simply be letting outsiders, who provide no inputs for

production, pick up the residual. This may be taken as one explanation
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for separation of ownership from production. We also notice that
adding a monitor will extend the team and improve its performance,
but inefficiencies will still remain for the same reasons as earlier.
This will be avoided when a separate ownership is installed.

Our second and main model is one of moral hazard in contract-
ing. An agent is hired by a principal to provide some service.

Whether or not the agent takes proper actions for providing the service
cannot be observed directly; it can only be inferred from the outcome
that results from his actions. This outcome depends also on a random
state of nature. A bad outcome can be due either to improper actions
by the ageht or an unfortunate state of nature. Thus th¢ agent can
cover dysfunctional behavior behind the state of nature. As a result,
optimal risk sharing cannot generally be attained because it does not
provide appropriate incentives for action. The task then becomes to
find a second-best solution, which optimally balances gains from risk
spreading with gains from action incentives.

Examples of moral hazard are abundant and several papers have
been written which address the issue. The classical example of moral
hazard comes from insurance. If an agent is provided with perfect
insurance he looses his incentives for taking preventive actions. This
was observed by Arrow [1965]. An analysis of various special insurance
models has since been undertaken by, among others, Kihlstrom and Pauly
[1971], Pauly [1974], and Zeckhauser [1970}. The main conclusions in
these papers exhibit the second-best nature.of the problen. |

Moral hazard in contracting for labor services has been analyzed
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by Stiglitz [1974], [1975] and Noreen [1976]. In his 1974 paper,
Stiglitz studies incentives and risk sharing in sharecropping, using
a general equilibrium model of a competitive agricultural economy.
Contracts are restricted to be linear. Many properties of the equi-
librium contracts are derived, among them the following: if effort
is unobservable, the equilibrium is inefficient compared to the stand-
ard of perfect information (except if workers are risk neutral);
workers always receive a positive share of the output, which explains
the sharecropping arrangement from the incentive point of view; there
is no presumption in a general equilibrium model that sharecropping
reduces effort from what it would have been under a wage system with
enforceable contracts.

In a partial equilibrium framework Stiglitz [1975]) compares
piece vs. time rate payment systems in employment contracting. He
exhibits'how the optimal contract depends on attitudes towards risk,
effort supply elasticities, the uncertainties involved and the
supervision empioyed. Noreen's [1976] analysis is a partial extension
of Stiglitz's. His major result shows that including options in addi-
tion to stock and fixed salary in the compensation package for execu-
tives, will result in Pareto improvements.

Another paper on restricted forms of employment contracts is
by Keren [196é]. Keren studies the use of simple step functions as
compensatioQ‘schemes. These involve a specification of a target level
for the outcome such that when the outcome exceeds the target, a bonus

is paid. Keren asks what target will elicit maximal effort from the
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worker. Thus only one point on the Pareto frontier is picked up.
A characterization of the whole frontier appears substantially more
complicated.

Spence and Zeckhauser [1971] and Ross [1973] have derived a
characterization of a Pareto optimal general sharing rule under con-
ditions of moral hazard. However, their analysis is incorrect at a
rather fundamental point. Both assume that the optimal sharing rule
is differentiable and proceed to characterize it using the calculus
of variations. But Gjesdel [1976] has shown that the optimal solu-
tion may very well be nondifferentiable and, in fact, the first-best
solution can occasionally be attained by using nondifferentiable
sharing rules.

This observation has inspired our analfsis. The formulation
used by both Spence and Zeckhauser and Ross does not lend itself to
an analysis of nondifferentiable sharing rules. In order to be able
to study these, we have formulated the problem differently. This
has also been done by Mirrlees [1974, ]976], and some of our main
conclusions coincide. We will, however, emphasize rigor and study
in detail the existence of an optimal solution (for reasons that will
become evident shortly), as well as the validity of the characteriza-
tion of such a solution. Furthermore, we extend the analysis to
situations where, in addition to the outcome, other signals about
either the agent's action or the state of natufe are observed. The
main theorem provides a necessary and sufficient condition for such

additional signals to be of value and included in the contract. This
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condition requires that the signals provide information about the
agent's action beyona what can be inferred from the outcome alone.

It is a condition stated purely in terms of the relationship between
the action and the probability distributions of the outcome and other
observables. The result is a substantial extension of the analysis

of monitoring provided by Harris and Raviv [1976].

4.2 Sharing a Jointly Produced Outcome

4.2.1 A Single Measure

There are n agents. Each agent i takes a nonobservable action

aiEAi E_Rl, with a private (possibly nommonetary) return fi:Ai - Rl.

. . . .. 1
Together their actions result in a joint monetary outcome Xx:A > R,

whicﬁ must be allocated among the agents. Here A = .21 Ai’ and we
i=

will write a = (al, cees an)eA. We assume an agent's>preference func-
tion can be described as the sum of his private return fi(ai) and his
share in the outcome x(a); i.e., it is additively separable and linear
in money.1

The question is whether there is a way to share x so that the
resulting noncooperative game between the agents has a Nash equilibrium
which is Pareto optimal. That is, do there exist sharing rules
si(x), i =1, ..., n, such that we have budget-balancing,

(4.1) si(x) = X, VxeR™,

([ e

i=1

and the noncooperative game with payoffs
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(4.2) fi(ai) + si(x(a)) for i=1, ..., n,

has a Nash equilibrium a*, which satisfies the condition for Pareto
optimality,
‘ n
(4.3) a* = argmax I f.(a.) + x(a).
. it7i
acA  i=1
The answer is in the negative if we make the following assumptions:

Al. There exists a unique Pareto optimal solution

a* = (a*, ..., a;), and a* belongs to the interior of A.2
A2. The functions x and fi, i=1, ..., n, are differentiable.
*
Az, ox(@) 4 for all i.
aai

Condition A3 expresses that there is a genuine dependence between the

agent's decisions at the optimum.

Theorem 4.1: Assume Al-A3. Then there do not exist sharing
rules si(x), which satisfy (4.1) and for which the Pareto optimal
decision a* is a Nash equilibrium in the noncooperative game with

payoffs (4.2).

Proof: . Let S;» i=1, ..., n, be arbitrary sharing rules which
staisfy (4.1). We will show that the assumption that a* is a Nash

equilibrium will lead to a contradiction.
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From the definition of a Nash equilibrium we have:
*]
* - *
(4.4) fi(ai) + si(x(ai,a )) < fi(ai) + si(x(a }) VaieAi.

L ] . . .
Let {x"} be a strictly increasing sequence of real numbers, which
2 .
converges to x{a*). Let {ai} be the corresponding n sequences,

which satisfy

L *j

(4.5) xz = x(ai,a ) Vi, VL.

Such sequences can be defined by assumption A3 (starting from a

sufficiently large £ if necessary). Pareto optimality and Al imply
_ ax(a*) .
f'l(a;‘) =y T vi.
1
This in turn implies, using (4.5),
% B L *j 2 .

fi(ai)-fi(a;)-x(a*)— x(ai,a )-fO(ai-a;) Vi, V4.

where o(h)/h - 0 as h » 0. Substitution into (4.4) gives

x(a*) - x£+0(a§'- af) < s (x(a%) -s, (x) ¥, VL.

Sum over i and use (4.1) to get
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{x(a*) - - O(ai-a;)} <0 ve.

it ™~s

i=1

By the differentiability of x this can be written

n *
(4.6) E {- E%%%Tl (a%— a;) + o(a%-—a;)} <0 Vi.

i=1
Since xz < x(a*), by our choice of xg, the first term in the bracket
is strictly positive in view of A3. This term dominates for large %,
which contradicts (4.6). Hence, the assumption that a* is a Nash
equilibrium has led to a contradiction and must be false.

Q.E.D.

The idea behind fhe proof is quite simple. If a* were to be
a Nash equilibrium, each agent should at the margin carry the total
social loss from a decrease in x. But this is not possible, since the
shares have to sum.up to x only. Hence, budget-balancing plays again
a crucial role in destroying the efficiency of a Nash equilibrium. But
there is another reason in conjunction with budget-balancing, namely
that we cannot discern the actions taken by the agents from the single
outcome measure X. Because an agent can cover an improper action be-
hind the uncertainty of who was at fault, and because all agents cannot
be penalized sufficiently for a deviation in the outcome, each agent
always has an incentive to capitalize on this control deficiency.

The problem described above is likely to arise in many real
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world situations. Examples include labor-managed enterprises, farm
cooperatives, management teams, and professional-services firms like
CPA partnerships. In all cases labor and ownership are integrated,
and this results in insufficient supply of productive inputs like
effort.

This is the starting point for Alchian and Demsetz's [1972]
reasoning. They argue that striving for higher efficiency will result
in an organizational change. A monitor will be hired to measure the
marginal productivity of each agent, and to the extent he is success-
ful, workers will get paid their marginal product and efficiency 1is
restored. This requires that the monitor is equipped with the right
to terminate memberships in the team in order to induce proper be-
havior. But what guarantees that the monitor will provide the right
amount of effort for monitoring? Alchian and Démsetz's solution is
to give the monitor the title to net earnings, net of payments to the
other agents. In this way the monitor becomes effectively the owner
of the firm.

We have omitted details, but this is the main line of reason-
ing behind Alchian and Demsetz's theory of the classical capitalist
firm. Notice though that adding the monitor to the team will trans-
form it into a new augmented team. Why do we not have the same prob-
lems with inefficiency again? The reason is that there are now several
measures of the outcome available due to monitoring. But only if moni-
toring will discern perfectly the agents' deviations from proper

actions, will efficiency be achieved. We will return to the question
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of how rich the measurement system should be in order to guarantee
efficiency. Let us, however, first discuss the other alternative
solution to the problem: elimination of the budget-balancing
condition.

If budget-balancing is not a constraint, one can make the
efficient outcome a Nash equilibrium by giving each agent the total
share of the outcome. This is the only smooth scheme which will work,

as is easily seen from the two conditions:

PO: £ (a*) + 2X(a%) _ 4
1 1

da. ’ vi,
i

ax(a* .
NE:f!(af) + s!(x(a%)) - —’%(é?i—):o, Vi.

2

These conditions imply si(x(a*)) = 1, and consequentiy si(x) = X + ki
Vi at x(a*), where ki is an arbitrary constant.

From a pragmatic point of view such linear sharing rules may
not be desirable. If the agents for some reason choose an action vector
a # a* such that x(a) > x(a*), there will be insufficient funds to com-
pensate them and the scheme becomes infeasible. A more appropriate
scheme would be discontinuous at x(a*). For instance, letting si(x)
be a step function, which pays the efficient share for x > x(a*) with
a drop in returns (sufficient to induce a* as a Nash equilibrium) if
x(a*) is not achieved, will work. Such group incentives, where all
agents are penalized since the ones at fault cannot be discerned, are

found for instance in contracting with labor teams. Usually it takes



- 200 -

thé form of a flat wage for team members, with a bonus paid if the
efficient output level is attained; (whether we view the discontinuity
as a bonus or a penalty is, of course, a matter of taste).

We find then that no monitoring is needed in order to achieve
efficiency, when we do not have state uncertainty. All it takes is to
relax budget-balancing. The most natural way of achieving this is to
separate ownership and labor, that is, introduce an owner to the
organization who does not provide any productive inputs, but merely
picks up the residual of the nonbudget-balancing sharing rule, which
induces efficient actions. This explains the emergence of capitalist
firms somewhat differently than Alchian and Demsetz. The fact that
stock owners do not generally exercise very close monitoring of the
behavior of managers, only of managers' performance measured by the
total outcome, supports our theory.

This is not to say that monitoring can generally be abandoned.
Its role is important in two ways. First, use of discontinuous bonus
(or penalty) schemes leads to an infinite set of Nash equilibria. All
will result in an efficient production level, but only one will lead
to efficient distribution of labor supply. If one agent undersupplies
labor, this will be fully compensated by others up to a certain limit,
For this reason monitoring may play a role as a disciplinary tool for
the team even without state uncertainty. | .

Secondly, and more importantly, the presence of uncertainty
may change the picture drastically. Discontinuous contracfs can become

quite impractical and inefficient if the outcome will vary beyond the
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agents' control. We will see in Section 4.3 that monitoring becomes
an essential ingredient in the organization under such circumstances.
At this point a comment on Kleindorfer and Sertel [1976a] is
appropriate. They study team production using the same model we have
presented, but restrict themselves to linear sharing rules such that
the sum of the shares is less than or equal to one. The owner, who
provides no inputs himself, optimizes over this set of linear shares,
and selects that Nash equilibrium which gives him the highest residual.
The result is inefficient in the sense described by Theorem 4.1. As
we have argued above, efficiency can be achieved only by going outside
the class of linear schemes. Hence, it seems that the restriction to
linear schemes is not very well motivated in this case. On the other
hand, Kleindorfer and Sertel [1976b] apply the same model (without an
owner) to a labor-managed firm or cooperative. Then the use of linear
schemes i1s no restriction, since it can be shown that any Nash equilib-
rium which can be attained with general sharing rules that balance the

budget, can likewise be attained with constant shares summing up to one.

4.2.2 Additional Measures

Our conclusion from fhe previous section is that it is insuf-
ficient to observe the total outcome if one wants to achieve an
efficient noncooperative equilibrium.when budget-balanding is imposed.
If budget-balancing cannot be relaxed the alternative is to observe
additional signals about the agents' actions or, as we will view it,

get a more detailed account of the outcome measure x.
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Let x consist of the sum of m measures xk:A~+ Rl,
k=1, ..., m, i.e.,
m
(4.7) 2z xk(a) = x(a), VaeK.
k=1

We call the set of functions X\, an accounting system. Based on this

accounting system, we can design an allocation mechanism, which is a

set of sharing rules si:]Rm R, 1i=1, ..., n, satisfying:
- xm) = X Vx.

(4.8) Z s.(x

The pair consisting of an allocation mechanism and an accounting system

will be called a control system. If a control system leads to a Nash

equilibrium at the Pareto optimal action a*, we say that the control
system is acceptable. If an accounting system is rich enough so that
an acceptable control system can be built upon it, we say that the
accounting system is sufficient.

With this terminology our problem can be posed as follows:
find the conditions under which an accounting system is sufficient.
The result from the previous section (Theorem 4.1) was that the total
outcome alone is an insufficient accounting system.

The reason why a richer set of measures may help to control
the agents better, 1s, of course, that several measures generally
make it possible to infer more about individual actions. In the limit,

a sufficiently rich accounting system may reveal exactly the actions of
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the agents. 1In that case an acceptable control system can casily be

constructed. We state this formally in the following:

Theorem 4.2: If the accounting system is a one-to-one mapping

from decisions to outcomes, then it is sufficient.

Proof: The measures will reveal each agent's decision and so
we can make the sharing rules directly dependent on these decisions.
Let a* be a Pareto optimal decision. Let the sharing rules at a* be

si(a*), i=1, -» Nn. We will show that for any aeA, the outcome can

be shared so that:
* * 3
(4.9) fi(ai) + si(a) f_fi(ai) + si(a ) Vi.
This clearly implies our claim,
Let aeA be arbitrary, and suppose (4.9) cannot be achieved.
That implies there exist sharing rules §i(a) such that

(4.10) fi(a) + 5. (a) > £ + s (a%), i,

with strict inequality for at least one. Add (4.10) over all i's to get

oz

n .
fi(ai) + x(a) > _Z fi(a;) + x(a*),

i=1 i=1

using (4.1). This contradicts the Pareto optimality of a*, Q.E.D.
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All Theorem 4.2 says is that if actions are observable or
possible to infer with certainty, one can achieve efficiency. The
payoffs of the noncooperative game can be redistributed in such a
manner that the most desirable outcome is the only Nash equilibrium.

The assumption of observability is quite strong in Theorem 4.2
and can be weakened. It suffices that we can detect when an agent is

the only one who deviates from the optimum. This will be possible if

*1 *3

. m
and only if the curves ti(ai) = (xl(ai,a Yy oo, xm(ai,a J)eR™,
i=1, ..., n, differ as illustrated in the figure below.
A
X1
ta(ay)
tl(al)
* *
(x) (8%) 3y (a%))
%2

We say that an accounting system is independent at a* if and

only if there does not exist an aeA, a # a* such that

tl(al) = ... = tn(an).
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Theorem 4.3: An independent accounting system is sufficient.

Proof: Let si(xl(a*), ceey xn(a*)), i=1, ..., n, be an
arbitrary split of x(a*), which satisfies (4.1). Define sharing rules

S5 along the t,-curves as follows:
*1
(4.11) s; (t;(a;)) = s;(x @), .., x (@%) + x(a;,a ) - x(a*)

for i = 1, ..., n, and the others arbitrary but so that (4.1) holds.

This is possible by our assumption of independence. With such a choice

the agent's objective coincides with the social objective when others

stick to their efficient action a*i. Hence, the agent's best response
s

against a b will be a; by definition of a*.

Q.E.D.

We notice that one measurc does not constitute an independent
accounting system. Independence is also a necessary condition in the
sense that a sufficient accounting system has to be independent at
least in the neighborhood of a*. We further notice that if actions of
the agents are perfect substitutes of each other, then no accounting
system can be independent, since by definition of substitutability,
for any a, there exists an aj for each j # i, such that
ti(ai) = tj(aj).

From Theorem 4.3 we see that two measures may well be suf-

ficiently rich to reveal individual deviation. However, if we make
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the assumption that xk's are monotone in actions, e.g

A |

axk(a)

A4 —7&;——-3_0 for every aeA, i = 1,
i

and constrain ourselves to differentiable and monotone sharing rules,
(4.12)

i .
- >
X (Xl’ e, xn)__ 0 Vx, Vi,

then at least n measures are needed.

Theorem 4.4: Assume Al-A4. Then the accounting system has to

include at least n measures if one wants to construct a monotone accept-

able control system.

Proof: By (4.7) and (4.8) we have

n
(4.13) .Z Six = 1

1=1

Bsi
where Six < 5;;—(x1(a*), e, xn(a*)).

By (4.3) and (4.7)

(4.14) £+

([ e in=1
<
I
S
<
-

X, :
where fi is evaluated at a*, and X; = ggb-(a*). From the Nash
i

equilibrium property of a*
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(4.15) £1+

o~ =
wn
.
Fad
I
o

Combining (4.14) and (4.15) yields

(4.16) X (1= s = 0.

1

W ™=

k

By (4.12), (4.13) and A4,
xki(l - Sik) =0 Vi, Vk.

By A3, xki > 0 for at least one k for a given 1, say ki' Then

Slk = l’ Wthh 1mplles SJk = O, VJ }\é 1, by (412) and (4.13). HOnCE,

i i
there must be at least n measures, since each agent 1s given the full

share in at least one. Q.E.D.

The assumption of monotonicity is rather natural to make if we
think of the xk's as monetary outcomes which improve with, say,
increased effort. In practice most sharing rules are monotone. All
agents get a positive share in the outcome. Under such circumstances
efficiency can be achieved only if each agent is in charge of his own
account. Moreover, the proof shows that it must be that his action
does not affect the other agents' accounts. FIn other words, only when
the whole system can be decoupled and externalities removed can we

achieve efficiency (compare to Section 3.4).
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The conclusion is that if budget-balancing is required, the
only way to reduce inefficiencies is to Create a richer accounting
system which better discerns individual deviations. Two measures
may be sufficient, but if they are monotone and we want a monotone
allocation mechanism, then n independent measures are needed which
in effect decouple the organization. The desire to decouple the
organization is familiar from responsibility accounting. The analysis
supports the widely accepted accounting principle that managers should
be able to control the measures that are used for evaluation of their
performance (see Horngren [1972], Chapter 6 on responsibility accounting
and motivation).

We have not discussed the possibility that some decision, say
an allocation of the firm's Teésources, may make agents' actions de-
pendent. If one tries to promote goal congruence, in order to guaran-
tee an efficient allocation of resources by giving each agent a share
in the firm's outcome, this will again lead to insufficient supply of
effort. It is interesting to note that Groves' scheme is able to get
around this problem. By effectively decoupling the organization, it
can assure both otpimal allocation of resources and efficient supply
of effort. Once the allocation of resources is determined, each agent

is in charge of his own account as required for efficiency (see

Section 3.2.2).
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4.3 Principal-Agent Relationship under Uncertainty

4.3.1 Two Problem Formulations

A principal and an agent have to share a random outcome
x(a,z), which depends on the nonobservable action a of the agent, and
on the uncertain state of nature *. We assume that they have homo-
geneous beliefs about Z, embodied formally in a probability space
(Z, £, P), and focus on the moral hazard aspect of the problem that
arises when the action is not observed by the principal. 1In particu-
lar, we are interested in the characteristics of the agent's share
s(x) under (constrained) Pareto optimality.

The principal's utility is over wealth alone, G(w); the agent's

utility is over wealth and actions, U(w,a). We will assume:
Bl. aeA, a compact subset of R.

BZ2. G:R » R, U:H22-+ R are twice continuous differentiable;

G' >0, G"<0,U >0, U < 0, U, <0, U__ <O0.
— W WwW a — aa —

Mostly we will be working'with a situation in which the action is a
productive input of the agent, most conveniently thought of as effort.
In that case it is natural to assume that Ua <0, and'xa(a,z) > 0 for
every zeZ, but we will not yet make these assumptions explicit in order
to cover a model by Ross [1973], in which Ua = 0.

Constrained Pareto-optimal action-sharing rule pairs (a,s) can

be generated by solving:3
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(4.17) max JS{G(x(a,z) - s(x(a,2))) + A= U(s(x(a,z)), a)]dbP(z),
a,s{(x)

(4.18) s.t. ac argmax J U(s(x(a,z)),a)dP(z).

acA
Assuming that s is differentiable and the agent's maximizing action in
(4.18) 1is unique and interior in A, we can replace (4.18) by the first-

order condition:

(5.19) S {ur e st X, + Ua}dP(z) = 0.

To characterize the optimal sharing rule s, one fixes a and solves for
s using a standard calculus of variations argument. This is the
approach taken in Ross [1973] and Spence and Zeckhauser [1971].

Two main assumptions have to be made to validate the procedure
above. The first is that an optimal solution exists, and the second
one is that this solution is differentiable. As has been shown in
Gjesdal [1976] and Mirrlees [1974], both assumptions may quite
generally be false. Gjesdal studied cases in which the distribution
of z has compact support and xa(a,z) > 0 for all z. To illustrate his

ideas we look at the following simple example:
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Example 4.1
x(a,z) = ke<a+ z, zn unif(-1,1), a>o0, k>o.
U(w,a) = U(w) - V(a) = log(w) - %~ az,
G(w) = w.

. . - - .. 4
A first-best solution (a,s) satisfies:

a =k/X, 5(x) = A, for all X;A > 0.

Define the following sharing rule:

s(x)

it
“>‘
-
.y
>
Vv
o3
i
w1
|
—

1
<
i
=y}
=
A

[030]
<
A
>

With s as a payment schedule, the agent chooses a SO0 as to maximize:

UCA) (1 ~ F(g,a)) + U(v) * F(g,a) - V(a)

where F(g,a) is the probability that x is below g, when the agent takes

action a; i.e.,



Now, 1if v is chosen such that:
[log X - log v] > 2+a = 2k/A,

then the agent's optimal act under s equals a. Moreover, he will be
ceftain to receive A, when he takes this action. Hence, the first-
best solution can be attained by the nondifie __.:iabic sharing rule s.
It is easily seen that no differentiable rule can precisely attain the
first-best solution, and S0, at least for this example, the assumption

of differentiability is too restrictive. g

It 1s quite clear what is driving the result in the example.
If the agent takes an act below a, then there is a positive probability
that he will be detected, and by penalizing detection sufficiently the
agent will not take this risk. On the other hand, and this is crucial
for actually attaining the first-best solution, the agent can avoid any
penalties by taking the correct action.

We have added the parameter k in the example to illustrate that

if x is not very sensitive to a change in action, then it may take very
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high penalties to actually induce the agent to take the correct action
a and achieve a first-best solution.

At first sight it may secem that the compact support of z is a
mathematical trick which makes the example work. Partly that is true.
A first-best solution will never be attainable if the support is the
real line, but as we will see, arbitrarily close approximations may
be possible quite generally. 1In any case, the example shows that dif-
ferentiability is not to be taken for granted. In order to study non-
differentiable sharing rules, the problem has to be formulated

differently.

An Alternative Formulation

Rather than viewing x as a function of a and z explicitly as
in (4.17)-(4.19), we can look directly at the distribution of x as a
function of a. This distribution is denoted F(x,a). The relationship
between F(x,a) and the distribution of z when we employ some common
production functions, has been recorded in Appendix 4A for further use.

We will assume:

B3. F(x,a) has a density function f(x,a), which is twice

continuously differentiable in a.

Later we will relax this condition so as to allow for mass

points in the distribution of x.



- 214 -

B4 (1) f]fa(x,a)]dx < o, YagA,
(ii) flfaa(x,a)ldx < o, YagA,
(ii1)  J|G(x) * f(x,a) |dx < o,
(iv)  J|G(x) -+ fa(x,a)ldx < oo,
B4 guarantees (by bounded convergence) that we can differentiate

under the integral sign as needed in the sequel. Our problem can now

be formulated as follows:

(4.20) max S{G(x-s(x)) + X+ U(s(x),a)}f(x,a)dx,
a,s(x)
(4.21) s.t. a e argmax J U(s(x),a)f(x;a)ds
acA

Since we will restrict ourselves to bounded sharing rules s(x),

the problem is well-defined by B4. Furthermore, (4.21) can be replaced

by:
(4.22) f{U(s(x),a)fa(x,a) + Ua(s(x),a)f(x,a)}dx = 0.

The point is that, in order to be able to write out (4.22), we
need not assume that s(x) is differentiable. It suffices that it is |
bounded and measurable (since U and Ua are continuous) when we have
assumed B2-B4. This is one of the major advantages of the formulation
(4.20)-(4.22) compared to (4.17)-(4.19), but there are others as well

5
as we will see shortly.



4.3.2 Existence of an Optimal Solution

We now turn to the issue of existence of an optimal solution.
We will prove that (4.20)-(4.21) has an optimal solution (a*,s*) when
we restrict ourselves to sharing rules that belong to one of the

following two classes of functions:

S; = {s:R »[c,d] | s nondecreasing},
or

S, = {s:R > [c,d] | s has modulus of continuity &(e)}.

Here 6:R4 -> R4 is a fixed function with 1im §(e) = 0, and seS2 if
e>0

[x-y| < §(e) implies |s(x) - s(y)| < e. S, is called an equi-

continuous family of functions. An example of an equi-continuous

family of functions is the set of all functions which satisfy a

Lipschitz condition of the form fs(x) - s(y)[.i M. ]x—y[. In this

case 8§(g) = g/M.

The reason we restrict ourselves either to Sl or 82 i1s that
these classes can be shown to be sequentially compact as is done in
Appendix 4B. Notice that in both classes s is bounded. This bounded-
ness is instrumental for existence and we will see why when we get to

Section 4.3.5.

For ease of notation we define the following functionals:

Ep(a,s) = J G(x - s(x))f(x,a)dx,

EMa,s) = £ U(s(x),a)f(x,a)ds,

B(a,s) Ep(a,s) + A EA(a,s).

1]
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These are mappings from RxS > R, where S is the subspace of functions
in which we are optimizing. For a particular choice of s, the agent
. . } . A
i1s assumed to maximize his expected utility E (a,s). By boundedness
. . . A A .
of s and B2-B4, the partial derivatives Ea(a,s) and Eaa(a,s) exist
and are continuous. Since A is compact, there will exist a solution

to the agent's problem. Define the solution correspondence

a(s) = {aeA|ae argmax EA(a,s)}.
acA
We notice that a(s) is a closed set by the continuity of EA(a,s), and
compact because it is a subset of A. If a(s) contains more than one
point we have to make a further assumption about the agent's behavior.

We will assume:

B5. If a(s) is multi-valued the agent chooses an aca(s)

. . . . . . p
which maximizes the principal's objective function E (a,s).

From the discussion above such maximizing elements in a(s) exist as long
as Ep(a,s) is continuous in a, which is guaranteed by B4-(iii) and the
fact that s(x) is bounded. Finally, there may be more than one aca(s)
which maximizes Ep(a,s). To break such ties an arbitrary selection is

made. This will define the agent's response function:

With this notation, (4.20)-(4.22) can be rewritten as:
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(4.23) max B(a,s) = Ep(a,s) + A EA(a,s),
SeS,aeA
(4.24) 5. t. Ei(a,s) - 0;

or alternatively:

(4.25) max J{s) = B(amax(s),s).
SeS
In the appendix it is shown that J(s) is an u.s.c. function (in
an appropriate topology) and the proof of the main existence theorem

follows by standard arguments:

Theorem 4.5: Let S = S1 or SZ' Assume B1-BS5. Then there

exists an optimal solution to Problem (4.25), (a*,s*), with a* = amax(s*).
Proof: See Appendix 4B.
Theorem 4.5 says that if we restrict ourselves either to non-

decreasing and bounded sharing rules or to a family of bounded equi-

continuous functions, then there exists a Pareto optimal solution.
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4.3.3 A Characterization of s*

Define the following class of functions:
Sy = {s:R » [c,d]|s is measurable},
and assume:

B6. There exists an optimal solution, (a*,s*), to problem
(4.25) when S = 83, such that a* is in the interior of A and uniquely

.. A
maximizes E (a,s*).

S3 1s not sequentially compact in an appropriate topology, and
for this reason B6 is necessary. But given the nature of the examples
of nonexistence that we will discuss later, we believe that B6 is not
very restrictive. We will first characterize an optimal solution
s*eS3 and then discuss implications of further restrictions to either
S1 or 82 {which are subsets of SS)'

A necessary condition for an optimal sharing rule can be de-
rived using a first-order approximation of J(s) in the neighborhood
of s*. Such an approximation is given in Luenberger [1968] (proposi-
tion 9.6.1). Since our assumptions do not exactly match Luenberger's,
we will reproduce his proof.to show that they are sufficient for our
purposes. Let (a*,s*) be a solution satisfying BG6, 5883 arbitrary,

and heRR. Define:

(4.26) sh(x) = he*s(x) - (1-h)s*(x), for every xeR ,
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Also, define the Lagrangian:
A
L(a,s,u) = B(a,s) + u- E, (a,s).
Then we have the following approximation 1emma:

Lemma 4.6: Assume B2-B6. Let pu*eR satisfy:

A
(4.27) B (a%,s%) + ur+E_ (a*,s%) = 0.
Then,
(428) J(S*) - J(Sh) = L(a*,S*,U*) - L(a*)shxu*) + O(h)’

in a neighborhood of h = 0. Here a* = a(s*), and o(h)/h+0 as h~0.

Proof: 1In view of B6 it is clear that there is an interval
I = (-6,8) s.t. the correspondence a(sh) is single-valued for hel.
Since, Ei(a,sh), as a function of a and h, is differentiable w.r.t.

both arguments, we have for some K > 0,

(4.29) la(sh) - a(s*)| <K+ |n], for hel.
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We can write:

J(S*) - J(Sh) = B(a*)S*) - B(a(sh)’sh)

B(a*,s*) - B(a*,sl) + B(a*,sh) - B(a(sh),sh)

B(a*)S*) - B(a*)sl) + Ba(a*)S*) (a*~3(5h))

+

[B,(a(s),s) - By (a*,s%)](a* - a(s,)) + 0 (h)

B(a*,s*) - B(a*,sh) + Ba(a*,s*)(a*-a(sh)) + o (h).

For the last two steps we have used the fact that B, is continuous (which
follows from B4 and the boundedness of s* and sh), and (4.29). We also

have by continuity of Eia and (4.29):

B, (8%,5%) (¥ - als)) = Eb (a%,5) (a* - a(s,)) + o(h)

ELa*,s,) - ENats),s,) + o)

i

Ei(a*,sh) - Eg(a*,s*) + o(h) (by (4.24)).

The result follows by using (4.27).

(4.28) says that a necessary condition for optimality is a stationary
Lagrangian. This result could, of course, have been obtained by maxi-

mizing B(a*,sh) subject to Ei(a*,sh) = 0, but for later use we prefer
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the derivation above, as it cxplicitly shows how the change in J(s)
can be approximated once we have a u that satisfies (4.27). We can

use the lemma to prove the first characterization theorem:

Theorem 4.7: Assume B2-B6. Let (a*,s*) be an optimal solu-

tion satisfying B6. Then s*(x) satisfies one of the three conditions

below for almost every xeR :

(i) Ht(a*,s*(x),x,u*) =0, s*(x)e(c,d),

(i1) He(a*,c,x,u*) <0, s*(x)

|
¢]
-

(ii1) H(a*,d,x,u*) > 0, s*(x) =d,
where Ht is the partial derivative of the flamiltonian:

H(a,t,x,u) = G(x-t) » f(x,a) + A= U(t,a) = f(x,a)

fusU(t,a) - £ (x,a) +u- U (t,a) « f(x,a),

and u* satisfies (4.27).

Proof: Suppose the claim were false. Then there would exist
a set of positive measure such that one of the three conditions would
be false. Let us assume it is (ii). Then Ht > 0 and st(x) = con a
set of positive measure. This implies (by continuity of the Lebesque-

measure) that there is a set X of positive measure m(X), such that:
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Ht(a*,c,x,u*) > g, for xeX.

+

Define s(x) = s*(x) §, 6 > 0, and

It

sh(x) hes(x) + (1-h)s*(x), for xeX,

it

s*(x) otherwise.

The Lagrangian L(a*,sh,u*) will then be differentiable w.r.t. h and we

get for h > 0:

L(a*,sh,u*) - L(a*,S*,U*) =
S H (8%, s*(x),x, 1) (s(x) - s*(x))dx + h
X

+0(h) >m(X) *e+S8+h + o(h).

Taking h small enough yields J(sh) - J(s*) > 0, by (4.28) and since
sh€S3, we have a contradiction to the optimality of s*. Hence (i1)
cannot be biolated on a set of positive measure. A similar argument
shows that (iii) cannot be violated on a set of positive measure.
Finally, the argument for (i) is either identical to case (11) or (ii1).

Q.E.D.

Remark: Along the same lines one could have proved that the
Hamiltonian has to be point-wise maximized (not just point-wise station-

ary), but the Lipschnitz-condition (4.29) would have required some
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additional assumptions, since we would have had to work in a function

space with Ll-norm (sce Luenberger [1968]).
From now on we will restrict ourselves to the case where the
agent's utility function is separable and we write:

U(w,a) = U(w) - V(a).

In that case we get the following characterization:

Corollary 4.8: Assume B2-B6. Let (a*,s*) be an optimal
solution satisfying B6, and let the agent's utility function be

separable. Then s*(x) will maximize the Hamiltonian pointwise almost

everywhere and:

f (x,a*)
G'(x-s*(x)) _ b k. @
(4.30) G A Tews)

if the equation has a solution ¢ < s*(x) < d. Otherwise:

£

(i) S*(x) = ¢, if G'(x-c)- (A+pu*-e fa)U'(c) >0,
£

(ii) s*(x) =d, if G'(x-d) - (A+u*- ;)U'(d) < 0.

Proof: We notice that with a separable utility function for the
agent, the Hamiltonian is either concave or nonincreasing, which together
with the previous theorem gives the claim.

Q.E.D.
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(4.30) 1is our main characterization result (also found in Mirrlees
[1976], without boundary conditions). It is easily interpreted in the
light of optimal risk-sharing without moral hazard constraints (see
Wilson [1968]). If u = 0, then s*(x) would correspond to optimal risk-
sharing. As we will see in the next section this never happens when
Vi(a) > 0. Instead pu # 0, and s* will deviate from otpimal risk-
sharing in order to induce proper incentives for action.

Suppose a is effort. Then u > 0 normally (which is equivalent
to saying that the principal would like a higher effort level at the
optimum). From (4.30), p > 0 implies that s*(x) lies above optimal
risk-sharing when fa(x,a*) > 0 and below when fa(x,a*) < 0. This
corresponds exactly with our intuition, since a raise in the share
when fa > 0 or a cut when fa'< 0, will induce the agent to supply

more effort than he would under optimal risk-sharing.

A Comment on Ross [1973]

When u # 0, the optimal sharing rule is crucially dependent
on the distribution of the state of nature, whereas the distribution
plays no role in optimal risk-sharing (with homogeneous beliefs as we
have here). The reason is, of course, that one wants to capitalize on
the informational content of the outcome as a signal about the agent's
action. For the reader who is familiar with Ross [1973], this stands
in some contrast to his claim that one can assume without loss of
generality that z has a uniform distribution on (0,1). Technically,

this statement is correct in the sense that the problem (4.17)-(4.19)
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{which is the formulation Ross uses) can always be reduced to one
where z has a uniform distribution, by a proper change of variables.
However, it 1is somewhat misleading to state (as Ross does) that the

characterization of s*(x) is:

G' (x - s*(x)) *

Ut (s*(x))

d a
dz (X—) )
Z

(4.31)

= A+ U

which does not seem to depend on the distribution of zZ. The dependence
X

is in this case hidden in the term il—(EEJ, since in (4.31) x(a,z) does
z

dz
not stand for the original outcome function, but the transformed one
which results after the change of variables.

It is important to recognize this fact both for a proper under-
standing of (4.31) and of Ross's further results. It is well-known (see
Wilson [1969]) that p = 0 in (4.31) (and hence s*(x) will provide
efficient risk-sharing) for all outcome functions x(a,z) and all dis-
tributions of z, only if u and g belong to the class of utility func-
tions with linear absolute risk-aversion. Since this class is quite
restricted, Ross asks what outcome functions will yield efficiency
regardless of the pair of utility functions (U,G). This class he
derives by requiring

X

d a
az'(iz? = b(a),

from (4.31), and solving the partial differential equation. But notice

that this equation is only relevant for a uniformly distributed z. So
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the solution x(a,z) = h(z*b(a) - c¢c(a)), where h, b and ¢ are arbitrary
functions, refers to the transformed outcome functions of the problem
(which result after a change of integration variable in (4.17)). We
conclude that if one wants to allow both arbitrary utility functions
and distribution functions, then the only outcome function yielding

efficient risk-sharing is the constant outcome function!

The Need for Bounded Sharing Rules

From (4.30) we can see why existence of a solution is a serious
issue. Take for instance the Normal density function with mean = a and

variance = 1:

f(x,a) =

oz

Then fa/f = (x-a). This means that if pu # 0 the RHS in (4.30)

becomes negative for some x-values, whercas the LHS is always positive.
Hence, yu = 0 is the only possibility. But this cannot be true either,
since then s*(x) provides optimal risk-sharing, which can easily be
shown to imply improper action incentives when V' (a) > 0. The solution
to the paradox, pointed out by Mirrlees [1974], is that there exists no
optimal sharing rule in the class of unbounded functions. In fact, the
first-best solution can in this case be approximated arbitrarily closely
as we will see in Section 4.3.5. This motivated our restriction to
bounded sharing rules, aﬁd the rigorous study of existence as well as

of a characterization of the optimal sharing rule.
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Characterizations in Sl and S2
(4.30) was derived for bounded measurable sharing rules. Let

or S, for which

us briefly examine what happens if we optimize in Sl )

we have the existence results. A problem arises with the admissibility
of the variation sh(x) in (4.26). There may be directions of incréase
of the Lagrangian, but such that all these directions take us outside
the admissible class of functions (S1 or Sz). Consequently, Theorem

4.7 will not hold in general. More complicated expressions than (4.30)
could be derived. They would essentially say that either we have (4.30),
or the class constraint is binding. For instance, an optimal non-
decreasing function would follow the point-wise optimum along increas-

ing parts and make jumps over decreasing parts (sec picture below).

s{x)

\J

(for each p there would generally exist a unique level at which the
jump occurs.) From this it follows that if the point-wise optimum

. . . . . . 6
is nondecreasing, the characterization in corollary 4.8 is correct.’

An important case for which this is true is recorded in the following:
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Theorem 4.9: If s* is optimal in the class of nondecreasing,
bounded sharing rules Sl’ and:
(1) Fa(x,a*)_i 0, for every Xx; Fa(x,a*) < 0, for some Xx.

(ii) fa/f is nondecreasing in x,

then s* satisfies the optimality conditions in Corollary 4.8.

Proof: Let u* be a solution to (4.27) corresponding to the

optimal solution (a*,s*). (4.27) can be written as:
(4.32) EVgax,s%) + ux - BN (ax,s%) = 0
. a b aa b b
. A
since Ea(a*,s*) = 0. We also have:
A

* *
(4.33) B (a*,s%) < 0.

We claim that p* > 0. Suppose not, and study the two other possibili-

ties: uy* = 0, u* < 0.
Case I: p* = 0. It follows that the point-wise optimum s(x)
of the Hamiltonian is nondecreasing, since it provides optimal risk-

spreading (see Wilson [1968}). Take

sh(x) =hes(x)+ (1-h) * s*(x), for all x.
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shesl for h > 0. Using the same argument as in Theorem 4.7, S, pro-
vides a feasible direction of increase of J(-), unless s*(x) = s(x).
Since s*(x) = s(x), the principal's share is strictly increasing (see
Wilson [1968]), which in conjunction with assumption (i) implies

p . . . . .
Ea(a*,s*) > 0 (by first-order stochastic dominance). This contradicts

u* = 0 by (4.32) and (4.33).

Case II: p* < 0. Let r(x) = x - s(x) be the principal's

f
share for the point-wise optimal sharing rule. u* - 3 is nonincreas-
ing by assumption (ii). On the other hand,
G' (r(x))
Ur(x - r(x))
is increasing in x. Hence, for the characterization (4.30) to be valid,

r(x) must be increasing. This implies that x - s*(x) = r*(x) = r(x)
is also increasing, since s*(x) is either flat or follows s(x) (see
picture above; to prove this rigorously use again a convex combination
as a variation). We conclude, as in Case I, that Ez(a*,s*) > 0,
contradicting u* < 0 by (4.32) and (4.33).

We have shown that p* > 0. From the fact that
G'(x-s(x))/U'(s(x)) is decreasing in x, and assumption (ii), the
characterization of Corollar} 4.8 gives a nondecreasing point-wisc
optimum. Consequently, s* must be point-wise optimal, which 1is the

claim.



In the theorem above, assumption (i) is natural when action
corresponds to some productive input like effort. From the next
section on, we will work exclusively with this assumption. it is
also true that fa/f is increasing for many production functions when
% has some standard unimodal distribution (sce transformations 1in
Appendix 4A}. For practical reasons one may furthermore want to
restrict attention to nondecreasing sharing rules. Under such cir-
cumstances, Theorem 4.9 provides a characterization of an optimal

sharing rule, which we also know exists by Theorem 4.5.

4.3.4 Properties of the Optimal Solution

The Second-Best Nature of the Solution

From now on we will assume:

B7 U(w,a) = U(w) - V(a), V'(a) > 0, V'"(a) < 0;
Fa(x,a) < 0 for all x, and Fa(x,a) < 0 for

some x, for all acA.
When B7 holds we will talk about a as effort. Let (a*,s*) denote an
optimal solution, and p* the corresponding Lagrangian multiplier in

(4.27). We have:

Lemma 4.11: u* # 0; Ei(a*,s*) # 0.



Proof: wu* # 0 follows from the proof of Case I in Theorem 4.9,

. . P
since we only used assumption B7 there. Suppose Eq(a*,s*) = 0. Then

u* = 0 is feasible from (4.27), contradicting the first part.
Q.E.D.

From the lemma follows:

Theorem 4.11: Assume B2-B7. Then there exists an action acA

and sharing rules 1> 52683 such that both (a,sl) and (a*,sz) are

strictly Pareto superior to (a*,s*).

Proof: Define the feasible variation:

s.(x) = s*(x) + t, when xeX = {x|s*(x) < d,

s*(x) , when xeXx©.

Let ei(a,t) = Ei(a,st(x)), which is a mapping from R2 to R, for

i = A, P. The set X must have positive measure, or else the agent
would take an action on the boundary of A contradicting B7. This
implies that the gradients of ei are linearly independent at a = a*,
t = 0, since Ez(a*,s*) # 0 by the lemma, and Eg(a*,s*) = 0 by B7.
Hence, there must exist a direction of strict increasc for both eA
and ep. eA(a*,O) = 0 implies that t must increase in this direction
(the agent must receive money), so that st(x)es3 for small changes.
This proves the existence of (a,sl).

Let h(x) = fa(x,a*)/f(x,a*). We claim h(x) # 0 on a set of
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positive measure. Supposc not, i.e., h(x) =k const. a.e. Then

we would have:

0 = ffa(x,a*)dx = fh(x)f(x,a*)dx = k- [f(x,a*) = k.

But k = 0 implies fa = 0 violating B7. We have u* # 0 by the lemnma,
and so h(x) nonconstant on a set of positive measure implies that s*
differs from the optimal risk-sharing rule s(x) on a set of positive
measure (by (4.30)). Using Wilson's characterization of optimal risk-
sharing (Wilson [1968]), s* must then be inefficient. This establishes

the existence of (a*,sz).

Theorem 4.11 embodies the second-best nature of (a*,s*).
(a*,s*) is a solution which trades off risk-spreading advantages for
proper effort incentives, without being optimal w.r.t. either onc
objective alone. As an immediate corollary we have the main
theorem by Harris and Raviv [1976], extended to measurable sharing

rules (as opposed to differentiable ones).

Corollary 4.12: Under assumptions B2-B7, there are returns

to being able to observe and enforce the action.

Proof: When an action can be enforced, (a,sl) of Theorem 4.11

can be attained which is Pareto superior to (a*,s*).
Q.E.D.



Remark: 1In Example 4.1 we saw that the first-best solution
could be obtained, so Corollary 4.12 is generally false. The critical
assumption, which does not hold in Example 4.1 is the existence of

fa(x,a) for all x.

Undersupply of Effort

It seems natural to conjecture that Ei(a*,s*) > 0, when B7
holds. The reason is that the agent derives direct disutility from
effort, whereas the principal does not. Hence, one would think that
the principal would always prefer more effort than the agent provides
when moral hazard is present. This is, of course, true if the princi-
pal's share is nondecreasing as we have argued carlier, but therc 1is
no guarantee that such will be the case at an optimum unless we make
further assumptions. One sufficient ¢ondition is given by the

following theorcm:

Theorem 4.13: uy* > 0, or equivalently Eg(a*,s*) > 0, 1if

X, = {xeﬂllfa(x,a*) > 0} = [b,®), for some constant b.

Proof: The equivalence follows from (4.32)-(4.33) when we
observe that Ez(a*,s*) # 0 by Lemma 4.11. By the same lcmma we only
have to show that p* < 0 must be false;

Suppose U* < 0. Let r*(x) = x-s*(x) be the principal's
share. We claim u* < 0 impliés r*(x+) > r*(x_) for every pair

(x,,x_) X, xX_, where X_ = {x|fa(x,a*) < 0}.
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Pick x_eX arbitrary. Two cases are possible in Corollary 4.8:

(1) s*{x ) = d. Since s*(x+) < d and X, > X_ we have
r*(x+) > or*(x ).
(i1) s*(x ) < d; r*(x_ ) = x_ - ¢. We have:
£ (x_,a%)
(4.34) 0 < G'(x*(x )) - [A+ u* - “?Tiffa?jl Ur{x_ - r*(x_))
fa(x+,a*)

<CGU(rr(x ) - [A o+ px o ] U, - TH(x0)),

*
£ (x,,a%)
since x, > x_, fa(x_,a*) < fa(x+,a*), ut > 0, U" <0, and by assumption
u* < 0. We have earlier argued that the Hamiltonian H was concave or
monotone, so (4.34) implies that r has to be increased for pointwise
“optimality. An increase is feasible w.r.t. to the constraint

s(x)e[c,d], since X, > x_.

Hence, r*(x+) > r*(x ). Cases (i) and (i1)
establish the claim r*(x+) > r*(x ) for every pair (x+,x_)eX+ x X .

It follows that G(r*(x+))_i G(r*(x_)). Thus,

(4.35) EP(ax,s%) = J Gx* () F. (x,a*)dx + [ G(r*(x))f (x,a*)dx
a X a X a

+ -

| v

S M- £, (x,a*)dx + S M- £, (x,a*)dx
X X

+ -

=M./ £ (x,a*)dx = 0.

Here M is such that G(r*(x+)) > M > G(r*(x_)) for every (x+,x_).

Such an M exists by the previous argument. (4.35) together with Lemma
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4.11 implies Ei[a*,s*) > 0, contradicting (4.32)-(4.33). tHence,
u* < 0 is false and the claim follows.

Q.E.D.

The following line of reasoning could provide a more general
proof of u* > 0. If u* < 0, then xeX, = s*(x) < s{x) and
xeX * s*(x) > s(x), where s(x) is the optimal risk-sharing rule.
Now B(a*,s*) < B(a*,s). Let a be the agent's choice when s is
employed. The agent prefers (a,s) to (a*,s) by definition. If
a > a*, so does the principal, since x- s(x) is nondecreasing and
F, < 0. Hence, B(a*,s) < B(a,s) provided a > a*. This we have not

been able to establish unless one makes assumptions similar to those

- in Theorem 4.13.

Properties of s*

As we argued earlier it is true for many distributions that
fa/f is nondecreasing, and this, of course, is sufficient to ensure
the assumption in Theorem 4.13. As a further characterization of
s*(x) in casc fa/f 1s nondecreasing, we record the following corollary,

which follows directly from Corollary 4.8 and Theorem 4.13.

Corollary 4.14: 1If fa/f 1s nondecreasing in x, then s*(x) is

a nondecreasing function of x.

As illustrations of these characterizations, let us look at

some examples:



o
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Example 4.2: Let

U(w,a) = U(w) - V(a) = 2/ - a2
Gw) = w

_k
£(x,a) —é- e® x>0

The agent determines the mean of the distribution x by his
choice of a. An example would be a repairman, whose effort determines
the expected length of time the repaired machine will run before break-
ing down. The monetary outcome is proportional to the lifetime of the
machine.

We notice that fa/f =<J§ (x-a), which is ircreasing in ¥

a
We derive first s* without any constraints. Employing (4.30) we have:

(4.36) s¥(x) = [A + y - —(—’iizi‘l]z.
a

-

The agent's first-order condition gives p = a°.
Checking the second-order condition, shows that this p-value

corresponds to a maximum. Using (4.32) we get:
3
(4.37) 4a” + 2A ¢+ a = 1,

The first-best solution is easily seen to be:

- .2 - _ 1
s{x) = A%, a = % -



For a numerical solution, let A = %u Substitution into (4.36) and
p 1 1
(4.37) gives a* = 5, MY = L and
sH(x) = (x ¢+ 2,

This gives %—as the welfare measure for the second-best solution
compared to g-for the first-best solution.

The optimal functions are depicted below:

4 % (x)
s{x)
1/4 s(x)
t— | -
a*x = 1/2 1 x

From the analysis we see that no lower bound needs to be imposed on
s*. \However, an upper bound should have been used. But one can show
that as the upper bound is raised, u* +<§ and the solution converges
to the one given above.

Reaffirming our earlier interpretation of (4.30), the agent

. . . . . . . 1
15 given incentives to increase his effort by penalties when x i‘j
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1 . - .
and rewards when x > -. It is somewhat surprising to find the s*(x)
is convex, considering risk-spreading, but this appears to be nothing

uncommon when one looks at other examples. (Convex sharing rules are

also familiar from Wilson's work on incentives in decentralized

decision-making; Wilson [1969].) O
Example 4.3

2
U(w,a) = log w - a
G(w) = w 5

_(x-1a)

2
f(x,a) = 1 + e 20
2n o

This distribution follows from the production function x(a,z) = a + z
. ~ 2
with z v w(0,07).
In this example we have to impose upper and lower bounds

explicitly. The solution is a piece-wise linear function:

u

2
(o

s*(x) = A +

* {x-a*), c < s*(x) < d.

s(x)‘
d+ s*(x)

\J




It would be interesting to sce how s*(x) changes with de-
creased variance. As the variance decreases we come closer to an or-
dinary contract where the agent is paid only if he supplies the agreed
amount of effort (i.e., s*(x) is a step function). From the formula
for s* it looks as if a decrease in 0 indeed makes the slope steeper,
but we cannot be quite sure since u also depends on ¢. This depend-
ence is hidden in the complicated joint solution of s* and u* from

(4.30) and (4.32), and is not easy to determine. g

. -W o, .
By taking U(w) = -e in the previous example, we sce that a
concave sharing rule may be optimal, too. Sharing rules with decreas-
ing parts can also be generated by using two-peaked distribution

functions.

4.3.5 Approximations to the First-Best Solution

We know that (4.30) cannot hold for all x if y-* fa/f + - for
some x-sequence. Mirrlees [1974] argued that in such cases the first-
best solution can be approximated arbitrarily closely by a function,
which uses severe penalties in very unlikely events. We will present
Mirrlees argument with some modifications, and also discuss whether
high bonuses will work as well for approximations.

. Suppose fa/f > -® as x > -» (this is the case in Example 4.3).
Let (a,s) be the first-best optimum. Approximate this solution by the

following sharing rule:
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s(x), if x > g,

s(x)
(4.38)

s(x) = 8(x;g), if x < g.

Here §(x;g) 1s determined so that:

-~

(1) UG(x;8)) - U(S(X)) = K(g), for all «x < g,

g - - s
(4.39) ((i1) [ {U(S(x;2)) - U(s(x)) 1}, (x,a)dx = K(g) - F(g,2)

o

Y = V'(a) - i U(é(x))fa(x,é)dx = -Eg(a,g) = M.

(This is possible if U is not bounded from below.)7 By this choice the
agent's first-order condition for optimal cffort is satisfied at a = a.
Ez(é,g) > 0 by optimality of s. Consequently, E:(é,é) <0 and M > 0.
Fa < 0 implies K(g) < 0 and hence 5(s;g) < s(x). From this it follows
that the principal prefers s(x) to s(x). Thus we only have to check
that the agent's disutility from s(x) compared to s(x) can be made

negligible. This disutility is K(g) * F(g,a) for which we have:

(4. 40) 0> K(g) - F(g,a) =M - L(8:2) (by (4.39)).
F,(g,a)

But fa/f > - implies that for any L < 0, there is a g(L) s.t.

fa(g,x)‘i f(g,x) * L when g < g(L). Integration yields

Fa(g,x) < F(g,x) * L, implying F/Fa * 0 as g » -». So we conclude

that K(g) * F(g,a) can be made arbitrarily small.
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We would still have to check the second-order condition:
B (3,s) = K(g) ¢ F__(g,3) + En (8,5) < 07
aa" ’ aa‘®’ aa* "’ ’

But we do not really know the sign of Eia(é,g); only that

 (3.5) + A - BN (3,5) < 0. For most distributions F_,(g,a) <0 for
aa aa — , aa

small g, and Faa + 0 as g + - (see Appendix 4A), so we need

gt (a,s) < 0. This is true if the principal is risk-neutral, since

aa

then § is constant, but in general it depends on the form of the dis-
tribution of x. If the prgduction function x(a,z) 1s concave in a
and the sharing rule is concave (in addition to being increasing,
which we know from the fact that it is efficient), then EA(a,E) is
concave in a, and the second-order condition is satisfied.

We can compare the approximation result to Example 4.1, where
% had compact support. In an imprecise sense fa/f = - at the lower
endpoint of the uniform distribution, in that example. This corre-
sponds to our assumption that fa/f + -», only that here - 1is
ngttained," which makes it possible to actually achieve the first-best
solution. We see that even though the assumption of compact support
may be artificial, the example carried substantial insight about the
nature of the solution.

One may wonder if approximations to the first-best solution
also can be achieved by high bonuses for exceptionally high outcomes,

when fa/f + +o. The answer is no if the agent's utility function 1is

bounded from above. This is easily seen since the first-order constraint
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corresponding to (4.39) cannot be made to hold for arbitrarily high
g-values because of the boundedness. A loss in incentives due to an
increase in g cannot be compensated by an increase in the bonus, once
g reaches a certain level.

On the other hand, if the agent's utility function has a
linear asymptote and the principal is risk-neutral, then we can essen-
tially reproduce the earlier argument to conclude that first-best
approximations via high but unlikely bonuses is possible. We observe
that the principal's disutility from the bonus can be approximated by
a constant times the agent's utility when g is large, and this expres-
sion goes to zero when g > «. Since the principal is risk-neutral,
Eia(é,g) < 0, giving the correct second order constraint if Foo ™ 0.

What happens inbetween these two extreme cases (U bounded vs.
U asymptotically‘linear) we do not know. If we look at Example 4.2
we find that the first-best solution cannot be attained by high
bonuses (explaining our nonconcern for the upper bound), and it may
generally be true that an asymptotically linear utility function by
the agent is needed. If the principal is moreover risk-averse, then
it is possible that even this will be insufficient. We notice that
in Example 4.1 fa/f = +o (in an imprecise sense), but bonuses will,
of course, not work. The reason is that here the second-order con-
straint will be violated.

Some qualitative conclusions emerge from the discussion above.
We find that under certain circumstances the moral hazard problem can

be essentially avoided using simple penalty schemes, provided there
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are sufficient penalties available. Penalties seem to work more
often than bonuses because of the concavity of the agent's utility
function. Furthermore, moderate penalties suffice when the distri-
bution is sufficiently sensitive to changes in effort; for instance,
if the variance of the state of nature is small. From Corollary 4.12
we know that there are always returns to monitoring, but as we see,
these returns may be negligible.

These conclusions seem to find some empirical support. We
see quite often in practice simple dichotomous contracts of the form
(4.38) (e.g., step functions). Maybe the threat of being fired can

be considered one extreme example.

4.3.6 Generalized Distribution Function

In the previous derivations we have assumed all along that
F(x,a) has a density function for all a. This assumption can be
relaxed. We can allow a distribution which can be separated into
two parts: one represented by a density function f(x,a) as before,
X

the other by a countable number of mass points x ., each

1, 2)

with mass f(xi,a), i=1, 2, ... . Notice that the positions of the

mass points are assumed to be fixed, but the f(xi,a) may change with

I

In many applications we find distributions with the above
characteristics, particularly when they arise as compositions of
several distributions. A good example is provided by any form of
accident insurance. First, there is a probability of either having
or not having an accident, and secondly, when an accident occurs there

is a damage distribution.



- 244 -

Looking back at the arguments that were used for proving
existence of an optimal s*, we find that little needs to be changed.
The sequential compactness is immediate, since there are a countable
number of mass points. The u.s.c. of J(s) does not change either,
since we can still interchange the order of integration and limits
using bounded convergence. In deriving a characterization of s*(x)
we can also make the same arguments as before and arrive at the main
formula (4.30), if we assume existence of fa(xi,a) and faa(xi,a] for
i=1, 2, ... . Likewise, the conclusions about the second-best
nature of an optimal solution are still valid.

It is interesting to note a special application of (4.30) to
accident insurance. Suppose the agent's action only affects the
probability of an accident, but not the extent of the damages. If
the insurance company is risk-neutral, (4.30) tells us that the opti-

mal insurance plan is a simple step function. In case of accident a

deductible is paid, which is independent of the damage costs. To find

the optimal deductible, we further need only know the mean of the
damage distribution. This result may partly exﬁlain the frequent use
of deductibles in health and accident insurance.

Notice that even though the agent is offered perfect insurance
against the damage distribution, he is faced with risk resulting from
the possibility of an accident. He has to pay a deductible, which
serves as an incentive for action and hence the solution is inefficient

by the standard of perfect information.
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4.3.7 Additional Signals

In the preceding analysis x was the only observable. We will
now look at extensions to situations where additional signals are ob-
served. These signéls could correspondlto various kinds of monitoring
of the agent, or to observations about the state of nature. Since we
found that the solution to moral hazard was generally 1inefficient (com-
pared to the standard of perfect information), one would expect that
additional observations would be beneficial at least under cértain

circumstances.
¥

Harris and Raviv [1976] study this issue, and in particular
the question of when monitoring of the agent is valuable in the sense
that including the signal outcome in the contract will make both parties
strictly better off. Their results can be summarized in one sufficient
condition. A signal is of value if:

(1) the agent can avoid any penalties with certainty by
taking the agreed upon action,
(ii) the signal will detect any shirking with positive

probability, and

(1ii) there are sufficient penalties available.
Under these conditions the agent can be made to take the first-best
action under first-best risk-sharing, as we saw in Example 4.1, and
this is clearly sufficient for a Pareto improvement.

The conditions imposed on the ;ignal by (i)-(iii) above are
very strong, however, and one would expect that much less would suffice.

But Harris and Raviv are quite skeptical about finding weaker conditions
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which do not depend explicitly on the utility functions. In particular,
they are concerned about relaxing (i), since then the risk-averse
parties will face additional uncertainty introduced via the signal.
They conjecture that such risk will occasionally outweigh the benefits
from more information about the action.

We will show that such concerns are unwarranted. The main
result is that a signal is valuable if .and only if it provides infor-
mation about the agent's action in addition to the informatiop that one
gets from observing the outcome x. This necessary and sufficient condi-
tion, which is only a property of the signal and its relation to the
outcome x and action a, completely solves the issue of when an addi-
tional information system has potential gains.

The result will follow from extending our characterization of
efficient sharing rules to include signals. Let there be n signals
observed besides x. Denote the signal vector by y = tyl, e yn)eRM.
Assume there is a joint distribution function F(x,y;a), which has a
density function f(x,y;a) twice differentiable in a. We are interested
in efficient Sharing rules s(x,y):Rn+1%-R. Such sharing rules can be

generated by solving the program:

max J {G(x-s(x,y)) + A= U(s(x,y),a)}f(x,y;a)dxdy,
a,s(x)
(4.41)

s.t. S {U(s(x,y),a)f (x,y;a) + U (s(x,y),a) * f(x,y;a)}dxdy = 0.

To prove existence we have to restrict ourselves to bounded
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sharing rules, which belong either to a family of equi-continuous
functions or a class of coordinate-wise nondecreasing functions.

We will not reproduce the proofs from Appendix 4B. Following exactly
the steps for proving the main characterization in Corollary 4.8, we

get the natural extension.

Corollary 4.15: Assume B2-B6 (with obvious changes in

notation). Let (a*,s*) be an optimal solution satisfying B6 -and
let the agent's utility function be separable. Then s*(x,y) will
maximize the Hamiltonian point-wise almost everywhere, that is for

a.e. (x,y)amp+1:

f (x,y;a*)
G'(x = s*(x,y)) _ . fa
UGy Y TFaoyian)

(4.42)

if the equation has a solution c < s*(x,y) < d, or otherwise:

£

(i) s*(uy) = ¢, Aif G'(x-¢) - (Arure-B) - U'(Q) > 0,
£

(ii) s*(x,y) = d, if G'(x-d) -(A+u*-§J-U'm)< 0.

Condition (4.42) is intuitively appealing. It shows that the
agent's responsibility should be small when his action explains little
of the variation in x conditional on y, and large in the opposite case.
At an extreme, if fa(x,y;a*) = 0 for every outcome x, when a particular

y obtains, the agent should be offered full risk sharing under this
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contingency. This again perfectly matches the old accounting principle

that managers should be held responsible only for what they can control
(beyond what is optimal from a risk-sharing point of view, of course).

(4.42) has two important implications. First, it tells that
provisions for unexpected occurrences (described by the signal y)
should be included in the contract if these can be observed by both
parties. Thus contracts can be expected to be elaborate and contain
a variety of special arrangements under different contingencies.
Certainly, there is substantial empirical support for this conclusion.
Not only do contracts tend to be detailed, but in addition a host of
provisions are left implicit. Natural disasters, strikes, accidents,
are generally sufficient grounds for relieving an agent from full
responsibility and allowing a change in the contract, even if such
provisions are not explicitly written down. In these situations
usually the legal system provides protection and fair resolution.

Secondly, (4.42) shows that there are gains to creating addi-
tional information systems; most naturally in employment relationships.
Supervision and detailed performance measurement, particularly as de-
veloped in modern responsibility accounting (see Horngren [1972]),
are examples of such information systems, and their role is explained
by (4.42). Notice that these control systems are not only to the
benefit of the employer, but also to the employee, who gets protected
against events outside his control.

To illustrate how gains can be derived from additional moni-

toring, we can look at the following schematic example.
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Example 4.4: The outcome x can be either good (=1) or bad
(=0). This depends both on the action of the agent and the state of
nature z. z = (yl,y2), where y1 and y, are independent. Each vari-
abie can take on values 0 or 1. The consequences and probabilities

are as follows:

X = 1, lf yl ° y2 = l’
x =0, otherwise.
Py, = 1) = 75 Ply, =1) =p(a) , 0<pla) <1

p(a) is an increasing function of the agent's action a. We have the

following table of joint probabilities.

_ 1
yp =0 2 0
_ 1 - p(a) p(a)
yp =1 2 2
y2 = 0 y2 =1

If y; = 0, the outcome will be bad regardless of the agent's
action. Only in state Yy = 1 can the agent influence the outcome. Let
us first compare the cost (in terms of risk-sharing losses) of providing
incentives for a fixed action when Yy is observed and when it is not
observed. A simple calculation shows that the following two schemes

yield the same action:
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I s(x) = w, if x =1,
s(x) = v, if x = 0.
11 s(x,yl) = W, if x =1, yy = 1,
= v, if x =0, Yy = 1,
= s(x,0), if Y] = 0; s(x,0) arbitrary.

The point is that s(x,0) can be chosen based on mere risk
spreading advantages. If the principal is risk-neutral it should be
constant. The agent is freed from all responsibility when Yy = 0,
since nothing can be inferred about his action in this event. Since
both schemes provide the same action incentives, but the second one
provides superior risk-sharing, we see that observing Y1 is of value.

This value can also be seen from another viewpoint. Let a
be the agent's action under scheme I. Marginally both the principal

and the agent will be indifferent between a change in v such that:

.1 .1 -pQa) _
AVO >+ Avl > = 0,

where Av, is the change in event Yy = 0 and Av, is the change when

0 1
Yy = 1. However, the incentives for action will change according to:
. L .
(4.43) fvg = UT(v) ¢ 0+ By, - UT(Y) s Jl%—a—)— 2 0.
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The agent's utility will not change marginally from such a change
in the action, since a was optimal, but the principal would like
either an increase or decrease, unless we are at a first-best solu-
tion. By choosing the sign of Av1 correctly, the total result will
be that risk-sharing returns stay intact but the action is improved
when Y1 is introduced in the contract, and this leads again to an

overall improvement. 0

To summarize the results of the example: observing Yy is
valuable, since we can either get the same action with less costs
in terms of lost risk-sharing opportunities, or get an improved
action with original risk-sharing benefits. Normally, a mixture of
both advantages will produce the new optimum (when Y1 is introduced)
and this is exactly the content of condition (4.42). We notice that
such advantages can be achieved for each outcome of y separately, and
so integrating over y will result in a total gain. This explains why
we need not be concerned about the noisiness of the signal y as Harris
and Raviv [1976] were.

(4.42) suggests that a contract s(x) can be dominated by a

contract s(x,y) if and only if it is false that:

f (x,y;a%)
f(x,y;a*)

(4.44) = h(x;a*), for a.e. (x,y)eRn+l.

However, (4.42) does not quite prove this, since the program in (4.41)

does not generally generate all efficient points, because the efficiency
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frontier may not be concave (see footnote 3). In that sense (4.42)
only implies that efficient points on the concave hull of the frontier
are dependent of y when (4.44) is false.

There is also a second technical difficulty involved with the
conjecture. (4.44) is a condition at a*. We can prove that if (4.44)
is false at a*, then the efficient contract must depend on y. But the
reverse cannot be proved, since from (4.44) we get no information about
what happens outside a*. However, the cases for which (4.44) is true
only at a* are not very interesting and certainly not of practical
significance, and so we want to exclude them from our analysis.

This motivates the following slightly asymmetric

Definition: Yy is said to be informative about a if for all

a it is false that:

£,(x,y;a)

T, n+l
(4.45) m = h(x,a), for a.e. (X,)’)EIR .

It is said to be noninformative about a if (4.45) is true for all a.

As we said{ these two cases are not perfect complements, but
the exceptional cases are uninteresting and rare.

The content and meaning of (4.45) is not immediate. For a
proper interpretation we can derive an equivalent condition which is
more easily understood. Suppose ¥ is noninformative. Then we can

solve (4.45) as a partial differential equation. The unique solution

is:
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(4.46) f(x,y;a) = h(x;a)g(x,y),

where we can take h,g > 0. Conversely, (4.46) implies (4.45), since

1]

£.0Ga) = £,(y;a)dy = hy(a) S g(xy)dy,

f(x;a)

/ f(x,y;a)dy = h(x;a) J g(x,y)dy,

where f(x;a) is the marginai distribution of x.

If (4.46) is true for all a (for almost every (x,y)eRﬁ+1),
then y is noninformative. This has an intuitive explanation. (4.46)
is precisely the condition for a sufficient statistic, if we interpret
a as a random variable. It says that x is a sufficient statistic for
the pair (x,y) w.r.t. a. In other words, x carries all the relevant
information about a, and y adds nothing to the power of inference.
y could only be of value for risk sharing, but we know that optimal
risk sharing is independent of the distribution of the random variable,
when agents have homogeneous beliefs. Consequently, y should be

valueless, which is what (4.42) indicates.

With these preliminaries we can prove the main theorem:

Theorem 4.16: If y is noninformative about a, then an optimal

sharing rule need not depend on y. If y is informative about a, then

an optimal sharing rule has to depend on y.
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Proof: Suppose y is noninformative. Let s(x,y) be an

arbitrary sharing rule. We will show that there is a sharing rule

s(x) which is at least as good as s(x,y), establishing the assertion

that optimal sharing rules need only depend on x when y 1s noninformative.
For every x, define s(x) so that

(4.47) JU(s(x,y))e(x,y)dy = J U(s(x))g(x,y)dy

= U(s(x)) « J g(x,y)dy = U(s(x)) * k(x),

where k(x) = / g(x,y)dy. Then using (4.46):

S U(s(x,y)) £, (x,y;a)dxdy

) U(s(x,¥))h (x;a) g(x,y)dxdy

J U(s(x))ha(x;a)g(x,y)dxdy.
Similarly,

J U(s(x,y))f(x,y;a)dxdy = f U(s(x))f(x,y;a)dxdy.
Consequently, s(x) will result in the same action and welfare for the

agent.

(4.47) implies, by Jensen's inequality,
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I s, y)g(x,y)dy > [ s(x)g(x,y)dy,

or

Jo(x-s(xyDelxy)dy < 7 (x- s(x))g(x,y)dy.

This implies, using Jensen's inequality a second time, that:
J Glx-s(x,y))g(x,y)dy < J G(x- S(X))g(x,y)dy;

Since this is true for every x, and h(x;a) > 0, we have by integrating,
J G(x-s(x,y))f(x,y;a)dxdy < S G(x-s(x))f(x,y;a)dxdy.

Since the agent takes the same act with s(x) as with s(x,y)
by construction, this shows that the principal is at least as well off
with s(x) as with s(x,y). The agent's utility is the same for both

s(x) and s(x,y), and thus s(x) is weakly Pareto superior to s(x,y),
which proves the first part of the thcorem.

Let s(x) be arbitrary and fix x. The principal's and the
agent's returns, conditional on x, from a variation ds(x,y) in the

sharing rule s(x) are:

(4.48) 6Ep = -G'(x~-s(x)) [ Ss(x,y)f(x,y;a)dy
+ 0 U (s(x)) S Ss(x,y)f_ (x,y;a)dy,
SEN = U (s(x)) S Ss(x,y) £(x,y;a)dy.
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Here u is the Lagrangian multiplier in (4.27) corresponding to s(x).
Suppose y is informative. Then there exist two sets Y and v©

in the range of y, s.t.

. C.
£,05,Y52) £, (x,Y550)

f(x,Y;a) 7 f(x,YC;a) ?

(4.49)

where [ f(x,y;a)dy = f(x,Y;a) and correspondingly for the other.
Y

Choose a variation 8s(x,y) such that 8s(x,y) =0 for y#YUY©, and
(4.50) §s(x,Y) * £(x,Y;a) + 6s(x,Y)£(x,Y;a) = 0

(8s{x,Y) is constant for all yeY and correspondingly for 6s(x,YC)).

From (4.48) and (4.50) it follows that:

6B = W+ U (s(x)) [8s(x,Y) * £,(x,Y5a) + 6s(x,¥Y%) + £, (x,v55a)],
and

SE = 0.

Substituting from (4.50):

P fa(x,Y;a) fa(x,YC;a)
SE- = peU'(s(x)) * 8s(x,Y) * £(x,Y;a)[ — - I
f(x,Y;a) f(x,YC;a)

w#0, £f#0, U >0 and the parenthesis is # 0. Hence 8s(x,Y) can be
chosen so that 6EA = 0 and GEP > 0. This 1is true for a fixed x, which

has zero mass. But since y is informative, the same can be done for
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a set of x-values with positive mass, implying that strict Pareto
improvements can be made.

Q.E.D.

Remark: It is clear that Theorem 4.16 is also valid when F
is a generalized distribution function as discussed in the previous
section.

Theorem 4.16 has the following obvious corollary.

Corollary 4.17: If y is noninformative about a, then there

are no returns to observing y. If y is informative about a, then there
are positive returns to observing y.

Using the verbal interpretation provided by (4.46), we see that
monitoring is of value if and only if y provides any information about
a in addition to what one can infer from x. The fact that any extra
information is valuable, regardless of how noisy it is, is the strong
part of the theorem, and maybe somewhat surprising (compare with the
earlier mentioned reasoning by Harris and Raviv). But it is easily under-
stood in view of (4.42). The intuition of (4.42) is that whenever y
is informative, both parties can be made better off in each state-of y,
by including y in the contract. This results, of course, in overall
improvement.

In our formulation we have made no distinction between the
signal being an observation of the action or of the state of nature.

Indeed, the analysis shows that such a dichotomy is not essential.
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A duality exists such that it is almost a matter of semantics (from
the theoretical point of view) which interpretation the signal is
given. From a practical standpoint, there is, of course, a difference,
and we will now look at the case where the signal is an independent

observation about the action. In that case:

(4.51) f(x,y;a) = h(x;a)gly;a).

From this follows:

fa(x,y;a) . h, (x;a) . g, (y;a)
f(x,y;a)  h(x;a) g(y;a)

Hence, y is noninformative if and only if:

g, (y;a)

————— = k = const., Vy.
g(y;a) ¢ Y

This implies,

0=/ g (y;a)dy = k = [ gly;a)dy = k.
Consequently, ga(y;a) = 0 for every y, which means that the distribution
of y is independent of a.

Whenever y is such that the distribution depends on a, it 1is
informative. A simple example is provided by the following monitoring

technology. The principal makes a random check that the agent is
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working when he is supposed to. This information in itself may not
tell that the agent is doing something wrong -- he may just take a
well-deserved break -- but it has the property that it is more likely
that the agent will be on a break if he is not providing the proper
effort. In other words, if we write y = 0 for the observation that
the agent is on a break and y = 1 otherwise, we have that P(y = I[a)
is an increasing function of a. Thus y is informative about a and
from Theorem 4.16 it follows that however weak the signal is, it has
potential gains.

The positive value of this particular information system was
proved in Gjesdal [1976]. It seems to correspond well to certain
behavioral controls used in practice; e.g., labor supervision.

Theorem 4.16 tells nothing about how valuable the additional
information will be. This would be important, since information is
always costly to obtain. In our discussion of approximation results,
we found that under certain circumstances the first-best solution can
be approximated arbitrarily closely when sufficient penalties are
available, and thus returns from additional monitoring Become negli-
gible. However, in practice penalties are restricted and if the
variance of Z is relatively high, this restriction may substantially
reduce efficiency when contracts only depend on the outcome x. Though
we did not explicitly include bounds on the sharing rule in analyzing

returns from monitoring, it is clear that an information system can

play a crucial role in utilizing the available penalties more efficiently

and improve on the solution.
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Some indications of the value of additional signals can be
found by studying (4.42). We see that the more variation in fa/f
one can achieve with a signal y, the more valuable it will be. Put
in another way: the more variation the conditional likelihood func-

tion from y exhibits, the higher returns we can expect from it.

4.4 Concluding Remarks

We have discussed two aspects of moral hazard in this chapter:
team production, and principal-agent contracts under uncertainty.

We found that team production resulted in inefficient supply
of inputs when agents shared the total outcome and no additional in-
formation systems were available. The central problem was that the
budget had to balance in cooperative institutions. We concluded that
a natural development of the organization would be to separate owner-
ship from input supply, since then the problems with team production
could be avoided. This provides in our view one explanation for the
emergence of corporations. It differs somewhat from Alchian and
Demsetz's theory of the firm, since monitoring has a central position
in their arguments.

Though monitoring can be seen to play some role in an environ-
ment of certainty, it gains additional significance when uncertainty
is present. We studied uncertainty in the context of a principal-
agent relationship. A characterization of efficient contractual
agreements were obtained, both based on the outcome alone and when

additional signals were available. In the former case, we emphasized
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rigor by proving the existence of an optimal solution in a restricted
class of sharing rules, and carefully deriving optimality conditions.
This was motivated by the fact that important examples of nonexistence
were known.

We also studied the approximation results of Mirrlees [1974]
with the qualitative conclusion that in many instances moral hazard
does not pose as‘severe problems as one may expect. Particularly, if
the agent can be evaluated over a longer time span, the variance in
judgment becdmes small, and simple penalty or bonus schemes will be-
come effective. In situations where this is not the case, additional
information systems become essential. We gave a simple necessary and
sufficient condition for such monitoring to be of value. The analysis
provided also an explanation for the complex contractual agreements
that are normally observed in practice.

So far the two kinds of moral hazard have been treated
separately, but from the analysis it is possible to draw some conclu-
sions about what happens in a mixed situation with n agents and state
uncertainty. Certainly, budget-balancing is again an essential issue.
If it is imposed, so that the team members who provide productive
inputs also share the outcome, one can expect this arrangement to be
less efficient than if separate ownership is established. Monitoring
will in that case play a dual role (and accordingly be morec important),
since discerning individual actions will both make aecoupling possible
and allow for improved risk sharing. However, notice that this is not

to say that each agent should only be responsible for what he can
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control, since in that case one would generally forego opportunities
for risk sharing among agents. For instance, in a partnership every-
bbdy may gain from sharing the outcomes of each others products

(just as in the two-person principal-agent case), but ideally monitor-
ing should prevent such an arrangement to lead to distortions in the
supply of effort.

When budget—balancing can be relaxed, say via a separate owner-
ship, the analysis becomes essentially similar to the two-person case,
though there may again exist potential gains from risk sharing between_
agents (unless the principal is risk neutral). Because of the presence
of uncertainty, there will not exist simple schemes which will guaran-
tee efficiency, and monitoring will generally play an important role in
insuring proper actions and improved risk sharing.

An extension to our analysis of moral hazard would take into
account the possibility of differential information about state uncer-
tainty between the principal and the agents. Quite often, the agent
who supplies the productive input is also better aware about the dif-
ficulty of his task. In that case a second-best solution would
generally require that the agent is given some freedom in determining
the sharing rule. We have seen an example of this in the use of a
goal-based incentive scheme (Example 2.4) and our analysis of manage-
ment by participation (Example 2.7) gave some indications of how such

schemes may work.



APPENDIX 4.A
SOME PARTICULAR OUTCOME FUNCTIONS

The following three outcome functions illustrate the relation-

ship between the two alternative problem formulations.

I. x(a,z) =z + h(a); z>0, z~ ﬁ; h(a) >0, h'(a) >0, h'(a) <0.
F(x,a) = FGiy)
XX h' (a)
F (x,a) = f(+—) *« - <0
a h(a) hz(a)
F ()
F(x,a) v o h(a) (v means proportional to, when a const.)
Fa(x,a) %( X ) —

h(a)

~ X 1
f(x,a) = fa) - h(a)

] N X Jh' (a) ~X . h'(a)
f,000 = ' Gy TRt fGny b2 (ay
I1. x(a,z) = z + h{(a)
F(x,a) = F(x - h(a))

Fo(x,a) = £(x - h(a))(-h'(a)) < 0
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F(x,a) , F(x-h(a))

Falx,a) F(x - h(a))

f(x,a) = £(x-h(a)) £,008) = B (x-h(a) + (-h' (a).
III. x(a,z) = h(a + z), z > 0.

F(x,a) = F(h 1 (x) - a) 5

Fo(x,a) = -E(h71(x0) - a) < 0

Fx,a) o Fleo - a)

Fa(x,a) %(h—l(x) - a)

f(x,a) = £(h 1 (x) - a) - '*“‘T%T‘“‘~
h'(h “(x))

£ (x,a) = £ (N0 - a) —
h'(h " (x))



APPENDIX 4.B
PROOF OF THEOREM 4.5

Theorem 4.5 will be proved in a sequence of lemmata.

Lemma 4B.1: Let {sn} be a sequence of functions in §,.

Then there exists a subsequence {sn,} and a function seSl such sthat

lim sn,(x) = s{x), for almost every xeR .

n' > o

Proof: The rational numbers can be ordered since they are
countable. Let {xm} be a sequence containing all rational numbers.
sn(xl)e[c,d] for every n, and consequently there is a convergent sub-
sequence {s l(xl)} with limit S(xl)e[c,d]. Likewise, {s l(xz)} has a
convergent gubsequence {s 2(x2)}, where n2 is a refinemegt of n”. Its

n

limit is denoted s(xz)e[c,d]. Continue in this manner to define a
function s(x) on all rationals.

. . . 1 2
The construction yields a sequence of refinements n° > n~ > ..

associated with the sequence {xm}. Define a further refinement n' of
n as follows: take the first element in nl, the second in n2 and so
on. For this refinement it holds that, from its mth member on, it is

a refinement of n". Hence, sn'(x) + s(x) for all rational x.

Extend s(x) to all of R by defining s(x) =1lim sup sn,(x),

- 265 -
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for every xeR. s(x) 1s easily seen to be nondecreasing and have
range [c,d], since this is true for each Sr- Hence, seSz. It also
follows thét the set X of points of discontinuity of s has measure
zero. (A bounded nondecreasing function can have at most a countable

number of discontinuities.)

Take any point xeXxS. For any rational number r < x we have,
s(r) = lim inf sn,(r) < 1im inf sn,(x) < s(x).

The equality follows by construction of the sequence n' and the
definition of s; the first inequality holds true since each St is
nondecreasing, and the second by definition of s. Letting r = x we

get, since s 1is continuous at X,
.. C
lim inf sn,(x) = s5(x), for every xeX ,

which gives our claim by definition of s and the fact that X has

Lebesque-measure zero. ) Q.E.D.

Lemma 4B.2: Let {sn} be a sequence of functions in S,. Then

there exists a subsequence {sn,} and a function seS, such that

lim sn,(x) = s(x) for every xeR.
n' - o«
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Proof: Repeat the construction in the préof of the previous
lemma to get a subsequence {sn,}, which converges pointwise on all
rationals. Define as before s(x) = 1im sup sn,(x). We show first
that 1lim sn,(x) = s(x).

n' > o

Let xeRR be arbitrary, and take y rational and such that

|x— y| < 8(e). Then,
ISn.(X) - Sn,(y)| <€ for every n'.

Writing out this as a double inequality and taking lim sup's and

lim inf's gives us:

lim sup sn,(x)_i s(y) + ¢

| v

lim inf sn,(x) s(y) - €,

using the fact that sn,(y) converges, since y is rational. Since € > 0
can be taken arbitrarily small we get that sn,(x) converges pointwise
everywhere.

To show that seS, note first that it has range [c,d]. Let

2
X,y be such that Ix-—yl < §(g), but otherwise arbitrary. Then,

Isn,(x) - sn,(y)l_i € for every n'.
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Take the limit as n' - « to get

!s(x) - s(y)l‘i £.

Hence, s belongs to the family of equi-continuous functions with

modulus 6(g). Q.E.D.

We have shown that for both classes Si’ i =1, 2, we can find
a.e. convergent subsequences of a sequence. Next we turn to the upper
semi-continuity of the objective functional under the notion of a.e.
convergence. (Note that S1 and S2 can be topologized so that a.e.
convergence in S1 and pointwise convergence in S2 are the induced

modes of convergence.) We begin by

Lemma 4B.3: The agent's solution correspondence a(s) is u.s.c.

w.T.t convergence a.e.

Proof: We have to show that if

(1) S, S (a.e.),

(ii) anea(sn) for every n,
(iii) a > a,
then aca(s).

Write M(a,s) = S U(s(x),a)f(x,a)dx. By B2 and B3,

U(sn(x),an)° f(x,an) > U(s(x),a) * f(x,a) for every x.
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By the fact that sn(x)e[c,d] for every x, we can use the bounded
convergence theorem to conclude that M(an,sn) + M(a,s).
Let a*ca(s). We need to show that M(a,s) = M(a*,s). We have

M(a,s) < M(a*,s) by definition. For the other inequality we have:

M(a*,s) f_M(a*,sn) + e < M(an,sn) + & < M(a,s) + 2,

when n > no(e), where no(e) is determined so that both the first and
the last inequality holds based on continuity. The middle inequality
follows by definition of a - Since € > 0 can be taken arbitrarily

small we conclude M(a*,s) < M(a,s), completing the proof. Q.E.D.

Recall the definitions:

B(a,s) = J[G(x-s(x)) + A * U(s(x),a)]f(x,a)dx,
and

J(s) = B(amax(s),s).

Lemma 4B.4: J(s) is u.s.c. with respect to convergence

almost everywhere.

Proof: We need to show that S, ” s* a.e. implies

J(s ) > J < J(s*). By compactness of A, a_ = a (s ) has a convergent

n max - n

subsequence an,-*a*eA. B(an,sn)—+B(a*,s*) by B2, B3, B4 and by using
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the bounded convergence theorem. By the previous lemma a*ca(s*) and

so by definition of & ax’ J = B(a*,s¥*) E_B(amax(s*),s*) = J(s*).

Q.E.D.

This lemma reveals the reason why we assumed BS.

We can now prove our main theorem:

Theorem 4.5: Let S = Sl or 82. Assume B1-BS5. Then there

exists an optimal solution to problem (4.25), (a*,s*), with

* - *
a amax(s ).

Proof: Let J = sup J(s) <, i = 1 or 2. By definition there
sesS.
l -_—
exists a sequence {sn} such that lim J(s ) » J. By Lemma 4B.1 (or
n + <
4B.2 if i = 2) there exists a subsequence {Sn,} which converges a.e.

to an s*eSi. Of course, lim J(sn,) ~ J. By Lemma 4B.4
n' > o«

lim J(sn,) < J(s*), and so J(s*) = J, implying the supremum is
n' - o

attained by (amax(s*),s*). Q.E.D.
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Footnotes to Chapter IV

) S . . . e . . .
This assumption simplifies the analysis but is not essential
for the results.

21n Kleindorfer and Sertel [1976a], it is shown that there
exists a unique Nash equilibrium if fi and x are strictly concave.

Because of possible nonconvexities induced by the action a
and constraint (4.18), it may not be p0551b1e to get all efficient pairs
as solutions to the program.

4By a first-best solution we mean one which would be optimal

under conditions of complete observability.

5For other purposes than ours, formulation (4.12)-(4.19) may be
more appropriate. For instance when Stiglitz [1974, 1975] studies
linear sharing rules it is easier to work with constraint (4.19).than
with (4.21).

6But notice that this cannot be checked by solving u and s(x)
from the characterization in Corollary 4.8 and conclude that s(x) is
optimal in S1 if it is nondecreasing.

7, . . .
Mirrlees uses another approximation rule, namely

s(x), if x> g,

s(x)
s (x)

£ , 1if x < g.

Our derivation is simpler because of our choice of approximation rule,
but Mirrlees' scheme 1s easier to implement.



CHAPTER V
EPILOGUE

In this dissertation we have addressed problems of incentives
in organizations, which arise due to asymmetric information among mem-
bers of the organization. In the framework of a general game-theoretic
formulation of the incentive problem, we have studied three specific
topics: delegation, coordination of information, and the supply of
productive inputs. The emphasis of the analysis has been theoretical,
aimed at a better understanding of how the organization can develop
various incentive or control schemes to overcome problems related to
asymmetric information. Though we have not been looking for results
of direct practical applicability, some of them are potentially usecful.
This is particularly true for the chapter on moral hazard. The model
of team production is suggestive of organizational design and the
structure of internal accounting. A more detailed analysis of the
optimal sharing rule in the principal-agent model (or of some simpler
contract form) should also prove useful for practice.

The scope of the dissertation is wide and many potentially
fruitful directions for further research suggest themselves. A main
issue of interest is the study of observability. We have seen that

what is observable to the principal and the agents is the key factor
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that determines what is achievable via cooperation. Being somewhat
speculative, one might hope that a more basic theory of incentives
could be developed by studying how thernoncooperative game between
members of the organization can be transformed by altering the
condition of observability in order to yield more efficient solutions.
An indication of the direction such an analysis could take, 1s pro-
vided in Moulin [1977], where 'self-punishment'" in a two-person game
is studied.

Some more specific research topics include:

- A study of goal-based incentive schemes for control in a
centrally planned economy or a firm (see Example 2.4), as well as
other outcome-based incentive schemes.

- A characterization of environments for which strongly
incentive compatible mechanisms exist.

- An analysis of the use of simple bonus or penalty schemes
(i.e., step functions) in moral hazard problems.

- An analysis of the effects of asymmetric information in

conjunction with moral hazard problems, and the use of goal-based

incentive schemes as control mechanisms.
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