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Abstract

We introduce two empirical strategies harnessing the randomness in school assign-

ment mechanisms to measure school value-added. The first estimator controls for

the probability of school assignment, treating take-up as ignorable. We test this as-

sumption using randomness in assignments. The second approach uses assignments

as instrumental variables (IVs) for low-dimensional models of value-added and forms

empirical Bayes posteriors from these IV estimates. Both strategies solve the un-

deridentification challenge arising from school undersubscription. Models controlling

for assignment risk and lagged achievement in Denver and New York City yield re-

liable value-added estimates. Estimates from models with lower-quality achievement

controls are improved by IV.

∗Our thanks to Jimmy Chin and Raymond Han for outstanding research assistance and to MIT SEII

program managers Eryn Heying and Anna Vallee for invaluable administrative support. We thank Jesse

Rothstein and seminar participants at Berkeley and the Online Causal Inference Seminar for helpful com-

ments. Financial support from Arnold Ventures/LJAF and the National Science Foundation is gratefully

acknowledged. Pathak also thanks the W.T. Grant Foundation for research support. The research described

here was carried out under data use agreements between the New York City and Denver public school

districts and MIT. We’re grateful to these districts for sharing data. JEL Codes: I20, C26, I28, C21, C52.
†MIT and NBER. Email: angrist@mit.edu
‡Corresponding author; Brown University and NBER. Email: peter hull@brown.edu
§MIT and NBER. Email: ppathak@mit.edu
¶University of California Berkeley and NBER. Email: crwalters@econ.berkeley.edu



1 Introduction

Policymakers and families increasingly rely on achievement-based measures of school

quality to make high-stakes decisions. Families use school quality information to decide

where to enroll and—in some cases—where to live. School leaders and policy-makers use

use measured quality when deciding whether to close, restructure, or expand schools.1 A

common concern with such quality rankings is selection bias, due to the non-random sorting

of students to schools. In a parallel development, a growing number of school districts use

centralized, algorithmic assignment schemes to match students and schools. Boston, Denver,

and New York City (NYC), for instance, use deferred acceptance (DA) algorithms to assign

students to seats.2 Many of these centralized assignment systems incorporate random lottery

numbers to break ties between otherwise similar students. A growing econometric literature

shows how the resulting randomness in seat assignment can be used to address selection bias.

This paper introduces two new empirical strategies that exploit randomness in algorithmic

school assignment to measure individual school quality. The key to both approaches is a

vector of school assignment propensity scores that characterize each student’s probability of

assignment to each school. In general, the propensity score for treatment assignment is the

probability of assignment conditional on a vector of confounding variables; Rosenbaum and

Rubin (1983) show that treatments that are independent of potential outcomes conditional

on potential confounders are also independent of potential outcomes conditional on the

1The Education Commission of the States noted that, as of 2018, 47 U.S. states and Washington D.C.

have included or plan to include a measure of average student achievement growth in their school account-

ability systems for elementary and middle school grades; twenty states further use or plan to use such

measures in high school accountability systems. These growth measures are analogous to the “conventional”

value-added models we study in this paper, which adjust student test scores by lagged achievement.
2Other cities with centralized school assignment systems include Baltimore, Cambridge (Massachusetts),

Camden (New Jersey), Chicago, Indianapolis, Minneapolis, Newark, New Orleans, Oakland, San Francisco,

Seattle, Tulsa, and Washington D.C. Centralized assignment is also widespread and growing globally, with 51

countries using it at either the primary or secondary level as of 2020 (see https://www.ccas-project.org/).
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propensity score. Abdulkadiroğlu et al. (2017, 2019) extend this result to matching markets

for schools, deriving formulas that quantify assignment risk in centrally assigning districts.

Empirical work exploiting school assignment propensity scores has so far aimed to cap-

ture causal effects of attendance in particular sectors, such as charter schools, rather than

individual schools. Estimates of such effects are useful for understanding average sectoral

effectiveness, but high stakes decisions for households and policymakers typically hinge on

measures of individual school quality. Our aim here is to use school assignment propensity

scores to estimate individual school value-added. An important econometric challenge in

this context arises because many schools are “undersubscribed,” in the sense of having no

applicants for whom assignment risk is strictly between zero and one. A conventional two-

stage least squares (2SLS) model that uses offers to instrument individual school attendance

is therefore underidentified. Moreover, many over-subscribed schools face weak demand and,

consequently, yield a weak first stage. This paper tackles the econometric issues arising in

such common school assignment scenarios.

Our first empirical strategy presumes that the only sources of selection bias in value-added

estimates are the applicant characteristics integral to school matching, such as where to apply

and the priority status that a school assigns its applicants. This amounts to the assumption

that compliance with conditionally randomized offers is independent of potential outcomes.

We refer to estimation based on this empirical strategy as a risk-controlled value-added

model (RC VAM). The conditional independence assumption underlying RC VAM echoes

that invoked in the Dale and Krueger (2002, 2014) and Mountjoy and Hickman (2020) studies

of the earnings consequences of elite college attendance. Importantly, however, centralized

school assignment facilitates tests of such conditional independence assumptions, a feature

new to applications of this sort of identification strategy.

Our second estimator avoids the conditional independence assumption motivating RC

VAM by using randomized school offers as instrumental variables (IVs) for school attended,

adjusting for the school assignment propensity scores. Score conditioning makes offer dum-
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mies credible instruments, but undersubscription makes a conventional IV approach in-

tractable. Our IV VAM procedure solves the underidentification problem by modeling school

value-added as a function of a few mediating school characteristics. IV estimates of mediator

effects are then used to construct empirical Bayes posterior predictions of value-added for

individual schools. This approach builds on and simplifies earlier empirical Bayes strategies

that combine observational and quasi-experimental estimates (Angrist et al., 2016, 2017;

Chetty and Hendren, 2018; Hull, 2018).

The RC VAM and IV VAM procedures are illustrated by estimating school value-added

in Denver and NYC, two large urban districts with centralized public school assignment.

Denver matches students to schools in a unified enrollment scheme that employs a single

random lottery number as a tie-breaker across students with the same admission priorities.

We estimate the Denver school assignment propensity score using recent theoretical results

on school assignment risk in such systems (Abdulkadiroğlu et al., 2017). In NYC, admission

offers are determined by a match that combines lottery and non-lottery tie-breakers, with

the latter relevant for applicants to New York’s “screened schools.” NYC school assignment

scores are therefore estimated using the theoretical results on assignment risk in matching

markets with mixed multiple tie-breaking developed in Abdulkadiroğlu et al. (2019).

VAM estimates from both cities suggest that controlling for school assignment risk and

lagged student achievement does a remarkably good job of eliminating selection bias. Sta-

tistical tests that exploit quasi-experimental offer variation fail to reject the key conditional

independence assumption underlying RC VAM. Perhaps surprisingly, RC VAM estimates

appear reliable even for the effects of NYC high schools on SAT scores, where lagged score

controls come from very different assessments. RC VAM estimates for NYC also beat con-

ventional VAM estimates on mean-squared error (MSE) grounds, with bias reductions more

than offsetting the variance penalty for use of narrower identifying variation.

Because RC VAM appears virtually unbiased, there’s little scope for IV VAM to improve

upon it in Denver and NYC. We show, however, that IV VAM can reduce bias and MSE when
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value-added is estimated with more limited controls than those specified by the RC VAM

procedure. IV VAM also boosts the accuracy of VAMs that rely on older measures of lagged

achievement for estimation. This scenario is inspired by the 2020 COVID-19 pandemic, when

few school districts were able to test as originally scheduled. Our encouraging results in this

context suggest that IV VAM is likely to be useful in situations where information on lagged

outcomes is dated or unavailable.

Our analysis adds to a large and growing literature on value-added measurement in

education and other fields. Statistical analyses of U.S. school quality date back to Coleman

(1966), which famously concluded that schools “bring little influence to bear on a child’s

achievement.” More recent studies leverage advanced statistical methods to separate the

causal effects of schools (or teachers) from the confounding factors of student background and

ability (e.g. Ladd and Walsh, 2002; Tekwe et al., 2004; Kane and Staiger, 2008; Reardon and

Raudenbush, 2009). Key extensions and applications exploiting quasi-experimental variation

include Chetty et al. (2014a) for teachers and Deming (2014) and Angrist et al. (2017) for

schools. Applications of quasi-experimental value-added estimation to other settings include

Chetty and Hendren (2018), Hull (2018), and Abaluck et al. (2021).3

The remainder of the paper is organized as follows. Section 2 outlines a conceptual

framework for school value-added estimation and testing in districts that centralize school

assignment. Sections 3 and 4 describe our two new estimation strategies. Empirical results

are discussed in Section 5. Section 6 summarizes and points to directions for further work.

2 Econometric Framework

2.1 Setting

Consider a population of N students, each attending one of J schools in a district. Let

Yij denote the potential test score outcome of student i when enrolled at school j. These

3See also Andrabi et al. (2020) and Ainsworth et al. (2020), who apply the methods of Angrist et al.

(2017) to school systems outside the U.S.
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potential outcomes are described by a constant-effects model:

Yij = γj + εi, j ∈ {1, . . . , J}, (1)

where γj = E[Yij] and εi ≡ Yij −E[Yij]. For any two schools, j and k, the difference γj − γk

gives the causal effect of attending j rather than k, that is, a comparison of school value-

added. Equation (1) is a constant-effects VAM because the common residual, εi, implies

the same Yij − Yik for all students. The constant-effects framework focuses attention on

the possibility of selection bias in VAM estimates rather than treatment effect heterogeneity

(though we explore the potential for such heterogeneity below). We refer to εi as student i’s

ability, since this reflects an individual student’s contribution to her academic achievement.

It’s convenient to adopt a parameterization that measures value-added relative to the

average for the district. Let Dij denote an indicator equal to one if student i attends school

j. Observed outcomes Yi can then be written:

Yi = β0 +
J∑
j=1

βjDij + εi, (2)

where β0 = 1
J

∑J
j=1 γj is the average potential achievement in the district and βj = γj − β0.

The value-added parameters βj describe the effect of randomly generated changes in

school enrollment on test score outcomes. Since school enrollment is not randomly assigned,

these causal parameters need not coincide with differences in average student outcomes across

schools. Schools that attract higher-ability students tend to have better average outcomes,

regardless of value-added. In the context of equation (2), this selection bias manifests as

correlation between the Dij and εi. Consequently, a regression of Yi on the Dij indicators

need not identify the parameters of the causal model (2).

2.2 Centralized Assignment

Centralized school assignment schemes (“matches,” for short) provide a source of identi-

fying information that we use to overcome selection bias. Centralized matches ask students

to submit rank-ordered preferences over schools, while also granting potential applicants a
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priority at each school; for example, siblings of enrolled students typically receive a higher

priority than non-siblings. Students are matched to schools by a deferred acceptance (DA)

algorithm that takes preferences and priorities as inputs. Match-generated offers are also

determined by a tie-breaking variable, often randomly assigned, that distinguishes between

students with the same preferences and priorities. The DA algorithm outputs a single school

assignment for each student. Students may choose to enroll where matched, or to enter

a later, less systematic round producing negotiated assignments. Random tie-breaking en-

sures that admission offers are randomly assigned conditional on student preferences and

priorities. Because many students enroll where offered, dummies indicating school offers are

highly correlated with the school enrollment dummies in equation (2).

The stochastic features of a match are formalized with the aid of notation for preferences

and priorities. Let �i denote student i’s list of preferences over schools and write ρij for

student i’s priority at school j. The vector ρi = (ρi1, ..., ρiJ)′ collects a student’s priorities

at all schools. A student’s type, denoted θi, is the combination of preferences and priorities,

that is, θi ≡ (�i, ρi). The centralized assignment algorithm takes as inputs the set of θi

and random tie-breaking numbers; it outputs a set of indicators, Zij, equal to one when the

match offers student i a seat at school j. Assignment indicators are collected in the vector

Zi = (Zi1, ..., ZiJ)′. The conditional random assignment of Zi is then summarized as follows:

Assumption CRA. Student ability is independent of school assignments conditional on

student type: εi ⊥⊥ Zi | θi.

Assumption CRA, maintained throughout the paper, suggests that we can estimate the

causal effects of school assignment by comparing the outcomes of students receiving different

assignments within strata defined by θi. In practice, however, we see nearly as many pref-

erence and priority combinations as there are students in a match. Consequently, full type

conditioning leaves few degrees of freedom for empirical analysis.

To reduce the dimension of the conditioning set needed to control omitted variables bias,

students of different types are pooled in a manner that preserves conditional independence
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of offers and potential outcomes. Pooling relies on the school assignment propensity score,

computation of which uses theoretical results in Abdulkadiroğlu et al. (2017, 2019). Student

i’s propensity score for assignment to school j is defined as:

pij ≡ Pr(Zij = 1|θi).

The pij are school assignment rates implicitly determined by repeatedly running the assign-

ment algorithm, redrawing tie-breakers each time, while holding preferences and priorities

fixed. Abdulkadiroğlu et al. (2017) and Abdulkadiroğlu et al. (2019) show how to compute

pij analytically, an approach followed here. The vector pi = (pi1, ..., piJ)′ collects student i’s

propensity scores for all schools.4

As first shown by Rosenbaum and Rubin (1983), random assignment conditional on a

vector of controls implies conditional random assignment given the propensity score obtained

from these controls. In our setup, this result can be stated as follows:

Lemma 1. Under Assumption CRA, student ability is independent of school assignments

conditional on assignment risk: εi ⊥⊥ Zi | pi.

In other words, since school assignment is ignorable conditional on type, it’s also ignorable

conditional on the school assignment propensity score. Moreover, assignment scores are

determined by a few key match parameters. Conditioning on low-dimensional propensity

scores thus leaves us with far more degrees of freedom than full type conditioning.

In a linear constant-effects model, score control can be implemented using the following

corollary to to Lemma 1:

Corollary 1. Under Assumption CRA, student ability is orthogonal to risk-adjusted school

assignments: E[εi(Zij − pij)] = 0 for each j.

4The NYC match is complicated by the participation of schools using non-lottery tie-breaking variables

like test scores. Propensity scores in this case, derived in Abdulkadiroğlu et al. (2019), turn on a set of

tie-breaker classification variables as well as on type. Our notation ignores this complication, which affects

estimation but is immaterial to the conceptual framework that allows us to identify VAM.
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This suggests the set of risk-adjusted offer dummies, Zij − pij, can used as instruments

for the set of enrollment dummies, Dij, in equation (2). The argument behind this result

parallels that in Robinson’s (1988) partially-linear framework, applied here to IV. A two-

stage least squares (2SLS) procedure that uses offers as instruments for school enrollment

while controlling for the corresponding propensity scores is equivalent to a 2SLS estimator

that uses residuals from a regression of offers on school assignment scores as instruments.

Since pij = E[Zij | θi], the auxiliary regression residual in this case is Zij − pij.5

2.3 The Undersubscription Challenge

Abdulkadiroğlu et al. (2017, 2019) use orthogonality conditions analogous to those de-

scribed by Corollary 1 to estimate effects of attending groups of schools that belong to a

particular sector, such as charter schools. This work treats assignment to a given sector as an

instrument for sector enrollment, controlling for the relevant sector-assignment propensity

score. When the sector of interest consists of charter schools, for example, risk adjustment

is based on the probability of being assigned a seat at any charter school in the match.

Using centralized assignment to estimate individual school value-added is more challeng-

ing. The challenge arises from the fact that many schools are undersubscribed, in the sense

of having no applicants for whom assignment risk is strictly between zero and one. When

assignment risk is zero or one, risk-adjusted school-assignment offers are constant at zero,

and so uninformative about a school’s causal effects. Undersubscription of individual schools

is seen more often than undersubscription of an entire sector. Thus, unlike models of, say,

charter school effects (a sector of interest), equation (2) is not identified solely by IV-type

exclusion restrictions since the number of endogenous variables exceeds the number of useful

instruments. The next two sections introduce strategies to address this challenge.6

5Proof of this and other key identification results appears in the Appendix. The Supplemental Appendix

contains technical material related to parameter estimation and additional empirical results. Borusyak and

Hull (2020) apply the risk adjustment idea to a broad class of research designs (and outside linear constant-

effects models) which use treatments or instruments computed from multiple sources of variation.
6We use “undersubscribed” to refer to schools for which all applicants have risk of either zero or one.
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3 Risk-Controlled VAM

Our first approach to the estimation of causal VAM eschews the use of instruments

and instead controls for assignment risk. This strategy is predicated on the assumption

that, conditional on applicant type and a vector of other pre-assignment covariates Xi,

the identity of a student’s enrolled school is independent of her potential outcomes and

is therefore as good as randomized. The Xi include conventional VAM controls such as

lagged test scores and student demographic characteristics. To formalize this identifying

assumption, let Di = (Di1, ..., DiJ)′ be a vector collecting the J school enrollment indicators.

This notation is used to state a key conditional independence assumption as follows:

Assumption CIA. Student ability is independent of school enrollment conditional on stu-

dent characteristics and assignment risk: εi ⊥⊥ Di | (pi, Xi).

The risk-controlled (RC) VAM estimator, presented below, leverages this assumption via a

regression of outcomes on school attendance dummies with controls for pi and Xi.

To motivate the RC VAM approach, note first that because school assignment offers

are randomly assigned conditional on type, it must be true that (εi, Xi) ⊥⊥ Zi | θi. Hence,

Lemma 1 can be modified to say:

εi ⊥⊥ Zi | (pi, Xi). (3)

Assumption CIA therefore follows from Lemma 1 in a scenario in which all match participants

accept any offer yielded by the match, so that Di = Zi. More generally, Assumption CIA

overcomes selection bias by requiring compliance with conditionally randomized school as-

This label seems fair because much of this degenerate risk is explained by non-application: in the sample

of undersubscribed NYC high schools, for example, 85% of school-applicant pairs have pij = 0. Undersub-

scription of this sort often arises when a school is ranked first by fewer applicants than the school has seats.

In this case, those ranking the school have Zij = pij = 1, while non-applicants have Zij = pij = 0. With

centralized assignment, the Zij = pij = 0 scenario may also occur when all students ranking j are guaranteed

to find seats at schools they prefer to j.
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signment offers, i.e. the relationship between Di and Zi, to be as good as random conditional

on applicant type and covariates. Under this assumption, value-added can be measured for

all schools in the district, without regard to undersubscription. Conventional VAM estimates

invoke a stronger version of Assumption CIA by requiring conditional independence to hold

conditional on Xi alone. The identifying assumption behind RC VAM therefore nests that

justifying conventional VAM.

Assumption CIA is a central-assignment analog of the Dale and Krueger (2002, 2014)

identification strategy for the returns to college selectivity. The Dale and Krueger approach

assumes that college enrollment decisions are made independently of potential outcomes

conditional on student application choices and college admission offers. In particular, these

studies argue that application choices and admission results are likely to capture stable

and systematic features of applicants’ preferences and qualifications, while subsequent offer

take-up decisions reflect idiosyncratic variation unrelated to potential outcomes.7 College

application choices are a decentralized analog of the preference component of applicant type

in a centralized match, while admission offer take-up is analogous to offer compliance.

This analogy suggests a close connection between the RC VAM and Dale and Krueger

identification strategies, a relationship formalized in the following result:

Lemma 2. Given (εi, Xi) ⊥⊥ Zi | θi, Assumption CIA is implied by conditional independence

of student ability and enrollment given student characteristics, assignment risk, and school

assignments: εi ⊥⊥ Di | (pi, Xi, Zi) =⇒ εi ⊥⊥ Di | (pi, Xi).

At first blush, the Dale and Krueger strategy adds an extra set of conditioning variables:

the admissions offers, Zi. Lemma 2 shows, however, that our CIA assumption is implied by

a Dale-and-Krueger-type conditional independence assumption that adds school assignment

offers to the conditioning set. Offer-conditioning is therefore unnecessary.

7Mountjoy and Hickman (2020) apply this strategy to estimate effects of college selectivity using admin-

istrative data from Texas. Abdulkadiroğlu et al. (2020) use a similar strategy to identify the determinants

of parental preferences for NYC schools.
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We implement RC VAM using ordinary least squares (OLS) regressions of the form:

Yi = α0 +
∑
j

αjDij +X ′iΓ + g(pi) + ηi, (4)

where Xi is a conventional VAM control vector and the function g(pi) parameterizes con-

trol for assignment risk. This function includes linear terms in the elements of pi and a

set of dummy variables indicating when each pij equals zero. The resulting parsimonious

specification of g(pi) has 2J terms in a district with J schools.

In a model with offer vector Zi on the right-hand side, control for a linear function of pi

is equivalent to estimation with dummies for all points of support in the assignment score

distribution (this follows from multivariate regression algebra and the definition of pi.) By

the propensity score theorem, therefore, linear score control eliminates omitted variables

bias arising from the relationship between offers and applicant type. We’re interested in the

effects of school enrollment rather than offer effects, however. Dummies for zero risk add an

additional nonlinear control for applicant type that may mitigate bias in enrollment effects.

Control for zero-risk dummies is motivated by the fact that over 99% of those with zero risk

of an offer did not apply. As in Dale and Krueger (2002), application behavior seems likely

to be a potential source of omitted variables bias in comparisons by school enrollment.

Given a set of RC VAM coefficient estimates α̂j (normalized to be mean-zero, as with the

βj), we construct linear shrinkage estimates of individual school quality using the formula:

α∗j = λjα̂j, λj =
σ2
α

σ2
α + s2j

, (5)

where σ2
α is the variance of the RC VAM coefficients and s2j is the sampling variance of α̂j.

Relative to the OLS estimates α̂j, the α∗j have lower mean squared error (MSE) as predictors

of the population coefficients, αj. In particular, α∗j coincides with the posterior mean for αj

under the assumption that the αj are Normally distributed across schools and independent

of sj, and gives an MSE-minimizing linear approximation to the posterior mean outside

of Normality (Morris, 1983). An empirical Bayes (EB) posterior prediction substitutes an
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estimate of λj into equation (5). We estimate s2j with the squared standard error of α̂j, and

estimate σ2
α by subtracting the average s2j estimate from the sample variance of α̂j.

Testing the CIA with Centralized Assignment

The αj in (4) coincide with causal value-added parameters βj when the controls in equa-

tion (4) are sufficient to eliminate selection bias. This leads to the following null hypothesis

for the validity of RC VAM and other OLS value-added estimators:

H0 : αj = βj; j ∈ {1, . . . , J}.

A simple example shows how randomized offers can be used to test H0. Suppose J = 2

and we re-normalize intercepts to make β1 and α1 measure causal and OLS value-added

of school 1 relative to school 2. Suppose also that every student faces the same risk of

assignment to school 1, so that pi1 is constant, and omit the additional VAM controls, Xi.

Under H0, the OLS residual, ηi, is then equal to student ability, εi. Corollary 1 therefore

implies that the offer Zi1 is mean-independent of ηi:

E[ηi|Zi1 = 1]− E[ηi|Zi1 = 0] = 0.

Substituting εi for ηi in this expression using a simplified (4) yields:

(E[Yi|Zi1 = 1]− α1E[Di1|Zi1 = 1])− (E[Yi|Zi1 = 0]− α1E[Di1|Zi1 = 0]) = 0.

Rearranging and using the fact that α1 = E[Yi|Di1 = 1]− E[Yi|Di1 = 0], we have:

E[Yi|Zi1 = 1]− E[Yi|Zi1 = 0]

E[Di1|Zi1 = 1]− E[Di1|Zi1 = 0]
= E[Yi|Di1 = 1]− E[Yi|Di1 = 0].

The left side of this expression is an IV estimand using Zi1 to instrument Di1. A test of H0

that checks orthogonality of ηi and Zi1 is therefore a Hausman (1978) test for equality of

school 1 enrollment effects estimated by IV and OLS.

To extend this test to the general version of equation (4), let L be the number of schools

with non-degenerate propensity scores. Note that even when L < J , null hypothesis H0

implies the orthogonality of ηi and all risk-adjusted school offers. This orthogonality yields
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L testable restrictions of the form:

E[ηi(Zi` − pi`)] = 0; ` ∈ {1, . . . , L}, (6)

where ηi denotes the RC VAM residual in (4).

The restrictions in (6) are tested by asking whether τ1 = · · · = τL = 0 in the residual

regression equation:

η̂i = τ0 +
L∑
`=1

τ`Zi` +
L∑
`=1

µ`pi` +X ′i∆ + ξi, (7)

where ` indexes dummies, Zi`, indicating offers at L < J over-subscribed schools. This is

a regression version of the Sargan test for instrument-error orthogonality (detailed in, e.g.,

Hausman (1983)). The error term here, however, is generated by OLS estimates of the RC

VAM model rather than by 2SLS, as for the original Sargan test. Propensity score controls

on the right hand side of (7) ensure that this procedure tests risk-adjusted offer-residual

orthogonality.8 Covariates are not needed for test validity (since the Xi are conditionally

uncorrelated with the Zi`), but their inclusion may reduce the residual variance in (7),

thereby increasing test power.

It’s worth noting that, even with L < J , test statistics based on (7) may detect bias in

any of the J OLS VAM coefficients, αj. To see this, note that a specification test based

on (6) implicitly asks whether effects of randomized offers on test scores equal effects of

offers on OLS-predicted value-added (an equivalence detailed in Angrist et al. (2016), and

illustrated in the empirical analysis, below).9 Because offers of a seat at an oversubscribed

school may shift enrollment at any school, whether oversubscribed or not, the two reduced

forms in question are likely to be aligned only when all OLS VAM estimates are unbiased.10

8This residual is formed using the OLS estimates α̂j with no shrinkage. Shrinkage is relevant for obtaining

minimum-MSE (and possibly biased) predictions of individual school quality, rather than testing for bias.
9This interpretation follows by observing that E[ηi(Zi`−pi`)] = E[Yi(Zi`−pi`)]−E[

∑
j αjDij(Zi`−pi`)],

since risk-adjusted offers are orthogonal to Xi. Testing E[ηi(Zi`− pi`)] = 0 is therefore equivalent to testing

whether E[Yi(Zi` − pi`)] = E[
∑
j αjDij(Zi` − pi`)].

10Suppose, for example, there are 3 schools, A, B, and C. Let A be the reference school and suppose

that only B is oversubscribed. OLS predicted value-added is Ŷi = α+ αBDiB + αCDiC . Offers of a seat at
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The omnibus specification test based on (7) admits a useful decomposition that distin-

guishes VAM bias on average from the bias of VAM estimates for specific schools. This

decomposition, introduced by Angrist et al. (2016), builds on a regression linking OLS and

causal VAM coefficients:

βj = ϕαj + νj, (8)

where νj is defined so as to be uncorrelated with αj in the population of schools. The

parameter ϕ is a forecast coefficient summarizing the degree to which RC VAM parameters

predict causal value-added. The corresponding forecast residuals, νj, have variance denoted

σ2
ν . In the absence of selection bias, αj = βj, so ϕ = 1 and σ2

ν = 0. More generally,

ϕ summarizes the reliability of RC VAM predictions. At the same time, σ2
ν characterizes

idiosyncratic school-specific biases that average to zero over schools.

Assuming the residual ξi is conditionally homoskedastic, the omnibus test statistic eval-

uating τ1 = · · · = τL = 0 in equation (7) can be written as the sum of a test of forecast bias

and a test of idiosyncratic bias. The omnibus test statistic is:

T̂ =
(Y −Dα̂)′PZ⊥(Y −Dα̂)

σ̂2
ξ

,

where Y is a vector collecting observations of Yi, D is a matrix collecting observations of

Di, α̂ is a vector collecting the OLS estimates of αj, σ̂
2
ξ = 1

N

∑
i ξ̂

2
i estimates the variance

of ξi, and PZ⊥ is the projection matrix for the set of over-subscribed assignments Z after

partialling out controls (that is, PZ⊥ = Z⊥(Z ′⊥Z⊥)−1Z ′⊥, where Z⊥ = Z − C(C ′C)−1C ′Z,

with matrix C collecting observations on risk controls and covariates on the right-hand side

of (7)). Appendix A.3 shows that this test statistic can be decomposed as

T̂ =
(ϕ̂− 1)2

σ̂2
ξ (α̂

′D′PZ⊥Dα̂)−1
+

(Y −Dα̂ϕ̂)′PZ⊥(Y −Dα̂ϕ̂)

σ̂2
ξ

, (9)

B increase enrollment at B and reduce enrollment at C. Bias in αC therefore induces divergence between

the reduced form effect of an offer at B on Yi and the corresponding reduced form effect on Ŷi, even when

αB is unbiased.
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where ϕ̂ = (α̂′D′PZ⊥Dα̂)−1(α̂′D′PZ⊥Y ) is the 2SLS estimate of the forecast coefficient com-

puted by using over-subscribed offer dummies to instrument RC VAM estimates of value-

added at the school attended by student i.

The first term in the decomposition of T̂ is a Wald statistic testing ϕ = 1 (the denomina-

tor of this term estimates the variance of ϕ̂). The second term is the Sargan (1958) statistic

testing overidentifying restrictions induced by the 2SLS procedure generating ϕ̂. The dis-

tinction between these tests is illuminated by substituting the forecast regression, (8), into

the causal model, (2), to obtain

Yi = β0 + ϕαj(i) + εi + νj(i), (10)

where αj(i) =
∑

j Dijαj is the OLS VAM coefficient for student i’s school and νj(i) =
∑

j Dijνj

is the corresponding forecast residual.

By Corollary 1, risk-adjusted school offers, Zij − pij, are orthogonal to εi. Under H0, we

also have νj(i) = 0. Together, these restrictions imply that the Zi`−pi` are valid instruments

for αj(i) in equation (10). The first term of equation (9) asks whether the estimated fore-

cast coefficient yielded by these instruments is indeed statistically indistinguishable from one.

Paralleling a Sargan test of instrument-error orthogonality, the second term asks whether the

individual IV estimates computed using one instrument at a time are statistically indistin-

guishable from one another (whether they’re equal to one or not). Maintaining orthogonality

of the instruments with εi, this amounts to a test of νj(i) = 0 since νj(i) 6= 0 typically makes

one-at-a-time IV estimates diverge. Note also that the omnibus test and associated decom-

position detailed here apply to OLS estimates other than RC VAM, including conventional

VAM estimates that control for Xi alone.

4 IV VAM in Underidentified Models

The randomness induced by centralized assignment identifies key features of the value-

added distribution even when OLS VAM estimates are biased. Our IV VAM estimator

exploits this variation by including RC VAM or other OLS estimates in a low-dimensional
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model of school quality. Because systematic variation in quality is presumed to flow through

only a few school characteristics, this model is identified even in the face of widespread

undersubscription. The resulting parameter estimates can then be used to predict value-

added for individual schools. As in Angrist et al. (2017), these predictions can be seen as

optimally weighted combinations of OLS estimates and IV reduced forms. We improve on

earlier efforts in this spirit by combining RC VAM and IV estimates in a computationally

attractive linear framework.

IV VAM is derived from first-stage and reduced form regressions of school attendance

and outcomes on risk-adjusted offers for admission to over-subscribed schools:

Dij = φj +
L∑
`=1

π`j(Zi` − pi`) + uij, j ∈ {1, ..., J}, (11)

and

Yi = κ+
L∑
`=1

ρ`(Zi` − pi`) + ωi. (12)

Reduced form equation (12) is obtained by substituting the first stages described by (11)

into the causal model, (2).

Matrix notation highlights the identification problem raised by undersubscription. Array

the π`j coefficients in equation (11) in the L × J matrix Π, and collect the ρ` coefficients

in equation (12) in the L × 1 vector ρ. We then have ρ = Πβ, where β = (β1, ..., βJ)′.

When L = J , school value-added is identified by solving β = Π−1ρ. When some schools

are undersubscribed, L < J and the first stage and reduced form alone are insufficient to

identify the causal effects of interest.

This identification problem is tackled here by modeling the relationship between school

quality and a lower-dimensional set of mediating variables. We show below how this model,

once estimated, can be used to produce individual school quality estimates. Specifically,

we extend the simple school-level forecast regression (8) to a more general model for school
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value-added:

βj = M ′
jϕ+ νj, (13)

where Mj = (Mj1, ...,MjK)′ is a K × 1 vector of school characteristics, normalized to have

mean zero across schools, with K assumed to be much smaller than L. These value-added

mediators may include RC VAM or conventional OLS VAM parameters, as well as other

school characteristics like indicators for school sector. The forecast coefficient, ϕ (now a vec-

tor), captures the relationship between mediators and causal value-added, βj. The forecast

residual, νj, is defined to be mean zero and uncorrelated with Mj across schools. Substituting

(13) into (2) yields a generalization of equation (10):

Yi = β0 +M ′
j(i)ϕ+ εi + νj(i), (14)

where Mj(i) =
∑

j DijMj is the vector of mediators associated with student i’s enrolled school

and νj(i) =
∑

j Dijνj is the associated forecast residual.

Our IV VAM procedure estimates ϕ using risk-adjusted school offers as instruments for

Mj(i) in equation (14). In contrast with the testing procedure detailed in Section 3, IV

VAM allows for multiple mediators in Mj(i) rather than RC VAM coefficients alone as in (8).

Moreover, the forecast regression is no longer assumed to fit causal value-added perfectly,

that is, IV VAM allows νj 6= 0. This scenario, which arises when Mj fails to explain all of

the variation in school value-added, leads to a violation of the relevant exclusion restrictions

even when Assumption CRA holds. To see this, substitute the first stage equation, (11),

into the definition of νj(i) in (14) to obtain:

Yi = β̃0 +M ′
j(i)ϕ+

L∑
`=1

δ`(Zi` − pi`) + ε̃i, (15)

where β̃0 = β0 +
∑

j νjφj, ε̃i = εi +
∑

j νjuij, and δ` =
∑

j π`jνj. Parameters δ` in this

expression capture effects of the instruments operating through channels other than Mj(i).

The resulting exclusion restriction violations emerge whenever offers shift students across
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schools with different forecast residuals.

We account for potential exclusion violations by adapting the Kolesár et al. (2015) frame-

work for models with many invalid instruments. This framework allows exclusion violations

for individual instruments, but requires these violations to average out in an asymptotic

sequence that increases the number of instruments in proportion to the sample size. To see

how this strategy applies here, it’s useful to write the first stages for the mediators as:

Mj(i)k = ψ0k +
L∑
`=1

ψ`k(Zi` − pi`) + υik, k ∈ {1, ..., K}, (16)

with ψ0k =
∑

jMjkφj, υik =
∑

jMjkuij, and ψ`k =
∑

jMjkπ`j. Parameters ψ`k characterize

school offer effects on school characteristics, filtered through the effects of offers on enrollment

as parameterized by π`j.

With this notation in hand, the second key identifying assumption for IV VAM (after

Assumption CRA) can be stated as follows:

Assumption MIV. Exclusion violations are orthogonal to first stage fitted values:

E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)]
= 0, k ∈ {1, ..., K}.

This assumption requires the first stage predicted values for mediators generated by (16) to

be uncorrelated with the terms generating exclusion violations in (15).

When the first stage and reduced form parameters are viewed as fixed, Assumption

MIV holds only in a scenario in which the δ` and ψ`k coefficients are arranged so that

exclusion violations fortuitously average to zero in the data at hand. In this case, the only

random variables relevant to Assumption MIV are the instruments. In a random coefficients

framework, however, school-specific features Mj, νj and {π`j}L`=1 are seen as draws from a

joint distribution of school characteristics, forecast residuals, and offer compliance behavior.

In this framework (similar to that used in Angrist et al. (2017)), a sufficient condition for

Assumption MIV can be formalized as:

Lemma 3. Let ν denote the J × 1-vector of forecast residuals, νj; let M denote the J ×K
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matrix of school characteristics, Mj; let Z̃ denote the N × L matrix of risk-adjusted offers,

Zi` − pi`. Suppose that Mj, νj, and {π`j}L`=1 are drawn from a joint distribution of school

features, so that conditional expectations involving these variables are well-defined, and that

E[ν | Π,M, Z̃] = 0. Then Assumption MIV holds.

This result requires that the unexplained component of school value-added be unrelated

to offer compliance rates. When Mj includes characteristics strongly predictive of school

quality, νj can be thought of as capturing the bias in these predictions. MIV is then satisfied

when bias and offer compliance rates are uncorrelated, but fails when students are more

likely to accept offers at higher value-added schools, conditional on mediators and offers.

It’s also worth noting that when Mj includes the RC VAM coefficient αj, Assumption MIV

is strictly weaker than Assumption CIA: the latter requires νj = 0 for all schools, while

the former is compatible with non-zero νj, provided these idiosyncratic bias components are

conditionally mean-independent of Π.

Increasing the number of instruments increases the plausibility of Assumption MIV,

though at the risk of increased finite-sample bias in 2SLS estimates of ϕ. In view of possible

bias in heavily overidentified models, Kolesár et al. (2015) propose a bias-corrected 2SLS

estimator (B2SLS) that is consistent in a many-instrument asymptotic sequence similar to

that in Bekker (1994). The Supplemental Appendix adapts the assumptions of Kolesár et al.

(2015) to our setting and shows that the B2SLS estimator is consistent for ϕ under Assump-

tions CRA and MIV in a many-instrument asymptotic sequence (here, this means increasing

L in proportion to N). This appendix also derives a consistent estimator of the forecast

residual variance, σ2
ν , under a homoskedasticity assumption. In practice, B2SLS and 2SLS

estimates of value added are virtually indistinguishable.

Empirical Bayes Posterior Predictions

In an empirical Bayes framework, IV VAM estimates of ϕ and σ2
ν can be seen as character-

izing a prior distribution of school quality. These estimates, in combination with estimates of

ρ and Π, yield posterior predictions of school value-added. The rest of this section sketches an
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empirical Bayes procedure using IV VAM estimates for posterior prediction (proofs appear

in the Supplemental Appendix).

Consider the minimum mean squared error (MSE) predictor of β as a function of OLS

estimates of reduced form offer effects ρ̂ in equation (12), conditional on M , Π, and Z̃:

β∗ = arg min
b(·)

E
[
(b(ρ̂)− β)′(b(ρ̂)− β)|Π,M, Z̃

]
. (17)

As always, MSE is minimized by a conditional expectation, here β∗ = E[β | ρ̂,Π,M, Z̃].

The following result characterizes this function when reduced form estimates and forecast

residuals are both Normally distributed:

Proposition 1. Suppose ρ̂|(ρ,Π,M, Z̃) ∼ N(ρ,Σ) and ν|(Π,M, Z̃) ∼ N(0, σ2
νI). Then:

β∗ = Ωρ̂+ (I − ΩΠ)Mϕ, (18)

where Ω = Π′(ΠΠ′ + Σ/σ2
ν)
−1.

Equation (18) defines a set of hybrid value-added predictions determined by a linear

combination of reduced-form offer effects, ρ̂, and value-added as predicted by the forecast

regression, Mϕ. Given the assumptions invoked in the proposition, the hybrid value-add

vector β∗ can be interpreted as the posterior mean of β given a prior based on (M,Π, Z̃),

updated with estimates of ρ̂. Plugging estimates of ϕ, σ2
ν , Π, Σ, and M into equation (18)

yields an EB posterior mean β̂∗. These IV VAM predictions generalize the EB shrinkage

estimators commonly used to reduce the MSE of noisy OLS estimates (as in, e.g., Kane et al.

(2008) and Chetty et al. (2014a) for teachers, and as described for RC VAM in Section 3).

Proposition 1 generates EB posterior VAM estimates for schools under weaker assump-

tions than deployed for this purpose in Angrist et al. (2017), which requires all school-specific

parameters in the underlying random coefficients model to be Normally distributed. The

first assumption in Proposition 1, that the reduced form estimates are conditionally normally

distributed, can be justified by an asymptotic approximation to the distribution of ρ̂ or by

Normality of the error term ωi in equation (12). Note also that β∗ is the best linear predictor
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of β even when the νj are non-Normal:

Corollary 2. Suppose ρ̂|(ρ,Π,M, Z̃) ∼ N(ρ,Σ), E[ν | Π,M, Z̃] = 0, and V ar(ν|Π,M, Z̃) =

σ2
νI. Then, the β∗ in equation (18) solves (17) in the class of linear predictors of the form

b0 +B1ρ̂, where b0 is a J × 1 vector of constants and B1 is a J × L coefficient matrix.

This follows from the fact that Normality of the reduced-form estimates and conditional

homoskedasticity of forecast residuals imply that β∗ and the regression of β on ρ̂ coincide.

The formula for Ω reveals that when M is a vector of unbiased OLS VAM coefficients

α, such that ϕ = 1 and σ2
ν = 0, the posterior β∗ puts no weight on the reduced-form

estimates; in this case, β∗ = Mϕ = α. The Supplemental Appendix extends this formula

to allow for sampling variance in the OLS estimates, i.e., for M to be the vector of α̂j, a

generalization used in the empirical work. When α̂j is unbiased and the underlying errors

are homoskedastic, β∗ again puts no weight on reduced-form estimates, simplifying to a

conventional EB shrinkage formula of the form β∗j = λjα̂j, as in Section 3. The Supplemental

Appendix also shows that when L = J , so that all schools are over-subscribed, the estimated

posterior β̂∗ is a weighted average of IV estimates Π̂−1ρ̂ and the forecast regression fitted value

Mϕ̂. In general, the EB posterior combines the quasi-experimental information generated

by randomized school assignment with a value-added forecast based on OLS estimates and

other school characteristics, weighted to account for estimation and forecast errors.

5 Quantifying the Quality of Public Schools

We demonstrate the utility of RC VAM and IV VAM using data from the Denver and

NYC public school districts. The Denver sample updates the extract analyzed by Abdulka-

diroğlu et al. (2017), adding five new applicant cohorts. This sample includes students

applying for sixth-grade seats at any Denver Public Schools (DPS) middle school between

the 2012-2013 and 2018-2019 school years. Match data include applicant preferences, prior-

ities, and the assignments generated by the match. We also have data on school enrollment,

student demographic characteristics, and scores on the Colorado Student Assessment Pro-
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gram (CSAP) and Colorado Measures of Academic Success (CMAS) state achievement tests.

The data appendix for Abdulkadiroğlu et al. (2017) explains how these files are processed.

Our NYC analysis sample covers sixth grade applicants to NYC middle schools, apply-

ing for the 2016-2017 through 2018-2019 school years, and ninth grade applicants to NYC

high schools, applying for 2012-2013 through 2014-2015. This sample is an update of the

extract analyzed by Abdulkadiroğlu et al. (2019), adding middle school applicants. As with

Denver, the NYC analysis sample includes preferences, priorities, assignments, demographic

information, and school enrollment. Middle school outcomes come from New York state

achievement tests, while the high school analysis uses SAT score outcomes. The processing

of NYC student records is described in the Abdulkadiroğlu et al. (2019) data appendix. In

both Denver and NYC, we standardize all achievement tests and SAT scores to have mean

zero and standard deviation one separately by year.

Students in Denver rank up to five schools participating in the DPS unified enrollment

match, which covers public schools of all types, including traditional district schools and

charter schools. Priorities are assigned based on criteria like sibling status and applicant

neighborhood. A DA algorithm implemented with a single lottery tie-breaker assigns stu-

dents to schools. We calculate assignment risk for DPS applicants using the propensity score

formula derived by Abdulkadiroğlu et al. (2017). This formula is an analytical large-market

approximation to the school assignment propensity score for DA with a random tie-breaker.11

NYC applicants rank up to 12 academic programs in middle or high school. For purposes

of the analysis that follows, multiple programs are aggregated to the school level. The NYC

match features a variety of tie-breakers, with “unscreened” schools using a random lottery

number and “screened” schools using non-random tie-breakers such as 6th grade test scores

11The DPS score is computed using the formula score described in Abdulkadiroğlu et al. (2017). This is

computed by identifying sets of applicant types that are never seated, always seated, and conditionally seated

at every school in the match, a classification that depends on priorities. The formula score is a function of

this classification and the school-specific tie-breaker cutoffs determined by the match. Cutoff dependence is

determined by an applicant’s preferences. See Abdulkadiroğlu et al. (2017) for details.

22



and grades. Propensity scores for NYC school assignment are computed as described in

Abdulkadiroğlu et al. (2019). These scores depend in part on bandwidths for screened

school tie-breakers, similar to those used in standard regression discontinuity designs.12 As

in Abdulkadiroğlu et al. (2019), regression and 2SLS estimates that control for propensity

scores also control for local linear functions of the relevant screened-school tie-breakers for

applicants inside the relevant bandwidth.

Table 1 describes students and schools in the DPS and NYC samples. The first column

shows statistics for the full sample of enrolled DPS middle school students, while column

2 shows statistics for DPS applicants with non-degenerate assignment risk (these students

have pij ∈ (0, 1) for at least one j). Columns 3-4 of the table report corresponding statistics

for NYC middle school students, and columns 5-6 describe NYC high school students. RC

VAM and other OLS VAM models are estimated using the full sample of enrolled students,

while bias tests and IV VAM estimators use the non-degenerate risk subsamples.

As is typical of large urban districts, most DPS and NYC students are disadvantaged,

with over 70 percent eligible for a subsidized lunch. Roughly a quarter of the students in each

sample face some assignment risk, with such applicants appearing broadly representative

of enrolled student populations. Table A1 in the Supplemental Appendix compares the

characteristics of students offered seats at higher- and lower-value-added schools (as measured

by the conventional VAM estimates discussed below) within the at-risk sample. We see large

differences in student characteristics between those offered high- and low-value-added seats.

Controlling for assignment risk, however, makes these differences vanish. The fact that risk

control makes centralized assignment offers independent of observed characteristics suggests

12The NYC score is the local DA score described in Section 4.2 of Abdulkadiroğlu et al. (2019). As with

the formula score, it is a function of a classification of types into always, never, and conditionally seated

applicants to each school, as well as the tie-breaker cutoffs generated by the match. Applicant classification

for the local score depends also on non-lottery tie-breakers and bandwidths around screened-school admissions

cutoffs. Bandwidths used here are computed as suggested by Calonico et al. (2019).
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this is likely to be the case for unobserved characteristics as well.13

Table 1 shows that most NYC students in our samples attend lottery rather than screened

schools (all DPS schools use lottery tie-breaking). Roughly 30% of middle school students

in both cities are non-compliant in the sense that they enroll someone other than where

offered a seat, while non-compliance is a little higher among NYC high school students. RC

VAM implicitly treats the gap between enrollment and assignment as conditionally randomly

assigned. The bottom rows of the table show that most Denver and New York schools are

over-subscribed. Specifically, at least one student has non-degenerate risk at 67 out of 80

Denver middle schools, at 448 out of 624 NYC middle schools, and at 382 out of 486 NYC

high schools. This reflects the interdependence of school assignments in a centralized match:

oversubscription at in-demand schools generates assignment risk even for unpopular schools

with fewer applicants than seats. At the same time, some schools are undersubscribed and

some oversubscribed schools have small at-risk samples or low offer take-up rates. Our RC

VAM and IV VAM procedures yield estimates of causal effects for such schools even so.

5.1 Evaluating RC VAM

The testing framework in Section 3 is used to compare the predictive validity of RC VAM

estimates with results from OLS VAM estimators relying on fewer controls. The first of these

is a benchmark model, labelled uncontrolled, that includes only application year dummies

in Xi and omits the propensity score controls, pi. The second is a conventional value-added

13Balance checks regress student characteristics on the conventional value-added of the school where

applicants are offered a seat, along with a dummy indicating whether the applicant was offered a seat

anywhere. Risk controls consist of expected value-added and the probability of receiving any offer. The

former is computed as a score-weighted average of school value-added. Table A1 in the Supplemental

Appendix shows that control for risk eliminates imbalances between applicants offered high and low-value-

added seats and between those who do and don’t get offers. Differential attrition can create selection bias

even with random assignment. Supplemental Appendix Table A2 shows that follow-up rates for key outcomes

are largely unrelated to assigned school value-added, conditional on assignment risk. This makes it unlikely

that selective attrition biases estimates of reduced form school-offer effects.
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model adding dummies for sex, race, subsidized lunch status, special education, and limited

English proficiency, along with cubic functions of baseline math and English language arts

(ELA, or reading) scores, to the control vector, Xi. This model parallels widely-used VAM

specifications for the measurement of teacher and school effectiveness (e.g., Chetty et al.

2014a). A third model, labelled risk only, omits conventional VAM controls but includes

assignment propensity scores, pi. Finally, RC VAM estimates come from regressions that

combine conventional VAM controls with controls for school assignment risk.14

Uncontrolled middle school VAM estimates are clearly contaminated by selection bias.

This can be seen in Table 2, which reports the components of the test statistic (9) for

sixth grade math scores in each city. For the purpose of VAM testing, schools are classified

into 20 bins defined by ventiles of the distribution of estimated conventional value-added.

The testing equation, (7), is estimating using bin-level (rather than single-school) offers and

propensity scores. This aggregation may increase test power relative to tests derived by using

all school-specific offers as instruments for value-added in (10).15 As shown in column 1 of

Table 2, the uncontrolled VAM specification generates forecast coefficients of 0.43 in DPS

(shown in Panel A) and 0.60 in NYC (shown in Panel B). These estimates are statistically

different from one, while the overidentification and omnibus tests clearly reject the null

hypothesis of zero bias in the uncontrolled model.

VAM research to date suggests that control for lagged test scores and student demo-

graphic characteristics eliminates much of the selection bias in naive comparisons of achieve-

ment across teachers and schools (Chetty et al., 2014a; Bacher-Hicks et al., 2014; Deming,

14Schools out of the match have constant risk equal to pij = 0 for all students. RC VAM for such schools

adds no controls relative to conventional VAM. But for undersubscribed schools with a mix of applicants

such that pij = 0 and pij = 1, risk control becomes a dummy indicating any risk. The zero-risk group in

such cases consists mostly of non-applicants.
15Roodman (2009) discusses the connection between the number of overidentifying restrictions and the

power of overidentification tests. Supplemental Appendix Table A3 reports results using alternative bin

schemes; the choice of bin size matters little for test results.
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2014; Angrist et al., 2017). Consistent with this finding, the second column of Table 2 shows

that middle school VAMs estimated with conventional controls boost the forecast coefficient

markedly, yielding forecast estimates of 1.12 in DPS and 0.93 in NYC, respectively. The

former is statistically indistinguishable from one, while the latter is only marginally sig-

nificantly different from one, reflecting the fact that NYC estimates are considerably more

precise. Omnibus test results are marginal for conventional VAM in both cities. The DPS

overidentification test also results in a marginal rejection of the null hypothesis.

As can be seen in column 3 of Table 2, middle school VAMs estimated with risk controls

alone similarly improve greatly on the uncontrolled estimates. The risk-only model generates

forecast coefficients of 0.81 and 0.82 in DPS and NYC. In contrast with the test results for

conventional VAM, however, omnibus and overidentification test results clearly reject the null

of unbiased risk-only estimates. On the other hand, RC VAM estimates, evaluated in the

fourth column of the table, yield remarkably accurate and internally consistent predictions

of school quality. For both DPS and NYC middle schools, estimated RC VAM forecast

coefficients are close to one, while the associated omnibus tests offer little evidence against

the claim that RC VAM estimates can be interpreted as causal.

Test results for NYC high schools, reported in Table 3, likewise show that RC VAM

estimates for SAT math are virtually unbiased. In contrast, the other VAM estimators

evaluated in the table are almost certainly biased. This is unsurprising for uncontrolled

estimates, which yield a forecast coefficient of only 0.35. Conventional and risk-only VAMs

do much better, with forecast coefficients of 0.79 and 0.68, respectively. Even so, test results

for both models suggest substantial remaining bias. In these cases, forecast bias rather than a

failure of overidentifying restrictions is the source of the omnibus test rejection. The fact that

the lagged score controls in the conventional VAM estimates come from assessments other

than the SAT seems likely to contribute to the relatively poor performance of conventional

VAM estimates for high schools (a point made in a different context by Chetty et al. (2014b)).
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The good performance of RC VAM for SAT scores is therefore especially impressive.16

As noted in Section 3, the tests reported in Tables 2 and 3 can interpreted as asking

whether OLS-predicted VAM estimates predict the causal effects of randomized school offers.

Figure 1 presents a graphical summary of these predictions. Specifically, the figure plots

reduced form offer effects for each value-added bin (the ρ` coefficients in equation (12))

against first-stage effects of bin offers on predicted value-added of an applicant’s enrolled

school (that is, OLS value-added at the school attended, α̂j(i)). The corresponding 2SLS

estimate of ϕ is given by the slope of a weighted least squares line of best fit through the

origin, while the overidentification test checks whether this line fits all points up to sampling

error (Angrist, 1991). Consistent with the estimates in Tables 2 and 3, each panel shows

that adding either conventional or risk controls pushes the forecast slopes towards one and

reduces dispersion around the best-fitting lines. Including both sets of controls yields tightly-

estimated relationships that are indistinguishable from the 45-degree line. Figure A1 and

Table A4 in the Supplemental Appendix show similar patterns for reading test score VAMs.

In a constant-effects framework, rejection of an overidentification test is evidence of selec-

tion bias. In a world of heterogeneous school effects, however, rejection might be generated

by differences in school quality across students. To explore this possibility, we follow Angrist

et al. (2017) in testing models that allow value-added to vary with student characteristics.

If heterogeneity (mediated by covariates) is the source of VAM misalignment with reduced-

form offer effects, the resulting test results should be more forgiving. As can be seen in

Appendix Table A5, however, forecast coefficients and test results are similar when VAM

is allowed to vary by baseline year, subsidized lunch status, special education status, and

baseline score tercile. This table likewise shows similar test results when OLS VAMs are

estimated using only data from the subsamples with non-degenerate assignment risk.17

16Lagged score controls used to compute the estimates in Table 2 come from 5th grade, taken the year

before the start of middle school; lagged score controls used to compute the estimates in Table 3 come from

8th grade, taken the year before the start of high school.
17The question of effect heterogeneity is particularly salient for NYC screened schools, which admit
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5.2 IV VAM Estimates

Our IV VAM application focuses on NYC middle and high schools, since these samples

have the largest number of schools and students with assignment risk. The vector of me-

diators used to predict causal value-added in includes a screened school indicator and the

OLS VAM estimates evaluated in Tables 2 and 3. Forecast regression parameters and the

forecast residual variance are estimated by instrumenting Mj(i) with a full set of school offer

dummies, controlling for school assignment propensity scores and the baseline covariates

used to compute the test statistics reported in these tables. We use individual school offers

rather than binned offers for IV VAM because the extra instruments make Assumption MIV

more plausible. As detailed in the Supplemental Appendix, IV VAM is implemented using

a bias-corrected 2SLS estimator consistent in the asymptotic sequence in which the number

of instruments grows in proportion to sample size.

Using uncontrolled VAM estimates to predict causal value-added yields an estimated IV

VAM forecast coefficient of only 0.26 for middle schools and 0.24 for high schools. These

results, reported in the first column of Table 4, are qualitatively consistent with the test

statistics reported in Tables 2 and 3, which show strong evidence of forecast bias and the

failure of uncontrolled VAM to satisfy the corresponding overidentification test.

The IV VAM procedure generates an estimated screened-school effect on causal value-

added. This is negative and significantly different from zero for middle schools but zero for

high schools. The bottom rows of Table 4 report IV VAM estimates of the forecast residual

standard deviation, σν , along with the overall standard deviation of causal value-added,

σβ (obtained as σ2
β = V ar(M ′

jϕ) + σ2
ν from the forecast regression). These estimates are

students partly on the basis of tie-breaking variables that gauge academic ability or artistic talent. The

cutoffs generated by centralized assignment to screened schools act something like a regression discontinuity

(RD) design. With centralized assignment, however, students with tie-breakers far from admissions cutoffs

may nevertheless have non-degenerate screened-school assignment risk (Abdulkadiroğlu et al., 2019). RC-

VAM estimates for screened schools therefore reflect outcomes for a wider range of students than the group

of compliers usually found inside an RD bandwidth.
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scaled in standard deviation units of the student-level test score distribution. The estimates

in column 1 reveal substantial residual variation unexplained by uncontrolled VAM or by

screened status (with estimated σν = 0.13 for middle schools and σν = 0.06 for high schools)

and a total value-added standard deviation estimated at σβ = 0.19 for middle schools and

σβ = 0.14 for high schools. The latter pair of estimates highlight the substantial variation

in quality across NYC schools.

As shown in the second and third columns of Table 4, replacing uncontrolled VAM es-

timates with conventional or risk-only value-added estimates increases IV VAM forecast

coefficients (to around 0.8-0.9 and 0.6 respectively), while also decreasing the standard devi-

ation of the forecast residual. The screened school effects in these columns are small and not

significantly different from zero, suggesting the larger negative estimate for middle schools

in the first column is driven by the diminished predictive power of uncontrolled VAM.

IV VAM models generate comparable estimates of σβ in columns 1, 2, and 4 (around

0.2 for middle schools and 0.15 for high schools), though the estimates in column 3 are

notably larger, perhaps reflecting failure of Assumption MIV in this case. It’s noteworthy

that the middle school forecast coefficient estimates for uncontrolled and risk-only VAM in

the testing and IV VAM tables differ markedly, though not so for conventional VAM. This

reflects the near-unbiasedness of conventional VAM estimates. When the VAM estimates

used as mediators generate unreliable predictions, forecast coefficient estimates computed

using binned instruments and individual school offers should differ.

The estimates in columns 4 and 5 of Table 4 align with those in Tables 2 and 3 in

highlighting the virtual unbiasedness of RC VAM. Including the RC VAM estimates as an

IV VAM mediator yields a precisely estimated forecast coefficient of 0.99 in both middle

and high school, with an estimated residual standard deviation close to zero.18 At the same

time, column 5 shows that models including both conventional and RC VAM as mediators

generate an insignificant negative forecast coefficient for conventional VAM, while the RC

18The estimator of σ2
ν can be negative; the table reports zero in such cases.
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VAM coefficient remains close to one (including these two highly correlated mediators reduces

the precision of estimated forecast coefficients). This is notable since conventional VAM

predicts causal value-added well on its own. The screened school coefficient estimates in

these columns are precisely estimated zeros, consistent with the view that RC VAM tells us

everything we need to know about school quality.

On balance, there would seem to be little scope for IV VAM posterior predictions to

improve on RC VAM. Conventional VAMs also generate remarkably accurate predictions of

causal school effects. But it’s worth highlighting the fact that both of these models rely on

controls for lagged test scores measured one year prior to the outcome. In practice, this sort

of proximate lagged score control may be unavailable. The 2020 COVID-19 pandemic, for

example, led many districts to suspend standardized testing programs. Many districts also

rely on “skip-year growth” metrics that omit a year of test score data when transitioning

to new assessment systems. These scenarios necessitate VAM control strategies that rely on

test scores lagged by more than one year.

By way of evidence on the consequences of older lagged score controls, column 6 of Table 4

reports IV VAM estimates from a procedure where the mediator is a set of conventional VAM

estimates that rely on longer lags. The estimates here replace 5th grade scores with 3rd grade

scores in a conventional VAM for sixth-grade outcomes. Using earlier lagged score controls

reduces the forecast coefficient to 0.81 for middle schools and to 0.64 for high schools. This

indicates a substantial deterioration in predictive power relative to the estimates in column

2. It remains, however, to gauge the extent to which IV VAM can ameliorate this.

5.3 Estimating VAM Mean Squared Error

Mean squared error provides a natural standard of comparison for IV VAM, RC VAM,

and conventional VAM estimators computed using different sets of controls. The MSE of an

OLS-based linear shrinkage estimate, α∗j , for value-added, βj, is given by:

E
[
(α∗j − βj)2

]
= E

[
λ2js

2
j

]
+ σ2

αE
[
(ϕ− λj)2

]
+ σ2

ν . (19)
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The first term in this formula reflects sampling variance in the OLS estimates, while the

last two terms are attributable to bias. A similar (though more involved) calculation in the

Supplemental Appendix gives the MSE of IV VAM posterior predictions, with a parallel

decomposition into bias and sampling variance. In practice, we calculate MSE for each

estimator by simulation, drawing school value-added from a Normal distribution calibrated

to match a set of IV VAM forecast coefficient and residual variance estimates.19

Figure 2 compares the root mean squared error (RMSE) of OLS VAM and IV VAM

posterior predictions of causal value-added. RMSE is minimized by the RC VAM posterior,

at around 0.06 standard deviations in the distribution of both middle and high school math

scores. Sampling variance contributes far more to the MSE of RC VAM than bias. What bias

there is arises from shrinkage (i.e., λj 6= 1). The RMSE of the conventional model exceeds

that of RC VAM despite the relative imprecision of the latter. The precision penalty with

RC VAM reflects the fact that risk controls absorb a substantial portion of the variation in

school enrollment, but this loss of is more than outweighed by the reduced bias of RC VAM.

Perhaps surprisingly, IV VAM posteriors computed using RC and conventional estimates

as mediators have somewhat higher total RMSE than the corresponding shrunk OLS esti-

mates. This reflects the fact that the forecast coefficient and residual variance are treated as

known when deriving the MSE-minimizing prediction in equation (18), while estimation of

these parameters generates additional sampling variance in practice. Additional simulations

(not reported) confirm that, were these hyperparamters known, the IV VAM RMSE neces-

sarily falls below that of the corresponding OLS estimates. Evidently, models that control

for lagged scores have such low bias that the IV VAM bias correction is not worth the cost

introduced by estimation of the extra parameters IV VAM requires.

RMSE with risk control alone improves greatly on the RMSE of uncontrolled VAM.

19The IV VAM estimates used to calibrate the simulation appear in Appendix Table A6. These esti-

mates come from a model that includes the uncontrolled, conventional, risk-only, and RC VAM estimates as

mediators, allowing us to evaluate each estimator maintaining a consistent distribution of school quality.
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Moreover, hyperparameter estimation notwithstanding, IV VAM reduces the RMSE of both

uncontrolled and risk-controlled VAM considerably. These gains are perhaps most note-

worthy for the latter model, where RMSE is cut by more than half. The improvements

generated by IV VAM in the uncontrolled and risk-only models suggest that IV VAM is a

good substitute for lagged score controls, a point of some practical relevance.

The last two columns in Figure 2 compare RMSE when conventional VAM is estimated

with older lagged score controls. Consistent with the estimates in the last column of Table 4,

use of older lagged score controls increases RMSE substantially. At the same time, IV VAM

cuts the bias of these estimates markedly, while also reducing total RMSE. The improvement

here is especially large for high schools, where IV VAM cuts the RMSE of conventional models

by about 20% relative to OLS (roughly half the gap with RC VAM). This highlights the value

of IV VAM estimation in applications with missing or degraded lagged achievement controls.

6 Summary and Conclusions

VAM estimates may help families choose schools wisely, perhaps with life-changing con-

sequences. Policy-makers and educators likewise base high-stakes decisions related to school

access, expansion, and closure on VAMs; the federal government and many states require

this. Given the stakes, how should the consequences of attendance at individual schools be

estimated? Many school accountability frameworks rank schools by performance measures

computed with few or no controls. Such poorly controlled VAM estimates confuse school

quality with the ability of student bodies. In large urban districts like those examined here,

schools sporting the highest test scores and graduation rates tend to enroll an outsized share

of non-minority students. These schools are also found in wealthier neighborhoods.

The primary econometric challenge in this context is how to eliminate or at least moderate

this sort of selection bias. We show here that centralized assignment provides an invaluable

and easily exploited tool in service of this goal. By matching students to schools as a

function of observed characteristics and partially or fully randomized tie-breaking variables,

centralized assignment takes much of the mystery out of who goes where. This by-product of
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centralized matching can be key to VAM estimation strategies with minimal selection bias.

Our RC VAM estimator exploits centralized assignment by controlling for the many stu-

dent preference and priority variables that govern match outcomes. The problem of high

dimensional controls is solved by conditioning on the relatively coarse school assignment

propensity score induced by DA matching algorithms. Importantly, the RC VAM procedure

generates school-specific VAM estimates for all schools in a match, regardless of undersub-

scription. Moreover, the assumptions justifying RC VAM are easily validated by testing

whether RC VAM residuals are orthogonal to offers of seats at over-subscribed schools. Ap-

plication of this test to schools in Denver and NYC suggest that RC VAM estimates provide

a remarkably accurate account of school quality. RC VAM estimates exhibit little bias and

outperform conventional VAM strategies on mean squared error grounds.

We’ve also introduced an IV VAM estimator that exploits reduced forms for causal VAM

estimation in districts with fewer randomized offers than schools. The IV VAM procedure

outlined here, which builds on and simplifies earlier efforts in this direction, amounts to 2SLS

estimation of mediating-variable effects followed by a simple weighted-average calculation of

empirical Bayes posterior means. IV VAM posterior predictions have an attractive best linear

predictor property and require weaker distributional assumptions than the fully parametric

hybrid IV-and-OLS VAM estimator developed in Angrist et al. (2017). Our NYC application

shows that IV VAM can improve on poorly-controlled estimates of school quality and on

estimates that rely on older and perhaps less relevant controls.

Farther afield, we expect the estimation strategies developed here to find application in

other markets with elements of systematic and chance assignment. Possible applications

include job assignment systems, such as those used by Teach for America to place interns in

school, the measurement of physician and hospital quality, and the consequences of receiving

rationed medical resources like new drugs and mechanical ventilation during the recent pan-

demic. In these contexts, RC VAM and IV VAM can be deployed to answer causal questions

about the consequences of receiving a particular assignment or scarce resource. Finally,
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on the theoretical side, there’s work to be done on integrating the large market asymp-

totic sequence used to derive school assignment propensity scores with the many-instrument

asymptotic sequences used to study the behavior of econometric estimators like 2SLS. We

plan to explore these applications and questions in future work.
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A Appendix Proofs

A.1 Lemmas 1 and 2

As in Rosenbaum and Rubin (1983), we establish Lemma 1 by showing Pr(Zij = 1 |

εi, pi) = Pr(Zij = 1 | pi) = pij. By the law of iterated expectations,

Pr(Zij = 1 | εi, pi) = E[E[Zij | θi, εi, pi] | εi, pi]

= E[E[Zij | θi, pi] | εi, pi] = pij.

The second line uses Assumption CRA; the last line uses the fact that E[Zij | θi, pi] = E[Zij |

θi] = pij. We establish equation (3) by repeating the same argument, starting with the fact

that (εi, Xi) ⊥⊥ Zi | θi and adding Xi to the conditioning set in the first line above.

To establish Lemma 2, start with εi ⊥⊥ Zi | (pi, Xi), and assume εi ⊥⊥ Di | (pi, Xi, Zi).

Then by the law of iterated expectations,

Pr(Dij = 1 | εi, pi, Xi) = E[E[Dij | εi, pi, Xi, Zi] | εi, pi, Xi]

= E[E[Dij | pi, Xi, Zi] | εi, pi, Xi]

= E[E[Dij | pi, Xi, Zi] | pi, Xi]

= Pr(Dij = 1 | pi, Xi).

The second line follows from independence of εi and Di conditional on (pi, Xi, Zi), the third

follows from independence of Zi and εi conditional on (pi, Xi), and the fourth follows from

another application of the law of iterated expectations.

A.2 Corollary 1

The corollary is a consequence of the law of iterated expectations:

E[εi(Zij − pij)] = E[εi(E[Zij | εi, pij]− pij)]

= E[εi(E[Zij | pij]− pij)]

= E[εi(pij − pij)] = 0.

The second equality uses Lemma 1, while the third equality uses the definition of pij.
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Risk adjustment is equivalent to control for the propensity score. To see this, note that

E[Zij | pi1, . . . , piJ ] = pij,

so the population regression of Zij on pi1, . . . , piJ is pij. The auxiliary regression that partials

out propensity scores therefore has residual Zij − pij. Equivalence then follows by standard

multivariate regression algebra.

A.3 Equation (9)

Note that Y − Dα̂ = Y − Dα̂ϕ̂ + Dα̂(ϕ̂ − 1) and that (Y −Dα̂ϕ̂)′ P̃ZDα̂(ϕ̂ − 1) = 0,

since the first-stage fitted values, P̃ZDα̂, are necessarily orthogonal to the 2SLS residuals

Y −Dα̂ϕ̂. Therefore,

(Y −Dα̂)′P̃Z(Y −Dα̂)

σ̂2
ξ

=
(Y −Dα̂ϕ̂+Dα̂(ϕ̂− 1))′P̃Z(Y −Dα̂ϕ̂+Dα̂(ϕ̂− 1))

σ̂2
ξ

=
(Dα̂(ϕ̂− 1))′P̃Z(Dα̂(ϕ̂− 1))

σ̂2
ξ

+
(Y −Dα̂ϕ̂)′P̃Z(Y −Dα̂ϕ̂)

σ̂2
ξ

+ 0

=
(ϕ̂− 1)2

σ̂2
ξ (α̂

′D′P̃ZDα̂)−1
+

(Y −Dα̂ϕ̂)′P̃Z(Y −Dα̂ϕ̂)

σ̂2
ξ

.

A.4 Lemma 3

Using the law of iterated expectations:

E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)]

= E

[
E

[(
L∑
`=1

δ`(Zi` − pi`)

)(
L∑
`=1

ψ`k(Zi` − pi`)

)
| Π,M, Z̃

]]

= E

[
E

[(
L∑
`=1

(
J∑
j=1

π`jE
[
νj | Π,M, Z̃

])
(Zi` − pi`)

)(
L∑
`=1

(
J∑
j=1

Mjkπ`j

)
(Zi` − pi`)

)
| Π,M, Z̃

]]

= 0,

since E
[
νj | Π,M, Z̃

]
= 0.
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Figure 1. Visual Instrumental Variables Tests for Bias (Math)

A. Denver middle schools
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B. NYC middle schools
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C. NYC high schools
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Notes: This figure plots reduced-form estimates against value-added first stages from each of 20 school

assignment bins. Outcomes are 6th grade math CSAP and CMAS scores for Denver, 6th grade math New

York State Assessment scores for NYC middle schools, and SAT math scores for NYC high schools. Scores

are standardized to be mean zero and standard deviation one in the student-level test score distribution,

separately by year. Assignments are binned by ventile of the estimated conventional VAM. See notes to

Table 2 for a description of the value-added models and test procedure. Filled markers indicate reduced

form and first stage estimates that are significantly different from each other at the 10% level. The solid

lines have slopes equal to the forecast coefficients in Table 2, while dashed lines indicate the 45-degree line.
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Figure 2. RMSE of Value-Added Estimates for NYC Middle and High Schools

A. Middle Schools
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Notes: This figure plots root mean squared error (RMSE) for posterior predictions of value-added generated

by OLS and IV VAM. OLS VAM predictions are posterior means constructed from OLS value-added esti-

mates. IV VAM predictions are posterior means constructed from OLS and reduced form estimates. Bars

indicate RMSE. Blue and red shading mark the shares of MSE due to bias and variance. Conventional and

RC VAM posterior predictions are from models using 5th and 8th grade tests as lagged score controls for

middle and high school students, as in Table 2. The conventional VAM posterior with older lagged scores

relies on 3rd grade lagged score controls for middle and schools and 6th grade lagged score controls for high

schools.
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Table 1. Descriptive Statistics

All With risk All With risk All With risk
(1) (2) (3) (4) (5) (6) 

Demographics
Hispanic 0.592 0.581 0.413 0.445 0.380 0.430

Black 0.125 0.140 0.231 0.254 0.281 0.278

White 0.210 0.201 0.154 0.110 0.137 0.106

Female 0.493 0.494 0.494 0.484 0.525 0.521

Free/reduced price lunch 0.723 0.703 0.731 0.763 0.774 0.792

Special education 0.102 0.087 0.201 0.215 0.126 0.066

English language learner 0.393 0.416 0.113 0.113 0.093 0.087

Baseline scores
Math (standardized) 0.000 0.077 0.000 -0.063 0.000 -0.043

ELA (standardized) 0.000 0.070 0.000 -0.055 0.000 -0.039

Enrollment
Screened 0.000 0.000 0.067 0.044 0.205 0.118

Lottery 1.000 1.000 0.933 0.956 0.795 0.882

Share non-compliant 0.302 0.292 0.268 0.324 0.365 0.336

Share not offered 0.185 0.049 0.149 0.134 0.188 0.117

Students 37,089 8,100 184,760 46,095 122,214 32,489

Schools 80 75 624 594 486 484

Lotteries (schools with risk) 67 448 382

Denver middle schools NYC middle schools NYC high schools

Notes: This table describes Denver and NYC student samples. Column 1 reports descriptive statistics

for Denver students enrolled in 6th grade in the 2012-13 through 2018-19 school years. Column 3 reports

statistics for NYC middle school students enrolled in 6th grade in the 2016-17 through 2018-19 school

years. Column 5 reports statistics for NYC high school students enrolled in 9th grade in the 2012-13

through 2014-15 school years. Columns 2, 4, and 6 report on the corresponding samples of applicants

with assignment risk at at least one school. Baseline characteristics and lagged scores are from 5th grade

for middle school samples and 8th grade for high school samples. Baseline scores are standardized to

be mean zero and standard deviation one in the student-level test score distribution, separately by year.

Screened schools are defined as schools without any lottery programs. The share non-compliant is defined

as the proportion of students who enroll other than where offered a seat; this includes students receiving

no offers.
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Table 2. VAM Bias Tests for Middle School Math Scores

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.427 1.12 0.813 1.12
(0.059) (0.106) (0.091) (0.103)

First stage F statistic 48.4 104 35.6 94.8

Bias tests:

Forecast bias 95.0 1.19 4.20 1.28
[0.000] [0.275] [0.040] [0.258]

Overidentification (19 d.f.) 79.0 28.7 49.3 21.9
[0.000] [0.070] [0.000] [0.292]

Omnibus (20 d.f.) 174 29.9 53.5 23.1
[0.000] [0.071] [0.000] [0.282]

N (testing)
N (VAM estimation)

Forecast coefficient 0.600 0.933 0.817 0.994
(0.030) (0.041) (0.039) (0.044)

First stage F statistic 154 649 188 530

Bias tests:

Forecast bias 177 2.61 21.8 0.020
[0.000] [0.106] [0.000] [0.886]

Overidentification (19 d.f.) 86.0 24.3 66.9 24.7
[0.000] [0.187] [0.000] [0.170]

Omnibus (20 d.f.) 263 26.9 88.7 24.7
[0.000] [0.139] [0.000] [0.212]

N (testing)
N (VAM estimation)

  

Panel B. NYC middle schools

Panel A. Denver middle schools

7,660
37,089

44,494
184,760

Notes: This table reports tests for bias in OLS value-added models (VAMs). The uncontrolled VAM in-

cludes indicators for application year. The conventional VAM adds cubic functions of baseline math and

ELA scores and indicators for sex, race, subsidized lunch, special education, limited English proficiency, each

interacted with application year. Risk-only VAM adds propensity score and running variable controls to the

uncontrolled specification. RC VAM combines the controls in the conventional and risk-only VAMs. Forecast

coefficients are from instrumental variables regressions of test scores on VAM fitted values, instrumenting

fitted values with binned assignment indicators. Assignments are binned by ventile of the estimated conven-

tional VAM. IV models control for propensity scores, running variable controls, and baseline demographics

and achievement. Test scores for outcomes and VAMs are standardized to be mean zero and standard devia-

tion one in the student-level test score distribution, separately by year. The forecast bias test checks whether

the forecast coefficient equals 1; the overidentification test checks overidentifying restrictions implicit in the

procedure used to estimate the forecast coefficient. The omnibus test combines tests for forecast bias and

overidentification. Standard errors are reported in parentheses; test p-values are reported in brackets.
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Table 3. VAM Bias Tests for SAT Math Scores, NYC High Schools

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.345 0.787 0.675 0.959
(0.030) (0.064) (0.056) (0.077)

First stage F statistic 161 240 87.9 182

Bias tests:

Forecast bias 464 11.0 33.6 0.291
[0.000] [0.001] [0.000] [0.590]

Overidentification (19 d.f.) 38.5 19.9 20.3 13.6
[0.005] [0.400] [0.374] [0.806]

Omnibus (20 d.f.) 503 30.9 53.9 13.9
[0.000] [0.057] [0.000] [0.835]

N (testing)
N (VAM estimation)

  
122,214
30,063

Notes: This table reports tests for bias in OLS value-added models (VAMs). See the notes to Table

2 for a description of models and test procedures. Standard errors are reported in parentheses;

test p-values are reported in brackets.
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Table 4. IV VAM Estimates for NYC Middle and High School Math Scores

(1) (2) (3) (4) (5) (6)

Mediators
Uncontrolled VAM 0.255

(0.029)

Conventional VAM 0.919 -0.151
(0.044) (0.136)

Risk only VAM 0.613
(0.040)

RC VAM 0.990 1.14
(0.041) (0.138)

Conventional VAM (older lagged scores) 0.809
(0.036)

Screened sector dummy -0.156 -0.032 -0.083 -0.004 -0.001 -0.070
(0.056) (0.042) (0.048) (0.039) (0.040) (0.037)

Standard deviations
Value-added 0.190 0.194 0.261 0.204 0.205 0.187

max(forecast residual, 0) 0.130 0.058 0.095 0.028 0.027 0.000

First stage F statistic 26.2 26.0 20.5 26.0 26.0 26.1

N

Mediators
Uncontrolled VAM 0.242

(0.030)

Conventional VAM 0.796 -0.244
(0.059) (0.159)

Risk only VAM 0.593
(0.047)

RC VAM 0.992 1.24
(0.065) (0.177)

Conventional VAM (older lagged scores) 0.640
(0.049)

Screened sector dummy -0.004 0.010 -0.031 -0.022 -0.030 -0.009
(0.040) (0.034) (0.034) (0.034) (0.034) (0.034)

Standard deviations
Value-added 0.135 0.150 0.206 0.168 0.169 0.147

max(forecast residual, 0) 0.062 0 0 0 0 0

First stage F statistic 10.0 10.3 6.80 10.5 10.2 10.4

N 32,489

Panel A. NYC Middle Schools

46,095
Panel B. NYC High Schools

Notes: This table reports IV VAM parameter estimates for math scores. The rows listing mediators report

forecast coefficients and sector effects from instrumental variable regressions of test scores on the OLS

VAM estimates listed as mediator, along with an indicator for screened school attendance. Mediators are

instrumented with individual school assignment offer dummies. Conventional and RC VAM mediators for

the estimates reported in columns 1-5 use 5th grade lagged score controls for middle schools and 8th grade

lagged score controls for high schools. The conventional VAM mediator for the estimates in column 6 relies

on 3rd grade lagged score controls for middle schools and 6th grade lagged score controls for high schools.

Standard errors are reported in parentheses.
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I. IV VAM Consistency

The IV VAM estimation framework draws on Kolesár et al. (2015). Equations (15) and

(16) generalize equation (3.1) in Kolesár et al. (2015) to incorporate multiple endogenous

variables Mj(i)k. The Kolesár et al. (2015) consistency assumptions (1, 2(i), 3, 4, and 5) have

parallels here as follows:

Assumption IVR. The instruments and residuals Z̃i ∈ RLN , ε̃i ∈ R, υ̃i ∈ RK, for i =

1, . . . , N , N = 1, . . . are triangular arrays of random variables with (Z̃i, ε̃i, υ̃i), i = 1, . . . , N

exchangeable. (Z̃, 1) is full column rank with probability one.

Assumption REG. (ε̃i, υ̃
′
i)
′ | Z̃ are iid with zero mean, a positive definite covariance ma-

trix, and finite fourth moments.

Assumption NIV. The number of instruments satisfies L/N = α+o(N−1/2) for α ∈ [0, 1).

Assumption CPM. The (1+K)× (1+K) matrix ΛN/N = (δ ψ)′Z̃ ′⊥Z̃⊥(δ ψ)/N converges

in probability to a positive semidefinite concentration parameter matrix Λ, with Λ2...K,2...K

positive definite. Furthermore, E[ΛN/N ]→ Λ.

Assumption ZC. Λ1k = 0 for k = 2, . . . , 1 +K.

Here Z̃i denotes the ith observation on the centered offer matrix Z̃, υ̃ = (υ̃i1, . . . , υ̃iK)

collects the first stage residuals, and Z̃⊥ collects demeaned Z̃i`. The setup for the instruments

and residuals (Assumption IVR), regularity conditions (Assumption REG), assumption on

the number of instruments (Assumption NIV), and first assumption on the concentration

parameter matrix (Assumption CPM) are standard in Bekker many-instrument asymptotics.

As in Kolesár et al. (2015) we strengthen the last condition slightly and adopt their novel

zero correlation condition (Assumption ZC) which implies the large-sample orthogonality of

exclusion restriction violations and first stage effects. We again extend this condition to allow

for multiple endogenous variables, and note that it’s satisfied under the mean-independence
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of ν we use in Lemma 3. Formally, for each k, we have:

E[ΛN,1k/N ] = E[δ′Z̃ ′⊥Z̃⊥ψk/N ]

= E[E[ν ′ | Π,M, Z̃]Π′Z̃ ′⊥Z̃⊥ΠMk/N ]

= 0

when E[ν | Π,M, Z̃] = 0. It follows that Λ1k = 0 for each k under the convergence condition

in Assumption CPM.

Under these five assumptions, Kolesár et al. (2015) show the consistency of a bias-

corrected 2SLS estimator of the form

ϕ̂ =
(
M̃ ′
⊥(I − kRZ̃⊥

)M̃⊥

)−1 (
M̃ ′
⊥(I − kRZ̃⊥

)Y⊥

)
,

where M̃ is an N × K matrix collecting observations of demeaned endogenous variables

Mj(i)k, Y⊥ is an N × 1 vector collecting observations of the outcome Yi, k is a scalar, and

RZ̃⊥
is the residual-maker matrix of Z̃⊥; i.e. RZ̃⊥

= I − PZ̃⊥
for the projection matrix

PZ̃⊥
= Z̃⊥(Z̃ ′⊥Z̃⊥)−1Z̃ ′⊥. Kolesár et al. (2015) establish ϕ̂

p−→ ϕ for k = 1/(1 + α). This

aligns ϕ̂ with the estimator that Donald and Newey (2001) propose for many-instrument

settings, building on Nagar (1959). Kolesár et al. (2015) also consider a modified version

of this estimator which accounts for many control variables which we use in the empirical

applications. In practice we find both bias-corrected estimators to yield very similar results

to conventional 2SLS, which sets k = 1.

To estimate σν , we modify an estimator for Λ11 which Kolesár et al. (2015) show to be

consistent under additional assumptions which they propose (and we use) for estimating the

asymptotic variance of ϕ̂. The modification follows from the fact that when E[ν | Π,W, Z̃] =

0 and V ar(ν | Π,M, Z̃) = σ2
νI as in Corollary 2,

E[ΛN,11/N ] = E[δ′Z̃ ′⊥Z̃⊥δ/N ]

= E[ν ′Π′Z̃ ′⊥Z̃⊥Πν/N ]

= tr(E[Π′Z̃ ′⊥Z̃⊥Π])σ2
ν/N.
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Thus, if Λ̂11 is a consistent estimator of Λ11 (implying Λ̂11
p−→ E[ΛN,11/N ] under Assumption

CPM) and t̂ is consistent for tr(E[Π′Z̃ ′⊥Z̃⊥Π])/N (i.e. t̂ − tr(E[Π′Z̃ ′⊥Z̃⊥Π]/N)
p−→ 0) then

by the continuous mapping theorem we have the consistent estimator σ̂ν =

√
Λ̂11/t̂

p−→ σν .

Following Kolesár et al. (2015), we use

Λ̂11 = max{(Y − M̃ϕ̂)′(PZ̃⊥
/(N − L)−RZ̃⊥

(L/N2))(Y − M̃ϕ̂), 0}

and

t̂ = tr(Π̂Z̃ ′⊥(PZ − Z̃⊥ψ̂(ψ̂′Z̃ ′⊥Z̃⊥ψ̂)−1ψ̂′Z̃ ′⊥)Z̃ ′⊥Π̂)/N.

These formulas are derived from Lemmas 1 and 2 in Bekker (1994); see Appendix A of

Kolesár et al. (2015) for details.

Finally, it’s worth noting that the propensity score formulas derived in Abdulkadiroğlu

et al. (2017) and Abdulkadiroğlu et al. (2019) use a large-market approximation that fixes

the number of schools while increasing the number of students participating in the match.

This large-market sequence scales applicants and school capacities in proportion, thereby

generating admissions cutoffs that are fixed across matches. The Bekker sequence, by con-

trast, increases the number of instruments and therefore (implicitly) the number of schools.

It remains to derive propensity scores for matching markets under this sequence. Impor-

tantly, however, the number of students per school in the matching markets studied here

appears to be large enough for a large-market sequence to yield estimated propensity scores

that balance student characteristics conditional on school offers.

II. Empirical Bayes Formulas

Proposition 1 follows from the observation that ρ̂ and β are joint-normally distributed,

conditional on (M,Π, Z̃). Specifically, since ρ = Πβ and β = Mϕ+ ν,ρ̂
β

 | (M,Π, Z̃) ∼ N


ΠMϕ

Mϕ

 ,
ΠΠ′σ2

ν + Σ Πσ2
ν

Π′σ2
ν σ2

νI


 .
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Thus, E[β | ρ̂,M,Π, Z̃] is given by:

β∗ = E[β |M,Π, Z̃] + Cov(β, ρ̂ |M,Π, Z̃)V ar(ρ̂ |M,Π, Z̃)−1(ρ̂− E[ρ̂ |M,Π, Z̃])

= Mϕ+ Π′σ2
ν

(
ΠΠ′σ2

ν + Σ
)−1

(ρ̂− ΠMϕ)

= Ωρ̂+ (I − ΩΠ)Mϕ,

where Ω = Π′ (ΠΠ′ + Σ/σ2
ν)
−1

.

Corollary 2 follows from the observation that if E[ν | M,Π, Z̃] = 0 and V ar(ν |

M,Π, Z̃) = σ2
νI then the β∗ in equation (18) is the fitted value from a regression of β on ρ̂,

conditional on (M,Π, Z̃). Standard arguments show that this regression gives a minimum-

MSE linear approximation to the conditional expectation E[β | ρ̂,M,Π, Z̃], and so solves

(17) in the class of linear predictors. Specifically, β∗ solves:

min
b0,B1

E
[
((b0 +B1ρ̂)− β)′((b0 +B1ρ̂)− β)|M,Π, Z̃

]
,

where b0 and B1 are a constant vector and coefficient matrix, respectively. As noted in the

text, empirical Bayes value-added posteriors are obtained by plugging estimates of Π, Σ, ϕ,

and σ2
ν into the equation for β∗.

Accounting for First-Stage Estimation Error

We also derive a posterior mean accounting for estimation error in the first stage matrix,

Π, assuming joint-Normal reduced form and first-stage estimation errors: ρ̂

V ec
(

Π̂
)
 | (M,Π, Z̃, ρ) ∼ N


 ρ

V ec (Π)

 ,
Σ Ψ

Ψ′ Ξ


 ,

as would be obtained in a conventional asymptotic approximation. Consider the MSE min-

imization problem

min
b0,B1,B2

E

[(
b0 +B1ρ̂+B2V ec

(
Π̂
)
− β

)′ (
b0 +B1ρ̂+B2V ec

(
Π̂
)
− β

)
|M,Π, Z̃

]
.
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This problem is solved by the conditional regression of β on ρ̂ and V ec(Π̂) given M and Π:

β∗ =E[β |M,Π, Z̃]

+ Cov

β,
 ρ̂

V ec(Π̂)


′

|M,Π, Z̃

V ar


 ρ̂

V ec(Π̂)

 |M,Π, Z̃


−1

×

 ρ̂− E[ρ̂ |M,Π, Z̃]

V ec(Π̂)− E[V ec(Π̂ |M,Π, Z̃]]


=Mϕ+

[
Π′σ2

ν 0

]ΠΠ′σ2
ν + Σ Ψ

Ψ′ Ξ


−1  ρ̂− ΠMϕ

V ec(Π̂)− V ec(Π)]

 .
Plugging the estimates of Π, Σ, Ψ, Ξ, ϕ, and σ2

ν in to this formula yields

β̂∗ = Ω̂ρ̂+ (I − Ω̂Π̂)Mϕ̂,

where

Ω̂ = Π̂′
(

Π̂Π̂′ + (Σ̂− Ψ̂Ξ̂−1Ψ̂′)/σ̂2
ν

)−1
.

The difference between this weighting matrix and the weighting matrix in Proposition 1

comes from the Ψ̂Ξ̂Ψ̂′ term, which adjusts the reduced form sampling variance matrix Σ̂

when estimates of ρ̂ and Π̂ are correlated.

Posterior Means Without Undersubscription

When L = J , the feasible version of equation (18) can be written:

β̂∗ = Ŵ β̂ + (I − Ŵ )Mϕ̂,

where Ŵ = Ω̂Π̂ is a positive definite matrix and β̂ = Π̂−1ρ̂ is a two-stage least squares

estimate of β using risk-adjusted offers as instruments for school enrollment. When M

is a vector of OLS coefficients, β̂∗ is therefore a matrix-weighted average of OLS and IV

estimates of β, with the former scaled by the estimated forecast coefficient ϕ̂. The weights

depend on the estimated first-stage matrix Π̂, the estimated forecast residual variance σ̂2
ν ,

and estimation error Σ.
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Posterior Means that Account for OLS Sampling Variance

Let M = α̂ = α + eα be a vector of noisy OLS value-added estimates. We assume the

vector of estimation error, eα, is mean-zero and uncorrelated with α and ν conditional on

Π and Z̃. We also assume E[αα′ | Π, Z̃] = σ2
αI and write E[eαe

′
α | Π, Z̃] = Vα. Then, with

β = ϕα+ν and E[α | Π, Z̃] = [ν | Π, Z̃] = 0, the posterior mean of β given the reduced-form

and OLS estimates becomes:

β∗ =Cov

β,
ρ̂
α̂


′

|M,Π, Z̃

V ar


ρ̂
α̂

 |M,Π, Z̃


−1 ρ̂

α̂


=

[
Π′(ϕ2σ2

α + σ2
ν) ϕσ2

αI

]ΠΠ′(ϕ2σ2
α + σ2

ν) + Σ Πϕσ2
α + Vρα

Π′ϕσ2
α + V ′ρα σ2

αI + Vα


−1 ρ̂

α̂

 ,
where Vρα is the covariance of reduced-form and OLS estimation error. This can be written

β∗ = Ωρ̂ρ̂+ Ωα̂α̂,

where

Ωρ̂ =
(

Π′(ϕ2σ2
α + σ2

ν)− ϕσ2
α

(
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
))

×
(

ΠΠ′(ϕ2σ2
α + σ2

ν) + Σ−
(
Πϕσ2

α + Vρα
) (
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
))−1

and

Ωα̂ = (I − Ωρ̂Π)ϕσ2
α

(
σ2
αI + Vα

)
− Ωρ̂Vρα

(
σ2
αI + Vα

)
.

This formula is the same as equation (17) in Angrist et al. (2017) when the mediating vector

M includes OLS VAM and the VAM parameters are normalized so that E[αj] = E[βj] = 0.

With unbiased OLS VAM, so that ϕ = 1 and σ2
ν = 0, and with homoskedastic estimation

error, Vρα = ΠVα by the usual Gauss-Markov logic. Then,

Π′(ϕ2σ2
α + σ2

ν)− ϕσ2
α

(
σ2
αI + Vα

)−1 (
Π′ϕσ2

α + V ′ρα
)

=
(

Π′σ2
α − σ2

α

(
σ2
αI + Vα

)−1 (
Π′σ2

α + VαΠ′
))

= 0
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such that Ωρ̂ = 0 and no weight is put on the reduced-form vector. Furthermore,

Ωα̂ = σ2
α

(
σ2
αI + Vα

)
.

In this case β∗ = Ωα̂α̂ can be seen to be the conventional OLS-VAM posteriors. For example,

when Vα is diagonal, Ωα̂ = diag(λ1, . . . , λJ) and we obtain the α∗j = λjα̂j in equation (5).

III. Mean Squared Error Calculations

By the law of iterated expectations, the mean squared error of the conventional shrinkage

estimator in equation (19) is given by:

E
[
(α∗j − βj)2

]
= E

[
V ar(α∗j |αj, βj, λj)

]
+ E

[(
E[α∗j |αj, βj, λj]− βj

)2]
.

The first term is the expected sampling variance of the estimator; the second equals expected

squared bias conditional on the underlying VAM parameters. Suppose the sampling error sj

(and therefore λj) is independent of αj and νj across schools. The variance term is given by

E
[
V ar(α∗j |αj, βj, λj)

]
= E

[
λ2jV ar(α̂j|αj, βj, λj)

]
= E

[
λ2js

2
j

]
,

and the bias component is given by

E
[(
E[α∗j |αj, βj, λj]− βj

)2]
= E

[
(λjαj − ϕαj − νj)2

]
= E[(λj − ϕ)2α2

j ]− 2E[(λj − ϕ)αjνj] + E[ν2j ]

= E[(ϕ− λj)2]σ2
α + σ2

ν ,

where the third line uses independence of (αj, νj) from λj along with E[αjνj] = 0. Adding

these two components yields equation (19).

We calculate the mean squared error of the IV VAM posterior predictions in Appendix

A.4, accounting for estimation error in both the reduced form ρ̂ and OLS-VAM mediators

M = α̂. Write the reduced form as

ρ̂ = Πβ + eρ = Παϕ+ Πν + eρ,

where eα is again mean-zero given Π, with E[eαe
′
α | Π] = Vα and E[eαe

′
ρ | Π] = Vαρ. The

7



difference between the IV VAM posterior and causal value-added is then

β∗ − β =Ωρ̂(Παϕ+ Πν + eρ) + Ωα̂(α + eα)− αϕ− ν

= ((Ωρ̂Π− I)ϕ+ Ωα̂)α + (Ωρ̂Π− I) ν + Ωρ̂eρ + Ωα̂eα.

Average mean squared error across the J schools can then be written

J−1E [(β∗ − β)′(β∗ − β)] =J−1tr(((Ωρ̂Π− I)ϕ+ Ωα̂) ((Ωρ̂Π− I)ϕ+ Ωα̂)′ σ2
α

+ (Ωρ̂Π− I) (Ωρ̂Π− I)′ σ2
ν

+ Ωρ̂ΣΩ′ρ̂ + Ωα̂VαΩ′α̂ + Ωρ̂V
′
αρΩ

′
α̂ + Ωα̂VραΩ′ρ̂)

We calculate RMSE by plugging estimates of Ωρ̂, Ωα̂, Π, ϕ, Σ, σ2
ν , σ

2
α, Vα, and Vαρ into this

expression and taking its squared root. As with α∗j , the average mean squared error of β∗j is

the sum a bias term

J−1tr
(
((Ωρ̂Π− I)ϕ+ Ωα̂) ((Ωρ̂Π− I)ϕ+ Ωα̂)′ σ2

α + (Ωρ̂Π− I) (Ωρ̂Π− I)′ σ2
ν

)
and a variance term,

J−1tr
(
Ωρ̂ΣΩ′ρ̂ + Ωα̂VαΩ′α̂ + Ωρ̂V

′
αρΩ

′
α̂ + Ωα̂VραΩ′ρ̂

)
.

8



IV. Appendix Figures and Tables

Figure A1. Visual Instrumental Variables Tests for Bias (Reading)

A. Denver middle schools
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B. NYC middle schools
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C. NYC high schools
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Notes: This figure plots risk-adjusted offer reduced-form estimates against value-added first stages from each
of 20 school assignment offer bins. Outcomes are 6th grade reading CSAP and CMAS scores for Denver,
6th grade ELA New York State Assessment scores for NYC middle schools, and SAT reading/writing scores
for NYC high schools. Assignments are binned by ventile of the estimated conventional VAM. See notes
to Table 2 for a description of the value-added models and test procedure. Filled markers indicate reduced
form and first stage estimates that are significantly different from each other at the 10% level. The solid
lines have slopes equal to the forecast coefficients in Table 2, while dashed lines indicate the 45-degree line.



Table A1. Statistical Tests for Balance

Uncontrolled Controlled Uncontrolled Controlled Uncontrolled Controlled
(1) (2) (3) (4) (5) (6) 

Demographics
Hispanic
Offered VAM -0.514 -0.041 -0.172 0.031 -0.504 -0.045

(0.020) (0.065) (0.008) (0.026) (0.008) (0.036)

Any offer -0.021 0.022 -0.019 -0.011 -0.023 -0.001
(0.007) (0.029) (0.003) (0.009) (0.004) (0.013)

Black
Offered VAM 0.085 0.052 -0.415 0.001 -0.606 0.031

(0.013) (0.044) (0.007) (0.024) (0.007) (0.033)

Any offer -0.044 -0.041 -0.137 0.009 -0.015 -0.006
(0.005) (0.022) (0.003) (0.008) (0.003) (0.011)

White
Offered VAM 0.414 -0.053 0.339 0.000 0.398 -0.011

(0.018) (0.055) (0.006) (0.014) (0.006) (0.019)

Any offer 0.079 0.055 0.075 0.005 0.013 0.006
(0.005) (0.019) (0.002) (0.006) (0.002) (0.009)

Female
Offered VAM -0.067 0.081 0.006 0.014 0.011 0.038

(0.020) (0.065) (0.008) (0.026) (0.009) (0.037)

Any offer 0.008 -0.053 0.021 -0.020 0.081 0.009
(0.007) (0.031) (0.003) (0.010) (0.004) (0.013)

Free/reduced price lunch
Offered VAM -0.534 0.049 -0.319 0.044 -0.441 -0.041

(0.020) (0.061) (0.007) (0.021) (0.008) (0.031)

Any offer -0.067 -0.023 -0.089 -0.003 -0.019 -0.009
(0.006) (0.026) (0.003) (0.008) (0.003) (0.011)

Special education
Offered VAM -0.050 -0.017 -0.089 -0.022 -0.089 -0.014

(0.011) (0.036) (0.006) (0.021) (0.004) (0.019)

Any offer 0.000 0.035 -0.043 0.007 -0.343 0.004
(0.004) (0.019) (0.003) (0.008) (0.003) (0.007)

English language learner
Offered VAM -0.249 -0.018 -0.021 0.024 -0.138 -0.001

(0.019) (0.063) (0.005) (0.018) (0.005) (0.023)

Any offer -0.067 -0.062 -0.016 0.001 -0.028 -0.008
(0.007) (0.031) (0.002) (0.006) (0.002) (0.008)

Baseline scores
Math (standardized)
Offered VAM 0.899 0.185 1.14 0.003 2.37 0.052

(0.040) (0.131) (0.016) (0.048) (0.014) (0.055)

Any offer 0.210 -0.061 0.316 -0.031 0.344 0.014
(0.012) (0.057) (0.006) (0.017) (0.007) (0.019)

ELA (standardized)
Offered VAM 0.760 0.103 0.919 -0.016 2.04 0.124

(0.040) (0.127) (0.016) (0.050) (0.015) (0.055)

Any offer 0.181 -0.067 0.289 -0.011 0.363 -0.003
(0.013) (0.057) (0.006) (0.018) (0.006) (0.019)

N 37,089 8,100 184,760 46,095 122,214 32,489

Denver middle schools NYC middle schools NYC high schools

Notes: This table reports balance statistics, estimated by regressing baseline covariates on the estimated
conventional OLS VAM of the offered school and an indicator for any offer. Columns 2, 4, and 6 control for
expected OLS VAM, any offer risk, and running variable controls in NYC samples. Robust standard errors
are reported in parentheses.



Table A2. Differential Attrition

Denver middle schools NYC middle schools NYC high schools
(1) (2) (3) 

Offered VAM 0.016 0.047 -0.018
(0.039) (0.017) (0.028)

Any offer 0.027 0.039 0.018
(0.020) (0.006) (0.010)

N 9,234 53,094 53,367
Mean follow-up rate 0.896 0.898 0.677

Notes: This table reports differential attrition estimates. The regression re-
ported in column 1 regresses an indicator for follow-up in the sample on the
estimated conventional OLS VAM of the offered school, controlling for expected
OLS VAM and running variable controls in NYC samples. The regression in
column 2 additionally regresses follow-up on an indicator for any offer and an
any offer risk control. Robust standard errors are reported in parentheses.



Table A3. Sensitivity of Tests for Bias to Instrument Binning

Uncontrolled Conventional Risk only RC VAM Uncontrolled Conventional Risk only RC VAM Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Forecast coefficient 0.668 1.15 0.975 1.15 0.628 0.951 0.871 1.02 0.390 0.857 0.766 1.02
(0.071) (0.111) (0.102) (0.112) (0.035) (0.047) (0.046) (0.051) (0.035) (0.073) (0.066) (0.086)

First stage F statistic 121 363 116 330 537 2068 602 1643 609 920 344 731

Bias tests:
Forecast bias 22.1 1.72 0.062 1.91 113 1.08 7.76 0.182 301 3.84 12.5 0.071

[0.000] [0.190] [0.803] [0.167] [0.000] [0.298] [0.005] [0.670] [0.000] [0.050] [0.000] [0.791]

Overidentification (3 d.f.) 4.02 4.48 3.03 3.40 42.9 4.40 25.1 9.14 16.1 3.44 2.58 0.888
[0.259] [0.214] [0.387] [0.334] [0.000] [0.221] [0.000] [0.028] [0.001] [0.329] [0.460] [0.828]

Omnibus (4 d.f.) 26.1 6.20 3.10 5.31 156 5.49 32.8 9.32 317 7.28 15.1 0.958
[0.000] [0.185] [0.542] [0.257] [0.000] [0.241] [0.000] [0.054] [0.000] [0.122] [0.005] [0.916]

N (testing)
N (VAM estimation)

Forecast coefficient 0.492 1.07 0.809 1.09 0.628 0.926 0.845 0.988 0.362 0.802 0.703 0.979
(0.059) (0.105) (0.090) (0.106) (0.033) (0.043) (0.042) (0.046) (0.031) (0.066) (0.058) (0.079)

First stage F statistic 85.7 196 68.6 167 251 1114 316 912 308 461 167 346

Bias tests:
Forecast bias 75.4 0.408 4.50 0.781 129 2.92 13.7 0.063 419 9.12 26.2 0.075

[0.000] [0.523] [0.034] [0.377] [0.000] [0.087] [0.000] [0.802] [0.000] [0.003] [0.000] [0.784]
Overidentification (9 d.f.) 37.7 14.5 26.9 11.5 57.6 17.1 34.1 18.0 24.5 11.1 10.2 5.64

[0.000] [0.104] [0.001] [0.246] [0.000] [0.048] [0.000] [0.035] [0.004] [0.268] [0.335] [0.775]
Omnibus (10 d.f.) 113 14.9 31.4 12.2 186 20.0 47.8 18.1 443 20.2 36.4 5.71

[0.000] [0.134] [0.001] [0.270] [0.000] [0.029] [0.000] [0.054] [0.000] [0.027] [0.000] [0.839]

N (testing)
N (VAM estimation)

Forecast coefficient 0.427 1.12 0.813 1.12 0.600 0.933 0.817 0.994 0.345 0.787 0.675 0.959
(0.059) (0.106) (0.091) (0.103) (0.030) (0.041) (0.039) (0.044) (0.030) (0.064) (0.056) (0.077)

First stage F statistic 48.4 104 35.6 94.8 154 649 188 530 161 240 87.9 182

Bias tests:
Forecast bias 95.0 1.19 4.20 1.28 177 2.61 21.8 0.020 464 11.0 33.6 0.291

[0.000] [0.275] [0.040] [0.258] [0.000] [0.106] [0.000] [0.886] [0.000] [0.001] [0.000] [0.590]
Overidentification (19 d.f.) 79.0 28.7 49.3 21.9 86.0 24.3 66.9 24.7 38.5 19.9 20.3 13.6

[0.000] [0.070] [0.000] [0.292] [0.000] [0.187] [0.000] [0.170] [0.005] [0.400] [0.374] [0.806]
Omnibus (20 d.f.) 174 29.9 53.5 23.1 263 26.9 88.7 24.7 503 30.9 53.9 13.9

[0.000] [0.071] [0.000] [0.282] [0.000] [0.139] [0.000] [0.212] [0.000] [0.057] [0.000] [0.835]

N (testing)
N (VAM estimation)

Denver middle schools NYC middle schools NYC high schools

A. 4 Offer Bins

6,433 36,919 23,558
37,089 184,760 122,214

B. 10 Offer Bins

7,502 42,662 27,566
37,089 184,760 122,214

C. 20 Offer Bins

7,660 44,494 30,063
37,089 184,760 122,214

Notes: This table reports tests for bias in OLS value-added models (VAMs). See notes to Table 2 for a description of models and test procedures.
Panel A reports estimates that use school assignment instruments binned by quartile of estimated conventional VAM; Panel B reports estimates that
use instruments binned by decile; and Panel C reports estimates that use instruments binned by ventile (same as in Tables 2 and 3). Standard errors
are reported in parentheses; test p-values are reported in brackets.



Table A4. Tests for Bias in OLS Value-Added Models (Reading)

Uncontrolled Conventional Risk only RC VAM
(1) (2) (3) (4) 

Forecast coefficient 0.453 1.13 0.740 1.08
(0.056) (0.108) (0.078) (0.102)

First stage F statistic 49.6 94.1 45.5 96.9

Bias tests:
Forecast bias 94.2 1.48 11.0 0.615

[0.000] [0.224] [0.001] [0.433]

Overidentification (19 d.f.) 55.3 18.4 31.1 16.0
[0.000] [0.497] [0.039] [0.658]

Omnibus (20 d.f.) 150 19.9 42.1 16.6
[0.000] [0.467] [0.003] [0.678]

N (testing)
N (VAM estimation)

Forecast coefficient 0.357 0.795 0.642 0.908
(0.033) (0.063) (0.055) (0.071)

First stage F statistic 160 571 128 410

Bias tests:
Forecast bias 371 10.7 43.0 1.69

[0.000] [0.001] [0.000] [0.194]

Overidentification (19 d.f.) 68.7 28.9 44.9 25.0
[0.000] [0.068] [0.001] [0.160]

Omnibus (20 d.f.) 440 39.6 87.9 26.7
[0.000] [0.006] [0.000] [0.144]

N (testing)
N (VAM estimation)

Forecast coefficient 0.291 0.777 0.642 0.942
(0.036) (0.083) (0.070) (0.096)

First stage F statistic 145 210 70.2 161

Bias tests:
Forecast bias 396 7.31 25.9 0.369

[0.000] [0.007] [0.000] [0.544]

Overidentification (19 d.f.) 42.1 21.4 25.0 13.6
[0.002] [0.314] [0.161] [0.809]

Omnibus (20 d.f.) 438 28.7 50.8 13.9
[0.000] [0.093] [0.000] [0.834]

N (testing)
N (VAM estimation)

31,044
122,214

37,089
Panel B. NYC middle schools

44,618
184,760

Panel C. NYC high schools

Panel A. Denver  middle schools

7,931

Notes: This table reports tests for bias in OLS value-added models (VAMs). See notes to Table 2 for a
description of models and test procedures. Standard errors are reported in parentheses; test p-values are
reported in brackets.



Table A5. Robustness of Bias Tests to Effect Heterogeneity

Value-added model
Baseline VAM 
specification Baseline year

Subsidized 
lunch

Special 
education

Baseline score 
tercile

Baseline VAM 
specification Baseline year

Subsidized 
lunch

Special 
education

Baseline score 
tercile

Baseline VAM 
specification Baseline year

Subsidized 
lunch

Special 
education

Baseline score 
tercile

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

Conventional VAM Forecast coefficient 1.12 1.04 1.12 1.09 1.11 0.933 0.923 0.933 0.943 0.933 0.787 0.801 0.778 0.758 0.801
(0.106) (0.092) (0.106) (0.104) (0.105) (0.041) (0.040) (0.041) (0.041) (0.041) (0.064) (0.064) (0.063) (0.062) (0.065)

Omnibus (20 d.f.) 29.9 20.7 30.4 30.5 29.7 26.9 26.4 25.7 25.1 27.3 30.9 25.4 32.0 36.2 29.0
[0.071] [0.417] [0.064] [0.062] [0.074] [0.139] [0.152] [0.177] [0.199] [0.128] [0.057] [0.188] [0.043] [0.015] [0.088]

RC VAM Forecast coefficient 1.12 1.05 1.11 1.10 1.10 0.994 0.989 0.994 1.00 0.994 0.959 0.976 0.944 0.898 0.930
(0.103) (0.092) (0.103) (0.101) (0.102) (0.044) (0.043) (0.044) (0.044) (0.044) (0.077) (0.077) (0.076) (0.072) (0.074)

Omnibus (20 d.f.) 23.1 16.8 24.2 23.4 24.1 24.7 22.1 24.0 22.7 24.5 13.9 12.8 14.3 16.2 14.3
[0.282] [0.667] [0.235] [0.269] [0.236] [0.212] [0.333] [0.244] [0.303] [0.221] [0.835] [0.886] [0.815] [0.704] [0.817]

N (testing)
N (VAM estimation)

Conventional VAM Forecast coefficient 1.00 1.02 1.00 0.989 1.02 0.959 0.958 0.962 0.961 0.973 0.830 0.846 0.815 0.824 0.839
(0.092) (0.087) (0.092) (0.090) (0.092) (0.042) (0.041) (0.042) (0.042) (0.042) (0.067) (0.066) (0.066) (0.067) (0.067)

Omnibus (20 d.f.) 23.1 19.3 24.0 23.1 22.6 21.7 16.3 21.0 20.2 22.2 26.5 21.4 29.6 28.4 24.8
[0.282] [0.505] [0.242] [0.282] [0.309] [0.356] [0.701] [0.399] [0.444] [0.328] [0.149] [0.371] [0.076] [0.100] [0.210]

RC VAM Forecast coefficient 0.981 0.993 0.981 0.975 0.998 1.00 1.01 1.00 1.01 1.01 0.912 0.947 0.892 0.908 0.920
(0.089) (0.085) (0.089) (0.088) (0.089) (0.044) (0.043) (0.044) (0.044) (0.044) (0.073) (0.075) (0.072) (0.073) (0.072)

Omnibus (20 d.f.) 19.7 17.4 20.2 19.7 19.2 19.8 14.3 18.5 18.1 20.3 15.8 13.4 19.6 17.5 12.3
[0.478] [0.625] [0.448] [0.477] [0.509] [0.471] [0.813] [0.551] [0.582] [0.442] [0.726] [0.858] [0.485] [0.622] [0.906]

N (testing)
N (VAM estimation)

Denver middle schools NYC middle schools NYC high schools

VAM estimated by subgroup VAM estimated by subgroup VAM estimated by subgroup

A. VAM estimated in full sample

7,660 44,494 30,063
37,089 184,760 122,214

B. VAM estimated in risk sample

7,660 44,494 30,063
7,660 44,494 30,063

Notes: This table reports tests for bias in OLS value-added models (VAMs) that allow for effect heterogeneity by baseline characteristics. See notes
to Table 2 for a description of models and test procedures. Panel A shows results for VAMs estimated using the full OLS sample, while Panel B shows
results for VAMs estimated using the lottery subsample. Columns 1, 6, and 11 report estimates that do not allow effect heterogeneity, while columns
2-5, 7-10, and 12-15 report estimates from models that allow value-added to differ across groups defined by the covariates in the column headings.
Standard errors are reported in parentheses; test p-values are reported in brackets.



Table A6. IV VAM Estimates for NYC Middle and High School Math Scores Used for Monte
Carlo Calibration

NYC middle 
schools

NYC high 
schools

(1) (2)

Mediators
Uncontrolled VAM -0.057 -0.083

(0.043) (0.074)

Conventional VAM -0.056 -0.293
(0.190) (0.263)

Risk only VAM -0.046 -0.131
(0.086) (0.130)

RC VAM 1.13 1.26
(0.164) (0.244)

Conventional VAM (older lagged scores) 0.039 0.303
(0.153) (0.213)

Screened sector dummy 0.019 -0.025
(0.038) (0.035)

Standard deviations
Value-added 0.201 0.149

max(forecast residual, 0) 0 0

First stage F statistic 12.5 5.22

N 46,095 32,489

Notes: This table reports IV VAM parameter estimates for math scores. These estimates are used to calibrate
the Monte Carlo simulations. The rows listing mediators report forecast coefficients and sector effects from
instrumental variable regressions of test scores on the OLS VAM estimates listed as mediator, along with an
indicator for screened school attendance. Mediators are instrumented with individual school assignment offer
dummies. Conventional and RC VAM mediators use 5th grade lagged score controls for middle schools and
8th grade lagged score controls for high schools. The conventional VAM with older lagged scores mediator
relies on 3rd grade lagged score controls for middle schools and 6th grade lagged score controls for high
schools. Standard errors are reported in parentheses.
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