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A.1. Setting and notation

We have a sequence of populations indexed by k. The k-th population has nk units, indexed by
i “ 1, . . . , nk. The population is partitioned into mk strata or clusters. Let mk,i P t1, . . . ,mku

denote the stratum that unit i of population k belongs to. The number of units in cluster m of
population k is nk,m ě 1. For each unit, i, there are two potential outcomes, yk,ip1q and yk,ip0q,
corresponding to treatment and no treatment. The parameter of interest is the population average
treatment effect

τk “
1

nk

nk
ÿ

i“1

pyk,ip1q ´ yk,ip0qq.

The population treatment effect by cluster is

τk,m “
1

nk,m

nk
ÿ

i“1

1tmk,i “ mupyk,ip1q ´ yk,ip0qq.

Therefore,

τk “

mk
ÿ

m“1

nk,m
nk

τk,m.

We will assume that potential outcomes, yk,ip1q and yk,ip0q, are bounded in absolute value, uni-
formly for all pk, iq.

We next describe the two components of the stochastic nature of the sample. There is a stochastic
binary treatment for each unit in each population, Wk,i P t0, 1u. The realized outcome for unit i
in population k is Yk,i “ yk,ipWk,iq. For a random sample of the population, we observe the triple
pYk,i,Wk,i,mk,iq. Inclusion in the sample is represented by the random variable Rk,i, which takes
value one if unit i belongs to the sample, and value zero if not.

The sampling process that determines the values of Rk,i is independent of the potential outcomes
and the assignments. It consists of two stages. First, clusters are sampled with cluster sampling
probability qk P p0, 1s. Second, units are sampled from the subpopulation consisting of all the
sampled clusters, with unit sampling probability equal to pk P p0, 1s. Both qk and pk may be equal
to one, or close to zero. If qk “ 1, we sample all clusters. If pk “ 1, we sample all units from the
sampled clusters. If qk “ pk “ 1, all units in the population are sampled.

The assignment process that determines the values of Wk,i also consists of two stages. In the first
stage, for cluster m in population k, an assignment probability Ak,m P r0, 1s is drawn randomly
from a distribution with mean µk, bounded away from zero and one uniformly in k, and variance
σ2k, independently for each cluster. The variance σ2k is key. If it is zero, we have random assignment
across clusters. For positive values of σ2k we have correlated assignment within the clusters. Because
A2

k,m ď Ak,m, it follows that σ2k is bounded above by µkp1´µkq and that the bound is attained when
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Ak,m can only take values zero or one (so all units within a cluster have the same values for the
treatment). In the second stage, each unit in cluster m is assigned to the treatment independently,
with cluster-specific probability Ak,m.

A.2. Base case: Difference in means

Let

Nk,1 “

nk
ÿ

i“1

Rk,iWk,i and Nk,0 “

nk
ÿ

i“1

Rk,ip1 ´Wk,iq

be the number of treated and untreated units in the sample, respectively. The total sample size is
Nk “ Nk,1 ` Nk,0. We consider the simple difference of means between treated and non-treated,
which is obtained as the coefficient on the treatment indicator in a regression of the outcome on a
constant and the treatment,

pτk “
1

Nk,1 _ 1

nk
ÿ

i“1

Rk,iWk,iYk,i ´
1

Nk,0 _ 1

nk
ÿ

i“1

Rk,ip1 ´Wk,iqYk,i.

Wemake the following assumptions about the sampling process and the cluster sizes: (i) qkmk Ñ 8,
(ii) lim infkÑ8 pk minm nk,m ą 0, and (iii) lim supkÑ8 maxm nk,m{minm nk,m ă 8. The first
assumption implies that the expected number of sampled clusters goes to infinity as k increases. The
second assumption implies that the average number of observations sampled per cluster, conditional
on the cluster being sampled, does not go to zero. The third assumption restricts the imbalance
between the number of units across clusters. Notice that assumptions (i) and (ii) imply nkpkqk Ñ

8, so the sample size becomes larger in expectation as k increases.

A.2.1. Large k distribution

Let αk “ p1{nkq
řnk

i“1 yk,ip0q and τk “ p1{nkq
řnk

i“1pyk,ip1q ´ yi,kp0qq, uk,ip1q “ yk,ip1q ´ pαk ` τkq,
and uk,ip0q “ yk,ip0q ´ αk. Notice that,

nk
ÿ

i“1

uk,ip1q “

nk
ÿ

i“1

uk,ip0q “ 0.

This implies

?
nkpkqkppτk ´ τkq “

bk,1
pbk,1

pak,1 ´
bk,0
pbk,0

pak,0,

where

pak,1 “
1

?
nkpkqkµk

nk
ÿ

i“1

pRk,iWk,i ´ pkqkµkquk,ip1q,

pak,0 “
1

?
nkpkqkp1 ´ µkq

nk
ÿ

i“1

pRk,ip1 ´Wk,iq ´ pkqkp1 ´ µkqquk,ip0q,
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pbk,1 “ pNk,1 _ 1q{nk, pbk,0 “ pNk,0 _ 1q{nk, bk,1 “ pkqkµk and bk,0 “ pkqkp1 ´ µkq. We will first
derive the large sample distribution of

pak “ pak,1 ´ pak,0

“

mk
ÿ

m“1

`

ξk,m,1 ´ ξk,m,0

˘

,

where

ξk,m,1 “
1

?
nkpkqkµk

nk
ÿ

i“1

1tmk,i “ mu
`

Rk,iWk,i ´ pkqkµk
˘

uk,ip1q,

and

ξk,m,0 “
1

?
nkpkqkp1 ´ µkq

nk
ÿ

i“1

1tmk,i “ mu
`

Rk,ip1 ´Wk,iq ´ pkqkp1 ´ µkq
˘

uk,ip0q.

Notice that Erξk,m,1s “ Erξk,m,0s “ 0. Moreover, notice that the terms ξk,m,1 ´ ξk,m,0 are indepen-
dent across clusters, m. In addition,

Erξ2k,m,1s “
1

nk

nk
ÿ

i“1

1tmk,i “ mu
1 ´ pkqkµk

µk
u2k,ip1q

`
2

nk

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu
pkpσ2k ` µ2kp1 ´ qkqq

µ2k
uk,ip1quk,jp1q.

Erξ2k,m,0s “
1

nk

nk
ÿ

i“1

1tmk,i “ mu
1 ´ pkqkp1 ´ µkq

p1 ´ µkq
u2k,ip0q

`
2

nk

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu
pkpσ2k ` p1 ´ µkq2p1 ´ qkqq

p1 ´ µkq2
uk,ip0quk,jp0q,

and

Erξk,m,1ξk,m,0s “ ´
1

nk

nk
ÿ

i“1

1tmk,i “ mupkqkuk,ip1quk,ip0q

`
1

nk

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu
pkpµkp1 ´ µkqp1 ´ qkq ´ σ2kq

µkp1 ´ µkq

`

uk,ip0quk,jp1q ` uk,ip1quk,jp0q
˘

.

We obtain:

nkErpξk,m,1 ´ ξk,m,0q2s

“
1

µk

nk
ÿ

i“1

1tmk,i “ muu2k,ip1q `
1

1 ´ µk

nk
ÿ

i“1

1tmk,i “ muu2k,ip0q

` 2pk

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu

´

uk,ip1quk,jp1q ` uk,ip0quk,jp0q ´ uk,ip0quk,jp1q ´ uk,ip1quk,jp0q

¯
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´ pkqk

˜

nk
ÿ

i“1

1tmk,i “ mu
`

u2k,ip1q ` u2k,ip0q ´ 2uk,ip1quk,ip0q
˘

` 2
nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu
`

uk,ip1quk,jp1q ` uk,ip0quk,jp0q ´ uk,ip0quk,jp1q ´ uk,ip1quk,jp0q
˘

¸

` 2pkσ
2
k

˜

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mu

ˆ

uk,ip1quk,jp1q

µ2k
`
uk,ip0quk,jp0q

p1 ´ µkq2
`
uk,ip0quk,jp1q

µkp1 ´ µkq
`
uk,ip1quk,jp0q

µkp1 ´ µkq

¸

.

Therefore,

nkErpξk,m,1 ´ ξk,m,0q2s

“
1

µk

nk
ÿ

i“1

1tmk,i “ muu2k,ip1q `
1

1 ´ µk

nk
ÿ

i“1

1tmk,i “ muu2k,ip0q

` pk

«˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

´

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘2

ff

´ pkqk

˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

` pkσ
2
k

«˜

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

´

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2
ff

.

Let vk “
řmk

m“1Erpξk,m,1 ´ ξk,m,0q2s, then

nkvk “

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

` pk

mk
ÿ

m“1

«˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

´

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘2

ff

´ pkqk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

` pkσ
2
k

mk
ÿ

m“1

«˜

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

´

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2
ff

.

Alternatively, we can write this expression as

nkvk “

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

´ pk

nk
ÿ

i“1

`

uk,ip1q ´ uk,ip0q
˘2

´ pkσ
2
k

nk
ÿ

i“1

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2

` pkp1 ´ qkq

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2
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` pkσ
2
k

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

.

The sum of the first three terms is minimized for pk “ 1 and σ2k “ µkp1 ´ µkq, in which case this
sum is equal to zero. Therefore,

vk ě ppk min
m

nk,mqp1 ´ qkq

mk
ÿ

m“1

nk,m
nk

˜

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

` ppk min
m

nk,mqσ2k

mk
ÿ

m“1

nk,m
nk

˜

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

. (A.1)

We will assume that lim infkÑ8pp1 ´ qkq _ σ2kq ą 0, so either sampling or assignment or both are
correlated within cluster. (We study the case qk “ 1 and σ2k “ 0 separately below.) In addition,
assume (i) lim infkÑ8p1 ´ qkq ą 0 and

lim inf
kÑ8

mk
ÿ

m“1

nk,m
nk

˜

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

ą 0, (A.2)

or (ii) lim infkÑ8 σ2k ą 0 and

lim inf
kÑ8

mk
ÿ

m“1

nk,m
nk

˜

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

ą 0. (A.3)

Equation (A.2) would be violated if, as k increases, there is no variation in average treatment effects
across clusters. Equation (A.3) would be violated if as k increases there is no variation in average
potential outcomes across clusters. If equations (A.2) and (A.3) hold, vk is bounded below by a
term of order at least pk minm nk,m. Recall our assumption, lim infkÑ8 pk minm nk,m ą 0, so the
average number of observations sampled per cluster, conditional on the cluster being sampled, does
not go to zero. Then,

lim inf
kÑ8

vk ą 0.

To obtain a CLT, we will check Lyapunov’s condition,

lim
kÑ8

mk
ÿ

m“1

1

v
1`δ{2
k

Er|ξk,m,1 ´ ξk,m,0|2`δs “ 0,

for some δ ą 0. Because potential outcomes are uniformly bounded and µk is uniformly bounded
away from zero, we obtain

|ξk,m,1|2`δ ď c
n2`δ
k,m

pnkpkqkq1`δ{2

ˇ

ˇ

ˇ

ˇ

ˇ

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu|Rk,iWk,i ´ pkqkµk|

ˇ

ˇ

ˇ

ˇ

ˇ

2`δ

,

where c is some generic positive constant, whose value may change across equations. Consider
δ “ 1, and let

S3
k,m,1 “ E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

nk,m

nk
ÿ

i“1

1tmk,i “ mu|Rk,iWk,i ´ pkqkµk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
fi

fl
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ď
1

n3k,m
nk,mEr|Rk,iWk,i ´ pkqkµk|3s

`
3

n3k,m
nk,mpnk,m ´ 1qE

“

|Rk,iWk,i ´ pkqkµk|2|Rk,jWk,j ´ pkqkµk|
ˇ

ˇmk,i “ mk,j “ m
‰

`
6

n3k,m

ˆ

nk,m
3

˙

E
“

|Rk,iWk,i ´ pkqkµk||Rk,jWk,j ´ pkqkµk||Rk,tWk,t ´ pkqkµk|
ˇ

ˇmk,i “ mk,j “ mk,t “ m
‰

,

for i ‰ j ‰ t. (The second and third terms on the left-hand side of last equation only appear when
nk,m ě 2 and nk,m ě 3, respectively) As a result,

S3
k,m,1 ď c

˜

pkqk
n2k,m

`
p2kqk
nk,m

` p3kqk

¸

ď c p3kqk

˜

1

p2k minm n2k,m
`

1

pk minm nk,m
` 1

¸

.

Because lim infkÑ8 pk minm nk,m ą 0, for large enough k we obtain,

Er|ξk,m,1|3s ď c
p3kqkn

3
k,m

pnkpkqkq3{2
,

and the same bound applies for Er|ξk,m,0|3s. Notice that

mk
ÿ

m“1

Er|ξk,m,1 ´ ξk,m,0|3s ď

mk
ÿ

m“1

Erp|ξk,m,1| ` |ξk,m,0|q3s

“

mk
ÿ

m“1

Er|ξk,m,1|3s `

mk
ÿ

m“1

Er|ξk,m,0|3s

` 3
mk
ÿ

m“1

Er|ξk,m,1|2|ξk,m,0|s ` 3
mk
ÿ

m“1

Er|ξk,m,1||ξk,m,0|2s.

Now, Hölder’s inequality implies that

p3kqk
řmk

m“1 n
3
k,m

v
3{2
k pnkpkqkq3{2

ÝÑ 0, (A.4)

is sufficient for the Lyapunov condition to hold. Because maxm nk,m{minm nk,m is bounded asymp-
totically, we obtain,

lim sup
kÑ8

p3kqk
řmk

m“1 n
3
k,m

v
3{2
k pnkpkqkq3{2

ď lim sup
kÑ8

c
p3kqkmk maxm n

3
k,m

pp2kqkmk minm n2k,mq3{2

ď lim sup
kÑ8

ˆ

maxm nk,m
minm nk,m

˙3 c
?
qkmk

“ 0,

and so the Lyapunov condition holds. As a result, we obtain

pak{
?
vk

d
ÝÑ Np0, 1q.
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We will next prove that both pak,1{
?
vk and pak,0{

?
vk are Opp1q.

Erpa2k,1s “
1

nkpkqk

1

µ2k

mk
ÿ

m“1

E

»

–

˜

nk
ÿ

i“1

1tmk,i “ mupRk,iWk,i ´ pkqkµkquk,ip1q

¸2
fi

fl

ď c
1

nkpkqk

mk
ÿ

m“1

`

nk,mpkqk ` nk,mpnk,m ´ 1qp2kqk
˘

“ c
´

1 `

mk
ÿ

m“1

nk,mpnk,m ´ 1qpk
nk

¯

.

Therefore,

Erppak,1{
?
vkq2s ď c

˜

1

pk minm nk,m
`

mk
ÿ

m“1

pmaxm nk,mqpnk,m ´ 1qpk
nkpk minm nk,m

¸

.

Because lim supmaxm nk,m{minm nk,m ă 8, we obtain lim supkÑ8 Erppak,1{vkq2s ă 8. As a result,
pak,1{

?
vk is Opp1q.

Let rbk,1 “ Nk,1{nk. Consider k large enough, so pk minm nk,m is bounded away from zero, making
rbk,1{bk,1 well-defined. Notice that Errbk,1{bk,1s “ 1 and

varprbk,1{bk,1q “
1

pnkpkqkµkq2

mk
ÿ

m“1

E

»

–

˜

nk
ÿ

i“1

1tmk,i “ mupRk,iWk,i ´ nkpkqkµkq

¸2
fi

fl

“
nkpkqkµkp1 ´ pkqkµkq

pnkpkqkµkq2
`

mk
ÿ

m“1

nk,mpnk,m ´ 1qp2kqkpσ2k ` p1 ´ qkqµ2kq

pnkpkqkµkq2

ď
1 ´ pkqkµk
nkpkqkµk

` c
nkpmaxm nk,m ´ 1qp2kqk

pnkpkqkq2

ď
1 ´ pkqkµk
nkpkqkµk

` c
pmaxm nk,m ´ 1q

minnk,m

1

qkmk
ÝÑ 0.

This implies rbk,1{bk,1
p

Ñ 1. Analogous calculations yield rb0,k{b0,k
p

Ñ 1. For large enough k,
rbk,1{bk,1 “ 0 if and only if Nk,1 “ 0, which implies PrpNk,1 “ 0q Ñ 0. It follows that, for
large enough k,

Prp|rbk,1{bk,1 ´ pbk,1{bk,1| “ 0q “ PrpNk,1 ą 0q ÝÑ 1

and pbk,1{bk,1
p

Ñ 1. Using analogous calculations, we obtain pbk,0{bk,0
p

Ñ 1. As a result,

?
nkpkqkppτk ´ τkq{v

1{2
k “

bk,1
pbk,1

pak,1

v
1{2
k

´
bk,0
pbk,0

pak,0

v
1{2
k

“
pak

v
1{2
k

`

˜

bk,1
pbk,1

´ 1

¸

pak,1

v
1{2
k

´

˜

bk,0
pbk,0

´ 1

¸

pak,0

v
1{2
k

“ pak{
?
vk ` Opp1q.

7



Therefore,
?
nkpkqkppτk ´ τkq{v

1{2
k

d
ÝÑ Np0, 1q.

Using rb1,k{b1,k
p

Ñ 1 and rb0,k{b0,k
p

Ñ 1, it is easy to show Nk{pnkpkqkq
p

Ñ 1, which implies

a

Nkppτk ´ τkq{v
1{2
k

d
ÝÑ Np0, 1q.

We will next consider the case of qk “ 1 and σ2k “ 0, where no clustering is required. Consider

ϑk,i,1 “
1

?
nkpkµk

`

Rk,iWk,i ´ pkµk
˘

uk,ip1q

and

ϑk,i,0 “
1

?
nkpkp1 ´ µkq

`

Rk,ip1 ´Wk,iq ´ pkp1 ´ µkq
˘

uk,ip0q.

Redefine now vk “
řnk

i“1E
“

pϑk,i,1 ´ ϑk,i,0q2
‰

. Then,

vk “
1

nk

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

´ pk
1

nk

nk
ÿ

i“1

`

uk,ip1q ´ uk,ip0q
˘2
.

Notice that vk is minimized for pk “ 1, in which case

vk “
1

nk

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

´
1

nk

nk
ÿ

i“1

`

uk,ip1q ´ uk,ip0q
˘2

“
1

nk

nk
ÿ

i“1

ˆ

1 ´ µk
µk

u2k,ip1q `
µk

1 ´ µk
u2k,ip0q ` 2uk,ip1quk,ip0q

˙

“ µkp1 ´ µkq
1

nk

nk
ÿ

i“1

ˆ

u2k,ip1q

µ2k
`

u2k,ip0q

p1 ´ µkq2
` 2

uk,ip1quk,ip0q

µkp1 ´ µkq

˙

“ µkp1 ´ µkq
1

nk

nk
ÿ

i“1

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2

.

Therefore, the assumption

lim inf
kÑ8

1

nk

nk
ÿ

i“1

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2

ą 0

is enough for lim infkÑ8 vk ą 0. Notice now that

Er|ϑk,i,1|3s ď
1

pnkpkq3{2
Er|Rk,iWk,i ´ pkµk|3s

“
1

pnkpkq3{2
p1 ´ pkµkq3pkµk ` ppkµkq3p1 ´ pkµkq

ď c
pk

pnkpkq3{2
,

8



and the same bound holds for Er|ϑk,i,0|3s. Therefore, for the Lyapunov condition to hold, it is
enough that

nkpk
pnkpkq3{2

“
1

?
nkpk

ÝÑ 0,

or nkpk Ñ 8. That is, assumptions (i)-(iii), which we used for the clustered case, are replaced by
nkpk Ñ 8.

A.2.2. Estimation of the variance

Let pUk,i “ Yk,i ´ pαk ´ pτkWk,i be the residuals from the regression of Yk,i or a constant and Wk,i.
Here, pαk is the coefficient on the constant regressor equal to one, and pτk is the coefficient on Wk,i.

We have already shown v
´1{2
k ppτk ´ τkq “ Opp1{

?
nkpkqkq. The same is true about pαk (e.g., apply

the proof for pτk after replacing each yk,ip1q with a zero). Define pΣk “
řmk

m“1
pΣk,m, where

pΣk,m “

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

˜

pUk,i

Wk,i
pUk,i

¸¸ ˜

nk
ÿ

i“1

1tmk,i “ muRk,i

˜

pUk,i

Wk,i
pUk,i

¸¸1

.

Also, let

pQk “

nk
ÿ

i“1

Rk,i

ˆ

1
Wk,i

˙ ˆ

1
Wk,i

˙1

,

and z “ p0, 1q1. Then, the cluster estimator of the variance of
?
Nkppτk ´ τkq is

pV cluster
k “ Nkz

1
pQ´1
k

pΣk
pQ´1
k z.

Notice that

pnkpkqkq´1Er pQks “

ˆ

1 µk
µk µk

˙

.

In addition,

1

nkpkqk
pQkp2, 2q “

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i.

var

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

¸

“ nk,mpkqkµkp1 ´ pkqkµkq

` nk,mpnk,m ´ 1qp2kqkpσ2k ` µ2kp1 ´ qkqq.

Therefore, under conditions (i)-(iii), we obtain

var

˜

1

nkpkqk
pQkp2, 2q

¸

ď
c

nkpkqk

˜

1 ` pkpmaxm nk,m ´ 1q

¸

“ c
maxm nk,m

nkqk
` Op1q

ď c
maxm nk,m
minm nk,m

1

qkmk
` Op1q ÝÑ 0.
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Analogous calculations yield varppnkpkqkq´1
pQkp1, 1qq Ñ 0. Therefore,

1

nkpkqk
pQk “

ˆ

1 µk
µk µk

˙

` Opp1q

and

nkqkpk pQ´1
k “ Hk ` Opp1q, where Hk “

1

µkp1 ´ µkq

ˆ

µk ´µk
´µk 1

˙

.

Now, let Uk,i “ Yk,i ´ αk ´ τkWk,i “ Wk,iuk,ip1q ` p1 ´Wk,iquk,ip0q. Notice that

v
´1{2
k max

i“1,...,nk

| pUk,i ´ Uk,i| ď v
´1{2
k |pαk ´ αk| ` v

´1{2
k |pτk ´ τk| “ Opp1{

?
nkpkqkq.

Define Σk “
řmk

m“1Σk,m, where

Σk,m “

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

ˆ

Uk,i

Wk,iUk,i

˙

¸ ˜

nk
ÿ

i“1

1tmk,i “ muRk,i

ˆ

Uk,i

Wk,iUk,i

˙

¸1

.

We will show
1

nkpkqkvk
ppΣk ´ Σkq

p
ÝÑ 0.

Notice that

pΣk,mp2, 2q ´ Σk,mp2, 2q “

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ip pUk,i ´ Uk,iq

¸2

` 2

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iUk,i

¸˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ip pUk,i ´ Uk,iq

¸

.

Therefore,

1

nkpkqkvk
|pΣkp2, 2q ´ Σkp2, 2q| ď c

1

nkpkqkvk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

¸2

ˆ

˜

max
i“1,...,nk

| pUk,i ´ Uk,i|
2 ` max

i“1,...,nk

| pUk,i ´ Uk,i|

¸

.

The same expression holds for the off-diagonal elements of pΣk,m ´Σk,m. For pΣk,mp1, 1q´Σk,mp1, 1q,
the expression holds once we replace each Wk,i with a one. Let } ¨ } be the Frobenius norm of a
matrix. Then,

1

nkpkqkvk
}pΣk ´ Σk} ď c

1

nkpkqkvk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

¸2

ˆ

˜

max
i“1,...,nk

| pUk,i ´ Uk,i|
2 ` max

i“1,...,nk

| pUk,i ´ Uk,i|

¸

.
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We will prove that the right-hand side of the previous equation converges to zero in probability.
We will factorize each term into a expression that is bounded in probability and one that converges
to zero in L1.

E

«

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

¸2ff

ď nkpkqk ` nkpmax
m

nk,m ´ 1qp2kqk.

For the first term, notice that

max
i“1,...,nk

| pUk,i ´ Uk,i|
2nkpkqk ` nkpmaxm nk,m ´ 1qp2kqk

nkpkqkvk

“
nkpkqk
vk

max
i“1,...,nk

| pUk,i ´ Uk,i|
2

˜

nkpkqk ` nkpmaxm nk,m ´ 1qp2kqk
pnkpkqkq2

¸

ď
nkpkqk
vk

max
i“1,...,nk

| pUk,i ´ Uk,i|
2

˜

1

nkpkqk
`

maxm nk,m ´ 1

minm nk,m

1

qkmk

¸

“ Opp1q Op1q.

For the second term, using the fact that vk is greater or equal to pk minm nk,m ą 0 times a term
with limit inferior that is bounded away from zero, we obtain

max
i“1,...,nk

| pUk,i ´ Uk,i|
nkpkqk ` nkpmaxm nk,m ´ 1qp2kqk

nkpkqkvk

“

´nkpkqk
vk

¯1{2
max

i“1,...,nk

| pUk,i ´ Uk,i|

˜

nkpkqk ` nkpmaxm nk,m ´ 1qp2kqk

pnkpkqkq3{2v
1{2
k

¸

ď

´nkpkqk
vk

¯1{2
max

i“1,...,nk

| pUk,i ´ Uk,i|

˜

1

pnkpkqkvkq1{2
`

maxm nk,m ´ 1

minm nk,m

1

pqkmkq1{2

¸

“ Opp1q Op1q.

As a result, we obtain
1

nkpkqkvk
}pΣk ´ Σk} “ Opp1q.

Notice that

nkpkqk
vk

pQ´1
k

pΣk
pQ´1
k ´Hk

Σk

nkpkqkvk
Hk “ Hk

Σk

nkpkqkvk

´

nkpkqk pQ´1
k ´Hk

¯

`

´

nkpkqk pQ´1
k ´Hk

¯ Σk

nkpkqkvk

´

nkpkqk pQ´1
k

¯

`

´

nkpkqk pQ´1
k

¯

pΣk ´ Σk

nkpkqkvk

´

nkpkqk pQ´1
k

¯

.

Therefore, to show that the left-hand side of the last equation is Opp1q, it is only left to show that
Σk{pnkpkqkvkq is Opp1q. We will prove this next. Notice that

1

nkpkqkvk
}Σk} ď c

1

nkpkqkvk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

¸2

.
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Therefore,

E

«

1

nkpkqkvk
}Σk}

ff

ď c
1

nkpkqkvk

˜

nkpkqk ` nkpmax
m

nk,m ´ 1qp2kqk

¸

.

Then,

E

«

1

nkpkqkvk
}Σk}

ff

ď c

˜

1

vk
`
pkpmaxm nk,m ´ 1q

pk minm nk,m

¸

ă 8.

We, therefore, obtain,
nkpkqk
vk

pQ´1
k

pΣk
pQ´1
k ´Hk

Σk

nkpkqkvk
Hk

p
ÝÑ 0.

Because Nk{pnkpkqkq
p

Ñ 1, we obtain

pV cluster
k {vk “ z1Hk

Σk

nkpkqkvk
Hkz ` Opp1q

“
1

nkpkqkvk

ˆ

1

µkp1 ´ µkq

˙2 mk
ÿ

m“1

ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙2

` Opp1q.

Recall that U2
k,i “ u2k,ip1qWk,i ` u2k,ip0qp1 ´Wk,iq. Notice that

E

„ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙2ȷ

“

nk
ÿ

i“1

1tmk,i “ mupkqkµkp1 ´ µkq

´

p1 ´ µkqu2k,ip1q ` µku
2
k,ip0q

¯

` 2
nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mup2kqk

”

pσ2k ` µ2kqp1 ´ µkq2uk,ip1quk,jp1q

` µkp1 ´ µkqpσ2k ´ µkp1 ´ µkqqpuk,ip0quk,jp1q ` uk,ip1quk,jp0qq

` pσ2k ` p1 ´ µkq2qµ2kuk,ip0quk,jp0q

ı

.

Let

vclusterk “
1

nkpkqk

ˆ

1

µkp1 ´ µkq

˙2 mk
ÿ

m“1

E

„ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙2ȷ

.

Then,

nkv
cluster
k “

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

` pk

mk
ÿ

m“1

«˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

´

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘2

ff

` pkσ
2
k

mk
ÿ

m“1

«˜

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

´

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2
ff

.
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Alternatively, we can write

nkv
cluster
k “

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

´ pk

nk
ÿ

i“1

`

uk,ip1q ´ uk,ip0q
˘2

´ pkσ
2
k

nk
ÿ

i“1

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙2

` pk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu
`

uk,ip1q ´ uk,ip0q
˘

¸2

` pkσ
2
k

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu

ˆ

uk,ip1q

µk
`
uk,ip0q

1 ´ µk

˙

¸2

.

We will next show that

z1Hk
Σk

nkpkqkvk
Hkz ´

vclusterk

vk

p
ÝÑ 0.

Given the µkp1 ´ µkq is bounded away from zero, by the weak law of large numbers for arrays, it
is enough to show

1

pnkpkqkvkq2

mk
ÿ

m“1

E

„ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙4ȷ

ÝÑ 0.

Applying the multinomial theorem and the fact that all moments of Wk,i as well as all potential
outcomes are bounded, we obtain:

1

pnkpkqkvkq2

mk
ÿ

m“1

E

„ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙4ȷ

ď
c

pnkpkqkvkq2

´

nkpkqk ` nkp
2
kqk max

m
nk,m ` nkp

3
kqk max

m
n2k,m ` nkp

4
kqk max

m
n3k,m

¯

.

Now, using lim supkÑ8 maxm nk,m{minm nk,m ă 8, lim supkÑ8 pk minm nk,m{vk ă 8, and qkmk Ñ

8 we obtain

1

pnkpkqkvkq2

mk
ÿ

m“1

E

„ˆ nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´ µkqUk,i

˙4ȷ

ď c

˜

1

nkpkqkv
2
k

`
maxm nk,m
minm nk,m

1

qkmkv
2
k

`
pk maxm n

2
k,m

vk minm nk,m

1

qkmkvk
`
p2k maxm n

3
k,m

v2k minm nk,m

1

qkmk

¸

ÝÑ 0.

As a result,
pV cluster
k

vk
“
vclusterk

vk
` Opp1q.

The robust (sandwich) estimator of the variance of
?
Nkppτk ´ τkq is given by

pV robust
k “ Nkz

1
pQ´1
k

pΩk
pQ´1
k z.
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where

pΩk “

nk
ÿ

i“1

Rk,i

˜

pUk,i

Wk,i
pUk,i

¸ ˜

pUk,i

Wk,i
pUk,i

¸1

.

We will derive the limit of pV robust
k {vk. Let

Ωk “

nk
ÿ

i“1

Rk,i

ˆ

Uk,i

Wk,iUk,i

˙ ˆ

Uk,i

Wk,iUk,i

˙1

.

Because potential outcomes (and Wk,i) are bounded, we obtain

1

nkpkqkvk
}pΩk ´ Ωk} ď c

˜

1

nkpkqkvk

nk
ÿ

i“1

Rk,i

¸

max
i“1,...,nk

| pU2
k,i ´ U2

k,i|.

Because the limsup of the expectation of the first factor (which is non-negative) is bounded and
the second factor converges to zero in probability as proved above, we obtain

1

nkpkqkvk
}pΩk ´ Ωk} “ Opp1q.

Notice that

1

nkpkqkvk
}Ωk} ď c

˜

1

nkpkqkvk

nk
ÿ

i“1

Rk,i

¸

Again, the limsup of the expectation of the right-hand side of this equation is non-negative and
bounded. As a result, we obtain }Ωk}{pnkpkqkvkq “ Opp1q.

pV robust
k {vk “ z1Hk

Ωk

nkpkqkvk
Hkz ` Opp1q

“
1

nkpkqkvk

ˆ

1

µkp1 ´ µkq

˙2 nk
ÿ

i“1

Rk,ipWk,i ´ µkq2U2
k,i ` Opp1q.

Notice that

E

„ nk
ÿ

i“1

Rk,ipWk,i ´ µkq2U2
k,i

ȷ

“

nk
ÿ

i“1

pkqkµkp1 ´ µkq

´

p1 ´ µkqu2k,ip1q ` µku
2
k,ip0q

¯

.

Finally, notice that

1

pnkpkqkvkq2

mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

Rk,ipWk,i ´ µkq2U2
k,i

¸2ff

ď c
nkpkqk ` nkp

2
kqk maxm nk,m

pnkpkqkvkq2

ď c

˜

1

nkpkqkv
2
k

`
maxm nk,m
minm nk,m

1

qkmkv
2
k

¸

ÝÑ 0.
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Therefore, by the weak law of large numbers for arrays, we obtain

pV robust
k

vk
“
vrobustk

vk
` Opp1q,

where

vrobustk “
1

nk

nk
ÿ

i“1

ˆ

u2k,ip1q

µk
`
u2k,ip0q

1 ´ µk

˙

.

A.3. Fixed effects

A.3.1. Large k distribution

Let

Nk,m “

nk
ÿ

i“1

1tmk,i “ muRk,i

and

pτ fixed
k “

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iYk,ipWk,i ´Wk,mq

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

, (A.5)

where

Wk,m “
1

Nk,m _ 1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i.

Notice that we need lim infkÑ8 µkp1 ´ µkq ´ σ2k “ lim infkÑ8 ErAk,mp1 ´ Ak,mqs ą 0 for this
estimator to be well-defined in large samples (otherwise, the denominator in the formula for pτ fixed

k

could be equal to zero). Although it is not strictly necessary, and because it entails little loss of
generality and simplifies the exposition, we will assume that the supports of the cluster probabilities,
Ak,m, are bounded away from zero and one (uniformly in k and m). In finite samples we assign
pτ fixed
k “ 0 to the cases when the denominator of pτ fixed

k in equation (A.5) is equal to zero. Notice
that

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Wk,mq “ 0.

Let

αk,m “
1

nk,m

nk
ÿ

i“1

1tmk,i “ muyk,ip0q, τk,m “
1

nk,m

nk
ÿ

i“1

1tmk,i “ mupyk,ip1q ´ yk,ip0qq,

ek,ip0q “ yk,ip0q ´ αk,mk,i
, and ek,ip1q “ yk,ip1q ´ αk,mk,i

´ τk,mk,i
. It follows that

nk
ÿ

i“1

1tmk,i “ muek,ip1q “

nk
ÿ

i“1

1tmk,i “ muek,ip0q “ 0.
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Now, Yk,i “ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` αk,mk,i
` τk,mk,i

Wk,i. Then,

pτ fixed
k “

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ippek,ip1q ` τk,mqWk,i ` ek,ip0qp1 ´Wk,iqqpWk,i ´Wk,mq

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

.

Let

τk “

mk
ÿ

m“1

τk,m

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

, (A.6)

where, as before, we make τk “ 0 if the denominator on the right-hand side of (A.6) is equal to
zero. Now, pτ fixed

k ´ τk “ ppτ fixed
k ´ τkq ` pτk ´ τkq, where

pτ fixed
k ´ τk “

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1qWk,i ` ek,ip0qp1 ´Wk,iqqpWk,i ´Wk,mq

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

and

τk ´ τk “

mk
ÿ

m“1

pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

.

Notice that outcomes enter the term pτ fixed
k ´ τk only through the intra-cluster errors, ek,ip1q and

ek,ip0q. In contrast, the term τk ´ τk depends on outcomes only through inter-cluster variability
in treatment effects, τk,m ´ τk. The numerator in the expression for τk ´ τk in the last displayed
equation does not have mean zero in general, and this will be reflected in a bias term, Bk, which
we define next. Let,

Dk “
1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq,

and

Bk “ ´

1

nkpk
ErAk,mp1 ´Ak,mqs

mk
ÿ

m“1

pτk,m ´ τkqp1 ´ p1 ´ pkqnk,mq

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

.

Then,
?
nkpkqkppτ fixed

k ´ τk ´Bkq “ Fk{Dk, where

Fk “

mk
ÿ

m“1

pψk,m ´ ψk,mq ` pφk,m ´ φk,mq,

16



ψk,m “
1

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1qWk,i ` ek,ip0qp1 ´Wk,iqqpWk,i ´Ak,mq,

ψk,m “
1

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1qWk,i ` ek,ip0qp1 ´Wk,iqqpWk,m ´Ak,mq,

φk,m “
1

?
nkpkqk

pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ mu
`

Rk,iWk,ipWk,i ´Ak,mq ´ pkqkErAk,mp1 ´Ak,mqs
˘

,

and

φk,m “
1

?
nkpkqk

pτk,m ´ τkq

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

´ qkErAk,mp1 ´Ak,mqsp1 ´ p1 ´ pkqnk,mq

¸

.

The terms ψk,m and ψk,m depend on the within-cluster errors ek,ip1q and ek,ip0q. The terms φk,m

and φk,m depend on the inter-clusters errors τk,m ´ τk. ψk,m and φk,m replace Wk,m with Ak,m,

while ψk,m and φk,m correct for the difference, Wk,m ´Ak,m.

It can be seen (in intermediate calculations below) that

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

ff

“ nk,mpkqkErAk,mp1 ´Ak,mqs

and

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

ff

“ qkErAk,mp1 ´Ak,mqsp1 ´ p1 ´ pkqnk,mq.

These two expectations are substracted in φk,m and φk,m , so φk,m and φk,m have mean zero. Doing
so for φk,m does not require adjustments elsewhere. Because

mk
ÿ

m“1

pτk,m ´ τkqnk,m “ 0,

the nk,mpkqkErAk,mp1 ´ Ak,mqs terms do not change the sum Fk. In contrast, demeaning φk,m

creates the bias term Bk. If the size of the clusters nk,m does not vary across clusters, then Bk is
equal to zero. More generally,

?
nkpkqkDkBk “ Opmk

a

qk{pnkpkqq. Therefore, if

mkqk
pkpnk{mkq

ÝÑ 0, (A.7)

(that is, if the expected number of sampled clusters is small relative to the expected number of
sampled observations per sampled cluster) then

?
nkpkqkDkBk converges to zero. As a result,

?
nkpkqkBk converges in probability to zero, because, as we will show later, Dk converges in prob-

ability to µkp1 ´ µkq ´ σ2k, which is bounded away from zero. In our large sample analysis, we will
assume that the expected number of sampled clusters grows to infinity, mkqk Ñ 8. Then, equa-
tion (A.7) implies that the expected number of observations per sampled cluster goes to infinity,
pkpnk{mkq Ñ 8. Notice also that nkpkqk “ pnkpk{mkqpmkqkq Ñ 8.
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We summarize now the assumptions we made thus far. We first assumed that the supports of the
cluster probabilities, Ak,m, are bounded away from zero and one (uniformly in k and m), and that
potential outcomes are bounded. Moreover, we assumed mkqk Ñ 8 and pmkqkq{pppknkq{mkq Ñ 0.
These imply ppknkq{mk Ñ 8 and nkpkqk Ñ 8. We will add the assumption that the ratio between
maximum and minimum cluster size is bounded, lim supkÑ8 maxm nk,m{minm nk,m ă 8. This
assumption implies pk minm nk,m Ñ 8 and pmkqkq{ppk minm nk,mq Ñ 0.

We will now study the behavior of Dk. Notice that

E

«

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

ff

“ E

«

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

ff

´ E

«

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

ff

“ nkpkqkErAk,mp1 ´Ak,mqs ´ qkErAk,mp1 ´Ak,mqs

mk
ÿ

m“1

p1 ´ p1 ´ pkqnk,mq.

In addition,

1

pnkpkqkq2

mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2ff

ď c
nkpkqk ` nkp

2
kqk maxm nk,m

pnkpkqkq2

“ c

˜

1

nkpkqk
`

maxm nk,m
minm nk,m

1

mkqk

¸

ÝÑ 0.

The weak law of large numbers for arrays implies

Dk ´ ErAk,mp1 ´Ak,mqs `
1

nkpk
ErAk,mp1 ´Ak,mqs

mk
ÿ

m“1

p1 ´ p1 ´ pkqnk,mq
p

ÝÑ 0.

Because mk{pnkpkq Ñ 0 and ErAk,mp1 ´Ak,mqs “ µkp1 ´ µkq ´ σ2k, we obtain

Dk ´ pµkp1 ´ µkq ´ σ2kq
p

ÝÑ 0.

We now turn our attention to Fk. We will first calculate the variance of ψk,m. Let Qk,m be a binary
variable that takes value one if cluster m in population k is sampled, and zero otherwise. Notice
that

ErRk,iWk,ipWk,i ´Ak,mq|Ak,m, Qk,m “ 1,mk,i “ ms “ pkAk,mp1 ´Ak,mq,

and
ErRk,ip1 ´Wk,iqpWk,i ´Ak,mq|Ak,m, Qk,m “ 1,mk,i “ ms “ ´pkAk,mp1 ´Ak,mq.
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Consider now

ψk,m,1 “
1

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mqek,ip1q

“
Qk,m

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ mu

´

Rk,iWk,ipWk,i ´Ak,mq ´ pkAk,mp1 ´Ak,mq

¯

ek,ip1q,

and

ψk,m,0 “
1

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,ip1 ´Wk,iqpWk,i ´Ak,mqek,ip0q

“
Qk,m

?
nkpkqk

nk
ÿ

i“1

1tmk,i “ mu

´

Rk,ip1 ´Wk,iqpWk,i ´Ak,mq ` pkAk,mp1 ´Ak,mq

¯

ek,ip0q.

It holds that ψk,m “ ψk,m,1 ` ψk,m,0 and Erψk,ms “ 0. Now, notice that

Erψ2
k,m,1s “

1

nk
ErAk,mp1 ´Ak,mq2 ´ pkA

2
k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q,

Erψ2
k,m,0s “

1

nk
ErA2

k,mp1 ´Ak,mq ´ pkA
2
k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mue2k,ip0q,

and

Erψk,m,1ψk,m,0s “
1

nk
pkErA2

k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ muek,ip1qek,ip0q.

Therefore,

Erpψk,m,1 ` ψk,m,0q2s “
1

nk
ErAk,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q

`
1

nk
ErA2

k,mp1 ´Ak,mqs

nk
ÿ

i“1

1tmk,i “ mue2k,ip0q

´
1

nk
pkErA2

k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mupek,ip1q ´ ek,ip0qq2,

and

mk
ÿ

m“1

Erpψk,m,1 ` ψk,m,0q2s “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q

` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q

´ pkErA2
k,mp1 ´Ak,mq2s

1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2. (A.8)
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We will next show that the terms ψk,m do not matter for the asymptotic distribution of
?
nkpkqkppτk´

τkq. Notice that, because the cluster sum of ek,ip1q is equal to zero, we obtain Erψk,ms “ 0 and,
therefore,

mk
ÿ

m“1

E
”

ψk,m

ı

“ 0.

Moreover

2
nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ muek,ip1qek,jp1q “ ´

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q ď 0.

In addition, ErRk,iWk,ipWk,m ´ Ak,mq2|mk,i “ ms ď qkErAk,mp1 ´ Ak,mqs{nk,m (see intermediate
calculations). Therefore,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mqek,ip1q

¸2ff

“

nk
ÿ

i“1

1tmk,i “ muE
”

Rk,iWk,ipWk,m ´Ak,mq2|mk,i “ m
ı

e2k,ip1q

` 2
nk´1
ÿ

i“1

nk
ÿ

j“i`1

E
”

1tmk,i “ mk,j “ muRk,iRk,jWk,iWk,jpWk,m ´Ak,mq2
ı

ek,ip1qek,jp1q

ď qkErAk,mp1 ´Ak,mqs
1

nk,m

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q.

Now, because errors are bounded, we obtain

mk
ÿ

m“1

E

«˜

1
?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mqek,ip1q

¸2ff

ď c
mk

nkpk
. (A.9)

Because mk{pnkpkq Ñ 0, the weak law of large numbers for arrays, implies,

1
?
nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mqek,ip1q
p

ÝÑ 0.

with the analogous result involving the errors ek,ip0q. If follows that

mk
ÿ

m“1

ψk,m
p

ÝÑ 0.

Consider now φk,m. Notice that

E
”´

Rk,iWk,ipWk,i ´Ak,mq ´ pkqkErAk,mp1 ´Ak,mqsq

¯2ı

“ pkqkErAk,mp1 ´Ak,mq2s ´ p2kq
2
k

`

ErAk,mp1 ´Ak,mqs
˘2
,
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and

E
”´

Rk,iWk,ipWk,i ´Ak,mq ´ pkqkErAk,mp1 ´Ak,mqsq

¯

ˆ

´

Rk,jWk,jpWk,j ´Ak,mq ´ pkqkErAk,mp1 ´Ak,mqsq

¯

ˇ

ˇmk,i “ mk,j “ m
ı

“ p2kqkErA2
k,mp1 ´Ak,mq2s ´ p2kq

2
k

`

ErAk,mp1 ´Ak,mqs
˘2
.

Therefore,

Erφ2
k,ms “

´

ErAk,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2
¯nk,m
nk

pτk,m ´ τkq2

`

´

pkErA2
k,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2

¯nk,mpnk,m ´ 1q

nk
pτk,m ´ τkq2,

and

mk
ÿ

m“1

Erφ2
k,ms “

´

ErAk,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2
¯

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

`

´

pkErA2
k,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

nk,mpnk,m ´ 1q

nk
pτk,m ´ τkq2.

Next, we calculate the variance of φk,m. Using results on the moments of a Binomial distribution,
we obtain, for n ě 1,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

¸2
ˇ

ˇ

ˇ

Qk,m “ 1,

Nk,m “ n

ff

“
1

n2
E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

´

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i ´ nAk,m

¯

¸2
ˇ

ˇ

ˇ

Qk,m “ 1,

Nk,m “ n

ff

“ nErA3
k,mp1 ´Ak,mqs ` ErA2

k,mp1 ´Ak,mqp5 ´ 7Ak,mqs

`
1

n
ErAk,mp1 ´Ak,mqp6A2

k,m ´ 6Ak,m ` 1qs.

Therefore,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

¸2ff

“ nk,mpkqkErA3
k,mp1 ´Ak,mqs ` qkErA2

k,mp1 ´Ak,mqp5 ´ 7Ak,mqsp1 ´ p1 ´ pkqnk,mq

` qkErAk,mp1 ´Ak,mqp6A2
k,m ´ 6Ak,m ` 1qsrk,m,

where

rk,m “

nk,m
ÿ

n“1

1

n
PrpNk,m “ n|Qk,m “ 1q ď

nk,m
ÿ

n“1

PrpNk,m “ n|Qk,m “ 1q ď 1.

It follows that,

Erφ2
k,ms “ pτk,m ´ τkq2

´nk,m
nk

ErA3
k,mp1 ´Ak,mqs `

1

nkpk
ErA2

k,mp1 ´Ak,mqp5 ´ 7Ak,mqsp1 ´ p1 ´ pkqnk,mq
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`
1

nkpk
ErAk,mp1 ´Ak,mqp6A2

k,m ´ 6Ak,m ` 1qsrk,m

´
qk
nkpk

pErAk,mp1 ´Ak,mqsq2p1 ´ p1 ´ pkqnk,mq2
¯

.

Therefore,
mk
ÿ

m“1

Erφ2
k,ms “

mk
ÿ

m“1

pτk,m ´ τkq2
´nk,m
nk

¯

ErA3
k,mp1 ´Ak,mqs ` Op1q.

We will now study the covariance between φk,m and φk,m. Using results on the moments of a
Binomial distribution, we obtain, for n ě 1,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

¸˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

¸

ˇ

ˇ

ˇ

Qk,m “ 1,

Nk,m “ n

ff

“ E

«

1 ´Ak,m

n

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

¸2˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i ´ nAk,mq

¸

ˇ

ˇ

ˇ

Qk,m “ 1,

Nk,m “ n

ff

“ 2nErA2
k,mp1 ´Ak,mq2s ` ErAk,mp1 ´Ak,mq2p1 ´ 2Ak,mqs.

Therefore,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

¸˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

¸ff

“ 2nk,mpkqkErA2
k,mp1 ´Ak,mq2s ` qkErAk,mp1 ´Ak,mq2p1 ´ 2Ak,mqsPrpNk,m ě 1|Qk,m “ 1q.

In addition,

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

ff

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

ff

“ nk,mpkq
2
kpErAk,mp1 ´Ak,mqsq2 PrpNk,m ě 1|Qk,m “ 1q.

As a result,

Erφk,mφk,ms “

´

2ErA2
k,mp1 ´Ak,mq2s ´ qkpErAk,mp1 ´Ak,mqsq2

¯

pτk,m ´ τkq2
ˆ

nk,m
nk

˙

` O
ˆ

1

nkpk

˙

` O
ˆ

qk
pk minm nk,m

`

pk min
m

nk,mp1 ´ pkqminm nk,m
˘

˙

.

Notice that mk{pnkpkq Ñ 0. In addition, mkqk{ppk minm nk,mq Ñ 0 and

pk min
m

nk,mp1 ´ pkqminm nk,m “ pk min
m

nk,m

ˆ

1 ´
pk minm nk,m
minm nk,m

˙minm nk,m

ă pk min
m

nk,me
´pk minm nk,m ÝÑ 0.

Therefore,

mk
ÿ

m“1

Erφk,mφk,ms “

´

2ErA2
k,mp1´Ak,mq2s´qkpErAk,mp1´Ak,mqsq2

¯

mk
ÿ

m“1

pτk,m´τkq2
ˆ

nk,m
nk

˙

` Op1q.
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Next, we will study the remaining covariances between ψk,m, φk,m, ψk,m, and φk,m. Because the
intra-cluster errors, ek,ip1q and ek,ip0q sum to zero, it can be easily seen that Erψk,mφk,ms “

Erψk,mφk,ms “ 0. It can also be seen that the inter-clusters sums of covariances between ψk,m and
any of the other terms go to zero. To prove this for the covariance with ψk,m, we have

˜

mk
ÿ

m“1

Er|ψk,mψk,m|s

¸2

ď

˜

mk
ÿ

m“1

pErψ2
k,msErψ

2
k,msq1{2

¸2

ď

mk
ÿ

m“1

Erψ2
k,ms

mk
ÿ

m“1

Erψ
2
k,ms

“ Op1qOp1q “ Op1q.

The same argument and result applies to Erψk,mφk,ms and Erψk,mφk,ms. Putting all the pieces
together, we obtain

nkpkqkErD2
kppτ fixed

k ´ τkq2s “ fk ` Op1q,

where

fk “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q ` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q

´ pkErA2
k,mp1 ´Ak,mq2s

1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

`

´

ErAk,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2
¯

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

`

´

pkErA2
k,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

nk,mpnk,m ´ 1q

nk
pτk,m ´ τkq2

` ErA3
k,mp1 ´Ak,mqs

mk
ÿ

m“1

pτk,m ´ τkq2
´nk,m
nk

¯

´ 2
´

2ErA2
k,mp1 ´Ak,mq2s ´ qkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

pτk,m ´ τkq2
ˆ

nk,m
nk

˙

.

Collecting terms with identical factors, we obtain

fk “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q ` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q

´ pkErA2
k,mp1 ´Ak,mq2s

1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

`

´

ErAk,mp1 ´Ak,mq2s ´ p4 ` pkqErA2
k,mp1 ´Ak,mq2s

` ErA3
k,mp1 ´Ak,mqs ` 2qkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2
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`

´

pkErA2
k,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq2.

The first three terms in the expression above depend on intra-cluster heterogeneity in potential
outcomes and treatment effects. The last two terms depend on inter-cluster variation in average
treatment effects.

A more compact expression for fk is

fk “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q ` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q

´ pkErA2
k,mp1 ´Ak,mq2s

1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

`

´

ErAk,mp1 ´Ak,mqs ´ p5 ` pkqErA2
k,mp1 ´Ak,mq2s

` 2qkpErAk,mp1 ´Ak,mqsq2
¯

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

`

´

pkErA2
k,mp1 ´Ak,mq2s ´ pkqkpErAk,mp1 ´Ak,mqsq2

¯

mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq2. (A.10)

Notice that the first four terms in (A.10) are bounded, and that

ErA2
k,mp1´Ak,mq2s´qkpErAk,mp1´Ak,mqsq2 “ varpAk,mp1´Ak,mqq`p1´qkqpErAk,mp1´Ak,mqsq2.

Assume that

lim inf
kÑ8

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2 ą 0, (A.11)

and
lim inf
kÑ8

varpAk,mp1 ´Ak,mqq _ p1 ´ qkq ą 0. (A.12)

The last term in equation (A.10) is greater than

pk min
m

nk,m
`

ErA2
k,mp1 ´Ak,mq2s ´ pErAk,mp1 ´Ak,mqsq2

˘

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2,

which converges to infinity because pk minm nk,m Ñ 8. That is, the last term dominates the
variance in large samples provided that (A.11) and (A.12) hold.

We will now derive the large sample distribution of pτ fixed
k . To show that Lyapunov’s condition

holds for Fk, notice that

|pψk,m ´ ψk,mq ` pφk,m ´ φk,mq|3

“
1

pnkpkqkq3{2

ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,ippek,ip1q ` τk,m ´ τkqWk,i ` ek,ip0qp1 ´Wk,iqqpWk,i ´Wk,mq

´ pτk,m ´ τqqkErAk,mp1 ´Ak,mqsp1 ´ p1 ´ pkqnk,mq

ˇ

ˇ

ˇ

ˇ

ˇ

3

,
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where the last term inside the absolute value comes from the bias correction. Notice that,

ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1q ` τk,m ´ τkqWk,ipWk,i ´Wk,mq

ˇ

ˇ

ˇ

ˇ

ˇ

3

“

ˇ

ˇ

ˇ

ˇ

ˇ

p1 ´Wk,mq

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1q ` τk,m ´ τkqWk,i

ˇ

ˇ

ˇ

ˇ

ˇ

3

ď c

ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

ˇ

ˇ

ˇ

ˇ

ˇ

3

ď cN
3
k,m.

From the formula of the third moment of a binomial random variable, we obtain

ErN
3
k,ms “ qkErN

3
k,m|Qk,m “ 1s

“ n3k,mp
3
kqk ` Opn3k,mp

3
kqkq,

as pknk,m Ñ 8. Now,

1

f
3{2
k

mk
ÿ

k“1

E

«ˇ

ˇ

ˇ

ˇ

ˇ

1
?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,ipek,ip1q ` τk,m ´ τkqWk,ipWk,i ´Wk,mq

ˇ

ˇ

ˇ

ˇ

ˇ

3ff

ď c
nk maxn n

2
k,mp

3
kqk

pnkpkqkq3{2ppk minm nk,mq3{2
“ c

ˆ

maxm nk,m
minm nk,m

˙2 1

pmkqkq1{2
ÝÑ 0.

Similar calculations deliver the analogous result for the term involving ek,ip0q, and proving the
result for the bias term is straightforward. Therefore, we obtain

1

f
3{2
k

mk
ÿ

m“1

|pψk,m ´ ψk,mq ` pφk,m ´ φk,mq|3 ÝÑ 0.

By the Central Limit Theorem for arrays, this implies

?
nkpkqkFk{f

1{2
k

d
ÝÑ Np0, 1q.

Let ṽk “ fk{pµkp1 ´ µkq ´ σ2kq2. Then,

?
nkpkqkppτ fixed

k ´ τkq{ṽ
1{2
k

d
ÝÑ Np0, 1q.

As a result,
a

Nkppτ fixed
k ´ τkq{ṽ

1{2
k

d
ÝÑ Np0, 1q.

A.3.2. Estimation of the variance

Let

Nk,m,0 “

nk
ÿ

i“1

1tmk,i “ muRk,ip1 ´Wk,iq
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and

Nk,m,1 “

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i.

Let

Y k,m “
1

Nk,m _ 1

nk
ÿ

i“1

1tmk,i “ muRk,iYk,i.

Then,
Y k,m “ pαk,m ` pτk,mWk,m,

where

pαk,m “
1

Nk,m,0 _ 1

nk
ÿ

i“1

1tmk,i “ muRk,ip1 ´Wk,iqYk,i,

pτk,m “
1

Nk,m,1 _ 1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iYk,i ´
1

Nk,m,0 _ 1

nk
ÿ

i“1

1tmk,i “ muRk,ip1 ´Wk,iqYk,i,

and, as before,

Wk,m “
1

Nk,m _ 1

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i.

Let rUk,i “ rYk,i ´ pτ fixed
k

ĂWk,i, where rYk,i “ Yk,i ´ Y k,mk,i
, ĂWk,i “ pWk,i ´Wk,mk,i

q, and pτ fixed
k is the

within estimator of τk. Let rΣk “
řmk

m“1
rΣk,m, where

rΣk,m “

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,i

rUk,i

¸2

.

Also, let

rQk “

nk
ÿ

i“1

Rk,i
ĂW 2

k,i.

Then, the cluster estimator of the variance of
?
Nkppτ fixed

k ´ τkq is

rV cluster
k “ Nk

rQ´1
k

rΣk
rQ´1
k .

We know already that
1

nkpkqk
rQk ´ pµkp1 ´ µkq ´ σ2kq

p
ÝÑ 0,

with µkp1 ´ µkq ´ σ2k bounded away from zero. To establish convergence of rΣk{pnkpkqkfkq, first
notice that, for mk,i “ m, we have

rUk,i “ Yk,i ´ ppαk,m ` pτk,mWk,mq ´ pτ fixed
k pWk,i ´Wk,mq

“ yk,ip1qWk,i ` yk,ip0qp1 ´Wk,iq ´ pαk,m ` τk,mWk,mq ´ pτ fixed
k pWk,i ´Wk,mq

´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m

“ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ pτ fixed
k qpWk,i ´Wk,mq

26



´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m

“ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ τkqpWk,i ´Wk,mq

´ ppτ fixed
k ´ τkqpWk,i ´Wk,mq ´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m.

For mk,i “ m and Nk,m,0, Nk,m,1 ě 1, let

Uk,i “ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ τkqpWk,i ´Wk,mq,

and let Uk,i “ 0 for mk,i “ m and Nk,m,0Nk,m,1 “ 0. Then, for mk,i “ m and Nk,m,0Nk,m,1 ě 1, we
have

rUk,i ´Uk,i “ ´ppτ fixed
k ´ τkqpWk,i ´Wk,mq ´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m.

Then,

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,i

rUk,i

¸2

“

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,i

´

Uk,i `
`

rUk,i ´Uk,i

˘

¯

¸2

“

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,i

´

Uk,i ´ ppτ fixed
k ´ τkqpWk,i ´Wk,mq

¯

¸2

“

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,iUk,i ´ ppτ fixed

k ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2

.

Using the formula for the second moment of a binomial distribution and n ě 1, we obtain,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2
ˇ

ˇ

ˇ
Nk,m “ n

ff

“ E

«˜

nk
ÿ

i“1

1tmk,i “ mup1 ´Wk,mqRk,iWk,i

¸2
ˇ

ˇ

ˇ
Nk,m “ n

ff

ď E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

¸2
ˇ

ˇ

ˇ
Nk,m “ n

ff

ď n2 ` n.

From the formula of the sum of the first two moments of a binomial distribution, we obtain

mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2ff

ď

mk
ÿ

m“1

pn2k,mp
2
kqk ` nk,mpkqkq.

Therefore,

1

nkpkqkfk
ppτ fixed

k ´ τkq2
mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2ff
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ď
nkpkqk
fk

ppτ fixed
k ´ τkq2

1

pnkpkqkq2

mk
ÿ

m“1

pn2k,mp
2
kqk ` nk,mpkqkq

“ Opp1q

ˆ

maxm nk,m
minm nk,m

1

mkqk
`

1

nkpkqk

˙

p
ÝÑ 0.

Now, notice that

1

nkpkqkfk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂWk,iUk,i

¸2

“
1

nkpkqkfk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

`

ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq
˘

pWk,i ´Wk,mq

` pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Wk,mq2

¸2

.

Equation (A.9) (and the analogous result for the sum involving terms with ek,ip0q), implies

1

nkpkqkfk

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

`

ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq
˘

pWk,m ´Ak,mq

¸2
p

ÝÑ 0.

As a result, it is enough to establish convergence of Σk{pnkpkqkfkq, where

Σk “

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

`

ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq
˘

pWk,i ´Ak,mq

` pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Wk,mq2

¸2

“

mk
ÿ

m“1

˜

nk
ÿ

i“1

1tmk,i “ mu

´

Rk,iWk,ipWk,i ´Ak,mq ´ pkqkAk,mp1 ´Ak,mq

¯

ek,ip1q

`

nk
ÿ

i“1

1tmk,i “ mu

´

Rk,ip1 ´Wk,iqpWk,i ´Ak,mq ` pkqkAk,mp1 ´Ak,mq

¯

ek,ip0q

` pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Wk,mq2

¸2

.

We will next show that
1

nkpkqkfk
Σk ´

f clusterk

fk

p
ÝÑ 0, (A.13)

where

f clusterk “
1

nk
ErAk,mp1 ´Ak,mq2s

nk
ÿ

i“1

e2k,ip1q

`
1

nk
ErA2

k,mp1 ´Ak,mqs

nk
ÿ

i“1

e2k,ip0q
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´
1

nk
pkErA2

k,mp1 ´Ak,mq2s

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

` pErAk,mp1 ´Ak,mqs ´ p5 ` pkqErA2
k,mp1 ´Ak,mq2sq

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

` pkErA2
k,mp1 ´Ak,mq2s

mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq2.

Let

Xk,m “
1

nkpkqk

˜

nk
ÿ

i“1

1tmk,i “ muRk,i

`

ek,ip0qp1 ´Wk,iq

` ek,ip1qWk,i

˘

pWk,i ´Ak,mq ` pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Wk,mq2

¸2

Using the result in equation (A.8) and results on the moments of the binomial distribution (see
intermediate calculations in section A.7), we obtain

1

nkpkqk
ErΣks “

mk
ÿ

m“1

ErXk,ms

“ f clusterk ` Op1q.

Therefore, to show that equation (A.13) holds, we will show

1

f2k

mk
ÿ

m“1

ErX2
k,ms ÝÑ 0. (A.14)

Let

θk “ ErpRk,iWk,ipWk,i ´Ak,mq ´ pkAk,mp1 ´Ak,mqq2|mk,i “ m,Qk,m “ 1s

“ pk
`

ErAk,mp1 ´Ak,mq2s ´ pkErA2
k,mp1 ´Ak,mq2s

˘

,

and

πk “ ErpRk,iWk,ipWk,i ´Ak,mq ´ pkAk,mp1 ´Ak,mqq4|mk,i “ m,Qk,m “ 1s

“ pkErpWk,ipWk,i ´Ak,mq ´ pkAk,mp1 ´Ak,mqq4|mk,i “ ms ` p4kp1 ´ pkqErA4
k,mp1 ´Ak,mq4s.

Let

Xk,m,1 “
1

nkpkqk

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mqek,ip1q

¸2

“
Qk,m

nkpkqk

˜

nk
ÿ

i“1

1tmk,i “ mupRk,iWk,ipWk,i ´Ak,mq ´ pkAk,mp1 ´Ak,mqqek,ip1q

¸2

.
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Then,

ErX2
k,m,1s “ qkErX2

k,m,1|Qk,m “ 1s

“
πk

n2kp
2
kqk

nk
ÿ

i“1

1tmk,i “ mue4k,ip1q

`
6θ2k

n2kp
2
kqk

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mue2k,ip1qe2k,jp1q.

Therefore, because nkpkqk Ñ 8 and mkqk Ñ 8, we obtain

mk
ÿ

m“1

ErX2
k,m,1s ď

c

nkpkqk

˜

1

nk

nk
ÿ

i“1

e4k,ip1q

¸

`
c

mkqk

maxm n
2
k,m

minm n2k,m

ˆ

˜

1

mk

mk
ÿ

m“1

1

maxm n2k,m

nk´1
ÿ

i“1

nk
ÿ

j“i`1

1tmk,i “ mk,j “ mue2k,ip1qe2k,jp1q

¸

ÝÑ 0. (A.15)

Using the same argument, we obtain

mk
ÿ

m“1

ErX2
k,m,2s ÝÑ 0, (A.16)

where

Xk,m,2 “
1

nkpkqk

˜

nk
ÿ

i“1

1tmk,i “ muRk,ip1 ´Wk,iqpWk,i ´Ak,mqek,ip0q

¸2

.

Notice that equations (A.15) and (A.16) imply

1

f2k

mk
ÿ

m“1

ErX2
k,m,1s ÝÑ 0

and
1

f2k

mk
ÿ

m“1

ErX2
k,m,2s ÝÑ 0.

Notice that the last two equations hold even if fk is bounded (e.g., when τk,m ´ τk “ 0 for all k and
m), as long as fk is bounded away from zero in large samples. In section A.3.3 we derive conditions
so that fk is bounded away from zero in large samples even if τk,m ´ τk “ 0 for all k and m. Now,
let

Xk,m,3 “
1

nkpkqk

˜

pτk,m ´ τkq

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2

.

Recall that, under the conditions in (A.11) and (A.12), fk Ñ 8 and pk minnk,m{fk is bounded for
large k and, therefore, pk maxnk,m{fk is bounded for large k. Then (see intermediate calculations
at the end of this document), for large k,

1

f2k

mk
ÿ

m“1

ErX2
k,m,3s “

1

pnkpkqkfkq2

mk
ÿ

m“1

n4k,mp
4
kqkpτk,m ´ τkq4

ˆ

1 ` O
ˆ

1

pk minm nk,m

˙˙
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“
pk maxm n

2
k,m

mkqkfk minm nk,m

˜

pk
fk

mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq4

¸

ˆ

1 ` O
ˆ

1

pk minm nk,m

˙˙

“ O
ˆ

1

mkqk

˙ ˆ

1 ` O
ˆ

1

pk minm nk,m

˙˙

Ñ 0.

Now, Hölder’s inequality implies that equation (A.14) holds (see intermediate calculations).

Now let,
ṽclusterk “ f clusterk {pµkp1 ´ µkq ´ σ2kq2.

We obtain,
rV cluster
k

ṽk
“
ṽclusterk

ṽk
` Opp1q.

We will next establish the analogous result for the heteroskedaticity-robust variance estimator. Let

rΣrobust
k “

nk
ÿ

i“1

Rk,i
ĂW 2

k,i
rU2
k,i.

Then, the heteroskedasticity-robust estimator of the variance of
?
Nkppτ fixed

k ´ τkq is

rV robust
k “ Nk

rQ´1
k

rΣrobust
k

rQ´1
k .

As we have established before,

rUk,i “ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ τkqpWk,i ´Wk,mq

´ ppτ fixed
k ´ τkqpWk,i ´Wk,mq ´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m.

For mk,i “ m and Nk,m,0Nk,m,1 ě 1, let

Uk,i “ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ τkqpWk,i ´Wk,mq,

and let Uk,i “ 0 for mk,i “ m and Nk,m,0Nk,m,1 “ 0. Then, for mk,i “ m and Nk,m,0Nk,m,1 ě 1, we
have

rUk,i ´Uk,i “ ´ppτ fixed
k ´ τkqpWk,i ´Wk,mq ´ ppαk,m ´ αk,mq ´ ppτk,m ´ τk,mqWk,m,

and
1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 2

k,i
rU2
k,i “

1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 2

k,i

´

Uk,i `
`

rUk,i ´Uk,i

˘

¯2
. (A.17)

Focusing on the part of the right hand side of last equation that depends on the first term of
rUk,i ´Uk,i, we obtain

1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 4

k,ippτ fixed
k ´ τkq2 ď ppτ fixed

k ´ τkq2
1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 2

k,i
p

ÝÑ 0.

We will focus now on the part of the right-hand side of equation (A.17) that that depends on the
second term of rUk,i ´Uk,i,

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂW 2

k,ippαk,m ´ αk,mq2.
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Using the formula for the variance of a sample mean under sampling without replacement (e.g., in
the supplement of ?), we obtain for 1 ď n ď nk,m ´ 1,

E

«

ppαk,m ´ αk,mq2
nk
ÿ

i“1

1tmk,i “ muRk,i
ĂW 2

k,i

ˇ

ˇ

ˇ
Nk,m,0 “ n

ff

“ E

«

ppαk,m ´ αk,mq2Nk,mWk,mp1 ´Wk,mq

ˇ

ˇ

ˇ
Nk,m,0 “ n

ff

ď E
”

nppαk,m ´ αk,mq2
ˇ

ˇNk,m,0 “ n
ı

“ n varppαk,m|Nk,m,0 “ nq

“ s2k,m,0

´

1 ´
n

nk,m

¯

, (A.18)

where

s2k,m,0 “
1

nk,m ´ 1

nk
ÿ

i“1

1tmk,i “ mupyk,ip0q ´ αk,mq2.

Because s2k,m,0 is bounded, so is the right-hand side of equation (A.18). As a result

E

«

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i
ĂW 2

k,ippαk,m ´ αk,mq2

ff

ď c
mk

nkpk
ÝÑ 0.

An analogous derivation applies to the part of the right-hand side of equation (A.17) that depends
on the third term of rUk,i ´Uk,i. (Notice that Wk,m ď 1 and that pτk,m ´ τk,m is equal to minus the
difference between pαk,m ´ αk,m and the analogous difference for the treated.

Therefore, we will study the behavior of

1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 2

k,iU
2
k,i. (A.19)

First, notice that

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

ˇ

ˇ

ˇ
pWk,i ´Wk,mq2 ´ pWk,i ´Ak,mq2

ˇ

ˇ

ˇ
Wk,ie

2
k,ip1q

ď c
1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

ˇ

ˇ

ˇ
pWk,i ´Wk,mq ` pWk,i ´Ak,mq

ˇ

ˇ

ˇ

ˇ

ˇWk,m ´Ak,m

ˇ

ˇWk,i

ď c

˜

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

´

pWk,i ´Wk,mq ` pWk,i ´Ak,mq

¯2
Wk,i

¸1{2

ˆ

˜

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

`

Wk,m ´Ak,m

˘2

¸1{2

. (A.20)

The inside of the first square root in equation (A.20) is bounded by a constant times

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i,
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which converges in probability to one. The expectation of the inside of the second square root in
equation (A.20) is

1

nkpkqk

mk
ÿ

m“1

E
“

Nk,m

`

Wk,m ´Ak,m

˘2‰

ď c
mk

nkpk
ÝÑ 0.

As a result, the right-hand side of equation (A.20) converges to zero in probability. The derivation
with p1 ´Wk,iqe

2
k,ip0q replacing Wk,ie

2
k,ip1q in equation (A.20) is analogous. Now, notice that

pWk,i ´Wk,mq4 ´ pWk,i ´Ak,mq4

“ ´
`

pWk,i ´Wk,mq2 ` pWk,i ´Ak,mq2
˘`

pWk,i ´Wk,mq ` pWk,i ´Ak,mq
˘

pWk,m ´Ak,mq.

Because the first factor of the expression above is bounded, we obtain

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

ˇ

ˇ

ˇ
pWk,i ´Wk,mq4 ´ pWk,i ´Ak,mq4

ˇ

ˇ

ˇ
pτk,m ´ τkq2

ď c

˜

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

¸1{2

ˆ

˜

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,i

`

Wk,m ´Ak,m

˘2

¸1{2

. (A.21)

Now, the right-hand side of equation (A.21) converges to zero in probability by the same argument
as for equation (A.20). Cauchy-Schwarz inequality implies,

1

nkpkqk

nk
ÿ

i“1

Rk,i
ĂW 2

k,iU
2
k,i “

1

nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq2Ŭ2
k,i ` Opp1q,

where
Ŭk,i “ ek,ip1qWk,i ` ek,ip0qp1 ´Wk,iq ` pτk,m ´ τkqpWk,i ´Ak,mq, (A.22)

for mk,i “ m and Nk,m,0Nk,m,1 ě 1, and Ŭk,i “ 0 for Nk,m,0Nk,m,1 ě 0. Therefore, we will study
the behavior of

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq2Ŭ2
k,i.

We know,

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq2Wk,ie
2
k,ip1q

´ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q
p

ÝÑ 0,

and

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq2p1 ´Wk,iqe
2
k,ip0q
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´ ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q
p

ÝÑ 0.

Now, notice that

ErpWk,i ´Ak,mq4|mk,i “ m,Rk,i “ 1, Ak,m “ as “ p1 ´ aq4a` a4p1 ´ aq

“ ap1 ´ aqrp1 ´ aq3 ` a3s

“ ap1 ´ aqr1 ´ 3ap1 ´ aqs,

which implies

E

«

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq4pτk,m ´ τkq2

ff

“ nk,mpkqkErAk,mp1 ´Ak,mqp1 ´ 3Ak,mp1 ´Ak,mqqspτk,m ´ τkq2,

and

E

«

1

nkpkqk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq4pτk,m ´ τkq2

ff

“ ErAk,mp1 ´Ak,mqp1 ´ 3Ak,mp1 ´Ak,mqqs

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2.

Notice now that

1

pnkpkqkq2

mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,ipWk,i ´Ak,mq4pτk,m ´ τkq2

¸2ff

ď c
1

pnkpkqkq2

mk
ÿ

m“1

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,i

¸2ff

ď c
qk

pnkpkqkq2

mk
ÿ

m“1

pnk,mpk ` n2k,mp
2
kq

“ c

˜

1

nkpkqk
`

maxm nk,m
minm nk,m

1

mkqk

¸

p
ÝÑ 0.

Notice also that expectations of the sums of products of the terms on the right-hand side of equation
(A.22) are equal to zero. Then,

1

nkpkqk
rΣrobust
k ´ f robustk

p
ÝÑ 0,

where

f robustk “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q ` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q
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` ErAk,mp1 ´Ak,mqp1 ´ 3Ak,mp1 ´Ak,mqqs

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2.

Now let,
ṽrobustk “ f robustk {pµkp1 ´ µkq ´ σ2kq2.

We obtain,
rV robust
k “ ṽrobustk ` Opp1q.

A.3.3. Large k results the fixed effects case under homogeneous average
treatment effects across clusters

We will now study the Lyapounov’s condition for the case τk,m “ τk for all k and m “ 1, . . . ,mk,
so

fk “

mk
ÿ

m“1

Erψ2
k,ms.

Notice that
mk
ÿ

m“1

Erψ2
k,ms ě

1

nk
ErAk,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q

`
1

nk
ErA2

k,mp1 ´Ak,mqs

nk
ÿ

i“1

1tmk,i “ mue2k,ip0q

´
1

nk
ErA2

k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ mupek,ip1q ´ ek,ip0qq2

“
1

nk
ErAk,mp1 ´Ak,mq3s

nk
ÿ

i“1

1tmk,i “ mue2k,ip1q

`
1

nk
ErA3

k,mp1 ´Ak,mqs

nk
ÿ

i“1

1tmk,i “ mue2k,ip0q

`
2

nk
ErA2

k,mp1 ´Ak,mq2s

nk
ÿ

i“1

1tmk,i “ muek,ip1qek,ip0q

“ E

«

1

nk

mk
ÿ

m“1

A3
k,mp1 ´Ak,mq3

nk
ÿ

i“1

1tmk,i “ mu

ˆ

ek,ip1q

Ak,m
`

ek,ip0q

1 ´Ak,m

˙2
ff

.

Therefore,

lim inf
kÑ8

E

«

1

nk

mk
ÿ

m“1

A3
k,mp1 ´Ak,mq3

nk
ÿ

i“1

1tmk,i “ mu

ˆ

ek,ip1q

Ak,m
`

ek,ip0q

1 ´Ak,m

˙2
ff

ą 0

is sufficient for lim infkÑ8 fk ą 0 (even if condition (A.11) does not hold). Given our assumption
that the supports of the cluster probabilities, Ak,m, are bounded away from zero and one (uniformly
in k and m), then

lim inf
kÑ8

E

«

1

nk

mk
ÿ

m“1

nk
ÿ

i“1

1tmk,i “ mu

ˆ

ek,ip1q

Ak,m
`

ek,ip0q

1 ´Ak,m

˙2
ff

ą 0 (A.23)
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is sufficient for lim infkÑ8 fk ą 0. Assume that (A.23) holds, so lim infkÑ8 fk ą 0. We now obtain,

E

«ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mqek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ
Qk,m “ 1, Ak,m

ff

“ E

«

p1 ´Wk,mq4

ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ
Qk,m “ 1, Ak,m

ff

ď E

«ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ
Qk,m “ 1, Ak,m

ff

,

and

E

«ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ
Qk,m “ 1, Ak,m

ff

“ E

«ˇ

ˇ

ˇ

ˇ

ˇ

nk
ÿ

i“1

1tmk,i “ mupRk,iWk,i ´ pkAk,mqek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ
Qk,m “ 1, Ak,m

ff

“ nk,mErpRk,iWk,i ´ pkAk,mq4|Qk,m “ 1, Ak,ms

` 3nk,mpnk,m ´ 1qpErpRk,iWk,i ´ pkAk,mq2|Qk,m “ 1, Ak,msq2.

The first equality holds because the terms ek,ip1q sum to zero within clusters. The second equality
holds because, if mk,i “ mk,j “ m, with i ‰ j, then Rk,iWk,i and Rk,iWk,i are independent
conditional on Qk,m “ 1, Ak,m, and ErRk,iWk,i ´ pkAk,m|Qk,m “ 1, Ak,ms “ 0. Notice that

ErpRk,iWk,i ´ pkAk,mq2|Qk,m “ 1, Ak,ms “ pkAk,mp1 ´ pkAk,mq ď pk,

which also implies ErpRk,iWk,i ´ pkAk,mq4|Qk,m “ 1, Ak,ms ď pk. As a result,

mk
ÿ

m“1

E

«ˇ

ˇ

ˇ

ˇ

ˇ

1
?
nkpkqk

nk
ÿ

i“1

1tmk,i “ muRk,iWk,iek,ip1q

ˇ

ˇ

ˇ

ˇ

ˇ

4ff

ď
1

nkpkqk
` 3

maxm nk,m
minm nk,m

1

mkqk
Ñ 0.

A.4. Derivations of the variance estimators

In this section, we derive the adjustments in the CCV variance. (We do this under the assumption
that the Zi are independent. In our simulations we actually use a slightly different sampling scheme
for the Zi where the average Zk,m is identical and fixed in each cluster.) To derive the CCV variance
of the least squares estimator, consider first a variance estimator of the form

˜

n
ÿ

i“1

Vi

¸2

.

We aim, however, to design an estimator based on a subsample consisting of units with Zi “ 1,
where Zi P t0, 1u is i.i.d. binary with PrpZi “ 1q “ pZ and independent of Vi. First, notice that

E

»

–

˜

n
ÿ

i“1

Vi

¸2
fi

fl “

n
ÿ

i“1

ErV 2
i s ` 2

n´1
ÿ

i“1

n
ÿ

j“i`1

ErViVjs,
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and

E

»

–

˜

n
ÿ

i“1

ZiVi

¸2
fi

fl “ pZ

n
ÿ

i“1

ErV 2
i s ` 2p2Z

n´1
ÿ

i“1

n
ÿ

j“i`1

ErViVjs.

Therefore,

E

»

–

1

pZ

˜

n
ÿ

i“1

ZiVi

¸2
fi

fl “

n
ÿ

i“1

ErV 2
i s ` 2pZ

n´1
ÿ

i“1

n
ÿ

j“i`1

ErViVjs,

and

p1 ´ pZq

p2Z

¨

˝E

»

–

˜

n
ÿ

i“1

ZiVi

¸2
fi

fl ´ pZ

n
ÿ

i“1

ErV 2
i s

˛

‚“ 2p1 ´ pZq

n´1
ÿ

i“1

n
ÿ

j“i`1

ErViVjs.

Adding the last two equations,

E

»

–

˜

n
ÿ

i“1

Vi

¸2
fi

fl “
1

p2Z
E

»

–

˜

n
ÿ

i“1

ZiVi

¸2
fi

fl ´
p1 ´ pZq

pZ

n
ÿ

i“1

ErV 2
i s

“
1

p2Z
E

»

–

˜

n
ÿ

i“1

ZiVi

¸2
fi

fl ´
p1 ´ pZq

p2Z

n
ÿ

i“1

ErZiV
2
i s. (A.24)

The first term of the CCV variance estimator for least squares is based on the sample counterpart of
the right-hand side of equation (A.24), with 1tmk,i “ muRk,ippWk,i ´Wkq pUk,i ´ ppτk,m ´ pτkqWkp1´

Wkqq in the role of Vi.

To derive the CCV variance estimator for the fixed effect case, consider

λk “ 1 ´ qk
pErAk,mp1 ´Ak,mqsq2

ErA2
k,mp1 ´Ak,mq2s

,

and let fCCV
k “ λkf

cluster
k ` p1´λkqf robustk . This transformation is designed to reproduce the terms

in fk with factor
mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq2.

These terms dominate fk as k increases. It also reproduces several lower order terms.

Notice that

f robustk “ ErAk,mp1 ´Ak,mq2s
1

nk

nk
ÿ

i“1

e2k,ip1q ` ErA2
k,mp1 ´Ak,mqs

1

nk

nk
ÿ

i“1

e2k,ip0q

`

´

ErAk,mp1 ´Ak,mqs ´ p5 ` pkqErA2
k,mp1 ´Ak,mq2s

¯

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

` p2 ` pkqErA2
k,mp1 ´Ak,mq2s

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2.
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Then,

fCCV
k ´ fk “ p1 ´ λkqpkErA2

k,mp1 ´Ak,mq2s

˜

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2 `
1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

¸

“ pkqkpErAk,mp1 ´Ak,mqsq2

˜

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2 `
1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2

¸

.

For ṽCCV
k “ fCCV

k {pµkp1 ´ µkq ´ σ2kq2, we obtain,

ṽCCV
k ´ ṽk “ pkqk

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2 ` pkqk
1

nk

nk
ÿ

i“1

pek,ip1q ´ ek,ip0qq2. (A.25)

The difference ṽCCV
k ´ ṽk is non-negative and of smaller order than ṽk. Therefore, ṽCCV

k {ṽk Ñ 1
(even if ṽCCV

k ´ ṽk is bounded away from zero). The first term on the right-hand side of (A.25)
could be estimated to further correct the difference between the CCV estimator and the variance
of pτfixedk .

A.5. Limit results

Let Xk,m be an infinite array of random variables, with rows indexed by k “ 1, 2, . . ., and the
columns of the k-th row indexed by m “ 1, . . . ,mk. Let

Sk “

mk
ÿ

m“1

Xk,m,

and ak “ ErSks.

A Weak Law of Large Numbers for Arrays: For each k “ 1, 2, . . . , suppose that Xk,1, . . . , Xk,mk
are

independent and have finite second moments. In addition, let bk be a sequence of positive constants
such that

1

b2k

mk
ÿ

m“1

ErX2
k,ms ÝÑ 0.

Then,
Sk ´ ak
bk

p
ÝÑ 0.

Proof: By Chebyshev’s inequality, for any ε ą 0

Pr

ˆˇ

ˇ

ˇ

ˇ

Sk ´ ak
bk

ˇ

ˇ

ˇ

ˇ

ą ε

˙

ď
1

b2kε
2
varpSkq

“
1

b2kε
2

mk
ÿ

m“1

varpXk,mq

ď
1

b2kε
2

mk
ÿ

m“1

ErX2
k,ms ÝÑ 0.

˝
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A Central Limit Theorem for Arrays: For each k “ 1, 2, . . . , suppose that Xk,1, . . . , Xk,mk
are

independent, with zero means, ErXk,ms “ 0, and finite variances, σ2k,m “ ErX2
k,ms, for m “

1, . . . ,mk. Let

s2k “

mk
ÿ

m“1

σ2k,m.

Assume also that Lyapounov’s condition holds,

lim
kÑ8

1

s2`δ
k

mk
ÿ

m“1

Er|Xk,m|2`δs “ 0,

for some δ ą 0. Then,
Sk
sk

d
ÝÑ Np0, 1q.

Proof: ?, Chapter 27.

A.6. Intermediate calculations for Section A.2

The calculation of vk uses the following results.

ErpRk,iWk,i ´ pkqkµkq2s “ pkqkµkp1 ´ pkqkµkq,

ErpRk,ip1 ´Wk,iq ´ pkqkp1 ´ µkqq2s “ pkqkp1 ´ µkqp1 ´ pkqkp1 ´ µkqq,

ErpRk,iWk,i ´ pkqkµkqpRk,ip1 ´Wk,iq ´ pkqkp1 ´ µkqqs “ ´p2kq
2
kµkp1 ´ µkq,

ErRk,iWk,iRk,jWk,j |mk,i “ mk,js “ Erp2kqkA
2
k,ms “ p2kqkpσ2k ` µ2kq,

and

ErpRk,iWk,i ´ pkqkµkqpRk,jWk,j ´ pkqkµkq|mk,i “ mk,js “ p2kqkpσ2k ` µ2kq ´ ppkqkµkq2

“ p2kqkpσ2k ` p1 ´ qkqµ2kq.

Similarly,

ErpRk,ip1 ´Wk,iq ´ pkqkp1 ´ µkqqpRk,jp1 ´Wk,jq ´ pkqkp1 ´ µkqq|mk,i “ mk,js

“ p2kqkpσ2k ` p1 ´ qkqp1 ´ µkq2q.

Notice also that

ErRk,iWk,iRk,jp1 ´Wk,jq|mk,i “ mk,js “ Erp2kqkAk,mp1 ´Ak,mqs

“ p2kqkpµkp1 ´ µkq ´ σ2kq,

and

ErpRk,iWk,i ´ pkqkµkqpRk,jp1 ´Wk,jq ´ pkqkp1 ´ µkqq|mk,i “ mk,js

“ p2kqkpµkp1 ´ µkq ´ σ2kq ´ p2kq
2
kµkp1 ´ µkq

“ p2kqkpµkp1 ´ µkqp1 ´ qkq ´ σ2kq.
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The following bounds are useful to prove Lyapunov’s condition.

Er|Rk,iWk,i ´ pkqkµk|3s “ p1 ´ pkqkµkq3pkqkµk ` ppkqkµkq3p1 ´ pkqkµkq

ď c pkqk.

Let Qk,m be a binary indicator that takes value one if cluster m of population k is sampled.

E
“

|Rk,iWk,i ´ pkqkµk|2|Rk,jWk,j ´ pkqkµk|
ˇ

ˇmk,i “ mk,j “ m
‰

“ E
“`

p1 ´ pkqkµkq2pkAk,m ` ppkqkµkq2p1 ´ pkAk,mq
˘

ˆ
`

p1 ´ pkqkµkqpkAk,m ` ppkqkµkqp1 ´ pkAk,mq
˘
ˇ

ˇmk,i “ mk,j “ m,Qk,m “ 1
‰

qk

` E
“`

pkqkµk
˘3ˇ

ˇmk,i “ mk,j “ m,Qk,m “ 0
‰

p1 ´ qkq

ď cp2kqk.

E
“

|Rk,iWk,i ´ pkqkµk||Rk,jWk,j ´ pkqkµk||Rk,tWk,t ´ pkqkµk|
ˇ

ˇmk,i “ mk,j “ mk,t “ m
‰

“ E
“`

p1 ´ pkqkµkqpkAk,m ` ppkqkµkqp1 ´ pkAk,mq
˘3ˇ

ˇmk,i “ mk,j “ mk,t “ m,Qk,m “ 1
ı

qk

` E
“`

pkqkµk
˘3ˇ

ˇmk,i “ mk,j “ mk,t “ m,Qk,m “ 1
ı

p1 ´ qkq

ď cp3kqk.

Other useful intermediate calculations.

For the moments of treatment indicators, notice that ErpWk,i ´ µkq2Wk,is “ µkp1 ´ µkq2, and
ErpWk,i ´ µkq2p1 ´Wk,iqs “ p1 ´ µkqµ2k. In addition,

ErWk,iWk,j |mk,i “ mk,js “ ErA2
k,ms (for m P t1, . . . ,mku)

“ σ2k ` µ2k.

Similarly, Erp1´Wk,iqp1´Wk,jq|mk,i “ mk,js “ σ2k`p1´µkq2. Therefore, ErpWk,i´µkqWk,j |mk,i “

mk,js “ σ2k and ErpWk,i ´ µkqp1 ´Wk,jq|mk,i “ mk,js “ ´σ2k. In addition,

ErpWk,i ´ µkqpWk,j ´ µkqWk,iWk,j |mk,i “ mk,js

“ ErA2
k,msp1 ´ µkq2 (for m P t1, . . . ,mku)

“ pσ2k ` µ2kqp1 ´ µkq2.

Similarly,

ErpWk,i ´ µkqpWk,j ´ µkqp1 ´Wk,iqp1 ´Wk,jq|mk,i “ mk,js “ pσ2k ` p1 ´ µkq2qµ2k,

and

ErpWk,i ´ µkqpWk,j ´ µkqWk,ip1 ´Wk,jq|mk,i “ mk,js “ µkp1 ´ µkqpσ2k ´ µkp1 ´ µkqq.
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varpRk,iWk,iq “ pkqkµkp1´pkqkµkq, varpRk,ip1´Wk,iqq “ pkqkp1´µkqp1´pkqkp1´µkqq. Moreover,

covpRk,iWk,i, Rk,ip1 ´Wk,iqq “ ErRk,iWk,iRk,ip1 ´Wk,iqs ´ ErRk,iWk,isErRk,ip1 ´Wk,iqs

“ ´p2kq
2
kµkp1 ´ µkq.

Recall that ErWk,iWk,j |mk,i “ mk,js “ σ2k `µ2k. Therefore, covpWk,i,Wk,j |mk,i “ mk,jq “ σ2k. Also,

ErWk,ip1 ´Wk,jq|mk,i “ mk,js “ µkp1 ´ µkq ´ σ2k.

ErRk,iWk,iRk,jWk,j |mk,i “ mk,js “ ErRk,iRk,j |mk,i “ mk,jsErWk,iWk,j |mk,i “ mk,js

“ p2kqkpσ2k ` µ2kq.

Similarly,
ErRk,ip1 ´Wk,iqRk,jp1 ´Wk,jq|mk,i “ mk,js “ p2kqkpσ2k ` p1 ´ µkq2q.

Therefore,

covpRk,iWk,i, Rk,jWk,j |mk,i “ mk,jq “ p2kqkpσ2k ` µ2kq ´ p2kq
2
kµ

2
k

“ p2kqkpσ2k ` µ2kp1 ´ qkqq,

and

covpRk,ip1 ´Wk,iq, Rk,jp1 ´Wk,jq|mk,i “ mk,jq “ p2kqkpσ2k ` p1 ´ µkq2q ´ p2kq
2
kp1 ´ µkq2

“ p2kqkpσ2k ` p1 ´ µkq2p1 ´ qkqq.

In addition,

covpRk,iWk,i, Rk,jp1 ´Wk,jq|mk,i “ mk,jq “ ErRk,iWk,iRk,jp1 ´Wk,jq|mk,i “ mk,js

´ ErRk,iWk,i|mk,i “ mk,jsErRk,jp1 ´Wk,jq|mk,i “ mk,js

“ ErRk,iRk,j |mk,i “ mk,jsErWk,ip1 ´Wk,jq|mk,i “ mk,js

´ ErRk,iWk,i|mk,i “ mk,jsErRk,jp1 ´Wk,jq|mk,i “ mk,js

“ p2kqkpµkp1 ´ µkq ´ σ2kq ´ p2kq
2
kµkp1 ´ µkq

“ p2kqkpµkp1 ´ µkqp1 ´ qkq ´ σ2kq.

A.7. Intermediate calculations for Section A.3

ErRk,iWk,ipWk,i ´Ak,mq|Ak,m, Qk,m “ 1,mk,i “ ms “ pkAk,mp1 ´Ak,mq.

This implies
ErRk,iWk,ipWk,i ´Ak,mq|mk,i “ ms “ pkqkErAk,mp1 ´Ak,mqs.

Therefore,

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Ak,mq

ff

“ nk,mpkqkErAk,mp1 ´Ak,mqs.
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For n ě 1,

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

ˇ

ˇ

ˇ
Nk,m “ n

ff

“
1

n
E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,i ´ nAk,m

¸

ˇ

ˇ

ˇ
Nk,m “ n

ff

“ ErAk,mp1 ´Ak,mqs.

Therefore,

E

«

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,m ´Ak,mq

ff

“ ErAk,mp1 ´Ak,mqsPrpNk,m ě 1q

“ qkErAk,mp1 ´Ak,mqsp1 ´ p1 ´ pkqnk,mq.

For n ě 1

ErRk,iWk,ipWk,m ´Ak,mq2|mk,i “ m,Nk,m “ n,Rk,i “ 1s

ď ErpWk,m ´Ak,mq2|mk,i “ m,Nk,m “ n,Rk,i “ 1s

ď
ErAk,mp1 ´Ak,mqs

n
.

Because PrpRk,i “ 1|Nk,m “ n,mk,i “ mq “ n{nk,m, we obtain

ErRk,iWk,ipWk,m ´Ak,mq2|mk,i “ m,Nk,m “ ns ď
ErAk,mp1 ´Ak,mqs

nk,m
,

which implies

ErRk,iWk,ipWk,m ´Ak,mq2|mk,i “ m,Nk,m ě 1s ď
ErAk,mp1 ´Ak,mqs

nk,m
.

Therefore,

ErRk,iWk,ipWk,m ´Ak,mq2|mk,i “ ms

“ ErRk,iWk,ipWk,m ´Ak,mq2|mk,i “ m,Nk,m ě 1sPrpNk,m ě 1|mk,i “ mq

ď qk
ErAk,mp1 ´Ak,mqs

nk,m
.

Conditional onNk,m “ n and Ak,m, the variable Nk,m,1 has a binomial distribution with parameters
pn,Ak,mq. Then, using the formulas for the moments of a binomial distribution, we find that for
any integer n, such that 1 ď n ď nk,m,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2
ˇ

ˇ

ˇ
Ak,m “ a,Nk,m “ n

ff
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“ ErpNk,m,1 ´N2
k,m,1{nq2|Ak,m “ a,Nk,m “ ns

“ n2a2p1 ´ aq2 ` nap1 ´ aqp1 ´ 6a` 6a2q ` r1paq ` r2paq{n,

where |r1paq| and |r2paq| are uniformly bounded in a P r0, 1s. Therefore,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2
ˇ

ˇ

ˇ
Nk,m “ n

ff

“ n2ErA2
k,mp1 ´Ak,mq2s ` nErAk,mp1 ´Ak,mqp1 ´ 6Ak,m ` 6A2

k,mqs

` Err1pAk,mqs ` Err2pAk,mqs{n.

It follows that

E

«

mk
ÿ

m“1

pτk,m ´ τkq2

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2ff

“

˜

mk
ÿ

m“1

pτk,m ´ τkq2pnk,mpnk,m ´ 1qp2kqk ` nk,mpkqkq

¸

ErA2
k,mp1 ´Ak,mq2s

`

mk
ÿ

m“1

pτk,m ´ τkq2nk,mpkqkErAk,mp1 ´Ak,mqp1 ´ 6Ak,mp1 ´Ak,mqqs ` Opmkqkq.

Therefore,

1

nkpkqk
E

«

mk
ÿ

m“1

pτk,m ´ τkq2

˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸2ff

ÝÑpErAk,mp1 ´Ak,mqs ´ p5 ` pkqErA2
k,mp1 ´Ak,mq2sq

mk
ÿ

m“1

nk,m
nk

pτk,m ´ τkq2

` pkErA2
k,mp1 ´Ak,mq2s

mk
ÿ

m“1

n2k,m
nk

pτk,m ´ τkq2.

Notice that,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸4
ˇ

ˇ

ˇ
Ak,m “ a,Nk,m “ n

ff

“ ErpNk,m,1p1 ´Nk,m,1{nqq4|Ak,m “ a,Nk,m “ ns

ď ErN4
k,m,1|Ak,m “ a,Nk,m “ ns

ď n4,

Therefore,

E

«˜

nk
ÿ

i“1

1tmk,i “ muRk,iWk,ipWk,i ´Wk,mq

¸4ff

“ n4k,mp
4
kqk

ˆ

1 ` O
ˆ

1

pk minm nk,m

˙˙

,
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uniformly in m.

Suppose Xk,m “ pZk,m,1 ` Zk,m,2q2. Let Xk,m,1 “ Z2
k,m,1 and Xk,m,2 “ Z2

k,m,2. Now suppose,

mk
ÿ

m“1

ErX2
k,m,1s ÝÑ 0,

and
mk
ÿ

m“1

ErX2
k,m,2s ÝÑ 0.

Using the binomial theorem and Hölder’s inequality, we obtain

mk
ÿ

m“1

ErX2
k,ms “

mk
ÿ

m“1

4
ÿ

p“0

cpErZp
k,m,1Z

p4´pq

k,m,2 s

ď c
mk
ÿ

m“1

4
ÿ

p“0

Er|Zk,m,1|p|Zk,m,2|p4´pqs

ď c
mk
ÿ

m“1

4
ÿ

p“0

pErX2
k,m,1sqp{4pErX2

k,m,2sqp4´pq{4

ď c
4

ÿ

p“0

˜

mk
ÿ

m“1

ErX2
k,m,1s

¸p{4 ˜

mk
ÿ

m“1

ErX2
k,m,2s

¸p4´pq{4

ÝÑ 0.
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