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Rich behavioural biases, mistakes, and limits on rational decision-making are often thought to
make equilibrium analysis much more intractable. We establish that this is not the case in the context
of one-sector growth models such as Ramsey–Cass–Koopmans or Bewley–Aiyagari models. We break
down the response of the economy to a change in the environment or policy into two parts: the direct
response at the given (pre-tax) prices, and the equilibrium response which plays out as prices change. Our
main result demonstrates that under weak regularity conditions, regardless of the details of behavioural
preferences, mistakes and constraints on decision-making, the long-run equilibrium will involve a greater
capital-labour ratio if and only if the direct response (from the corresponding consumption-saving model)
involves an increase in aggregate savings. One implication of this result is that, from a qualitative point
of view, behavioural biases matter for long-run equilibrium if and only if they change the direction of
the direct response. We provide detailed illustrations of how this result can be applied and generate new
insights using models of misperceptions, self-control and temptation, and naive and sophisticated quasi-
hyperbolic discounting.
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1. INTRODUCTION

Most standard macro and growth models rely on very restrictive behavioural assumptions about
households—infinitely lived, often representative, agents that are capable of solving complex
maximization problems without any behavioural biases or limitations, and of implementing the
optimal decisions without any inconsistencies or mistakes. It is an uncomfortable stage of intro-
ductory graduate courses when these assumptions are introduced and students rightfully ask
whether everything depends on them. A natural conjecture is that these assumptions do mat-
ter and any degree of behavioural richness would render any general conclusions impossible.
Not only do general equilibrium effects become notoriously complicated and the set of indirect
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2 REVIEW OF ECONOMIC STUDIES

effects correspondingly rich; we would also expect the specific departure from full rational-
ity—e.g. systematic mistakes, ambiguous beliefs, overoptimism, or dynamic inconsistency—to
have a first-order impact on the direction in which the economy responds to changes in policy
or technology.

In this paper, we study one-sector growth models and establish that while it is true that at the
individual level outcomes depend critically on the exact behavioural specification, robust pre-
dictions of long-run responses to changes in environment (policy, preferences or technology)
can nonetheless be obtained in the presence of general behavioural preferences. Specifically, we
identify conditions that are sufficient—and when the steady-state equilibrium is unique or when
changes are small, also necessary—for changes in environment to lead to comparative statics in
line with the predictions of the baseline neoclassical growth models. These conditions depend
only on the direction of the direct response to a change in environment, defined as the (partial
equilibrium) impact on aggregate savings, computed from the consumption-saving problem of
households, holding the pre-tax prices fixed at their initial steady-state values. Put simply, if the
direct response to a change in environment is an increase in aggregate savings, then no mat-
ter how complex the general equilibrium interactions that will play out dynamically (as prices
change), the long-run impact on the capital stock and output per capita will be positive. Con-
versely, if the direct response is a decrease in aggregate savings, then the long-run impact on the
capital stock and output per capita will be negative.

Before we elaborate on this result and provide an intuition, let us explain it in the context
of a specific policy change—a reduction in the capital income tax rate. In baseline “neoclassi-
cal” settings, including the Ramsey–Cass–Koopmans model or the Bewley–Aiyagari model, the
direct response is simply the “partial equilibrium” change in aggregate savings, holding prices at
their initial steady-state values. This direct response is positive under standard assumptions, and
in this case, so is the long-run response: lower capital income taxes lead to higher capital-output
ratio and output per capita in the long run. Taking this as a benchmark, our results can then be
read as saying that any set of rich and more realistic behavioural preferences that do not reverse
the direction of the partial-equilibrium response leave the qualitative comparative statics of
the steady-state equilibrium unchanged—the capital-labour ratio and output per capita will
increase following a reduction in capital income taxes.1 These results apply with minimal
assumptions and allow households to have different behavioural preferences and make various
systematic mistakes.

Conversely, our results also delineate robust conditions for behavioural preferences and
systematic mistakes to reverse the direction of long-run comparative statics: when the direct
response to a change in environment goes in the opposite direction of the direct response in
benchmark neoclassical models, long-run (general equilibrium) comparative statics will also go
in the opposite direction of the conventional comparative statics. So if lower capital taxes reduce
aggregate savings upon impact, they will lead to lower capital stock and output per capita in the
long run.

Figure 1 presents these results diagrammatically. All four panels of the figure depict a key
object in our analysis, “the market correspondence,” which summarizes the aggregate savings
responses at different levels of the capital-labour ratio (see Section 2.5). Our main theorem
amounts to saying that, for long-run comparative statics, it is sufficient to look at how the market
correspondence shifts at the capital-labour ratio of the initial steady-state equilibrium. Panel A
illustrates this point. Even though the market correspondence that applies for a new environment

1. Naturally, different distribution of preferences and mistakes across households will have quantitative impli-
cations. These are of course important for many applications, even though they are not our focus in the current
paper.
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 3
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FIGURE 1

Panel A shows an instance in which general equilibrium effects amplify the direct response, while in Panel B they

dampen it. In Panel C, the direct response is a decline in aggregate savings, so the long-run impact incorporating

general equilibrium effects is also negative. The scenario in Panel D, where the direct response is positive and the

long-run impact is negative, is impossible in the one-sector behavioural growth model because individual saving

functions cannot “jump down” (equivalently, consumption functions cannot “jump up”). To overturn the (long-run)

comparative statics in Panels A–B, the direct response must be negative as in Panel C

is not everywhere above the initial market correspondence, it is strictly above it at the original
capital-labour ratio, and this is sufficient for us to establish that the change in environment will
lead to a higher capital-labour ratio.

Panel B provides a complementary configuration. While in Panel A general equilibrium inter-
actions reinforced the direct response, in this case they dampen it. In general, it is very difficult
to determine, without explicit computations, whether Panel A or Panel B will apply—because
general equilibrium interactions are difficult to characterize. Crucially, however, the direction of
long-run comparative statics can be determined without this knowledge.

Panel C depicts the converse case. Now the direct response is a reduction in aggregate sav-
ings. As a result, the figure shows that the long-run and output per capita will decline. Hence,
if we think of Panel A as corresponding to the benchmark neoclassical growth model, Panel C
represents the case where behavioural preferences reverse the direction of the direct response,
and thus lead to the complete opposite of the neoclassical long-run comparative statics. Finally,
Panel D depicts the case ruled out by our theorems. The configuration in this last panel illustrates
that, in principle, there is nothing automatic about our results (in fact, this is particularly the case
once we are in the case with more than a single aggregate). Nevertheless, we will show that this
configuration cannot arise when there are no downward jumps in the market correspondence,
which can be guaranteed under fairly weak assumptions in the one-sector model.
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4 REVIEW OF ECONOMIC STUDIES

To build intuition for our results, let us first revisit the standard Bewley–Aiyagari model with
fully rational heterogeneous agents. In such an economy, the equilibrium adjustment following
the direct response involves random/stochastic changes in the distribution of assets, as well as
prices and the aggregate capital stock as the economy settles into a new steady-state equilib-
rium. Even with fully rational agents, this adjustment is complex: because of income effects,
some households may change their savings in the opposite direction of the aggregate change
as their income and the prices they face evolve. With behavioural preferences or biases, it is
potentially even more so, since we have to take into account not just the conventional income
effects and price changes, but also any systematic mistakes in optimization or expectations, more
complex intertemporal trade-offs and issues related to dynamic inconsistency. Nonetheless, our
main theorems show that, even in such settings and exactly at the same level of generality as
in the baseline Bewley–Aiyagari economy, we can establish qualitative long-run comparative
statics. Our analysis also establishes that although fairly general results about aggregate changes
can be derived, there is a type of “indeterminacy” at the individual level—nothing much can be
said about how individuals will behave and which individuals will go in the opposite direction
of the aggregate economy. This observation further clarifies that our results are not a conse-
quence of some (implicit) monotonicity assumption that ensures all households move in the same
direction. On the contrary, our results are about aggregate outcomes, without any knowledge or
implications on how any given household will adjust.

We can now present the intuition for these results at two complementary levels. The first
is economic in nature and it is related to an idea that already appears in Becker (1962) that
“aggregation” disciplines economic behaviour. Though we cannot say anything about individual
behaviour, we can determine the behaviour of market-level variables (i.e. aggregates such as the
capital stock and income per capita). This is because even if many households respond in
the opposite direction of the direct response, in equilibrium enough households have to move
in the same direction as the direct response.

The second intuition for our result is more mathematical. Suppose that the steady-state equi-
librium is unique, and focus on a policy change that increases aggregate savings at the initial
capital-labour ratio. Then the only way the new steady-state equilibrium could have lower cap-
ital stock is when the equilibrium response goes in the opposite direction and more than offsets
the initial increase in aggregate savings. This in turn can only be true if a higher capital stock
induces lower savings. But even if this were the case, the equilibrium response could not pos-
sibly overturn the direct response. This is because the economic force leading to lower savings
would not be present if the new steady-state equilibrium ended up with a lower capital stock, and
thus the indirect equilibrium response could not overturn the initial (positive) direct response.
When there are multiple steady-state equilibria, this reasoning would not apply to all of them,
but we develop a similar argument for extremal (greatest and least) steady-state equilibria.

In Section 4, we use several popular behavioural models to further illustrate our theorems
and show how they can be applied fairly straightforwardly, yielding new insights. We start with
a model of persistent misperceptions and establish how the form of misperceptions matters and
leads to different types of results, and also demonstrate how they can sometimes reverse stan-
dard comparative statics (e.g. lower taxes on capital income reducing the long-run capital-labour
ratio). We then show how our main theorems lead to new comparative statics in the context
of macro models incorporating self-control and temptation problems as in Gul and Pesendor-
fer (2004). Finally, we discuss naive and sophisticated versions of quasi-hyperbolic preferences
introduced and analysed in Strotz (1956), Phelps and Pollak (1968), Laibson (1997) and Harris
and Laibson (2001). In this context, we also show how our theoretical results can be blended
with simple numerical analysis.

Our paper is related to several literatures. The first, already mentioned, is Becker’s seminal
paper which argues that market demand curves will be downward sloping even if households
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 5

are not rational because their budget constraints will put pressure for even random behaviour
to lead to lower demand for goods that have become more expensive. Machina (1982) makes a
related observation about the independence axiom in expected utility theory. Though related to
and inspired by these contributions, our main result is very different. While Becker’s argument
is about whether an increase in price will lead to a (partial equilibrium) change in aggregate
behaviour consistent with “rational behaviour,” our focus is about taking the initial change in
behaviour, whether or not it is rational, as given and then establishing that, under general con-
ditions on the objectives and behavioural biases and constraints of households, the (general)
equilibrium responses will not reverse this direct response.

The second literature we build on is robust comparative statics (e.g. Topkis, 1978; Vives,
1990; Milgrom, 1994; Milgrom and Roberts, 1994; Milgrom and Shannon, 1994; Quah, 2007).
Not only do we share these papers’ focus on obtaining robust qualitative comparative static
results, but we also use similar tools, in particular a version of the “curve-shifting” arguments
of Milgrom and Roberts (1994) (see also Acemoglu and Jensen, 2015) which allow us to derive
robust results in non-monotone economies.2 Nevertheless, our main theorem is not an applica-
tion of any result we are aware of. Rather, it significantly extends and strengthens the approach
used in the robust comparative statics literature (we provide a detailed technical discussion of
the relationship with previous literature in Appendix B). Most significantly, in contrast to other
approaches in the literature, our comparative static results only rely on “local information”—on
behaviour at a specific capital-labour ratio (or vector of prices) rather than the much stronger
notions requiring that behaviour increases or decreases savings for all prices.3 As a result, we
are able to establish economically and mathematically stronger results: whenever the sum of the
initial savings responses of all agents is positive at the initial capital-labour ratio, the full general
equilibrium will involve an increase in the capital-labour ratio.

In this context, it is also useful to compare our results to those of our earlier paper, Ace-
moglu and Jensen (2015), where we analysed a related setup, but with three crucial differences.
First, and most importantly, there we focused on rational households, thus eschewing any anal-
ysis of behavioural biases and their impacts on equilibrium responses. Second, and as a result
of the first difference, we did not have to deal with the more general problem considered here,
which requires a different mathematical approach. Third and also crucially, we imposed consid-
erably stronger assumptions to ensure that the direct response of all households went in the same
direction at all prices, which we do not do in the current paper.4

Finally, our paper is related to several recent works that incorporate rich behavioural biases
and constraints into macro models. In addition to those already mentioned, these include Krusell
and Smith (2003), Krusell et al. (2010), and Cao and Werning (2018) who study the dynamic
and equilibrium implications of hyperbolic discounting;5 temptation and self-control preferences

2. See p. 590 in Acemoglu and Jensen (2015) for additional discussion of such non-monotone equilibrium
comparative statics results.

3. See for example Lemma 1 (and Figures 1–3) in Milgrom and Roberts (1994) or Definition 5 in Acemoglu
and Jensen (2015). Milgrom and Roberts (1994) also use local assumptions, but just to derive local comparative statics
results (see Figure 7 and the surrounding discussion); this is different from our results, which are global despite being
based on local assumptions.

4. An alternative and complementary approach is based on mean-field games. Particularly noteworthy is Light
and Weintraub (2021), who investigate comparative statics in mean-field games, but once again focusing on uniform and
global changes (see, e.g. their Theorem 4). Ahn et al. (2018) and Achdou et al. (2021) apply mean-field game techniques
to the Bewley–Aiyagari model.

5. Barro (1999) shows that, with logarithmic utility and a representative household, hyperbolic discounting leads
to similar insights to the standard one-sector growth models. His results do not extend beyond the logarithmic case and
representative household models, and are not related to our general approach.
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6 REVIEW OF ECONOMIC STUDIES

as in Gul and Pesendorfer (2001, 2004) and Fudenberg and Levine (2006, 2012); non-separable
preferences in dynamic macro models as in Koopmans (1960), Epstein and Hynes (1983), Kreps
and Porteus (1978), Epstein and Zin (1989, 1991), and Backus et al. (2004); models of ambiguity
and multiple priors as in Gilboa (1987) and Gilboa and Schmeidler (1995); and models of sparse
optimization as in Gabaix (2014, 2017).

The rest of the paper is organized as follows. Section 2 describes the model and introduces
the “market correspondence” (which is key to our analysis). Section 3 contains the main results
and applications. Section 4 shows how our results can be applied in the presence of system-
atic misperceptions, self-control and temptation preferences, and quasi-hyperbolic households.
Section 5 concludes, Appendixes A and B contain the proofs of most of the results stated in
the text and additional results, with the remaining proofs presented in the online Appendix C
(supplementary material).

2. BEHAVIOURAL ONE-SECTOR GROWTH MODELS

This section introduces our general setup, which blends a standard growth model with various
behavioural preferences.

2.1. Production and markets

The production side is the same as the canonical neoclassical growth model (e.g. Acemoglu,
2009) augmented with general distortions.

Labour is in fixed supply and normalized to unity so we can use capital, capital-labour ratio
and capital-per-worker interchangeably and denote it by k. Markets clear at all times, and pro-
duction is described by a profit maximizing aggregate constant returns firm with a smooth (per
capita) production technology y = f (k) that satisfies f (0) = 0, f ′ > 0, and f ′′ < 0. We also
impose that there exists k̄ > 0 such that f (k) < k all k ≥ k̄, which ensures compactness. This
condition is implied by the standard Inada conditions when these are imposed. The rate of
depreciation is � ∈ [0, 1].

We allow for taxes and distortions ω(k) and τ(k) on labour and capital. Throughout, “market
prices” refer to pre-tax factor prices, ŵ(kt ) ≡ f (kt ) − f ′(kt )kt and R̂(kt ) ≡ f ′(kt ). Hence, the
after-tax (and after-distortion) wage and rate of return facing the households are

wt = w(kt ) ≡ (1 − ω(kt ))( f (kt ) − f ′(kt )kt ) (1)

and

Rt = R(kt ) ≡ (1 − τ(kt )) f ′(kt ) − �. (2)

The simplest example of such distortions are proportional taxes on capital and labour income,
τ(kt ) = τ and ω(kt ) = ω. Other examples include distortions from contracting frictions or
markups due to imperfect competition. When τ(k) = ω(k) = 0 for all k, we recover the
benchmark case with no distortions.

We allow proceeds from these distortions to be partially rebated to households (which will be
the case when they represent taxes and some of the tax revenues are redistributed to households
or when they result from markups that generate profits).

The total amount of resources that is not rebated to households—that is, either consumed
by the government, invested in public goods or wasted, in all cases in a way that does not
affect marginal utilities—is denoted by G(kt ). If nothing is rebated, then G(kt ) = ω(kt )( f (kt ) −
f ′(kt )kt ) + τ(kt ) f ′(kt ). On the other hand, if the only source of distortions is taxes because the
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 7

government rebates everything back to consumers (e.g. in the form of lump-sum transfers), then
G(kt ) = 0.

2.2. Households and capital markets

There is a continuum of households [0, 1] with a typical household denoted by i ∈ [0, 1]. As in
Aiyagari (1994), households are subject to borrowing constraints and can save either by investing
in a riskless government bond that is in zero net supply or in the capital stock of the economy,
kt . Throughout, we assume that any randomness is such that there is no aggregate uncertainty,
which ensures that capital kt is deterministic and factor prices are given by (1) and (2) at all
times.6

At date t each household i is subject to a labour endowment shock denoted by li
t ∈

[li
min, li

max] ⊂ R++ and a preference shock εi
t ∈ Ei ⊆ R (where we take Ei to be compact). We

assume that (li
t , ε

i
t )

∞
t=0 follows a Markov process with invariant distribution μi . It is convenient

to set ei
t = (li

t , ε
i
t , wt , Rt , T i

t ), where T i
t denotes the transfers/rebates that household i receives

at time t.
Household i’s objective is to maximize utility conditional on its beliefs (or expectations)

about the future variables (ei
τ )

∞
τ=t+1 as well as its anticipated future savings behaviour. Let

us denote the true model by θ M . This includes a complete description of all of this section’s
contents, including current and future taxes, the stochastic process governing (li

t , ε
i
t )i∈[0,1],

equilibrium conditions, and so forth.
Household i ∈ [0, 1] forms beliefs at date t on the basis of the true model θ M and its

observations of economic variables summarized in ei
t . We suppress the dependence on the true

model θ M throughout to reduce notation, and summarize the belief process with the mapping
Pi

t : ei
t 	→ Pi

t (·; ei
t ), which defines a probability measure on future outcomes given the cur-

rent vector of variables et . That is, for any (Borel) measurable set of future observations B,
the household believes that (ei

τ )
∞
τ=t+1 will lie in B with probability Pi

t (B; ei
t ) ∈ [0, 1].7 Rational

expectations is the special case of this formulation, where the marginal distribution of exogenous
parameters coincides with objective probabilities implied by the Markov process (li

t , ε
i
t )

∞
τ=t+1,

and the household uses the true model θ M to correctly predict future prices. A simple and
familiar example is the Bewley–Aiyagari model (Aiyagari, 1994) with i.i.d. labour endowment
shocks li ∼ μi . Because in this case agents have rational expectations, beliefs about future prices
coincide with actual (equilibrium) prices and beliefs about the future realizations of the labour
endowment shock coincide with the objective probability measure, μi . For this reason, as in
models with rational expectations more generally, beliefs can be suppressed/ignored altogether.

Other belief formation processes may completely ignore the true model and specify “dog-
matic” misperceptions that are not revised (even when they contradict the data repeatedly), or
generate beliefs on the basis of other variables summarized in ei

t , which may involve some
Bayesian or non-Bayesian updating. In particular, unlike in models based on rational expecta-
tions and common knowledge, households’ beliefs may be in contradiction with each other and

6. Like in Aiyagari, a riskless arbitrage condition ensures that households are indifferent between investing in
government bonds and the capital stock. If government bonds are in positive net supply as in Aiyagari and McGrattan
(1998), then the analysis needs to be modified along the lines of Aiyagari and McGrattan (1998, pp. 452–453), but their
arguments establish that this is still a one-sector economy and thus all of our results apply.

7. Formally, Pi
t (·; ei

t ) is a regular Borel (probability) measure on the set of future observations, which can be
taken to be the space of bounded infinite sequences with the supremum norm. For technical reasons, we restrict attention
to measures whose conditional probability of li

t+1 lying in a measurable subset of R+ has continuous Radon–Nikodym
derivative with respect to the Lebesgue measure on R+.
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8 REVIEW OF ECONOMIC STUDIES

with actual outcomes. Note also that since wτ and Rτ are the after-tax/after-distortion wage and
rate of return, Pi

t implicitly incorporates (potentially incorrect) beliefs about future taxes and
distortions.

If at date t, household i consumes ci
t and its future consumption is (ci

t+1, ci
t+2, . . .), then it

gets utility

uεi
t (ci

t ) + V i,εi,t+1
(ci

t+1, ci
t+2, . . .). (3)

Here uεi
t and V i,εi,t+1

are the current and future utility functions, respectively, and (εi
t , ε

i,t+1) =
(εi

t , ε
i
t+1, ε

i
t+2, . . .) is a sequence of parameters that directly impact utility. These parameters

could reflect discount factors or idiosyncratic tastes or biases as in McFadden (1974, p. 108).8 If
uεi

t ,i = ui and

V i,εi,t+1
(ci

t+1, ci
t+2, . . .) =

∞∑
τ=t+1

βδτ−t ui (ci
τ ), δ < 1, β > 0

we get the time-separable, geometrically discounted benchmark case when β = 1, and the quasi-
hyperbolic model when β �= 1. A third example is when the household has a finite time-horizon,
V i,εi,t+1

(ci
t+1, ci

t+2, . . .) = ∑t+T
τ=t+1 δτ−t ui (ci

τ ). This may be interpreted as a simple version of
“sparsity” in the sense of Gabaix (2014, 2017).9

We denote household i’s assets by ai
t and its borrowing constraint by ai ≤ 0 (which is

assumed to be above the solvency constraint; see e.g. Aiyagari, 1994, p. 666). We also impose an
upper bound ai > ai , but this comes with no loss of generality under compactness in production
(Section 2.1) as ai may be chosen so that it never binds in equilibrium, Pi

t -almost everywhere
and for almost every household i.

If at date t, the household chooses (gross) savings si
t = ai

t+1 ∈ [ai , ai ], its current consump-
tion will be

ci
t = (1 + Rt )a

i
t + wt l

i
t + T i

t − ai
t+1, (4)

and, conditioning on (ei
τ )

∞
τ=t+1, its future consumption will be

ci
t+1 = (1 + Rt+1)a

i
t+1 + wt+1li

t+1 + T i
t+1 − s̃i

t+1(a
i
t+1; ei

t+1)

ci
t+2 = (1 + Rt+2)s̃

i
t+1(a

i
t+1; ei

t+1) + wt+2li
t+2 + T i

t+2 − s̃i
t+2(s̃

i
t+1(a

i
t+1; ei

t+1); ei
t+2)

... = ... (5)

where si
τ (a

i
τ ; ei

τ ) denotes anticipated savings of a “future self” at date τ > t conditioned on
future asset ai

τ and ei
τ . In this formulation, we are taking future saving functions, si

τ for τ > t , as
given. When the household is dynamically consistent and fully rational, she chooses them as her
policy functions. In general, they may be given by the choices of future selves with only imper-
fectly aligned interests, and/or misperceived. Note also an important convention: Throughout,

8. Models such as Gul and Pesendorfer (2004) where utility also depends on asset holdings (Section 4.3) are
nested in this formulation, since asset levels are a function of past consumption choices given initial asset holdings and
factor prices.

9. In the working paper version, we also studied the recursive utility specification of Epstein and Zin (1989),
which relaxes additivity in (3), and we further extend what follows to non-additive beliefs and Choquet expected utility
(ambiguity aversion).
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 9

we assume that the functions si
τ for τ > t are always correctly perceived, and any misperceptions

about the behaviour of future selves are represented via the utility parameter ετ .10

At date t, a (gross) savings level ai,∗
t+1 is optimal given current assets ai

t , current observa-
tions ei

t , the (measurable) anticipated future saving functions si
τ , τ > t and the beliefs Pi

t (·; ei
t )

about future variables (ei
τ )

∞
τ=t+1 if it maximizes the expected value of (3) subject to (4) and (5).

Denoting a sequence of future variables by ẽ and substituting for consumption, we can write this
compactly as

ai,∗
t+1 ∈ arg max

a′∈[ai ,min{yi
t ,a

i }]
ui,εi

t (yi
t − a′) +

∫
W i (a′, ẽ; (si

τ )
∞
τ=t+1)Pi

t (dẽ; ei
t ), (6)

where yi
t = (1 + Rt )ai

t + wt l i
t + T i

t is wealth and the continuation utility W i is a measurable
function given as

W i (a′, (ei
τ )

∞
τ=t+1; (si

τ )
∞
τ=t+1) = V i,εi,t+1

((1 + Rt+1)a
′ + wt+1li

t+1 + T i
t+1 − si

t+1(a
′; ei

t+1),

(1 + Rt+2)s
i
t+1(a

′; ei
t+1) + wt+2li

t+2 + T i
t+2 − si

t+2(s
i
t+1(a

′; ei
t+1); ei

t+2), . . .).

Observe that the benchmark Bewley–Aiyagari model is a special case of this formulation. In this
case, Pi

t coincides with the true marginal distribution of exogenous parameters and places prob-
ability 1 on the actual values of future endogenous variables ((wt , Rt )

∞
τ=t+1), given the Markov

process for (li
t )

∞
τ=t+1; si

t is directly determined from the households’ dynamic programming
problem; and the continuation utility W i can be obtained from standard dynamic programming.
More generally, however, (6) nests various behavioural biases or dynamic inconsistencies such
as when households have misperceptions about the future (Section 4.2), or when discounting is
hyperbolic (Section 4.4).

In what follows, we assume that utility functions and beliefs are continuous. Because the set
of feasible assets is uniformly bounded, this is sufficient to ensure a uniformly bounded objective
function in (6). All sequence spaces are equipped with the supremum norm and the Borel σ -
algebra, and the topology on probability measures is the weak convergence topology (e.g. see
Epstein and Zin, 1989, p. 940).

Assumption 1. ui is a continuous, strictly increasing and strictly concave function, V i is a
continuous and strictly increasing function, and Pi

t (·; ei ) is continuous in ei .

2.3. Time-stationary saving correspondences

We say that beliefs for household i are time-invariant if for all t = 1, 2, 3, . . ., we have

Pi
t = Pi for all t = 0, 1, 2, . . . . (7)

The next definition imposes time-invariant belief processes and also requires that current selves
expect future selves to adopt the same saving function.

Definition 1 (Time-stationary saving functions and correspondences). si is a time-stationary
saving function (TSSF ) if for all initial levels of assets ai ∈ [ai , āi ], all (w, R, T i ), and almost

10. One could derive from Pi
t (·; ei

t ) an induced probability measure over the space of saving functions, but
working directly with Pi

t (·; ei
t ) is notational and conceptually simpler.
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10 REVIEW OF ECONOMIC STUDIES

all zi :

si (ai ; ei ) ∈ arg max
a′∈[ai ,min{yi ,ai }]

ui,εi
0(yi − a′) +

∫
W i (a′, e′; si )Pi (de′; ei ), (8)

where ei = (zi , w, R, T i ), yi = (1 + R)ai + wli + T i , W i (a′, e′; si ) = W i (a′, e′; (si )∞τ=t+1)
and e′ = (ei

0, ei
1, . . .). The union of all time-stationary saving functions is called the time-

stationary saving correspondence , Si (ai ; ei ) = {si (ai ; ei ) : si is a TSSF}.
We emphasize that because Definition 1 allows beliefs to be incorrect, it nests both the case

in which households are “sophisticated” (e.g. Strotz, 1956; Laibson, 1997; Harris and Laibson,
2001), and cases where agents are “naive” (in the sense of Strotz, 1956) and expectations are
misaligned with future behaviour. It also nests recursive models such as Bewley–Aiyagari where
si can be computed by standard dynamic programming.11

A correspondence is measurable if the inverse image of any open set is Borel-measurable
(Aubin and Frankowska, 1990, p. 307). The proof of the next lemma is presented in Appendix A.

Lemma 1 (Basic properties of saving correspondences). Let Assumption 1 hold and suppose
that each household’s belief formation process is time-invariant. Then for each i ∈ [0, 1], the
(time-stationary) saving correspondence Si (ai ; ei ) exists, is measurable in (li , εi ), upper hemi-
continuous in ai , w, R, and T i , and its least and greatest selections are (weakly) increasing
functions of assets ai .

They key observation is that under the general assumptions of the one-sector behavioural
growth model summarized above, saving correspondences are “ascending” in the standard sense
of robust comparative statics (e.g. Topkis, 1978; Vives, 1990; Milgrom and Roberts, 1994). This
in particular means that the least and greatest selections (implied saving functions) from the
saving correspondence are nondecreasing in assets. This is what rules out downward jumps in
Figure 1 in the Introduction. An increasing saving correspondence implies that the associated
least and greatest consumption functions increase less than one-for-one with assets. As a result,
any consumption discontinuities must take the form of downward jumps—otherwise, there will
be more than a one-for-one increase in consumption. Allowing for such discontinuities is impor-
tant since these are common in the presence of dynamic inconsistencies (see e.g. Harris and
Laibson, 2001, p. 937), as we will see explicitly in Section 4.5.

It is worth reiterating that by imposing time-invariance and focusing on time-stationary
saving correspondences, we are greatly simplifying the description of the environment. First,
time-invariance imposes time-stationary utility, so that households obtain the same continua-
tion utility from the same consumption sequence starting from different points in time. Second,
it ensures that the belief formation processes are time-invariant. One justification for time-
invariance is that the environment may have already converged to a limit starting from some
initial condition.

Time-invariance enables us to focus on the comparative statics of steady states, but is not
without cost; our results have to be applied with care in settings that are not time-invariant.12

11. When beliefs are correct and discounting geometric, δ−1W i coincides with the standard value function
obtained from dynamic programming.

12. For example, a policy change may create an initial period of belief confusion or mistaken perception, which
becomes dissipated over time, inducing a specific type of time-dependence (Gabaix, 2017). If this is reversed in the
course of the next T < ∞ periods, our steady-state analysis still applies in principle, but with some important caveats.
This is because the relevant concept is no longer the “direct response” that takes place with the temporary beliefs, but
the “hypothetical direct response” that would have obtained with the time-stationary beliefs (that apply after T periods)
at the initial capital-labour ratio k∗.
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 11

2.4. Steady-state equilibrium

As a shorthand, from now on we define an “environment,” denoted by θ = (θ M , (Pi )i∈[0,1]),
to summarize the true model θ M and the beliefs (Pi )i∈[0,1]. Consider stationary
market prices w and R and an environment θ (including stationary transfers T i ).
Given these, λi is then an invariant distribution for household i if λi (A × B) =∫

qi (B; li , εi )1A(si (ai ; li , εi , w, R, T i ))λi (dai , d(li , εi )) where qi (B; li , εi
t ) is the true

model’s probability that (li
t+1, ε

i
t+1) lies in B given (li

t , ε
i
t ), and si is a measurable selection

from the time-stationary saving correspondence (here A and B are Borel subsets of [ai , ai ]
and [li

min, li
max] × Ei , respectively).13 The average (stationary) asset holding is then E[âi ] =∫

aiλi (dai , d(li , εi )) where âi is the household’s stationary assets given w, R, and θ (formally,
âi is the random variable on [ai , ai ] with distribution given by λi ’s marginal distribution of
assets). In the Bewley–Aiyagari model, E[âi ] is also the households’ aggregate asset holdings.

Recall from (1) to (2) that w and R are the after-tax/distortions wage and rate of return,
respectively. Hence they generally depend on the environment θ . Whenever this may cause con-
fusion, we emphasize it by writing the market prices with the environment as a superscript. We
define steady-state equilibria directly in terms of the corresponding capital-labour ratio, and also
condition factor prices on the environment θ when this is necessary for emphasis or clarity.

Definition 2 (Equilibrium). The capital-labour ratio k∗ ∈ R+ represents a (steady-state) equi-
librium given the environment θ , if equilibrium prices w∗ = wθ(k∗) and R∗ = Rθ (k∗) are given
by (1) and (2), household i’s stationary asset distribution is â∗,i given w∗, R∗, and θ for almost
every i ∈ [0, 1], and the capital market clears, that is, k∗ = ∫

â∗,i di .

Note that in this definition we are implicitly assuming that the households’ aggregate asset
holdings

∫
â∗,i di are well-defined by some version of the law of large numbers.14 On the

other hand, individual asset holdings will not be constant, though they will have a stationary
distribution, which we denote by â∗,i .

2.5. The market correspondence

We are now ready to formally define the key theoretical innovation of this paper, namely the
market correspondence. We will see that steady states in our model correspond to intersections
of the market correspondence with the 45◦ line (Lemma 2) and increases in (aggregate) savings
translate into shifts in the market correspondence (Section 3).

Let S = (Si )i∈[0,1] summarize the households’ time-consistent savings correspondences. For
a family of selections s = (si )i∈[0,1] ∈ S, write (λi (k; s))i∈[0,1] if for almost every i, λi (k; s) = λi

is an invariant distribution when assets are scaled by k/(
∫

âi (k; s) di), i.e. λi (A × B) =∫
A×li ,εi qi (B; li , εi )1A(si (ai k∫

âi di ; li , εi , w, R, T i ))λi (dai , d(li , εi )), where
∫

âi (k; s) di is

13. Since the least and greatest selections are increasing in assets (Lemma 1), there will exist an invariant
distribution by Acemoglu and Jensen (2015), Theorem B1 and B3.

14. There is a large literature on laws of large numbers and their applications in continuum economies (e.g. Uhlig,
1996; Al-Najjar, 2004; Sun, 2006). Here and everywhere else in this paper we remain agnostic about precisely which
formulation of the law of large numbers has been applied in the background. This “agnostic” approach is also the one
taken in Acemoglu and Jensen (2015) where

∫
âi (k)di is simply assumed to equal (or be one-to-one) with a real number.

This approach has the advantage of not committing to a specific interpretation and therefore comes with maximum
generality. On the downside, we must be careful to not push the generality of the setting too far: In the Aiyagari model,
for example, any sensible application of a law of large numbers will require that the labour endowments’ conditional
distributions are at least pairwise independent conditioned on k. For further details and references, see Acemoglu and
Jensen (2010, 2015).
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12 REVIEW OF ECONOMIC STUDIES

the households’ mean asset holdings. The implied distribution of consumption is denoted by
ĉi (k; s).15 We then have:

Definition 3 (The Market Correspondence). The market correspondence Mθ : R → 2R is:16

Mθ (k) = { f (k) + (1 − �)k − G(k)} −
{∫

ĉi (k; s)di ∈ R+ : s ∈ S

}
. (9)

The right-hand side of the market correspondence (9) subtracts government and private sec-
tor consumption from total output plus unappreciated capital and thus gives the value of next
period’s capital stock. This motivates why, as in standard one-sector growth models, steady-state
equilibria will be its fixed points.

The next lemma establishes that we can work directly with the market correspondence with-
out specifying underlying equilibrium asset distribution. It also confirms that fixed points of
the market correspondence will be steady-state equilibria. The proof of this lemma uses the
fixed point comparative statics theorem of Acemoglu and Jensen (2015, Theorem 4, p. 601),
which itself builds on Smithson’s generalized fixed point theorem as well as Richter’s theorem
(Aumann, 1965). However, the most critical component of the proof is the observation that for
a given k, Mθ (k) equals the set of fixed points of a convex valued correspondence whose least
and greatest selections are decreasing, and therefore it is itself convex-valued.

Lemma 2 (Properties of the market correspondence). Suppose that all households satisfy the
assumptions in Lemma 1. Then the market correspondence Mθ is a compact- and convex-
valued upper hemi-continuous correspondence that begins above and ends below the 45◦ line.
Furthermore, k ∈ Mθ (k) if and only if k is a steady-state equilibrium.

The market correspondence being convex-valued is an important and non-trivial property.
This property does not follow from a convexification argument as in Aumann (1965), but
depends critically on the fact that saving correspondences are increasing in the sense of Lemma
1 and so, in particular, on the fact that they have no jumps down. If, in fact, Si were to have
jumps down for a subset of agents of positive measure, then the correspondence

∫ Aθ,i
k (·) di

in the proof would have jumps down as well. In that case, the market correspondence would
not necessarily be convex-valued and this paper’s main result that the average direct response
determines the long-run outcome would become invalid.

3. MAIN RESULTS

This section contains our main results. Generalizations are provided in Appendix B and these
results are applied in the context of specific behavioural models in Section 4.

Recall that θ M denotes the “true model,” (Pi )i∈[0,1] denotes the households’ beliefs, and
that the environment θ = (θ M , (Pi )i∈[0,1]) therefore contains all of the exogenous variables,
parameters and policy variables of the model as well as specifications of how beliefs about

15. Precisely, âi (k; s) has distribution equal to the marginal distribution of assets implied by λi (k; s). ĉi (k; s)
has distribution λi (k, s)({(ai , li , εi ) : (1 + R)ai k∫

âi di
+ wli + T i − si (a k∫

âi di
; li , εi , w, R, T i ) ∈ A}, where A is a

Borel subset of the consumption set R+. âi (k; s) and ĉi (k; s) are well-defined under the assumptions of Lemma 1 (see
the proof of Lemma 2).

16. This definition requires that the integral
∫

ĉi (k; s) di has a degenerate distribution, and equation (9) refers
to its (unit) mass point. Since ĉi = (1 + R(k))âi + w(k)l̂ i + T i − b̂i , where b̂i is the distribution of the next period’s
assets, this integral is well-defined whenever a law of large numbers applies (see footnote 14).
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 13

exogenous or endogenous objects are formed. This section studies changes in the environment
and the set of possible environments � is taken to be an ordered set to facilitate this perspective.

For a given environment, θ∗ ∈ �, say, we know from Lemma 2 that steady-state equilibria
(Definition 2) correspond to points where the market correspondence intersects with the 45◦-
line, i.e. k∗ is a steady state if and only if k∗ ∈ Mθ∗

(k∗). This was illustrated in Figure 1 in the
Introduction in the case where the market correspondence is single-valued (or we consider an
appropriate selection from it).

We are now ready to define (individual and aggregate) direct responses discussed in the
Introduction. In what follows, when this is necessary for emphasis, we condition the saving
correspondence, as well as factor prices, on the environment θ .

Definition 4 (Individual direct responses). Let k∗ be an equilibrium given the environment
θ∗ ∈ �, and denote by λ∗,i household i’s associated invariant distribution. Let θ∗∗ ∈ � be a dif-
ferent environment. Then we say that household i’s direct response is positive at k∗ if its asset
holdings increase at k∗ when the environment changes from θ∗ to θ∗∗, i.e. if

Sθ∗∗,i (ai ; e∗∗,i ) ≥ Sθ∗,i (ai ; e∗,i ), a.e. (ai , li , εi ) ∈ Support(λ∗,i ), (10)

where e∗,i = (li , εi , wθ∗
(k∗), Rθ∗

(k∗), T ∗,i ) and e∗∗,i = (li , εi , wθ∗∗
(k∗), Rθ∗∗

(k∗), T ∗∗,i ). If the
inequality is reversed, then household i’s direct response is instead negative.

A couple of comments on notation are useful here. First, we condition the saving corre-
spondences on the environment θ to emphasize its potential shifts in response to changes in
this environment. Second, notice that in e∗,i and e∗∗,i , factor prices and transfers are allowed to
change because the environment changes, but are evaluated at the same capital-labour ratio, k∗,
highlighting the partial equilibrium nature of the exercise here—hence the emphasis on “direct.”
Finally, if the saving correspondence is not single-valued, then the inequality in (10) refers to
the strong set order, that is, the least and greatest optimal savings levels must increase. This
convention is adopted throughout the rest of the paper.

Definition 5 (Direct responses). Let k∗ be an equilibrium given the environment θ∗ ∈ � and
consider a different environment θ∗∗ ∈ �. We say that the direct response is positive if the mean
asset holdings of households increase at k∗ when the environment changes from θ∗ to θ∗∗, i.e.
if

∫
âθ∗∗,i (k∗) di ≥ ∫

âθ∗,i (k∗) di . If the inequality is reversed so that the mean asset holdings
decrease at k∗ when the environment changes from θ∗ to θ∗∗, the direct response is negative.

The definition is intuitive: We average over the asset holdings (or gross savings) of house-
holds in the old and new environments holding the capital-labour ratio k∗ (hence prices) fixed,
and trace the direction of change. As we illustrate in Section 4, the definition makes direct refer-
ence to the associated consumption-savings model. In particular, for given k∗, the relevant asset
holdings can be computed without any knowledge of (general) equilibrium changes in prices or
quantities that follow from the change in environment. Clearly, if individual direct responses in
Definition 4 are uniformly positive, the (aggregate) direct response in Definition 5 is positive.

Note that in both Definitions 4 and 5, (pre-tax) market prices are fixed at their initial
steady-state values. For example, if the only change in environment is a change in the cap-
ital tax rate (θ = τ ), then we have wθ∗∗

(k∗) = wθ∗
(k∗) = f (k∗) − f ′(k∗)k∗, and Rθ∗

(k∗) =
(1 − τ ∗) f ′(k∗) − � and Rθ∗∗

(k∗) = (1 − τ ∗∗) f ′(k∗) − �. So when investigating whether a
change in environment leads to a positive or negative direct response, it is sufficient to consider
the consumption-savings problem in steady state, with given prices. By comparison, the standard
approach in the robust comparative statics literature—including in our own work, Acemoglu
and Jensen (2015)—is to impose positive direct responses in the sense of Definition 4 uniformly
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14 REVIEW OF ECONOMIC STUDIES

across all households and for all market prices (all capital-labour ratios).17 In Section 4, we
illustrate how the direction of the direct response can be determined in growth models with quasi-
hyperbolic preferences, self-control and temptation utilities and systematic misperceptions, and
in all of these cases such results are made possible by the fact that we only need to determine the
direction of the direct response, without taking into account any general equilibrium changes in
prices.

We can now state the simplest version of our main result, which establishes that the long-run
equilibrium outcome is pinned down by the direct response.

Theorem 1 (Main theorem, unique steady state). Assume that households satisfy the assump-
tions in Lemma 1. For environments θ∗, θ∗∗ ∈ � let k∗ and k∗∗ denote associated non-trivial
steady-state equilibria and assume that these are unique. Then k∗∗ ≥ k∗ if and only if the direct
response is positive when the environment changes from θ∗ to θ∗∗. Similarly, k∗∗ ≤ k∗ if and
only if the direct response is negative when the environment changes from θ∗ to θ∗∗.

Although uniqueness is a special case, the theorem captures this paper’s main message: In
one-sector growth models, long-run outcomes are entirely pinned down by the average of the
direct responses. Misperceptions, biases, and other departures from standard, fully rational, and
time-separable preferences thus impact long-run outcomes in so far as they influence household
decisions at given prices. This result also implies that such departures can easily lead to “para-
doxical” comparative statics (which reverse those of the standard neoclassical growth model)
provided that they change the sign of the direct response. Conversely, when they do not do
so, despite the very rich and potentially complex general equilibrium interactions that these
behavioural preferences may spawn, they will not affect the qualitative properties of the long-
run equilibrium. In the next section, we use this theorem in economies with quasi-hyperbolic
preferences, self-control and temptation utilities and systematic misperceptions to investigate the
direction of comparative statics (how our results can be applied with other classes of behavioural
preferences and biases is discussed in online Appendix C (supplementary material)).

Theremainder of this subsection generalizes Theorem 1 to situations with multiple equilibria
and extends the discussion of the intuition and the mathematical arguments from the introductory
section. We next show that both necessity and sufficiency in our main result remain valid when
there are multiple equilibria provided that we focus on the least or the greatest steady state and
the exogenous changes we are considering are “small” (meaning that we can choose them to be
small enough in the usual implicit function theorem sense).

Theorem 2 (Greatest and least steady states under multiplicity I). Assume that households sat-
isfy the assumptions in Lemma 1 and let k∗− = inf{k : k ∈ Mθ∗

(k)} denote the least steady state
and k∗+ = sup{k : k ∈ Mθ∗

(k)} the greatest steady state when the environment is θ∗ ∈ �, and
analogously k∗∗− and k∗∗+ when the environment is θ∗∗ ∈ �. Assume in addition that Mθ is upper
hemi-continuous in θ ∈ � (where now � is a topological space). Consider an infinitesimal
change in the environment to θ∗∗. Then, k∗∗− ≥ k∗− if and only if the direct response is positive at
k∗− when the environment changes from θ∗ to θ∗∗, and k∗∗+ ≥ k∗+ if and only if the direct response
is positive at k∗+ when the environment changes from θ∗ to θ∗∗.

17. For example, in the Bewley–Aiyagari model, one can use the results in Light (2020) who establishes that
households will increase their savings if preferences are CRRA, the coefficient of relative risk aversion is less than
one, and the rate of return increases (see his Theorem 1). In contrast, we will not impose such uniform positive or
negative direct responses. Rather, our approach relies on just the sign of the direct response at the (initial) steady-state
capital-labour ratio k∗, the direct response is positive (or negative).
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If there are multiple equilibria and the change in environment is not “small” (or we are
unwilling or unable to place a topology on the set of possible environments �), the sufficiency
part of our main result will still hold for the greatest equilibrium when the direct response is
positive (and for the least equilibrium when the direct response is negative):

Theorem 3 (Greatest and least steady state under multiplicity II). Assume that households sat-
isfy the assumptions in Lemma 1 and consider k∗ = sup{k : k ∈ Mθ∗

(k)} (the greatest steady
state) of the environment θ∗ ∈ �. Then if the direct response is positive at k∗ when the envi-
ronment changes from θ∗ to a new environment θ∗∗ ∈ �, the economy’s greatest steady state
increases, i.e. sup{k : k ∈ Mθ∗∗

(k)} ≥ k∗. Analogously, consider k∗ = inf{k : k ∈ Mθ∗
(k)} (the

least steady state) of the environment θ∗ ∈ �. Then if the direct response is negative at k∗ when
the environment changes from θ∗ to the new environment θ∗∗ ∈ �, the economy’s least steady
state decreases, i.e. inf{k : k ∈ Mθ∗∗

(k)} ≤ k∗.

Appendix B contains additional results along the lines of the previous two theorems.
Although important for theoretical applications, the details are less central to our substantive
results, hence their relegation to the Appendix. In addition, we also provide there a detailed com-
parison with the related equilibrium comparative statics results in Milgrom and Roberts (1994)
and Acemoglu and Jensen (2013).

The intuition for the results presented in this section was already discussed in the Intro-
duction. Here, we had elaborate their mathematical and conceptual underpinnings. Most
importantly, our approach enables us to represent any model that falls within the general one-
sector behavioural growth model with a market correspondence Mθ . From Lemmas 1 and 2,
saving correspondences have no jumps down which, which implies that the market correspon-
dence will be compact- and convex-valued, upper hemi-continuous and begin above and end
below the 45◦ line. Crucially, a positive direct response will raise (or “shift up”) the market cor-
respondence at the initial capital-labour ratio k∗ as illustrated in Figure 2 (this is proved in the

FIGURE 2

A positive direct response shifts the market correspondence up at k∗+ (shown by the move from the dot to the box) and

leads to a higher steady-state capital-labour ratio (shown by the triangle). The Figure depicts a case in which there are

multiple steady states both before and after the change in environment
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16 REVIEW OF ECONOMIC STUDIES

key Lemma 4 in the Appendix). As this figure also illustrates, the new equilibrium k∗∗ must then
be above k∗, regardless of whether the market correspondence shifts up or down at other capital-
labour ratios k �= k∗. This result implies that the direct response of aggregate savings at k∗ pins
down the direction of change for the steady state.18

4. APPLICATIONS

In this section, we provide a number of applications of our general framework. Throughout our
emphasis will be on two aspects. First, we show that applying our results is often quite straight-
forward. Second, we establish that even simple applications of these methods lead to a number
of new results relative to the existing literature. To ease interpretation, we work with models
that have a lot of commonality. Specifically, in all cases, we start from Bewley–Aiyagari–style
models with incomplete markets, in which households receive shocks to their labour income or
endowments.

The next subsection presents a lemma that characterizes how solutions of (generalized) Euler
equations change in response to variation in environment. This result will be used in some of our
applications and is of independent interest. We then provide theoretical results for three classes
of models. The first are those that contain “systematic misperceptions” about future variables,
such as interest rates or labour income. We show that our methods can be applied readily in this
class of models. Second, we turn to models of self-control and temptation utility, as developed
in Gul and Pesendorfer (2004), and explain how our results lead to a number of new results in
this context. Third, we discuss models of quasi-hyperbolic discounting as in Phelps and Pollak
(1968), Laibson (1997), Harris and Laibson (2001), and Laibson et al. (2020). In the last part
of this section, we show how our results can be blended with numerical methods in order to
obtain additional insights. Throughout this section, the emphasis is on the direct response of an
economy to changes in environment—how equilibrium objects change holding constant market
prices. With such a characterization at hand, our main theorems can be invoked to establish
general comparative static results.

4.1. A useful lemma: shifts of solutions to Euler equations

Our main results in this paper rely on characterizing direct responses in the sense of Defini-
tion 5. In deterministic environments with appropriate smoothness and boundary conditions,
these direct responses can be obtained from (steady state) Euler equations. In stochastic envi-
ronments, there is typically no such simple Euler equation. Nevertheless, our main result in this
subsection, Lemma 3, shows how various changes in the environment shift the set of solutions
to stochastic (and potentially generalized) Euler equations. These shifts can then be combined
with Theorems 1–3 to derive equilibrium comparative statics in some of the applications we
consider.

To illustrate our approach, let us start with the benchmark Bewley–Aiyagari model and, as we
will do throughout this section, let us suppress dependence on factor prices and transfers, assume
differentiability, and write the time-stationarity saving function as s(a, l, ε). In the Bewley–
Aiyagari model, households are only uncertain about their future labour endowments so there is
no loss of generality in omitting ε and writing the time-stationary savings function s(a, l). Then

18. The figure illustrates the “general” case, in the sense that there are multiple steady states both before and
after the change in the environment, and we focus on the largest ones corresponding to k∗+ and k∗∗+ in Theorems 2
and 3.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdad043/7109878 by M

IT Libraries user on 02 M
ay 2023



ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 17

the next period’s assets choice a′ = s(a, l) solves a “Deaton-type” Euler equation:19 for a.e.
(a, l) ∈ [a, a] × [lmin, lmax],
L(a′, (a, l), s, ρ)

= −u′((1 + R)a + wl − a′)

+ max{δ(1 + R)

∫
u′((1 + R)a′ + wl ′ − s(a′, l ′))μ(dl ′), u′((1 + R)a + wl − a)} = 0

Here, ρ summarizes all of the fixed parameters on the right-hand side (the prices R and w, and
the environment θ ∈ � including the borrowing constraint a). As we explain in the rest of this
section, stochastic Euler equations in several other behavioural consumption-savings models
can be written in a similar form. In this spirit, let us define a time-stationary saving function for
household i ∈ [0, 1] in the general behavioural growth model as a solution a′,i = si (ai , li , εi ) to
the (steady state) Euler equation:

Li (a′,i , (ai , li , εi ), si , ρi ) = 0 for a.e.(ai , li , εi ) ∈ [ai , ai ] × [li
min, li

max] × Ei . (11)

It is clear that the Bewley–Aiyagari model is a special case. In general, (11) can easily have
multiple solutions, and if so, we say that a solution is the least (resp., greatest) solution if the
level of savings is weakly below (resp., weakly above) the level of savings of any other solution
to (11) for all (ai , li , εi ) ∈ [ai , ai ] × [li

min, li
max] × Ei

From now on, we fix a specific household i ∈ [0, 1] and omit the index i.

Assumption 2.

(1) Continuity: L(a′, (a, l, ε), s, ρ) is continuous in a′ ∈ [ai , ai ] and (a, l, ε) ∈ [a, a] ×
[lmin, lmax] × E.
(2) Boundary conditions: Given s and ρ, L(a, (a, l, ε), s, ρ) ≥ 0 and L(a, (a, l, ε), s, ρ) < 0

for all (a, l, ε) ∈ [a, a] × [lmin, lmax] × E.
(3) Monotonicity in future savings: Given ρ, L(a′, (a, l, ε), s, ρ) ≤ L(a′, (a, l, ε), s̃, ρ) if

s̃(a, l, ε) ≤ s(a, l, ε) for all (a, l, ε) ∈ [a, a] × [lmin, lmax] × E.

The first two parts of the assumption impose weak regularity conditions and are satisfied in
all of our applications. In particular, the boundary conditions hold in all of our applications under
an (upper) Inada condition on utility.20 The third part is the key monotonicity condition, which is
a restriction on underlying parameters and functional forms. This third part is also satisfied in the
benchmark Bewley–Aiyagari model and holds in our applications, except in the “sophisticated”
quasi-hyperbolic model, where we will not use this approach (see Section 4.4).

The next lemma shows how least and greatest solutions change as we modify the environ-
ment.

Lemma 3. Suppose that Assumption 2 holds. Then (11) has least and greatest solutions.
Furthermore:

• If s∗ is the unique solution to (11) when ρ = ρ∗, s∗∗ is the unique solution to (11) when
ρ = ρ∗∗, and L(s∗(a, l, ε), (a, l, ε), s∗, ρ∗∗) ≥ L(s∗(a, l, ε), (a, l, ε), s∗, ρ∗) for a.e. (a, l, ε)
in the support of λs∗ , then s∗∗(a, l, ε) ≥ s∗(a, l, ε) for all (a, l, ε).

19. See Deaton (1991) and Li and Stachurski (2014).
20. In the benchmark Bewley–Aiyagari model, if u′(c) → 0 as c → ∞, we can always find an upper bound on

assets such that if a′ is above this bound then L < 0. Moreover, we have L ≥ 0 if a′ = a, since otherwise u′(Ra + wl −
a) > δR

∫
u′(Ra + wl ′ − s(a, l ′))μ(dl ′) > u′(Ra + wl − a), which is impossible.
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18 REVIEW OF ECONOMIC STUDIES

• The statement remains valid for the least and greatest solutions, even when there are multiple
solutions, provided that the change from ρ∗ to ρ∗∗ is infinitesimal and L is continuous.

• The statement also remains valid for the greatest solutions s∗ and s∗∗, even when there are
multiple solutions.

This lemma shows that we can determine whether a change in the environment leads to a
positive direct response without imposing the usual conditions for monotone comparative stat-
ics, and also without having to compute the saving function in the new environment, which
can be challenging in many economies with shocks and behavioural biases. Crucially, the key
condition in Lemma 3 only needs to hold given ρ∗ and s∗—that is, at the initial solution to
the generalized Euler equation, s∗, given the initial parameters and steady-state prices w and R
and the initial invariant distribution λs∗ . The lemma thus allows for local (partial equilibrium)
analysis, as required for our main results.

As a final remark, we note that the lemma is stated analogously to Theorems 1–3, distinguish-
ing cases with a unique solution from those with multiple solution with or without small shocks.
In principle, all of the results in this section should be stated in this manner. However, with an
abuse of mathematical precision, in what follows, we simplify the statements of our results by
writing simply “a change from ρ∗ to ρ∗∗ increases the saving function.” Throughout, this should
be interpreted as either applying under conditions of uniqueness or for the least and the greatest
steady-state equilibria under the appropriate conditions as in Theorems 1–3 or Lemma 3.

4.2. Systematic misperceptions

Our first application is to economies with systematic misperceptions, where agents may not use
the “true model” or may make other systematic mistakes in forming their expectations. In our
general formulation, household decisions depend on beliefs about both future (exogenous) vari-
ables and about future prices, which then shape expectations about future selves’ savings. In
this subsection, we allow for misperceptions on all three dimensions: (i) agents may persistently
overestimate their future level of patience (the discount factor), in which case they will sys-
tematically overestimate their future savings; (ii) they may persistently overestimate their future
labour income (which will directly impact savings decisions today); and (iii) they may, alter-
nately, believe that some policies, such as changes in the capital income tax rate, will affect their
labour income in ways that are not consistent with the underlying model. In all of these cases,
there is a natural dynamic inconsistency: consumption and saving plans made with incorrect
beliefs will have to be revised once households are confronted with actual realizations.

As noted above, we consider as benchmark a Bewley–Aiyagari model with ex-ante identi-
cal households, subject to i.i.d. labour endowment shocks, given by lt ∼ μ(·) over a bounded
support [lmin, lmax] ⊆ R++. We maintain the same assumptions on borrowing limits as in the
previous subsection. All households have time-separable and neoclassical (continuous, increas-
ing, strictly concave, satisfying Inada conditions) utility given by u, and geometrically discount
the future with discount factor δ < 1. We assume that a fraction 1 − α ∈ [0, 1] of households
are “rational”: they know the true distribution of lt and form correct beliefs about all future
variables. The remaining fraction α are “behavioural” and may hold persistently wrong beliefs.

The first set of incorrect beliefs we consider relate to future patience/discount factors.
Specifically, while the true discount factor is always δ, behavioural households overestimate
(underestimate) their future patience if they believe that future selves will base their decision
on the discount factor δ̂ > δ (δ̂ < δ).21 These beliefs are assumed to be time-invariant and

21. Formally, the parameter εi introduced in Section 2.2 now parameterizes beliefs about future discount factors:
εi = δi .
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ACEMOGLU & JENSEN BEHAVIOURAL ONE-SECTOR GROWTH MODELS 19

hence dogmatic, in the sense that a behavioural individual does not change her beliefs even
after realizing that her expectations so far have not been realized.22 Denoting individual i’s
beliefs about the marginal distribution of her future selves’ discount factor δi by P̂ i

t , we write
P̂ i

t (δ
i = δ̂|ei

t ) = 1 for all t, for all i ∈ [0, 1] and for all ei
t , where ei

t summarizes factor prices,
policies and endowments (see the proof in the Appendix for details).

Proposition 1. Suppose that a fraction α ∈ [0, 1] of households systematically overestimate
(resp., underestimate) their future patience. Then, the steady-state capital-labour ratio increases
(decreases) when α increases.

Several points are worth emphasizing. First, as noted above, with an abuse of mathematical
precision, the statement refers to the steady-state capital-labour ratio increasing or decreasing.
This should be read as either applying under uniqueness,23 or applying for small changes (in
arbitrarily small increase in α), or as referring to the greatest steady-state capital-labour ratio.

Second, this proposition heavily relies on Lemma 3. The proof first applies this lemma to
show that behavioural households that overestimate future patience save more than fully rational
households. Once this result is established, Theorems 1–3 yield the desired conclusions. This
structure of argument also shows that our methods are in fact quite straightforward to apply in
this class of environments.

Third, this proposition also determines the effects of misperceptions relative to the neoclas-
sical benchmark: with households that systematically overestimate their patience, steady-state
capital-labour ratio is higher than in the fully rational benchmark (which corresponds to the
special case where α = 0).

Fourth, this result is, at some level, intuitive. When a household overestimates their future
patience, they think they will have higher savings and thus lower consumption in the next period.
This implies, from the concavity of u, that they will overestimate the marginal utility of future
consumption, encouraging them to save more. While there are indirect effects on their saving
behaviour, for example, coming from the implications of the life-time stochastic budget con-
straint, this marginal utility channel is strong enough to ensure that an economy with more
behavioural households has more savings and thus a higher steady-state capital-labour ratio.

Fifth, although it follows from a direct application of our methods, to the best of our knowl-
edge there are no analogues of this type of result in the literature. In fact, there are several
competing equilibrium effects, which make the impact of such a change on the steady state quite
complex. To understand this point, note that an increase in α raises savings, as described in the
previous paragraph, and consequently reduces the interest rate and increases wages. These price
changes will have ambiguous implications for both the behavioural and rational households.
Depending on the income and substitution effects, the equilibrium response to price changes
may be a further increase or a reduction in savings. As a result, there is no reason to expect that
the full general equilibrium effect will go in the same direction as the direct effect. The finding
that it does so under general conditions is an original result of our framework, which highlights
the critical role of the one-sector structure (see the discussion in the Introduction as well).

Sixth, the proposition says nothing about individual-level behaviour. In fact, we will see at
the end of this subsection that there is generally a type of individual-level “indeterminacy” (see

22. Such dogmatic beliefs are important, since otherwise Bayesian updating would lead to changes in beliefs
after a sufficiently long sequence of realized labour incomes. For a discussion of how these types of beliefs may survive
long sequences of contradictory information, see Benjamin et al. (2015).

23. In this case, it is possible to place stronger conditions to guarantee uniqueness. For example, see Light (2020)
and Light and Weintraub (2021) (Section 5), whose conditions are sufficient to ensure uniqueness in our model, despite
the systemic misperceptions of some households.
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20 REVIEW OF ECONOMIC STUDIES

Proposition 4): because of equilibrium responses to changes in prices, some households will end
up increasing their savings while others will reduce theirs, and it is very difficult to pin down how
a given household will behave, without knowing the exact changes in equilibrium prices (which
of course depends on how each household behaves at the end). This indeterminacy and the
resulting richness of individual behaviour sharply distinguish our approach from those that use
monotone comparative static methods that require all households to move in the same direction.

Finally, this proposition, like all others in this section, is stated for the case of ex ante homo-
geneity in terms of utility functions and labour endowment sequences (but of course not in terms
of rationality/behavioural biases). This homogeneity is adopted for simplicity and can be easily
relaxed. We could allow, as in our main analysis, different types of households, with each group
having different utility functions and different fractions of behavioural and fully rational agents.
In that case, an analogue of Proposition 1 follows, provided that we consider a change in the
environment that still induces a positive direct response as required in Definition 5. In fact, using
similar steps, one can also combine different types of behavioural biases within the same model,
and if the change in environment induces a positive direct response, our main results can be
readily applied.

The results in Proposition 1 critically depend on the fact that we are considering mispercep-
tions about future discounting. If, instead, there are misperceptions about labour income, the
results are very different. To illustrate this possibility, let us now suppose that a fraction α of the
households believe that their labour income has a distribution given by wt ′lt ′ ∼ μm

W (·|wt ′) where
μm

W may differ from the true distribution of labour income, μW (A|wt ′) = μ{l ∈ [lmin, lmax] :
wt ′l ∈ A} (here A is a Borel measurable subset of R+). In what follows, we say that behavioural
households “overestimate (resp., underestimate) their future labour income” given the mar-
ket wage w, if, given w, μm

W (·|w) first-order stochastically dominates (resp., is first-order
stochastically dominated by) μW (·|w). Once again, these beliefs are dogmatic.

Proposition 2. Suppose that a fraction α ∈ [0, 1] of households systematically overestimate
(resp., underestimate) their future labour income at the initial steady-state wage level w(k∗)
where k∗ is initial steady-state capital-labour ratio. Then, the steady-state capital-labour ratio
decreases (increases) when α increases.

To save space, the proofs of this and the remaining results in the paper are presented in the
online Appendix C (supplementary material).

Although households are again overestimating future savings, the conclusions are the oppo-
site of Proposition 1: behavioural biases now reduce savings and capital accumulation. This is
because incorrect beliefs about labour income have very different implications than those about
future discount rates, as they encourage households to consume more under the mistaken belief
that they are richer than they truly are. As a result, greater overestimation of future labour income
leads to lower savings, and the behavioural model has, analogously, lower capital-labour ratio
than the fully rational benchmark (which again corresponds to the case where α = 0).

We would like to reiterate that, despite the apparent simplicity of this result, we are not aware
of similar findings in the literature. In fact, an approach that focuses on aggregate behaviour is
key for deriving this result, since typically some individuals will increase their savings while
others reduce theirs.

Our next result shows that simple misperceptions can also change the direction of standard
neoclassical comparative statics. We illustrate this possibility focusing on one of the more robust
comparative statics in fully rational models: the positive impact of a reduction in the capital
income tax rate on capital accumulation.

Suppose now that capital income is taxed at the rate τ ∈ [0, 1), there is no tax on labour
income, capital depreciates fully after use, and tax revenues are spent on a non-productive public
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good (and thus do not impact the marginal utility of consumption). In terms of our general
formulation, this implies G(kt ) = τ f ′(kt )kt and T i = 0 for all i, and equilibrium prices are
given by (1)–(2) where ω(kt ) = 0, τ(kt ) = τ and � = 1. For illustration purposes, let us focus
on CRRA utility and further assume that the intertemporal elasticity of substitution χ is greater
than some threshold χ ∈ (0, 1), which ensures that the substitution effect is not overwhelmed
by the income effect and thus households’ asset supply is increasing in the rate of interest (see
Aiyagari, 1994, pp. 667–668). These assumptions are sufficient to ensure that a reduction in the
capital income tax rate increases the (unique) steady-state capital-labour ratio in the benchmark
Bewley–Aiyagari model.

The only difference between the rational and behavioural households is that the behavioural
households incorrectly believe that capital income taxes directly impact their future labour
incomes (rather than just indirectly via capital accumulation). In other words, they believe:
wt ′lt ′ ∼ μm

W (·|wt ′, τ ), t ′ > t . We say that a reduction in capital income taxes “causes opti-
mism (resp., pessimism)” if μm

W (·|wt ′, τ̃ ) first-order stochastically dominates (resp., is first-order
stochastically dominated by) μm

W (·|wt ′, τ ) whenever τ̃ < τ . For example, a reduction in capital
income taxes can cause optimism if some agents believe that such a reduction increases the
efficiency of the economy beyond its impact on saving incentives.

Proposition 3. Suppose that all households have CRRA utility with intertemporal elasticity of
substitution χ ∈ (χ,∞) and a fraction α ∈ (0, 1] of households systematically misperceive the
effect of capital income taxes on their future labour income. If a reduction in capital income
tax causes pessimism among behavioural households, then it increases the steady-state capital-
labour ratio. If it instead causes optimism among behavioural households, then for any α there
exists χa ∈ (χ,∞) such that for all χ ≤ χα , the lower capital income tax reduces the steady-
state capital labour ratio.

The proof of this result relies on Lemma 3 as well as Theorem 1 in Light (2020).
When the capital income tax is reduced, rational households always (for any choice of

χ ∈ (χ,∞)) increase their savings starting from the initial steady state. If the capital income
tax reduction causes pessimism among behavioural households, their reaction will amplify the
response relative to the benchmark with rational households (this is because behavioural house-
holds feel poorer and thus increase their savings by even more than the rational agents). The
aggregate direct response of Definition 5 is positive, and the standard comparative statics hold
by Theorem 1 (we can invoke this theorem because we have uniqueness in this case).

However, if the capital income tax reduction causes optimism among behavioural house-
holds, their response at the initial prices can be negative. In fact, when χ is sufficiently low,
because their response to the change in the net interest rate is very small, the optimism channel
wins out and they respond negatively to the cut in the capital income tax rate. Hence, in this case
the direct responses of rational and behavioural households are going in opposite directions, and
the balance between the two will depend on their quantitative magnitudes. When χ is low, ratio-
nal households’ response is quantitatively small, and thus the negative reaction from behavioural
households wins out and we obtain the second part of the proposition, which shows the rever-
sal of the neoclassical comparative statics in response to capital tax rates. Notably, even a small
fraction of behavioural agents that mistakenly become more optimistic about their future labour
income is sufficient for such a reversal.

This proposition illustrates how fine details of behavioural biases are necessary to understand
whether standard comparative statics will continue to apply. It also reiterates why monotonicity-
based tools would not have been useful in the setup (different households are moving in different
directions).
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22 REVIEW OF ECONOMIC STUDIES

Our final result takes this one step further and establishes individual-level indeterminacy, as
already anticipated above. Let η(·) denote the Lebesgue measure on the set of households [0, 1]
so that η(J ) is the mass of a (measurable) subset of households J ⊆ [0, 1].
Proposition 4. Suppose that each household has CRRA utility with intertemporal elasticity of
substitution χi ∈ (1,∞) and consider a reduction in the capital income tax that causes pes-
simism among the behavioural subset of households. Then there exists B > 0 such that the
following holds: For any (measurable) subset J ⊆ [0, 1] of households with η(J ) ≤ B, there
exists a production function and a profile of misperceptions and intertemporal elasticities of
substitution for the remaining set of households, [0, 1]\J , such that the lower capital income tax
will lead to lower aggregate stationary savings for all households in J, while the steady-state
capital-labour ratio and aggregate savings will increase.

For the same production function, there also exists a profile of misperceptions and intertem-
poral elasticities of substitution for the remaining set of households, [0, 1]\J , such that the lower
capital income tax leads to higher aggregate stationary savings for all households in J.

Focusing on the comparative statics with respect to the capital tax rate, Proposition 4 shows
that, while aggregate savings increase, there is not much that can be said about individual
behaviour. In particular, any small subset J of households will increase or reduce their savings
depending on the exact misperceptions and elasticities of substitutions of other agents.24 The
intuition for this result is that for any level of the interest rate elasticity of households in the sub-
set J, the remaining households’ saving levels could be even more elastic. This would make the
increase in the after-tax interest rate small relative to the rise in the wage rate, and the resulting
large income effect induces households in J to reduce their savings. This indeterminacy result
reiterates that our main results are not driven by some hidden monotonicity assumptions—they
are a consequence of the discipline that this class of models imposes on aggregate variables
despite, despite behavioural preferences, while placing little or no restrictions on individual
behaviour.

4.3. Self-control and temptation

We next present similar comparative static results for self-control and temptation preferences
introduced and studied in Gul and Pesendorfer (2004). The benchmark is as before; a Bewley–
Aiyagari model with ex ante identical households subject to i.i.d. labour endowment shocks,
given by lt ∼ μ(·) over support [lmin, lmax] ⊆ R++. The main difference is that now, in addition
to a standard neoclassical utility function u and discount factor δ < 1, households have a temp-
tation cost given by φv where the parameter φ ∈ [0, 1] represents their “temptation intensity.”
As φ → 0, we approach the standard neoclassical benchmark without self-control and tempta-
tion problems. We continue to assume a borrowing limit of a ≤ 0, and to start with, there are
no misperceptions. In this case, we assume, again for simplicity, that all households have self-
control and temptation preferences, rather than doing so only for a fraction α of households. We
also suppress ε in what follows to pare down the notation.

This model satisfies the assumptions in Lemma 1, provided that overall utility, u(c) + φv(c),
is concave, increasing and continuous. To simplify the exposition, we will additionally assume
that u is strictly concave and that u and v are at least four times continuously differentiable

24. An analogous result holds when aggregate savings decrease following the decline of the capital income tax
rate. Here, for simplicity, we focus on the more standard case in which aggregate savings and the capital-labour ratio
increase.
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on R+. In addition, we assume that v is either strictly convex everywhere, or strictly concave
everywhere with positive third derivative.

The advantage of this formulation of self-control and temptation, as introduced in Gul and
Pesendorfer (2004), is that when prices are constant, then consumption-saving decisions are
given by a standard dynamic programming problem. In particular, households’ time-stationary
saving function s(a, l) is uniquely determined, and in the rest of the section, we simplify
the notation further by dropping the conditioning on factor prices. In this case, the following
dynamic programming recursion determines the saving function s(a, l):

s(a, l) = arg max
a≤a′≤y

u(y − a′) + φv(y − a′) + δ

∫
W ((1 + R)a′ + wl ′)μ(dl ′) − φv(y − a) ,

(12)

where y = (1 + R)at + wlt denotes current total wealth (or cash-at-hand) and W is the value
function.

Our first result shows the effects of changing the temptation intensity φ or the borrowing
limit a.

Proposition 5. Suppose that the steady-state saving function in this economy s(a, l), and assume
that

δ(1 + R)

∫
v ′((1 + R)s(a, l) + wl ′ − s(s(a, l)), l ′) − v ′((1 + R)s(a, l) + wl ′ − a)

v ′((1 + R)a + wl − s(a, l))
μ(dl ′) ≤ 1.

(13)

Then the steady-state capital-labour ratio is decreasing in the temptation intensity φ. If, on the
other hand, this inequality is reversed, then the steady-state capital-labour ratio is increasing in
the temptation intensity φ.

Suppose φ > 0. Then, a looser borrowing constraint (a reduction in a) will reduce the steady-
state capital-labour ratio if v is convex; and it will increase the steady-state capital-labour ratio
if v is concave and no household is initially borrowing constrained.

Once again, we are not aware of any results in the literature that are similar to this proposition,
which illustrates how our general approach can be applied to yield simple but powerful new
insights. Although far from obvious, these results are intuitive. Condition (13) implies that costly
self-control does not raise the (expected) marginal utility of future consumption by “too much” in
comparison with the benchmark case. In particular, this is true in the case (Gul and Pesendorfer,
2004) focus on, since a convex temptation cost function v ensures that self-control reduces the
marginal utility of future consumption when φ increases. As this will induce households to shift
consumption towards the present, savings decline as φ increases. Our main theorems then imply
that a higher φ leads to a greater steady-state capital-labour ratio, as illustrated in Figure 3.
If, on the other hand, costly self-control increases the marginal utility of future consumption
(v concave), and this impact is sufficiently powerful (v is “sufficiently concave”), then the impact
of the higher φ on savings and, by our main theorems, the new steady state is reversed.25 It
then follows immediately that self-control and temptation preferences can increase or reduce

25. We can also note that convex temptation costs reduce the “over-saving” problem in the benchmark Bewley–
Aiyagari model, while concave temptation costs exacerbate it.
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FIGURE 3

Temptation versus Benchmark Case

steady-state capital-labour ratios relative to the neoclassical benchmark (with φ = 0), depending
on whether condition (13) is satisfied.

The second part of the proposition might at first appear even more surprising. Recall
that temptation costs reduce the marginal utility of future consumption when v is convex
because the marginal cost of giving in to temptation increases with the household’s wealth
level. With a similar reasoning, looser borrowing constraints that allow the household to go
into debt increase temptation costs when v is convex. This reduces the marginal utility of
future consumption and encourages lower savings. In this case, the comparative statics are
thus similar to the standard ones (Aiyagari, 1994, p. 672), but working through a distinct
temptation channel. In contrast, when v is concave, households will become better at resisting
temptation with a looser borrowing constraint, because temptation increases less than propor-
tionately with household wealth.26 In this case, paradoxically, a looser borrowing constraint
can increase aggregate savings, in particular for households that are not actually borrowing
constrained.27

We next study the effects of tax policy in the presence of self-control and temptation. We
now set φ = 1 to economize on notation. The only additional feature is that, as in the previous
subsection, there is a linear capital income tax rate at the rate τ , the proceeds of which are spent
on a non-productive public good. We also assume full depreciation, so that 1 + R = (1 − τ)R̂
where R̂ = f ′(k∗) is the (pre-tax) market price. To shorten expressions, we further use the
notation [u′ + v ′](c) = u′(c) + v ′(c) and similarly the second derivatives.

26. Loosely speaking, we can think of this as the case in which the marginal temptation to eat a (whole) cake is
getting weaker with the size of the cake due to diminishing returns.

27. Going against this is the fact that households that are borrowing constrained will increase their consumption
(see e.g. Aiyagari, 1994, p. 672). For this reason, this part of the proposition is stated for the case in which no household
is initially borrowing constrained.
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Proposition 6. Denote the initial rate of capital income tax by τ ∗ ∈ (0, 1), let s(a, l)
denote the initial saving function and c(a, l) = (1 + R)a + wl − s(a, l) the consumption
function. If

δ(1 − τ ∗)R̂s(a, l)

∫ [u′′ + v ′′](c(s(a, l), l ′) − v ′′(θ(1 − τ ∗)R̂s(a, l) + wl ′ − a))μ(dl ′)∫ [u′ + v ′](c(s(a, l), l ′) − v ′((1 − τ ∗)R̂s(a, l) + wl ′ − a)μ(dl ′)

≥ [u′′ + v ′′](c((a, l))a∫ [u′ + v ′](c(s(a, l), l ′) − v ′((1 − τ ∗)R̂s(a, l) + wl ′ − a)μ(dl ′)
− δ (14)

for all (a, l) in the support of the invariant distribution given s, then a higher capital income tax
τ ∗∗ > τ ∗ reduces the steady-state capital-labour ratio. If (14) holds in reverse, then a higher
capital income tax increases the steady-state capital-labour ratio.

Like the previous result, Proposition 6 relies on Lemma 3 to sign the direct response fol-
lowing an increase in the capital income tax rate on savings, and then exploits our main results,
Theorems 1–3. We emphasize once more that this proposition is a fairly direct application of
our methods, but the economics is both interesting and non-trivial. In particular, there is (and
can be) no prediction about the saving behaviour of all households, some of which can and
often will go against the aggregate. Additionally, (14) is a local condition and applies only at
current prices given the initial capital tax τ ∗. Hence, our approach, eschewing strong mono-
tonicity requirements and focusing on aggregate behaviour and local conditions, is critical for
this result.28

The proposition shows how under a simple condition (summarized in equation (14)),
we can make sure that standard neoclassical comparative statics hold in the presence of
self-control and temptation considerations. At the same time, as in Proposition 3 for the sys-
tematic misperceptions case, this result also highlights that when the relevant condition is
reversed, standard neoclassical comparative statics can be easily overturned. Such reverse com-
parative statics do not require extreme parameters and can hold under reasonable economic
conditions.29

We next explain the logic of condition (14), further clarifying when the reverse comparative
static result holds. First, condition (14) does not have any direct or distributive effects, because
tax proceeds are not transferred back to households and do not affect the marginal utility of
consumption (though it is easy to generalize this condition to the case in which there are such
rebates). Second, the intuition should be understood in terms of the effects of capital income
taxes on the marginal utility of consumption and marginal temptation costs. To explain this in
the clearest possible way, let us ignore uncertainty (assuming that l takes a single value) and
again assume full depreciation. Let us also define the shorthand R̂ = (1 + R)/(1 − τ) = f ′(k∗)

28. The statement and proof of the proposition also exploit the fact that all households have positive assets. This
follows from Proposition 5.

29. For example, suppose v has a positive third derivative, which implies that v ′′(c(s(a, l), l ′)) − v ′′(θ Rs(a, l) +
wl ′ − a) < 0 in the numerator on the left-hand side of (14). If u′, v ′, and u′′ are all uniformly bounded from below, and
v ′′′ is bounded from below by a large enough positive constant, then the reverse comparative static will hold (recall that
l has bounded support so that the propensity to save out of assets, s(a, l)/a, is uniformly bounded from above).
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to denote the (pre-tax) market price of capital. In this case, (14) becomes:30

(1 − τ ∗)R̂
v ′′(y∗)
v ′(y∗)

≥
(
(1 − τ ∗)R̂ − 1

) u′′(c∗) + v ′′(c∗)
u′(c∗) + v ′(c∗)

, (15)

where c∗ is steady-state consumption and y∗ is steady-state wealth. Since (1 − τ ∗)R̂ > (1 −
τ ∗)θ R̂ > 1 and u + v is strictly concave, this condition immediately implies that when temp-
tation utility is convex, (15) always holds and thus neoclassical comparative statics generalize
readily to models with self-control and temptation. Conversely, however, reverse comparative
statics apply when v is strictly concave. For example, when v = u, constant or increasing
absolute rate of risk aversion is sufficient to reverse (15) and thus the standard comparative
statics.

The economic intuition for comparative static reversals is also interesting. As opposed to
the standard utility function u, the temptation utility v can be concave or convex, even though
Gul and Pesendorfer (2004) focus on the case where v is convex. Concavity in this case would
imply that households have an incentive to smooth their wealth, since a smoother wealth profile
lowers temptation costs. If this wealth smoothing motive is sufficiently strong—in particular,
stronger than the consumption smoothing motive—a lower capital income tax rate encourages
lower savings in order to achieve a smoother wealth profile.

Finally, we will use the self-control and temptation preferences to show how our methods
can be applied for deriving new distributional comparative statics (see Jensen, 2018 for more
on distributional comparative statics). To do this in the simplest possible way, we combine
these preferences with misperceptions about future labour endowments, which helps us isolate
the effects of self-control considerations (abstracting from other effects of changes in labour
endowments).31

Specifically, all households believe future endowments are given by distribution μ∗, and
without loss of any generality, we suppose that initially μ∗ = μ, where µ denotes the true dis-
tribution of labour endowments. We then consider a mean-preserving spread of μ∗ to μ∗∗. The
generalized Euler equation for this case is

− u′((1 + R)a + wl − s(a, l)) − v ′((1 + R)a + wl − s(a, l))

+ max

{
δ(1 + R)

∫
u′((1 + R)s(a, l) + wl ′ − s(s(a, l), l ′))

+ v ′((1 + R)s(a, l) + wl ′ − s(s(a, l), l ′))
−v ′((1 + R)s(a, l) + wl ′ − a)μ(dl ′), u′((1 + R)a + wl − a)

+ v ′((1 + R)a + wl − a)

}
= 0

30. In deterministic models, direct responses are always determined because one can apply the implicit func-
tion theorem (IFT) to (steady state) Euler equations. In the steady state of a representative household economy,
k∗ = a∗ = s(a∗; w, R). When Tt = τ R̂kt , steady-state consumption and wealth are thus c∗ = ((1 − τ)R̂ − 1)a∗ +
wl + τ R̂k∗ = (R̂ − 1)a∗ + wl and y∗ = (1 − τ)R̂a∗ + wl + τ R̂k∗ = R̂a∗ + wl. The (steady state) Euler equation is

therefore

(
1 − 1

δ(1−τ)R̂

)
· {u′((R̂ − 1)a∗ + wl) + v ′((R̂ − 1)a∗ + wl)} − v ′(R̂a∗ + wl) = 0 . Applying the IFT to

determine da∗/dτ , and using that the Euler equation must hold, one obtains da∗/dτ ≥ 0 ⇔ (15).
31. We also note that such misperceptions may be quite natural in general, because estimating future distributions

is difficult for many households.
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Although determining the effects of such distributional shifts is in general challenging, by
Lemma 3 comparative statics simply turn on whether the integrand in the GEE is convex or
concave as a function of l ′. Denoting the initial wealth distribution and consumption function by
μ∗

y and c, respectively, convexity therefore holds when

u′′′(c(y)) + v ′′′(c(y)) − v ′′′(y − a) ≥ 0 for y ∈ Supp(μ∗
y) . (16)

Proposition 7. A mean-preserving spread of perceived future labour endowments increases the
steady-state capital-labour ratio when (16) holds, and reduces the steady-state capital-labour
ratio when this inequality is reversed.

We are once again unaware of any similar results in the literature. Nevertheless, this propo-
sition is intuitive. Consider first the benchmark case with no temptation costs (v = 0). In this
case, (16) reduces to the well-known “prudence” condition for precautionary savings, and the
mean-preserving spread increases savings when consumers are prudent and find it optimal to
raise their precautionary savings.

In the presence of temptation utility, there are additional effects. First, if v has a negative
fourth derivative, we obtain a prudence effect working through temptation costs, reinforcing the
precautionary savings effect (when v has a negative fourth derivative, v ′′′(c(y)) − v ′′′(y − a) ≥ 0
in (16)). In contrast, when v has a positive fourth derivative, then temptation considerations work
against precautionary savings. The economic intuition is again related to wealth smoothing:
a smoother consumption profile implies a more varied wealth profile. When there are strong
wealth smoothing motives, soaring consumption becomes costly and discourages precautionary
savings, potentially reversing standard comparative statics.

Like in Propositions 3 and 6, the current result shows how local conditions on the quan-
titative balance between competing effects determine whether a given change in environment
leads to higher or lower steady-state capital-labour ratio. In this case, intuitively, wealth smooth-
ing motives can easily reverse prudence effects when the latter are bounded. For example,
when u′′′(c) ≤ A for some A > 0 and for all c, and v ′′′′(c) ≥ B > 0, the following condition
is sufficient to reverse (16): B > −A/a where a < 0 is the borrowing limit.32 This condition
crystallizes the intuition that distributional comparative statics with self-control and temptation
preferences depend on whether consumption smoothing or wealth smoothing is more important.

4.4. Quasi-hyperbolic preferences

We now study the applications of our methods to quasi-hyperbolic preferences, studied among
others by Phelps and Pollak (1968), Laibson (1997), Barro (1999), Harris and Laibson (2001),
Krusell et al. (2002), Balbus et al. (2015), and Laibson et al. (2020). Despite the popularity
and the broad range of applications of these preferences, comparative static analysis is even
more challenging in this case, because of dynamic inconsistency.33 The literature distinguishes

32. Since y ≥ c(y) and v has a positive fourth derivative, u′′′(c(y)) + v ′′′(c(y)) − v ′′′(y − a) ≤ u′′′(c(y)) +
v ′′′(c(y)) − v ′′′(c(y) − a) = u′′′(c(y)) + ∫ c(y)

c(y)−a v ′′′′(τ )dτ ≤ A + aB < 0. This channel can be referred to as “tem-

perance,” capturing the aversion to fluctuations in wealth. (16) illustrates the tension between consumption smoothing
working through v(c(y)) versus wealth smoothing encapsulated in −v(y − a). We can also note that a positive fourth
derivative is necessary and sufficient for the latter effect to dampen precautionary savings (put differently, v ′′′(c(y)) <

v ′′′(y − a) if and only if v has a positive fourth derivative).
33. The exception is for the deterministic logarithmic utility case, which is observationally equivalent to the

dynamically consistent and fully rational benchmark, as noted in Barro (1999) and Krusell et al. (2002).
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between the naive and sophisticated versions of hyperbolic discounting. In the former, house-
holds do not recognize that they will change their plans in the future, while in the latter they do
and thus understand that they are playing a game with their future selves (and savings are deter-
mined by the time-stationary Markovian equilibria of this dynamic game). Both cases can be
studied with the approaches proposed in this paper and satisfy the assumptions in Lemma 1. In
the sophisticated case, the household saving decisions in (8) solve:

s(a, l) ∈ arg max
y∈B((1+R)a+wl)

u((1 + R)a + wl − y) + βδ

∫
W (y, l ′) μ(dl ′),

where B((1 + R)a + wl) = {y ∈ [a, a] : y ≤ (1 + R)a + wl}, and the continuation utility is
given as

W (y, l) = u((1 + R)y + wl − s(y, l;w, R)) + δ

∫
W (s(y, l), l ′) μ(dl ′). (17)

In the naive case, on the other hand, current selves believe, incorrectly, that future selves will
discount geometrically with the “long-run” discount factor δ.34 Here, the correctly anticipated
future saving function s(y, l) in (17) is replaced with a misperceived saving function s f (y, l)
determined as in the benchmark neoclassical consumption-savings problem:

s f (a, l) ∈ arg max
q

u((1 + R)y + wl − q) + δ

∫
V (q, l ′) μ(dl ′),

where V (y, l) = maxq u((1 + R)y + wl − q) + δ
∫

V (q, l ′) μ(dl ′). The naivety in this for-
mulation is rooted in the fact that anticipated future savings will persistently differ from
actual future savings. The next proposition establishes comparative static results for the naive
quasi-hyperbolic model that parallels the results in Section 4.2.

Proposition 8. Assume that a fraction α ∈ [0, 1] of households are naive quasi-hyperbolic with
β < 1 and long-run discount factor δ < 1, and the remaining fraction 1 − α of households are
rational with discount factor δ < 1. Then an increase in α or a decrease in either β or δ reduces
the steady-state capital-labour ratio.

An immediate implication of the proposition is that the steady-state capital-labour ratio will
be lower in an economy with naive quasi-hyperbolic households than in the benchmark neoclas-
sical model (assuming the same long-run discount factor). As all of our previous results, this
result naturally generalizes to the more realistic situation where (measurable) subsets of house-
holds may have different discount factors and/or utility functions. This proposition once again
exploits Lemma 3 and then applies our main theorems, and the proof in online Appendix C
(supplementary material) clarifies that the mathematical arguments are analogous to the ones in
Section 4.2 and the effects of capital income taxes with naive quasi-hyperbolic preferences can
be studied in the same way. We omit these results to avoid repetition.

Comparative statics in the sophisticated case are more challenging, however, because of the
strategic interactions between different selves. This can be seen from the generalized Euler
equation in terms of time-stationary savings, s(a, l) = y (where we are again assuming full

34. This is similar to the misperception about future discount factors in Section 4.2. See also the proof of
Proposition 8.
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depreciation and ignoring the borrowing limit):

− u′((1 + R)a + wl − y)

+ δ(1 + R)

∫
u′((1 + R)y + wl ′ − s(y, l ′))μ(dl ′)︸ ︷︷ ︸

“Standard Impact”

− δ(1 − β)

∫
∂u((1 + R)y + wl ′ − s(y, l ′)))

∂y
μ(dl ′)︸ ︷︷ ︸

“Future Selves Adjustment”

= 0.

If we define L as in Lemma 3 and impose Assumption 2, we can establish similar results to
those for the naive model. However, inspection of the previous equation reveals that part 3 of
Assumption 2 (Monotonicity in future savings) might not hold due to the impact of the “Future
Selves Adjustment,” especially when β is “low” and consequently the conflict between current
and future selves is severe.

In this case, the comparative statics with sophisticated quasi-hyperbolic households is more
complex and potentially more interesting. In the next subsection, we show how numerical anal-
ysis can be blended with our methods to make progress in this case. Here, as a final result, we
provide a basic intuition for the types of results that arise in this case by focusing on the spe-
cial case where uncertainty about endowments is very small, which leads to approximately no
precautionary savings. First, let us follow Harris and Laibson (2001) and write the Generalized
Euler Equation in terms of consumption C as:

u′(C(yt )) = (1 − τ)R̂δ

∫ (
1 + (β − 1)C ′(yt+1)

)
u′(C(yt+1))μ(dlt+1), (18)

where τ ∈ [0, 1) is the capital income tax, R̂ = (1 + R)/(1 − τ) is again the (pre-tax) market
price of capital, yt = (1 − τ)R̂at + wlt + Tt is current wealth, yt+1 = (1 − τ)R̂[yt − C(yt )] +
wlt+1 + Tt+1 is next period’s wealth, and C ′(y) denotes the derivative of the consumption func-
tion with respect to current wealth, y. Next assuming CRRA utility with rate of risk-aversion γ ,
we show in online Appendix C (supplementary material) that as uncertainty about future labour
endowments vanishes, the Generalized Euler equation converges to

((1 − C ′(y))R̂)γ = (1 − τ)R̂δ
(
1 + (β − 1)C ′(y)

)
, (19)

where y is the steady-state level of wealth in the limit economy with no labour endowment
uncertainty. Even though we cannot apply Lemma 3, we can use the implicit function theorem to
conclude that a lower capital income tax will increase savings if and only if (see online Appendix
C (supplementary material) for details):

(1 − C ′(y))−1 >
1 − β

β

1 − γ

γ
. (20)

Conversely, when this condition is reversed, comparative statics of capital income taxes are also
reversed.

A couple of additional observations are useful. First, when β → 1, there is limited conflict
between current and future selves and standard comparative statics apply. Similarly, these com-
parative static results also hold when γ ≥ 1 (including the logarithmic utility case). In contrast,
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when β → 0 and γ < 1, the right-hand side diverges and this condition is violated (the left-
hand side is bounded above by 1 + β−1(((1 − τ)δ)−1 − 1), and thus γ < (1 − τ)(1 − β)δ is
sufficient to ensure the reverse inequality). Condition (20) and this discussion also provide an
intuition about why lower capital taxes can reduce long-run capital-labour ratio: as (18) shows,
a higher marginal utility in the future will be associated with a higher marginal utility today,
which implies that more savings in the future will go together with more savings today. This
linkage will be particularly strong when γ is low (high intertemporal elasticity) and when β is
low (which in turn implies that (1 − τ)δ(1 − β) is large). These strategic interactions between
selves makes current consumption very sensitive to future savings, and consequently, greater
future savings induced by lower taxes will lead to even more savings today. Because this cannot
be sustained in steady state, the steady-state level of savings will have to decrease.

4.5. Numerical analysis for robust comparative statics

In this subsection, we show how our general methods can be combined with numerical anal-
ysis to obtain additional results and insights. We establish, in particular, that it is possible to
blend our Theorems 1–3 with numerical analysis of how aggregate savings respond to changes
in the environment at given prices. This will enable us to establish how steady-state equilibria
of economies with complex behavioural biases respond to changes in environment, without hav-
ing to compute a new general equilibrium and the associated asset distributions. Moreover, we
will see that this theoretical-cum-numerical analysis can sometimes be conducted without even
having to compute the initial steady-state distributions.

For concreteness, we focus on the sophisticated version of the quasi-hyperbolic model intro-
duced in the previous subsection (where a fraction α are sophisticated quasi-hyperbolic and the
rest are fully rational). Let us first consider the effects of an increase in α starting from the fully
rational benchmark with α = 0 to complete the implications of sophisticated quasi-hyperbolic
discounting on steady-state equilibria and illustrate how numerical analysis can be used in the
context of our approach.

The steady-state equilibrium and asset distribution are straightforward to compute numer-
ically in the benchmark Bewley–Aiyagari model with time-separable preferences, geometric
discounting, random labour endowments and borrowing limits. We continue to focus on i.i.d.
labour endowments and specialize the economy to the case where the labour endowment can
take either a “low” or a “high” value (see the notes to Figure 4 for further details).

In our baseline numerical exercise, we follow Krueger et al. (2016) and choose k∗ = 5.3
(which is approximately the average non-housing wealth of US households in 2006, excluding
the top 1%) and a capital share of 0.36. We then calibrate A in the usual way by targeting the
capital-output ratio (see Krueger et al., 2016, p. 865). This leads to steady-state factor prices
of R∗ = R(k∗) = 0.04 and w∗ = w(k∗) = 1.36. We can then compute numerically the partial-
equilibrium response of households to a reduction in β, which is equivalent to comparing the
neoclassical benchmark economy to an economy where a subset α ∈ (0, 1) of households have
“sophisticated” quasi-hyperbolic preferences. Note that we cannot apply Lemma 3 to determine
the partial-equilibrium response in this case, because the Euler equation does not provide a
global characterization of savings behaviour. In fact, as shown by the vertical segments in the
figure, the time-stationary saving function is discontinuous.

Once this numerical analysis determines whether aggregate savings at these prices increase
or decrease, we can apply Theorems 1–3 and derive the direction of change for the new steady
state. Figure 4 summarizes the main idea: all we need to do is to numerically compute the
shift of the aggregate savings schedule, and the rest of the work is done by our main theorems.
Specifically, Panel A of this figure shows the saving functions of rational and sophisticated
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A B

FIGURE 4

Change in Aggregate Savings and Equilibrium Adjustment to the Introduction of Sophisticated Quasi-Hyperbolic

Households Panel A: Benchmark simulation: k∗ = 5.3, R∗ = R(k∗) = 0.04, w∗ = w(k∗) = 1.36. a = −1, δ = 0.947,

u(c) = c0.5, lmin = 0.1, lmax = 1.9, pmin = pmax = 0.5, f (k) = 1.163k0.36, � = 0.1. Behavioural households: As

in benchmark simulation except β = 0.96. Vertical segments in the saving functions represent discontinuities. Panel B:

aggregate savings in the benchmark steady-state simulation is 5.3. Average savings of behavioural households given

R∗ and w∗ is 1.4. With a fraction α ∈ (0, 1) of behavioural households, the direct effect is thus

1.4α + 5.3(1 − α) − 5.3 < 0. Computational Notes: Benchmark model computed with the IID Aiyagari EGP

algorithm of Kaplan (2017). Quasi-hyperbolic case computed with Ego Loss algorithm of Jensen (2022)

quasi-hyperbolic households for the best and the worst realizations of labour endowments. We
can see the jumps in consumption in the quasi-hyperbolic case, which accord with the results in
Harris and Laibson (2001). Once we know the saving functions, we can compute the steady-
state asset distributions and the aggregate savings levels depicted in Panel B. The solid curve
depicts the neoclassical benchmark, while the dashed curve shows the same economy when a
fraction α ∈ (0, 1) of households have sophisticated quasi-hyperbolic preferences. The figure
demonstrates that there is a negative direct response at k∗ = 5.3 from the introduction of quasi-
hyperbolic households. The figure also confirms that there are no downward jumps as guaranteed
by Lemma 1 and, consequently, the post-tax steady-state capital-labour ratio must be at a point
like k∗∗.

When,as in Figure 4, the counterfactual experiment introduces behavioural biases in an oth-
erwise neoclassical economy, our numerical analysis can be further simplified by skipping the
computation of the initial steady-state distributions entirely, because it only uses information on
steady-state factor prices. In the most common approach to quantitative analysis, the researcher
targets some aggregate quantities (such as the aggregate capital-labour ratio, the capital-output
ratio or the interest rate), which then pin down steady-state prices. For our computational step,
all we need are these steady-state prices, and once these are determined, we can readily move to
the partial-equilibrium step of determining whether aggregate savings following the change in
environment increase at these prices.

Our next application is more involved. In this case, we start from the steady state of a
sophisticated quasi-hyperbolic economy with β < 1. We then consider an increase in the capi-
tal income tax rate τ and numerically study its (direct) impact on aggregate savings. Once this
direct response is obtained, we again apply Theorems 1–3.

In this exercise, we distinguish two cases, both depicted in Figure 5. In the first (Panels A
and B), we choose a “high” short-run discount factor, β = 0.94. In the second (Panels C and D),
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A B

C D

FIGURE 5

Comparative Statics in the “Sophisticated” Quasi-Hyperbolic Model Panel A: k∗ = 5.3, R∗ = 0.19 (pre-tax),

w∗ = 2.30, τ = 0, 0.02. a = −1, δ = 0.9, β = 0.94, u(c) = c0.1, lmin = 1, lmax = 3, pmin = pmax = 0.5,

f (k) = 1.97k0.4, � = 0.1, T = τk (the capital share is from Kaplan). Panel B: Aggregate savings in the steady-state

simulation with τ = 0 is 5.3. Aggregate savings when τ = 2% is 4.9. Direct Response is 4.9 − 5.3 < 0. Panel C:

k∗ = 4.5, R∗ = 0.84 (pre-tax), w∗ = 6.36, τ = 0, 0.02. a = −1, δ = 0.9, β = 0.5, u(c) = c0.5, lmin = 1, lmax = 3,

pmin = pmax = 0.5, f (k) = 5.81k0.4, � = 0.1, T = τk. Panel D: Aggregate savings in the steady-state simulation

with τ = 0 is 4.5. Aggregate savings when τ = 2% is 4.8. Direct Response is 4.8 − 4.5 > 0. No transfers in panel D:

If T = 0, aggregate savings when τ = 2% is 4.77, hence direct response is positive whether or not taxes are transferred

to households. Computational notes: Computed with the Ego Loss algorithm of Jensen (2022)

we choose a “low” discount factor, β = 0.5, which generates a strong conflict between current
and future selves. Since this low discount factor makes households much less willing to save, we
can no longer achieve the same aggregate capital-labour ratio target with the parameter choices
described previously. In this application, therefore, we depart from our baseline in two ways.
First, we relax the capital-labour ratio target to 4.5. Though this number is different from our
benchmark and the baseline of Krueger et al. (2016), it is in the ballpark of the recent US-wealth-
to-GDP numbers (e.g. FRED, 2023). Second, we follow Kaplan (2017) and set the capital share
in the production function to 0.4 (instead of the 0.36 used in Figure 4).35

35. The case in Panels C and D has some parallel to the illustrative result we presented in the previous section
when Condition (20) is violated (for an economy where uncertainty about endowments becomes very small). Crucially,
however, in the current case endowment uncertainty is not “small” and as in the previous application, the Euler equation
does not provide a global characterization of savings behaviour (so, again, Lemma 3 cannot be used).
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Panels B and D of Figure 5 show that in these two cases, aggregate savings move in opposite
directions (in Panel B the initial solid curve is above the after-tax dashed curve, while in Panel
D it is the other way around). In particular, in the first case, higher capital income taxes reduce
aggregate savings at given factor prices (as in the neoclassical benchmark). Then Theorems
1–3 ensure that the steady-state capital-labour ratio decreases (Panel B). In contrast, the second
case illustrates how this standard comparative statics result can be reversed in the sophisticated
quasi-hyperbolic model. Specifically, in Panel D, the direction of the direct response is reversed
and the higher capital income tax raises aggregate savings at given prices. Then from Theorems
1–3, the new steady state must have higher capital-labour ratio. This discussion also reveals
how the same combination of numerical analysis and our theorems can be applied in other
settings.

5. CONCLUDING REMARKS AND FUTURE DIRECTIONS

A common conjecture is that equilibrium analysis becomes excessively challenging in the pres-
ence of behavioural preferences and biases, thus implicitly justifying a focus on models with
time-additive, dynamically consistent preferences and rational expectations. In this paper, we
demonstrated that, in the context of one-sector behavioural growth models, this conjecture is not
necessarily correct. Results concerning the direction of change in the long run (or “robust com-
parative statics” for the steady-state equilibrium) can be obtained for a wide range of behavioural
preferences and rich heterogeneity. Put simply, our main results state the following: for any
change in policy or underlying production or preference parameters of the model, we first deter-
mine whether at the initial capital-labour ratio (or at the initial pre-tax/distortion vector of prices)
aggregate savings increases or decreases; this step involves no equilibrium analysis, but only the
determination of what the average of individual optimization decisions given prices is. Criti-
cally, this needs to be done only at a single vector of prices (or at a single capital-labour ratio),
because our condition is completely “local.” Then under fairly mild regularity conditions (sat-
isfied for all behavioural preferences we have discussed in this paper), no matter how complex
the equilibrium responses are, they will not overturn the direction of the initial change and thus
the steady-state equilibrium will involve a greater capital-labour ratio (and the changes in prices
that this brings). Conversely, if the initial change is a decline in aggregate savings at the initial
capital-labour ratio, the long-run capital-labour ratio will decline.

At the root of this result is a simple and intuitive observation: in the one-sector model,
the only way the direction of the initial impetus can be reversed is by having the equilibrium
response to this initial shock to go strongly in the opposite direction. For example, savings
could decline strongly in response to a higher capital-labour ratio. But either such an equilib-
rium response would still not overturn the initial increase in aggregate savings, in which case
the conclusion about the steady-state equilibrium applies. Or it would overturn it and reduce
the long-run capital-labour ratio, but in this case the perverse effect would go in the direction of
strengthening, not reversing, the initial increase in savings (since it was the higher capital-labour
ratio that induced the decline and aggregate savings).

We illustrated these comparative statics by working through one-sector growth models
embedding three different types of behavioural considerations: (1) systematic misperceptions;
(2) self-control and temptation preferences; and (3) naive and sophisticated quasi-hyperbolic
discounting. In all three cases, we showed that our approach can be applied relatively straight-
forwardly and leads to results that are, to the best of our knowledge, new in the literature.
We also identified conditions under which these behavioural biases reverse standard neoclas-
sical comparative static results (e.g. with respect to declines in capital income taxes). In each
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case, this reversal takes place along the lines of our main result: behavioural preferences change
the direction of the direct response and this initial impetus then leads to a change in the same
direction in the long-run equilibrium.

We further showed how our key results can be blended with numerical analysis. In partic-
ular, in the context of sophisticated quasi-hyperbolic model, we showed how simple numerical
analysis can be used to sign the direction of (partial equilibrium) responses, which can then be
used to determine the full general equilibrium comparative statics. We believe this combination
of new theory and numerical analysis can be used in other settings as well.

Our analysis has several limitations, which point to interesting areas for future research. As
already implied by our discussion, there are several important cases in which our results do not
apply. First, with more general preferences than those considered in this paper, the upper hemi-
continuity of the saving correspondence established in Lemma 1 may no longer apply and we
cannot rule out the case in Panel D of Figure 1. Second, non-stationary belief formation pro-
cesses, whereby partial-equilibrium and long-run responses are driven by very different beliefs,
would also render our theorems inapplicable. Finally and most importantly, our results do not
apply when there are multiple aggregate state variables rather than the single state variable as
in our (one-sector) behavioural growth model. In such cases, as is well known from other com-
parative static settings, even shifts that lead to positive responses for each dimension can induce
negative overall effects because of cross-dimension dependencies (or because of failure of nega-
tive semi-definiteness of local Jacobians even when they have negative diagonal elements). With
multiple aggregates, similar results would necessitate at least some supermodularity conditions
for the set of state variables. Acemoglu and Jensen (2015) provide some conditions for compar-
ative statics in neoclassical economies with two aggregates, and developing such results in the
richer setting we consider here is one future direction for research.

Another evident limitation of our approach bears repeating at this point: our focus has been
on comparative statics, and thus on qualitative rather than quantitative results. Many questions
in modern macroeconomics necessitate quantitative analysis, and the quantitative impact of a
policy change may critically depend on behavioural biases and the exact structure of preferences
even if the direction of long-run change does not. An obvious but challenging area for future
research is to investigate when certain quantitative conclusions may not depend on certain
types of behavioural biases or heterogeneity (e.g. in the sense that as behavioural assumptions
are modified, quantitative change in some key variables remains near changes implied by a
benchmark model).

Perhaps the most important area for future research is to extend the analysis to non-steady-
state environments. Behavioural considerations may matter greatly for the response of an
economy to recessionary shocks, and overoptimism and other misperceptions may be important
during temporary periods of rapid expansion. In principle, one could study whether different
behavioural biases change the direction of response to various macroeconomic changes, such as
interest rate cuts, but this is challenging because these biases will also alter the future evolution
of state variables. One approach may be to leverage the fact that, in some cases, the impact on
future variables will be small relative to current effects, though there may also be other fruitful
approaches, and we leave the exploration of these issues to future work.

APPENDIX

A. Proofs

Proof of Lemma 1. Throughout, the household index i is omitted to simplify notation. Fixing
e and the future saving function on the right-hand side of (8), we can write the current self’s
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decision problem as

s(y; e) ∈ arg max
a′∈[a,max{a,y}]

uε(y − a′) + M(a′),

where M is a function that does not depend on current assets a. Note that we here express sav-
ings as a function of wealth y = (1 + R)a + wl + T (that this is possible can be seen from
(8)). The constraint correspondence and the first term in the objective function are clearly
continuous in y, the latter because uε(·) is continuous by assumption. To see that M is con-
tinuous in a′ independently of e and the future savings function used to define M, write it
out in full: M(a′) = ∫

V ε1
(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2− s̃((1 + R2)s̃(y; e1) +

w2l2 + T2; e2), . . .)P(de′|e), where s̃ ∈ S and S is the space of uniformly bounded measurable
functions with the weak∗ topology.36 Then rewrite as follows:

(M(a′)) =
∫ ∫

V ε1
(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2 − s̃((1 + R2)s̃(y; e1)

+ w2l2 + T2; e2), . . .)Q(dl1|e, e′\{l1})P(d(e′\{l1}|e)
=

∫ ∫
V ε1

(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2

− s̃((1 + R2)s̃(y; e1) + w2l2 + T2; e2), . . .) f (l1|e, e′\{l1})dl1 P(d(e′\{l1}|e)
=

∫ ∫
V ε1

(y − s̃(y; e1), (1 + R2)s̃(y; e1) + w2l2 + T2

− s̃((1 + R2)s̃(y; e1) + w2l2 + T2; e2), . . .)η(d(y, l1)|e, e′\{l1}))P(d(e′\{l1}|e)

where Q and P is a disintegration family of measures for the projection e′ 	→ l1

(e.g. see Chang and Pollard, 1997), f is the (continuous) Radon–Nikodym derivative of
Q(·|e, e′\{l1}) with respect to the Lebesgue measure on R+, and η(A × B|e, e′\{l1}) =∫ ∫

1l1(A)1(1+R1)a′+w1l1+T1(B) f (dl1|e, e′\{l1})dl1 (which is continuous in a′). Note that the dis-
integration exists because P is a Radon measure.37 Because there is no loss of generality in
assuming that V is bounded by an integrable function (see the discussion immediately prior
to Assumption 1), it follows by the dominated convergence theorem that M(a′; e) is continu-
ous in a′. We remark that this argument is essentially the “change of variable” argument used
in Harris and Laibson (2001)’s proof of existence and continuous dependence on the short-
run discount factor in the quasi-hyperbolic model (see e.g. Lemma 5 in that paper), except
we consider a more general measure space. Because V is continuous, it is also clear that if
s̃n → s in S, then M(a′; e, s̃n) → M(a′; e, s̃). Finally, we also have continuity in e (because
e, unlike a′ and s̃, does not directly enter the integrand, P(·|e) is continuous in e by assump-
tion, and the integrand is bounded). By the theorem of the maximum, the arg max, F(y; e, s̃) =
arg max uε(y − a′) + M(a′), is non-empty and upper hemi-continuous in y, e, and s̃. Because
the objective function is continuous in y, and has strictly increasing differences in (y, a′) if and
only if uε(·) is strictly concave, it follows from Topkis’ theorem that any solution s(y; e) must
be increasing in y (see Topkis, 1978). This is true, inter alia, if s̃ = s, that is, if the future sav-
ings function we fix to begin with is equal to s. Since y = (1 + R)a + wl + T , we conclude that
any TSSF must be increasing in assets. Therefore, if the time-stationary savings correspondence

36. The original topology is the essential supremum norm topology. The weak-∗ topology σ(X ′, X) on the set
of savings functions is then defined for the dual pair (X, X ′), where X ′ is the topological dual of X.

37. The set of bounded sequences with the supremum norm is a separable metric space, hence any Borel
probability measure is a Radon measure.
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36 REVIEW OF ECONOMIC STUDIES

S(a; e) has well-defined compact values, the least and greatest selections must be increasing in
assets.

Next, note that when we fix s̃, the set of selections from G(s̃) = F(·; ·, s̃) is a singleton
in any (quotient) space of measurable functions s : (y, e) 	→ s(y, e) under almost everywhere
equal equivalence. This is because for any fixed e, as we have just proved, any selection must
be increasing—hence any two selections can differ only at points where both are discontinuous
(which implies they are equal at all but an at most countable number of points given any e).38

Because G is upper hemi-continuous on S, it is also continuous on S. Since S is convex, and
compact by the Banach-Alaoglu theorem, existence of a fixed point (a TSSF) now follows from
the Schauder–Tychonoff fixed point theorem. The time-stationary savings correspondence is the
set of fixed points, hence compactness of S(a, e) and its upper hemi-continuous dependence on
a and e now follow from a standard argument ( e.g. see the last paragraph of the next proof).

Proof of Lemma 2. To shorten expressions, we set zi = (li , εi ) ∈ Zi = [li
min, li

max] × Ei . We
first show that k ∈ Mθ (k) if and only if k is a steady-state equilibrium. Consider
m(k) ∈ Mθ (k). Using that ci (ai ; zi , w, R, T i ) = (1 + R)ai + wli + T i − si (ai ; zi , w, R, T i )
and that R(k) = (1 − τ(k)) f ′(k) − �, w(k) = (1 − ω(k))( f (k) − f ′(k)k), τ(k) f ′(k)k +
ω(k)( f (k) − f ′(k)k) = ∫

T i di + G(k), and
∫

l̂ i di = 1 we have m(k) = f (k) + (1 −
�)k − G(k) − (1 + (1 − τ(k)) f ′(kt ) − �)k − (1 − ω(k))( f (k) − f ′(k)k) − ∫

T i di + ∫
si

( âi (k)∫
âi (k) di k, ẑi , w(k), R(k), T i ) di = ∫

si ( âi (k)∫
âi (k) di k, ẑi , w(k), R(k), T i ) di , where for all i, si

is some selection from Si . Because si (âi (k)/(
∫

âi (k) di)k, ẑi , w(k), R(k), T i ) has the image
measure of (âi (k), ẑi (k)) under (ai , zi ) 	→ si (ai/(

∫
âi (k) di)k, zi , w(k), R(k), T i ), it has dis-

tribution λi (·, Zi ) where λi = λi (k; s) was defined just prior to Definition 3.39 Hence m(k) =∫
âi (k; s) di . It follows that if m(k) = k, then k = ∫

âi (k; s) di , that is, the capital market must
clear. Further, λi (k; s) must then be an invariant distribution for (a.e.) i. Because prices satisfy
(1) and (2) by construction, we thus have k = m(k) ∈ Mθ (k) whenever k is a steady-state equi-
librium. Conversely, if k is a steady-state equilibrium, then there exist invariant distributions λi

and λi (k; s) = λi where k = ∫
âi (k; s) di , hence k = m(k) ∈ Mθ (k) when m(k) corresponds

to the family of selections s.
Next, we show that Mθ has convex values. Here, we use the definition that a cor-

respondence F : A → 2B is type I (type II) monotone if a � ã and b ∈ F(a) (b̃ ∈ F(ã))
implies the existence of b̃ ∈ F(ã) (b ∈ F(a)) such that b̃ � b. For a selection si ∈ Si write
λi (k, K ; s) if λi (A × B) = ∫

A×li ,εi qi (B, li , εi )1A(si (ai k
K ; li , εi , w, R, T i ))λi (dai , dli , εi ) (for

all Borel sets). Note that the right-hand side defines an adjoint Markov operator
r i

si ,k,K in the usual way, and the savings correspondence Si thus defines an adjoint

Markov correspondence which we denote by T i
k,K = {r i

si ,k,K : si ∈ Si and is measurable}.
Also, let Ai

k(K ) ≡ {âi ∼ λi (·, Zi ) ∈ P([ai , ai ]) : λi ∈ T i
k,K λi } denote stationary assets. If

λi ∈ T i
k,K λi , then λi ∈ �(μz) = �(μz) = {λi ∈ P([ai , ai ] × Zi ) : λi ([ai , ai ], B) = μz(B)}

since λ([ai , ai ], B) = ∫
q(zi , B)[∫[ai ,ai ] λ(dai |zi )]μz(dzi ) = ∫

q(zi , B)μz(dzi ) = μz(B). By

our Lemma 1 and Theorem B1 in Acemoglu and Jensen (2015), T i
k,K : �(μz) → �(μz)

is (weak-∗) upper hemi-continuous in ai and K, and Type I and Type II monotone in the

38. Let A be the set of discontinuities. Then the (Lebesgue) measure is
∫ ∫

1y(Ae)dyμ(de) where μ is the
(product) Lebesgue measure on R

5 and Ae = {y : s(·, e) is discontinuous at y}. Clearly
∫

1y(Ae)da = 0 if Ae is at
most countable.

39. Prob(si (âi (k)/(
∫

âi (k)di)k, ẑi , w(k), R(k), T i ) ∈ A)=∫
1si (ai (k)/(

∫
âi (k) di)k,zi ,w(k),R(k),T i )(A)λi (dai ,

dzi ) = λi (A, Zi ).
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order �A−F O D defined by λ �A−F O D λ̃ ⇔ [λ(·, B) �F O D λ̃(·, B) for all B ∈ B(Z)]. It is also
increasing in that order in any parameter for which si ((ai/K )k, zi , w(k), R(k), T i ) is increasing.
By Theorem 3 in that paper and our Lemma 1, the set of fixed points is type I and II monotone
in K −1. Moreover, by Theorem B3 in Acemoglu and Jensen (2015), it is non-empty and upper
hemi-continuous in K. By the definition of �A−F O D it follows that Ai

k(K ) is non-empty and
decreasing in K. By Richter’s theorem (see Aumann, 1965),

∫ Ai
k(·) di is convex-valued, and

by Theoresupposed tom 4 in Acemoglu and Jensen (2015), it has decreasing least and great-
est selections. A convex and real-valued correspondence whose least and greatest selections are
decreasing must have a convex set of fixed points (this statement is straight-forwardly verified
graphically). We conclude that Mθ (k) = {K : K ∈ ∫ Aθ,i

k (K ) di} is convex.
To see that the market correspondence Mθ (k) = {K : K ∈ ∫ Aθ,i

k (K ) di} is upper
hemi-continuous, note that its graph is {(k, K ) : (K , k, K ) ∈ Graph[∫ Aθ,i

k (K ) di]} where
Graph[∫ Aθ,i

k (K ) di] = {(K , k, Z) : Z ∈ ∫ Aθ,i
k (K ) di} is a closed set since

∫ Aθ,i
k (K ) di is

upper hemi-continuous in k and K. That Mθ (k) is compact follows now from boundedness (sav-
ings correspondences have compact ranges). Finally, Mθ (k) begins above the 45 ◦ line and ends
below it. The former is obvious since f (0) = 0 and therefore Mθ (0) = {0}. The latter is true
since consumption is non-negative, hence Mθ (k) ≤ f (k), and for sufficiently large k, f (k) ≤ k
because the production technology is effectively compact.

Proof of Theorem 1. The proof relies on the following lemma (whose proof is similar to Lemma
2 and relegated to online Appendix C (supplementary material)).

Lemma 4 (Mean asset holdings and shifts in the market correspondence). Assume that house-
holds satisfy the conditions of Lemma 1, and let k∗ ∈ Mθ∗

(k∗) be either the least steady state
inf{k : k ∈ Mθ∗

(k)} or the greatest steady state sup{k : k ∈ Mθ∗
(k)} given an environment

θ∗ ∈ �. Consider a different environment θ∗∗ ∈ �. Then the population’s mean asset holdings
increase (decrease) at k∗ when the environment changes from θ∗ to θ∗∗ if and only if the market
correspondence “shifts up” (“shifts down”) at k∗, i.e. provided there exists k̃ ∈ Mθ∗∗

(k∗) with
k̃ ≥ k∗ (k̃ ≤ k∗).

We provide the proof for the case in which the market correspondence shifts up (the down
case is analogous).

Sufficiency: By Lemma 4, there exists k̃ ∈ Mθ∗∗
(k∗) with k̃ ≥ k∗. Since Mθ∗∗

ends below the
45◦ (Lemma 2), it must begin above and end below the 45◦ line on the interval [k∗,+∞). Mθ∗∗

is also upper hemi-continuous and convex valued (Lemma 2, again), hence it intersects the 45◦
line at some k∗∗ ∈ [k∗,+∞). This yields a steady-state equilibrium k∗∗ ≥ k∗ given environment
θ∗∗, and by assumption, this is the unique steady-state equilibrium.40

Necessity: Assume that k∗∗ ≥ k∗ and that the change from θ∗ to θ∗∗ does not increase the
households’ mean asset holdings. By Lemma 4, the market correspondence then does not shift
up at k∗. So supMθ∗∗

(k∗) < k∗ since the market correspondence is closed. But then since the
market correspondence ends below the 45◦ line and is upper hemi-continuous and convex valued,
Mθ∗∗

must then intersect with the 45◦ at least twice on the interval [k∗,+∞). This contradicts
that the economy has a unique non-trivial steady state given θ∗∗.

Proof of Theorem 2. Since the market correspondence is compact-valued, a sufficiently small
change in the environment can lead to existing equilibria disappearing but not to the creation

40. The same conclusion follows by instead considering a single-valued market correspondence that is continu-
ous but for jumps up (see Appendix B).
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of new equilibria. In particular, no new equilibrium can be created below the least equilib-
rium which must therefore increase by the argument used to prove Theorem 1. This argument
obviously also applies to the greatest equilibrium; and in both cases necessity follows by the
argument from Theorem 1 as well.

Proof of Theorem 3. Let k∗ denote the greatest steady state. Repeating the argument used to
prove the “sufficiency” part of Theorem 1, Mθ∗∗

must have a fixed point on [k∗,+∞). The
result for the least steady state is proved analogously.

Proof of Proposition 1. We suppress the transfers T i to simplify notation. Throughout, prices
are fixed at the levels determined by the initial capital-labour ratio k∗. Both rational and
behavioural households use current discount factor δ and correctly anticipate the saving
function of future selves, s(a; l, ε), where ε encapsulates beliefs about future discount
factors. The only difference between the two types of households is that rational ones
believe (correctly) that P̂(ετ = δ) = 1 for all τ > t , where P̂ is ετ ’s marginal belief dis-
tribution, while behavioural ones believe (incorrectly) that P̂(ετ = δ̂) = 1 for all τ > t . We
focus here on the case where δ̂ > δ. For both rational and behavioural households, (8)
implies the Euler equation −u′((1 + R)a + wl − yt ) + max{ε(1 + R)

∫
u′((1 + R)yt + wl ′ −

s(yt ; l ′, ε′))μ(dl ′)P̂(dε′), u′((1 + R)a + wl − ā)} = 0, where (a, l, ε) ∈ [a, a] × [lmin, lmax] ×
{δ, δ̂}, and yt = s(a; l, ε) is the solution (s(yt ; l ′, ε′) is time-stationary savings of a
“future self” with labour endowment l ′ and discount factor ε′). Since rational house-
holds have ε = δ and P̂(ε′ = δ) = 1, the Euler equation reduces in this case to
the benchmark Euler equation −u′((1 + R)a + wl − yt ) + max{δR

∫
u′((1 + R)yt + wl ′ −

sNeocl.(yt ; l, δ))μ(dl ′), u′((1 + R)a + wl − ā)} = 0 where sNeocl.(a; l, δ) = yt denotes the
rational households’ saving function conditioned on ε = δ (since rational households place zero
probability on ε �= δ, we do not need to specify savings when ε �= δ in this case).

Next, let sBeh.(·; l, δ̂) denote the solution to the Euler equation when ε = δ̂ and P̂(ε′ = δ̂) =1.
Clearly sBeh.(·; l, δ̂) = sNeocl.(·; l, δ̂); that is, sBeh.(·; l, δ̂) solves the benchmark Euler equation
with δ̂ in place of δ. Since this equation has a unique solution and its the left-hand side is
increasing in δ, it follows immediately from Lemma 3 that sBeh.(a; l, δ̂) ≥ sNeocl.(a; l, δ) for
all l and a, that is, behavioural households anticipate greater savings in the future than ratio-
nal households (for all a and l). The behavioural households’ time-stationary saving function
given ε = δ is the solution to the Euler equation with ε = δ and P̂(ε′ = δ̂) = 1. Equivalently,
sBeh.(a; l, δ) = yt where yt must solve −u′((1 + R)a + wl − yt ) + max{δ(1 + R)

∫
u′((1 +

R)yt + wl ′ − sBeh.(yt ; l ′, δ̂))μ(dl ′), u′((1 + R)a + wl − ā)} = 0. Comparing with the bench-
mark Euler equation above and using (i) that sBeh.(yt ; l ′, δ̂) ≥ sNeocl.(yt ; l, δ) for all l ′ and yt , and
(ii) that u′ is decreasing, it follows from a second application of Lemma 3 that sBeh.(a; l, δ) ≥
sNeocl.(a; l, δ) for all a and l. Since consumption at date t is ct = Ra + wl − sBeh.(a; l, δ), the
budget constraint necessarily holds (the dynamic inconsistency is embedded in the beliefs).

Since behavioural households (just like rational households) will always “observe” ε = δ at
the current date, sBeh.(a; l, δ) is the TSSF which the behavioural households will actually adopt
at every date. As mentioned before, sNeocl.(a; l, δ) is the TSSF which rational households will
adopt at every date. Thus at every date, behavioural households will save more than rational
households (on average). Taking as environment the fraction of behavioural households in the
population, θ := α ∈ [0, 1] = �, raising α therefore entails a positive direct response for the
subset of rational households that is interchanged with behavioural households. Since the saving
function of the remaining (rational) households is not impacted by such an increase in α, the
(average) direct response of Definition 5 is positive. The conclusion of the proposition now
follows from one of Theorems 1–3. The proof for the case where δ̂ < δ is analogous and may
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be omitted (in this case, sBeh.(a; l, δ) ≤ sNeocl.(a; l, δ) for all a and l above and we proceed as a
moment ago except that the direct response will now be negative).

B. Changes in the environment: a topological approach, discussion of related literature

Since this section’s observations may be of independent interest and apply not only to market
correspondences, we are going to view the market correspondence M : K × � → 2R, K ⊆ R,
more abstractly and impose any necessary assumptions directly. Denote by mθ

S(k) = infMθ (k)
and mθ

L(k) = supMθ (k) the least and greatest selections, and by kθ
S = inf{k ∈ K : k ∈ Mθ (k)}

and kθ
L = sup{k ∈ K : k ∈ Mθ (k)} the least and greatest fixed points (when they exist, which

of course they do if M is a market correspondence). Now equip � with an order as well as a
topology (in the simplest situation where we consider a change in just a single parameter, �
may be taken to be a subset of R, and these would therefore be the usual/Euclidean order and
topology, respectively). We also introduce some additional terminology: A function m : � → R

is (i) increasing if θ ≤ θ̂ ⇒ m(θ) ≤ m(θ̂) for all θ, θ̂ ∈ �, and (ii) locally increasing at θ∗ ∈ �
if θ ≤ θ̂ ⇒ m(θ) ≤ m(θ̂) for all θ, θ̂ in an open neighbourhood of θ∗. Finally, M begins above
and ends below the 45◦ line if m∗(inf K , θ) ≥ inf K and m∗(sup K , θ) ≤ sup K . The following
is proved in online Appendix C (supplementary material) where we also present a corollary that
directly addresses one-sector growth models from the topological perspective .

Theorem 4 (Abstract shifts in fixed point correspondences). Consider an upper hemi-
continuous and convex valued correspondence M : K × � → 2R where K is a compact subset
of R and � is a compact subset of an ordered topological space. Suppose that the graph begins
above and ends below the 45◦ line for all θ ∈ �. Then the least and greatest fixed points kθ

S and
kθ

L are increasing in θ if for all θ∗ ∈ �, mθ
L(kθ∗

L ) and mθ
S(k

θ∗
S ) are locally increasing in θ at θ∗.

Note that in all cases, “curve shifting theorems” such as Theorem 4 can be used in our setting
because (i) Lemma 2 has established the requisite properties of the market correspondence; and
(ii) Lemma 4 allows us to relate increases in mean savings/assets with “shifts up” in the market
correspondence.

Most of the results in the literature are similar to Corollary 2 in Milgrom and Roberts (1994)
which shows that when the equivalent of our market correspondence M is “continuous but for
jumps up” and its graph shifts up (meaning that mθ

L(k) and mθ
S(k) are increasing in θ for all k),

then the least and the greatest fixed points increase.41 Let us refer to this well-known result as
the “for all k curve shifting theorem.” The key thing to note is that since the “curve” must shift
up for all k (for all capital-labour ratios in our setting), it requires information not only about
how savings change for the prices determined in the original steady state; it requires that we
have such information for (all) capital-labour ratios/prices. Both Acemoglu and Jensen (2015)
and Light and Weintraub (2021) define “local positive shocks” as changes in parameters that
increase savings for all capital-labour ratios.42 In conventional settings with rational expecta-
tions, such requirements can be imposed, even if they are quite demanding. When the economic
problems involve rich and variegated behavioural preferences and biases, they become essen-
tially untenable. It is against this background that Theorem 4 should be evaluated. It shows that

41. M is continuous but for jumps up if it has convex values, lim supxn↑x m∗(xn , t) ≤ mθ
L (k), and

lim infxn↓x m∗(xn , t) ≥ mθ
S(k). Acemoglu and Jensen (2013) proves that if M is upper hemi-continuous in k and has

convex values, then it is continuous but for jumps up.
42. Note that (ii) above integrates seamlessly with the approach in Light and Weintraub (2021), hence both our

main results and curve shifting arguments are easily integrated with the mean-field games literature.
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if M is upper hemi-continuous in (k, θ) (rather than just in k, cfr. footnote 41), the same con-
clusion requires only that the correspondence shifts up at the least and the greatest fixed points,
kθ

S and kθ
L . The results presented in Section 3 similarly require only local shifts in steady states.

That we only need to verify that M shifts up locally, in particular, at the steady states, enables
us to separate direct responses (or the “all-else-equal” behaviour) from equilibrium responses.

To explain a little further, let us consider a particularly simple case where a dynamic economy
can be reduced to a fundamental equation of the form

G(kt , kt−1, θ) = 0, (21)

where θ ∈ R is an exogenous parameter, kt ∈ R is capital, or the capital-labour ratio, at date t
and G : R

3 → R a smooth function. In this case, the market correspondence can be defined as

Mθ (k) = {k̂ : G(k̂, k, θ) = 0} . (22)

In the Ramsey–Cass–Koopmans model, for example, G(kt , kt−1, θ) = 0 ⇔ kt = g(kt−1, θ), and
then Mθ (k) = g(k, θ). Clearly, k∗ is a steady state given θ if and only if k∗ ∈ Mθ (k∗). Note,
however, that (21)—even in the more general form 0 ∈ G(kt , kt−1, θ) where G is a correspon-
dence—is not general enough to nest our one-sector behavioural growth model (because we also
need to condition on the distribution of assets). Nevertheless, (21) is useful to provide the tech-
nical intuition for our main results since both in the case of (22) and our Definition 3, the market
correspondence is constructed by conditioning on the information that the capital-labour ratio in
question, k, has to be consistent with a steady-state equilibrium. In particular, the fact that, with
the conditioning on the steady state k∗, (22) a one-dimensional fixed point problem allows us
to use “curve shifting” arguments without imposing any type of monotonicity on the dynamical
system defined by (21) (see also Acemoglu and Jensen, 2015 for a related discussion of non-
monotone methods). Given Mθ (k) and this construction, Theorem 4 and the results presented
in Section 3 enable us to predict how the greatest and the least steady states vary with θ when
Mθ (k) shifts up locally starting at these steady states (and provided that M satisfies the relevant
theorem’s regularity conditions).

The added generality and flexibility is considerable. In many applications, including the
problem of equilibrium analysis in the behavioural growth model we focus on in this paper,
the conditions for the “for all k curve shifting theorem” will not hold even if (21 ) applies. This
is for both substantive and technical reasons. Substantively, as already mentioned, in economies
such as the one-sector behavioural growth model the possible heterogeneity in the responses
of agents to changes in the environment would often preclude such uniform shifts. To see the
technical problem, suppose that we were checking these conditions using the implicit function
theorem. That would amount to verifying that dk

dθ
> 0 for all k̃ while G(k, k̃, θ) = 0 holds. But

since the implicit function theorem requires as a minimum that Dk G(k, k̃, θ) �= 0, and “running
through all k̃’s” will almost invariably violate this condition for some k̃, this method will gen-
erally fail (order theoretic methods are of no help here either; and of course, it is not enough to
show that dk

dθ
> 0 for almost every k̃ because any point we fail to check may precisely be a point

where the market correspondence “jumps”). When we only need to check local conditions, these
difficulties are bypassed.
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