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This online appendix contains proofs and additional results for the paper “Inference

on Winners.” Appendix A details the assumptions used to impute standard errors for the

JOBSTART estimates reported in Cave et al. (1993), and reports additional results for our

simulations calibrated to the JOBSTART data. Appendix B shows that our unconditional

and conditional coverage requirements arise as necessary conditions for minimax decision

rules in two-step decision problems. Appendix C generalizes the conditional inference

results discussed in the main text, extending these results to allow additional conditioning

variables and unbiased confidence intervals. Appendix D proves our results for the finite-

sample normal model. Appendix E provides further details on how our conditional and

unconditional inference procedures can be adapted to provide forecast intervals. Appendix

F states and proves the uniform asymptotic results referenced in the main text. Appendix

G provides additional results and discussion to complement the application in Section 7 of

the main text. Finally, Appendix H provides empirical results for an additional empirical

example, based on Karlan and List (2007).
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A Details and Additional Results for JOBSTART Application

This appendix provides additional details and results for the JOBSTART application

discussed in Section 2 of the main text.

A.1 Standard Error Imputation

This appendix shows how we obtain the standard errors for the average treatment effects

reported in Table I of the main text based upon estimates and standard errors in Tables

5.13 and B.4 of Cave et al. (1993).

The results in Table 5.13 of Cave et al. (1993) are based on what we term “the long

regression”. Letting i denote the individual, t=1 denote the third year (months 25–36)

and t=2 the fourth year (months 37–48) after individual assignment, we suppose that

the long regression has the form

Yit=δ0+γsrDi1sr{Si}+
∑

s∈S \sr

(βs(1−Di)+γsDi)1s{Si}+X′iδ+εit, (A.1)

where Yit is the outcome of interest (annual earnings in year t), Di is an indicator of treat-

ment, 1s{Si} is an indicator for site s, Xi is a vector of time-invariant binary characteristics,

and εit is the unobserved residual for individual i in period t. We base our specification

of the long regression upon information in and around Table 5.13 of Cave et al. (1993)

since the regression equation is not formally stated. We equate the reference site, which we

denote by sr∈S for S the set of sites, with SER/Jobs for Progress in Corpus Christi, TX

in accordance with Table B.4 of Cave et al. (1993). An (implicit) maintained assumption

in our analysis of this example is that all regression coefficients are time-invariant.

Table 5.13 in Cave et al. (1993) reports estimates for the average cumulative treatment

effect on outcomes over months 25-48 after the treatment. Using the form of the long

regression, we can write these cumulative outcomes as

Yi1+Yi2 =2δ0+2γsrDi1sr{Si}+
∑

s∈S \sr

(2βs(1−Di)+2γsDi)1s{Si}+2X′iδ+εi1+εi2. (A.2)

Denoting estimates of the parameters of (A.1) in the usual way, Table 5.13 thus reports,
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for each binary d and s∈S ,

Ê[Yi1+Yi2|Di=d,Si=s,Xi= x̄ds]=

2δ̂0+2γ̂srd+2x̄′dsr δ̂, for s=sr,

2δ̂0+2β̂s(1−d)+2γ̂sd+2x̄′dsδ̂, for s 6=sr,
(A.3)

where x̄ds is a group average.

To give a causal interpretation to the results from the long regression (A.1), we assume

that potential outcomes are also linear, with the potential outcome for person i in period

t under treatment status d taking the form

Yit(d)=δ0+γsrd1sr{Si}+
∑

s∈S \sr

(βs(1−d)+γsd)1s{Si}+X′iδ+εit(d),

where E[εit(d)]=0. Note that this model implies that conditional average treatment effects

on earnings given (Si,Xi) depend on Si but not on Xi, and that the site-specific average

treatment effect on cumulative earnings at site s∈S is then

τs≡E[Yi1(1)+Yi2(1)|Si=s]−E[Yi1(0)+Yi2(0)|Si=s]

=E[Yi1+Yi2|Di=1,Si=s,Xi=x]−E[Yi1+Yi2|Di=0,Si=s,Xi=x],

=

2γsr for s=sr

2γs−2βs for s 6=sr,

where the second line follows from randomization of Di and homogeneity of the conditional

average treatment effects in Xi. The estimates for τs reported inTable 5.13 of Cave et al.

(1993) thus correspond to

τ̂s=

2γ̂sr for s=sr

2γ̂s−2β̂s for s 6=sr,
(A.4)

which measures the difference between the average outcomes in the treated and control

groups at a given site. Cave et al. (1993) report neither confidence intervals nor p-values

for these estimates; we must, therefore, impute them.

We base this imputation on the results reported in Table B.4 of Cave et al. (1993).
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These results are based on what we call “the short regression”,

Yi2 =η0+ψDi+
∑

s∈S \sr

λs1s{Si}+X′iη+νi2, (A.5)

where the definition of the regressors is the same as in (A.1). Note that, in contrast with

Table 5.13, the dependent variable of the regression reported in Table B.4 is earnings over

months 37–48, rather than cumulative earnings over months 25–48. Moreover, since the

functional form of the short regression differs from (A.1), νi2 and εi2 differ.

Table B.4 of Cave et al. (1993) reports both estimates and standard errors for the

parameters in (A.5). Our goal is to infer standard errors for τ̂s based upon the standard

error estimates obtained for the linear regression coefficients of (A.5). In order to do so,

we rely on several assumptions.

Assumption 1 (Independence of binary characteristics)

Xi is independent of (Di,Si).

Although useful for simplifying our analysis, Assumption 1 can be rejected using the data

reported in Cave et al. (1993). Specifically, the ratio of men to women varies across sites

in Table 2.1 of Cave et al. (1993), and this variation is more than we would expect due

solely to sampling variability. To accommodate this and other potential failures of our

assumptions, we examine the sensitivity of our empirical results in this application to

changes in the standard errors.

Assumption 2 (Uniform random assignment at sites)

Pr{Di=1|Si=s}=1/2.

Imposing Assumption 2 means we do not have to worry about the relative sizes of

the treatment and controls groups at each site, or their influence on the variance of any

obtained estimates.1 Although there are slight differences in the ratio of treated to control

individuals across sites, these differences are small.

We now rewrite (A.1) using Assumptions 1 and 2. Let ps=E[1s{Si}] for all s∈S ,

and rewrite (A.1) for t=2 as

Yi2 =δ0+γsrDi+
∑

s∈S \sr

(γs−βs−γsr)Di1s{Si}+
∑

s∈S \sr

βs1s{Si}+X′iδ+εi2

1Differences in the number of individuals at each site are already captured by the standard errors
in Table B.4.
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=η0+ψDi+
∑

s∈S \sr

1

2
[γs+βs−γsr]1s{Si}+X′iδ+νi2, (A.6)

where

νi2 =
∑

s∈S \sr

(γs−βs−γsr)(Di−1/2)(1s{Si}−ps)+εi2. (A.7)

Given that νi2 is mean-zero, and is uncorrelated with any of the regressors in (A.6) under

Assumptions 1 and 2, the projection coefficients in (A.6) coincide with the coefficients of

(A.5). We can hence associate, for all s∈S \sr,

λs=
1

2
[γs+βs−γsr].

Table B.4 in Cave et al. (1993) reports the standard error of λ̃s for s∈S \sr, where λ̃s is

the OLS estimator for the site dummy coefficient using observations collected over months

37–48. We then let γ̃s and β̃s, s∈S , be the OLS estimators that we would obtain via

(A.1) using earning observations from t=2 only.

Under Assumption 1, γ̃s and β̃s are uncorrelated. In addition, (A.7) implies that

conditional on the regressors (Di,Si,Xi), εi2 in the long regression of t=2 is necessarily

smaller (stochastically) than νi2 in the short regression, in the sense that E[ν2
i2|Di,Si,Xi]≥

E[ε2
i2|Di,Si,Xi] almost surely. Accordingly, the asymptotic variance of the OLS estimator

for λ̃s obtained from the short regression is larger than the asymptotic variance of the

estimator for λs based on the coefficient estimates from the long regression, i.e.,

Var(λ̃s)≥Var

(
1

2
(γ̃s+β̃s−γ̃sr)

)
≥ 1

4

[
Var(γ̃s)+Var(β̃s)+Var(γ̃sr)

]
, (A.8)

for each s in large samples.

Next, to relate the variances of γ̃s and β̃s to the variances of the OLS coefficients in

the long regression for cumulative earnings (i.e., to relate these variances to the coefficients

in (A.2)), we impose the following assumption.

Assumption 3 (Homoskedasticity of the earning shocks)

Conditional on regressors (Di,Si,Xi), the variance of εi1 is identical to the variance of εi2,

and εi1 is uncorrelated with εi2.

Under Assumption 3, the variance of the OLS coefficients of (A.1) with t=2 is half of

the variance of the OLS estimators for the linear regression coefficients of (A.2); given that
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the regressor matrix is common to both equations, the variance of the OLS estimators

is proportional to the variance of the regression residuals. Thus, Var(γ̃s)=Var(2γ̂s)/2 and

Var(β̃s)=Var(2β̂s)/2. Accordingly, inequality (A.8) can be written as

Var(λ̃s)≥
1

8

[
Var(2γ̂s)+Var(2β̂s)+Var(2γ̂sr)

]
. (A.9)

Note that if Assumption 3 fails and εi1 and εi2 are correlated, this would tend to increase

the standard errors for the long regression, and hence the importance of our winner’s curse

corrections.

Our goal is to obtain the variance of τ̂s, s∈S , which is

Var(τ̂s)=

Var(2γ̂sr) for s=sr,

Var(2γ̂s)+Var(2β̂s) for s 6=sr.
(A.10)

To pin this quantity down, we impose an additional assumption:

Assumption 4 (Variance)

(i.) The inequality in (A.9) holds with equality. (ii.) For all s ∈S \ sr and t = 1,2,

Var(Yit(0)|Si = s) = Var(Yit(1)|Si = s), which implies that Var(2β̂s) = Var(2γ̂s). (iii.)

Var(Yi1(1)+Yi2(1)|Si=sr)=Var(Yi1(1)+Yi2(1)|Si=sp), where sp indicates Connelley Skill

Learning Center in Pittsburgh, PA.

We justify our choice of Connelley Skill Learning Center as a reference for SER/Jobs for

Progress by noting that the sample mean of Yi1(1)+Yi2(1) in Pittsburgh is closest to that

of Corpus Christi, TX.

Focusing on s= sp under Assumptions 1 and 4, and noting that the sample size of

Connelley Skill Learning Center is 2/3 that of SER/Jobs for Progress, we obtain

Var(λ̃sp)=
1

8

(
2Var(2γ̂sp)+

2

3
Var(2γ̂sp)

)
=

1

3
Var(2γ̂sp),

from (A.9). Hence, we can pin down the variance of τ̂sp as

Var(τ̂sp)=2Var(2γ̂sp)=6Var(λ̃sp).
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Similarly, for s=sr, (A.10) gives

Var(τ̂sr)=Var(2γ̂sr)=
2

3
Var(2γ̂sp)=2Var(λ̃sp),

whilst for the remaining sites, s∈S \{sp,sr}, we obtain

Var(τ̂s)=Var(2̂γs)+Var(2̂βs)=8Var(λ̃s)−Var(2γ̂sr)=8Var(λ̃s)−2Var(λ̃sp),

which allows us to impute standard errors for the remaining sites. Note that our imputed

standard errors for all sites are consistent with the reported significance levels in Table

5.13 of Cave et al. (1993).

A.2 Conditional Coverage Results

To complement the simulation results reported in the main text, Figure 7 plots the con-

ditional coverage given θ̂=θ∗ for θ∗ the site yielding the largest effect in the JOBSTART

data (i.e. CET), where to illustrate coverage distortions we extend the horizonal axis to

include negative scaling factors. As expected the conditional interval has correct conditional

coverage, while coverage distortions appear for the hybrid and projection intervals for

negative scaling factors. In this case θ̂=θ∗ with low probability, but conditional on this

event X(θ̂) tends to be far away from µX(θ∗), since for s<0 site θ∗ has the smallest ATE.

Consequently, projection and hybrid confidence intervals under-cover.

A.3 Split-Sample Results

This appendix reports the results from applying split-sample methods in the simulations

calibrated to the JOBSTART data. As in the main text, we report results corresponding

to the case where we use half of the data to select a target site, and the other half is used

for inference.

As discussed in the main text, sample splitting changes the site selected. Hence, a

first important question when considering sample splitting is to what extent it reduces

the quality of the treatment selected, relative to using the full data for targeting. Figure

8 provides one answer to this question, plotting the average difference in treatment effects

between the best site (CET/San Jose in this simulation design) and the selected site, that

is µX(θ∗)−E[µX(θ̂)] for θ∗ corresponding to CET/San Jose. As in the main text, the

horizontal axis varies the scaling s on the site-specific average treatment effects. As these

results make clear, there is a substantial loss from sample splitting in this context, with
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Figure 7: Coverage conditional on θ̂=θ∗, for θ∗ the site with the largest effect in the JOBSTART
data (i.e. CET/San Jose), where X∼N(s·µ̂X,Σ) for µ̂X the JOBSTART point estimates and Σ
the diagonal matrix with the squared JOBSTART standard errors on the diagonal. The horizontal
axis varies the scaling factor s, and our preferred scaling s∗ is marked with a vertical line.

the regret increasing by nearly 40% at our preferred scaling s∗.

B A Decision-Theoretic Model of Inference After Selection

This appendix shows that our unconditional and conditional coverage requirements arise

naturally as necessary conditions for minimaxity in a two-step decision-theoretic model.

In particular, consider a decisionmaker who observes(
X

Y

)
∼N

((
µX

µY

)
,Σ

)
,

with µ= (µ′X,µ
′
Y )′ unknown and Σ known. They must make a two-part decision, first

selecting an element θ ∈ Θ and then reporting an interval I intended to cover µY (θ).

Suppose that the decisionmaker has lexicographic preferences, prioritizing the selection

problem first and the inference problem second.

For the first step selection problem, the decisionmaker must select a decision rule
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Figure 8: Average regret µX(θ∗)−E[µX(θ̂)], for selection based on full vs. split sample, where
50% of the data are used for selection.

mapping data realizations to (possibly randomized) selections,

δθ :X×Y→∆(Θ)

for ∆(Θ) the set of probability distributions on Θ. In a slight abuse of notation we use

δθ(X,Y )∈Θ to denote the realized choice. We assume that the decisionmaker aims to

minimize an expected loss that depends on µ,

Eµ[Lθ(δθ(X,Y ),µ)].

Since µ is unknown the decisionmaker must aggregate across µ values in some way, for

example putting a prior on µ and selecting Bayes decision rules or focusing on the worst

case and selecting a minimax rule.

As a concrete example of the first-stage preference, consider a decisionmaker who

selects δθ to minimize the maximum regret based on µX

min
δθ

sup
µ

{
max
θ∈Θ

µX(θ)−Eµ[µX(δθ(X,Y ))]

}
.
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Results from Lehmann (1966) and Eaton (1967) imply that picking δθ(X,Y )=argmaxX(θ)

solves this problem when µ is unconstrained and ΣX is proportional to the identity matrix.

More broadly there is a substantial statistical decision theory literature on optimal selection.

For our purposes, we will take the solution to the first-step decision problem as given and

focus on the second-stage decision problem.

In the second stage the decisionmaker solves an inference problem. Define the loss

L2(θ,I,µ)=f(|I|)+1{µY (θ) 6∈I}=f(|I|)+
∑
θ̃∈Θ

1
{
θ= θ̃

}
1
{
µY

(
θ̃
)
6∈I
}

where |I| is the Lebesgue measure of the interval I while f(·) is a non-negative and weakly

increasing function with f (∞) =α∗. We consider two versions of expected loss in the

second-step problem. The first simply averages the loss across (X,Y ) realizations. For

second-step decision rule δI :X×Y→∆(I) (for I the set of intervals on R and ∆(I) the

set of probability distributions on I) this yields expected loss

Eµ[f(|δI(X,Y )|)+1{µY (δθ(X,Y )) 6∈δI(X,Y )}]. (A.11)

Alternatively, for settings where we are concerned about selection we introduce a selection

dummy S where as in the main text we assume that S is independent of (X,Y ) conditional

on δθ(X,Y ). Denote the conditional distribution of S|δθ(X,Y ) by FS|δθ. If we care about

the second-step loss only in those cases where S=1, this yields expected loss

Eµ,FS|δθ [f(|δI(X,Y )|)+1{µY (δθ(X,Y )) 6∈δI(X,Y )}|S=1]. (A.12)

We next show that minimax decision rules in the second stage imply correct coverage,

with criterion (A.11) yielding unconditional coverage and criterion (A.12) yielding condi-

tional coverage. For (A.11), note that always choosing I=R yields a loss of f(∞)=α∗

regardless of the value of µ. Hence, for a minimax decision rule δ∗I we must have that the

worst-case expected loss is weakly less than α∗,

sup
µ
Eµ[f(|δθ(X,Y )|)+1{µY (δθ(X,Y )) 6∈δ∗I(X,Y )}]≤α∗.
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Since f(·) is non-negative this implies that

sup
µ
Prµ{µY (δθ(X,Y )) 6∈δ∗I(X,Y )}≤α∗,

which is precisely our unconditional coverage requirement. Hence, minimax second-stage

rules under criterion (A.11) always have unconditional coverage at least 1−α∗.
If we instead consider (A.12), note that the unknown parameters now include both µ

and the conditional distribution FS|δθ(X,Y ). By the same argument as in the unconditional

case the minimax expected loss must be bounded above by α∗,

sup
µ

sup
FS|δθ

Eµ,FS|δθ [f(|δθ(X,Y )|)+1{µY (δθ(X,Y )) 6∈δ∗I(X,Y )}|S=1]≤α∗,

which implies that

sup
µ

sup
FS|δθ

Prµ,FS|δθ{µY (δθ(X,Y )) 6∈δ∗I(X,Y )|S=1}≤α∗.

As noted in the main text, however, to ensure that

sup
FS|δθ

Prµ,FS|δθ{µY (δθ(X,Y )) 6∈δ∗I(X,Y )|S=1}≤α∗

we must have that

Prµ{µY (δθ(X,Y )) 6∈δ∗I(X,Y )|δθ(X,Y )}≤α∗,

so minimax rules in this setting must ensure conditional coverage at least 1−α∗.

C Conditional Inference

This section extends the conditional inference results developed in Section 4 of the main

text in two directions, first allowing dependence on additional conditioning variables, and

then introducing uniformly most accurate unbiased confidence intervals.

C.1 Additional Conditioning Events

Suppose that in addition to conditioning on {θ̂= θ̃}, we also want to condition on an

additional event {γ̂= γ̃}, for γ̂=γ(X) some function of X. We thus seek estimators that
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are quantile-unbiased conditional on (θ̂,γ̂),

Prµ

{
µ̂α≥µY (θ̂)|θ̂= θ̃,γ̂= γ̃

}
=α for all θ̃∈Θ, γ̃∈Γ, and all µ, (A.13)

and confidence sets with correct conditional coverage

Prµ

{
µY (θ̂)∈CI|θ̂= θ̃,γ̂= γ̃

}
≥1−α for all θ̃∈Θ, γ̃∈Γ, and all µ. (A.14)

One reason we might want to allow such additional conditioning is that we are interested

in performance conditional on S=1 for an unobserved variable S∈{0,1} as discussed in

Section 3 of the main text, where we generalize the assumption in the main text and assume

that S is conditionally independent of (X,Y ) given the pair (θ̂,γ̂). If we have no other restric-

tions on the distribution of S, then in order to guarantee conditional coverage given S=1,

inf
µ

inf
FS|θ̂,γ̂

Prµ,FS|θ̂,γ̂

{
µY (θ̂)∈CS|S=1

}
≥1−α,

it is both necessary and sufficient that we have conditional coverage (A.14).

As in the main text, we re-write the conditioning event in terms of the sample space of

X as
{
X : θ̂= θ̃,γ̂= γ̃

}
=X (θ̃,γ̃), and study the conditional distribution of (X,Y (θ̃)) given

X∈X (θ̃,γ̃). For Zθ̃ as defined in (10) of the main text, let

Y(θ̃,γ̃,z)=
{
y :z+

(
ΣXY (·,θ̃)/ΣY (θ̃)

)
y∈X (θ̃,γ̃)

}
.

Conditional on θ̂= θ̃, γ̂ = γ̃, and Zθ̃ = z, Y (θ̂) again follows a one-dimensional normal

distribution N(µY (θ̃),ΣY (θ̃)) truncated to Y(θ̃,γ̃,z).

To characterize Y(θ̃,γ̃,z), note that for X (θ̃) as derived in the main text, we can

write X (θ̃,γ̃)=X (θ̃)∩Xγ(γ̃) for Xγ(γ̃)={X∈X :γ(X)= γ̃}. Likewise, for Yγ(γ̃,z) defined

analogously to (11) in the main text, Y(θ̃,γ̃,z)=Y(θ̃,z)∩Yγ(γ̃,z). The form of Xγ(γ̃) and

Yγ(γ̃,z) depends on the conditioning variables γ̂ considered.

To construct quantile-unbiased estimators, let FTN(y;µY (θ̃),θ̃,γ̃,z) denote the distri-

bution function for a N(µY (θ̃,ΣY (θ̃))) distribution truncated to Y(θ̃,γ̃,z). This function

is strictly decreasing in µY (θ̃), so define µ̂α as the unique solution to

FTN(Y (θ̂);µ̂α,θ̃,γ̃,Zθ̃)=1−α. (A.15)
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To establish optimality, we impose one additional assumption.

Assumption 5

If Σ =Cov((X′,Y ′)′) has full rank, then the parameter space for µ is R2|Θ|. Otherwise,

there exists some µ∗ such that the parameter space for µ is
{
µ∗+Σ

1
2v :v∈R2|Θ|

}
, where

Σ
1
2 is the symmetric square root of Σ.

This assumption requires that the parameter space for µ be sufficiently rich. When Σ is

degenerate (for example when X=Y , as in Section 2 of the main text), this assumption

further implies that (X,Y ) have the same support for all values of µ. This rules out cases

in which a pair of parameter values µ1, µ2 can be perfectly distinguished based on the

data. Under this assumption, µ̂α is an optimal quantile-unbiased estimator.

Proposition 7

Let µ̂α solve (A.15). µ̂α is conditionally α-quantile-unbiased in the sense of (A.13). If As-

sumption 5 holds, then µ̂α is the uniformly most concentrated α-quantile-unbiased estimator

in that for any other conditionally α-quantile-unbiased estimator µ̂∗α and any loss function

L
(
d,µY (θ̃)

)
that attains its minimum at d=µY (θ̃) and is quasiconvex in d for all µY (θ̃),

Eµ

[
L
(
µ̂α,µY (θ̃)

)
|θ̂= θ̃,γ̂= γ̃

]
≤Eµ

[
L
(
µ̂∗α,µY (θ̃)

)
|θ̂= θ̃,γ̂= γ̃

]
for all µ and all θ̃∈Θ, γ̃∈Γ.

Proposition 7 shows that µ̂α is optimal in the strong sense that it has lower expected loss

than any other quantile-unbiased estimator for a large class of loss functions. Hence, µ̂1
2

is

an optimal median-unbiased estimator, while CIET =[µ̂α
2
,µ̂1−α

2
] is an optimal equal-tailed

confidence interval.

C.2 Unbiased Confidence Intervals

Rather than considering equal-tailed intervals, we can alternatively consider unbiased

confidence intervals. Following Lehmann and Romano (2005), we say that a level 1−α
two-sided confidence interval CI is unbiased if its probability of covering any given false

parameter value is bounded above by 1−α. Likewise, a one sided lower (upper) confidence

interval is unbiased if its probability of covering a false parameter value above (below) the

true value is bounded above by 1−α. Using the duality between tests and confidence in-

tervals, a level 1−α confidence interval CI is unbiased if and only if φ(µY,0)=1{µY,0 /∈CI}
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is an unbiased test for the corresponding family of hypotheses.2 The results of Lehmann

and Scheff́e (1955) applied in our setting imply that optimal unbiased tests conditional on{
θ̂= θ̃,γ̂= γ̃

}
are the same as optimal unbiased tests conditional on

{
θ̂= θ̃,γ̂= γ̃,Zθ̃=zθ̃

}
.

These optimal tests take a simple form.

Define a size α test of the two-sided hypothesis H0 :µY (θ̃)=µY,0 as

φTS,α(µY,0)=1
{
Y (θ̃) 6∈ [cl(Zθ̃),cu(Zθ̃)]

}
where cl(z), cu(z) solve

Pr{ζ∈ [cl(z),cu(z)]}=1−α, E[ζ1{ζ∈ [cl(z),cu(z)]}]=(1−α)E[ζ]

for ζ that follows a truncated normal distribution

ζ∼ξ|ξ∈Y(θ̃,γ̃,z), ξ∼N
(
µY,0,ΣY (θ̃)

)
.

Likewise, define a size α test of the one-sided hypothesis H0 :µY (θ̃)≥µY,0 as

φOS−,α(µY,0)=1
{
FTN(Y (θ̃);µY,0,θ̃,γ̃,z)≤α

}
and a test of H0 :µY (θ̃)≤µY,0 as

φOS+,α(µY,0)=1
{
FTN(Y (θ̃);µY,0,θ̃,γ̃,z)≥1−α

}
.

Proposition 8

If Assumption 5 holds, φTS,α, φOS−,α, and φOS+,α are uniformly most powerful unbiased

size α tests of their respective null hypotheses conditional on θ̂= θ̃ and γ̂= γ̃.

To form uniformly most accurate unbiased confidence intervals we collect the values

not rejected by these tests. The two-sided uniformly most accurate unbiased confidence

interval is CIU = {µY,0 :φTS,α(µY,0)=0}. CIU is unbiased and has conditional coverage

1−α by construction. Likewise, we can form lower and upper one-sided uniformly most

accurate unbiased confidence intervals as CIU,−={µY,0 :φOS−,α(µY,0)=0}= (−∞,µ̂1−α],

and CIU,+ ={µY,0 :φOS+,α(µY,0)=0}=[µ̂α,∞), respectively. Hence, we can view CIET as

2That is, H0 :µY (θ̃)=µY,0 for a two-sided confidence interval, H0 :µY (θ̃)≥µY,0 for a lower confidence

interval and H0 :µY (θ̃)≤µY,0 for an upper confidence interval.
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the intersection of level 1−α
2

uniformly most accurate unbiased upper and lower confidence

intervals. Unfortunately, no such simplification is generally available for CIU , though

Lemma 5.5.1 of Lehmann and Romano (2005) guarantees that this set is an interval.

C.3 Behavior When Prµ

{
θ̂= θ̃,γ̂= γ̃

}
is Large

In Proposition 3 of the main text, we showed that our median-unbiased estimators and

equal-tailed confidence intervals converge to conventional ones when Prµ

{
θ̂= θ̃

}
→1. The

same result holds for general conditioning events and unbiased confidence intervals.

Lemma 2

Consider any sequence of values µY,m and zθ̃,m such that PrµY,m

{
θ̂= θ̃,γ̂= γ̃|Zθ̃=zθ̃,m

}
→1.

Then under µY,m, conditional on
{
θ̂= θ̃,γ̂= γ̃,Zθ̃=zθ̃,m

}
we have CIU→pCIN , CIET→p

CIN , and µ̂1
2
→pY (θ̃).

Proposition 9

Consider any sequence of values µm such that Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→1. Then under µm,

we have CIU→pCIN , CIET→pCIN , and µ̂1
2
→pY (θ̃) both conditional on

{
θ̂= θ̃,γ̂= γ̃

}
and unconditionally.

D Proofs

We first prove the results stated in Section C, and then build on these to prove the results

for the finite-sample normal model discussed in the main text.

D.1 Proofs for Results in Section C

Proof of Proposition 7 For ease of reference, let us abbreviate (Y (θ̃),µY (θ̃),Zθ̃) by

(Ỹ , µ̃Y ,Z̃). Let Y (−θ̃) collect the elements of Y other than Y (θ̃) and define µY (−θ)
analagously. Let

Y ∗=Y (−θ̃)−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
Ỹ

X

)
,

µ∗Y =µY (−θ̃)−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
µ̃Y

µX

)
,

and µ̃Z = µX −
(

ΣXY (·,θ̃)/ΣY (θ̃)
)
µY . Here we use A+ to denote the Moore-Penrose

pseudoinverse of a matrix A. Note that (Z̃,Ỹ ,Y ∗) is a one-to-one transformation of (X,Y ),
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and thus that observing (Z̃,Ỹ ,Y ∗) is equivalent to observing (X,Y ). Likewise, (µ̃Z,µ̃Y ,µ
∗
Y )

is a one-to-one linear transformation of (µX,µY ), and if the set of possible values for the

latter contains an open set, that for the former does as well (relative to the appropriate

linear subspace).

Note, next, that since (Z̃,Ỹ ,Y ∗) is a linear transformation of (X,Y ), (Z̃,Ỹ ,Y ∗) is jointly

normal (with a potentially degenerate distribution). Note next that the subvectors of

(Z̃,Ỹ ,Y ∗) are mutually uncorrelated, and thus independent. That Z̃ and Ỹ are uncorre-

lated is straightforward to verify. To show that Y ∗ is likewise uncorrelated with the other

elements, note that we can write Cov
(
Y ∗,(Ỹ ,X′)′

)
as

Cov

(
Y (−θ̃),

(
Ỹ

X

))
−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
.

For VΛV ′ an eigendecomposition of V ar
(

(Ỹ ,X′)′
)

(so V V ′=I), note that we can write

V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
=VDV ′

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

Λ and zeros everywhere else. For any column v of V corresponding to a zero entry of D,

v′V ar

((
Ỹ ,X′

)′)
v=0, so the Cauchy-Schwarz inequality implies that

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
v=0.

Thus,

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
VDV ′=Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
V V ′=Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
,

so Y ∗ is uncorrelated with
(
Ỹ ,X′

)′
.

Using independence, the joint density of (Z̃,Ỹ ,Y ∗) absent truncation is given by

fN,Z̃(z̃;µ̃Z)fN,Ỹ (ỹ;µ̃Y )fN,Y ∗(ỹ
∗;µ∗Y )
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for fN normal densities with respect to potentially degenerate base measures:

fN,Z̃(z̃;µ̃Z)=d̃et(2πΣZ̃)−
1
2exp

(
−1

2
(z̃−µ̃Z)′Σ+

Z̃
(z̃−µ̃Z)

)

fN,Ỹ (ỹ;µ̃Y )=(2πΣỸ )−
1
2exp

(
−(ỹ−µ̃Y )2

2ΣỸ

)

fN,Y ∗(y
∗;µ∗Y )=d̃et(2πΣY ∗)

−1
2exp

(
−1

2
(y∗−µ̃∗Y )′Σ+

Y ∗(y
∗−µ∗Y )

)
,

where d̃et(A) denotes the pseudodeterminant of a matrix A, ΣZ̃=V ar(Z̃), ΣỸ =ΣY (θ̃),

and ΣY ∗=V ar(Y ∗).

The event
{
X∈X (θ̃,γ̃)

}
depends only on (Z̃,Ỹ ) since it can be expressed as

{(
Z̃+

ΣXY (·,θ̃)
ΣY (θ̃)

Ỹ

)
∈X (θ̃,γ̃)

}
,

so conditional on this event Y ∗ remains independent of (Z̃,Ỹ ). In particular, we can write

the joint density conditional on
{
X∈X (θ̃,γ̃)

}
as

1
{(
z̃+ΣXY (·,θ̃)ΣY (θ̃)−1ỹ

)
∈X (θ̃,γ̃)

}
Prµ̃Z ,µ̃Y

{
X∈X (θ̃,γ̃)

} fN,Z̃(z̃;µ̃Z)fN,Ỹ (ỹ;µ̃Y )fN,Y ∗(ỹ
∗;µ∗Y ). (A.16)

The density (A.16) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-

ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-

ately from Theorem 5.5.9 of Pfanzagl (1994). Part 2 of the proposition follows by using Theo-

rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). �

Proof of Proposition 8 In the proof of Proposition 7, we showed that the joint density of

(Z̃,Ỹ ,Y ∗) (defined in that proof) has the exponential family structure assumed in equation

4.10 of Lehmann and Romano (2005). Moreover, Assumption 5 implies that the parameter

space for (µX,µY ) is convex and is not contained in any proper linear subspace. Thus, the

parameter space for (µ̃Z,µ̃Y ,µ
∗
Y ) inherits the same property, and satisfies the conditions

of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. �
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Proof of Lemma 2 Recall that conditional on Zθ̃=zθ̃, θ̂= θ̃ and γ̂= γ̃ if and only if

Y (θ̃)∈Y(θ̃,γ̃,zθ̃). Hence, the assumption of the lemma implies that

PrµY,m

{
Y (θ̃)∈Y(θ̃,γ̃,Zθ̃)|Zθ̃=zθ̃,m

}
→1.

Note, next, that both the conventional and conditional confidence intervals are equiv-

ariant under shifts, in the sense that the conditional confidence interval for µY (θ̃) based

on observing Y (θ̃) conditional on Y (θ̃) ∈ Y(θ̃, γ̃,Zθ̃) is equal to the conditional confi-

dence interval for µY (θ̃) based on observing Y (θ̃)−µ∗Y (θ̃) conditional on Y (θ̃)−µ∗Y (θ̃)∈
Y(θ̃,γ̃,Zθ̃)−µ∗Y (θ̃) for any constant µ∗Y (θ̃). Hence, rather than considering a sequence of

values µY,m, we can fix some µ∗Y and note that Prµ∗Y

{
Y (θ̃)∈Y∗m|Zθ̃=zθ̃,m

}
→1, where

Y∗m=Y(θ̃,γ̃,Zθ̃)−µY,m(θ̃)+µ∗Y (θ̃). Confidence intervals for µY,m(θ̃) in the original problem

are equal to those for µ∗Y (θ̃) in the new problem, shifted by µY,m(θ̃)−µ∗Y (θ̃). Hence, to prove

the result it suffices to prove the equivalence of conditional and conventional confidence

intervals in the problem with µY fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved be-

low. First, we must introduce the following notation. Let (cl,ET (µY,0,Y),cu,ET (µY,0,Y))

denote the critical values for an equal-tailed test of H0 : µY (θ̃) = µY,0 for Y (θ̃) ∼
N
(
µY (θ̃),ΣY (θ̃)

)
conditional on Y (θ̃) ∈ Y. That is, (cl,ET (µY,0,Y),cu,ET (µY,0,Y)) solve

FTN(cl,ET (µY,0,Y);µY,0,Y)= α
2

and FTN(cu,ET (µY,0,Y);µY,0,Y)=1−α
2
, where FTN(·;µY,0,Y)

is the distribution function for the normal distribution N
(
µY,0,ΣY (θ̃)

)
truncated to Y.

Similarly, let (cl,U(µY,0,Y),cu,U(µY,0,Y)) denote the critical values for the corresponding un-

biased test. That is, (cl,U(µY,0,Y),cu,U(µY,0,Y)) solve Pr{ζ∈ [cl,U(µY,0,Y),cu,U(µY,0,Y)]}=
1 − α and E [ζ1{ζ∈ [cl,U(µY,0,Y),cu,U(µY,0,Y)]}] = (1−α)E [ζ] for ζ ∼ ξ|ξ ∈ Y where

ξ∼N
(
µY,0,ΣY (θ̃)

)
.

Lemma 3

Suppose that we observe Y (θ̃) ∼ N
(
µY (θ̃),ΣY (θ̃)

)
conditional on Y (θ̃) falling in a

set Y. If we hold
(

ΣY (θ̃),µY,0

)
fixed and consider a sequence of sets Ym such that

Pr
{
Y (θ̃)∈Ym

}
→1, we have that for

φET (µY,0)=1
{
Y (θ̃) 6∈ [cl,ET (µY,0,Ym),cu,ET (µY,0,Ym)]

}
(A.17)
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and

φU(µY,0)=1
{
Y (θ̃) 6∈ [cl,U(µY,0,Ym),cu,U(µY,0,Ym)]

}
, (A.18)

(cl,ET (µY,0,Ym),cu,ET (µY,0,Ym))→
(
µY,0−cα

2
,N

√
ΣY (θ̃),µY,0+cα

2
,N

√
ΣY (θ̃)

)
and

(cl,U(µY,0,Ym),cu,U(µY,0,Ym))→
(
µY,0−cα

2
,N

√
ΣY (θ̃),µY,0+cα

2
,N

√
ΣY (θ̃)

)
.

To complete the proof, first note that CIET and CIU are formed by inverting (families

of) equal-tailed and unbiased tests, respectively. Let CIm denote a generic conditional

confidence interval formed by inverting a family of tests

φm(µY,0)=1
{
Y (θ̃) 6∈ [cl(µY,0,Y∗m),cu(µY,0,Y∗m)]

}
.

Hence, we want to show that

CIm→p

[
Y (θ̃)−cα

2
,N

√
ΣY (θ̃),Y (θ̃)+cα

2
,N

√
ΣY (θ̃)

]
, (A.19)

as m→∞, for CIm formed by inverting either (A.17) or (A.18).

We note that CIm is a finite interval for all m, which holds trivially for the equal-tailed

confidence interval CIET , and holds for CU by Lemma 5.5.1 of Lehmann and Romano

(2005). For each value µY,0 our Lemma 3 implies that

φm(µY,0)→p1

{
Y
(
θ̃
)
/∈
[
µY,0−cα

2
,N

√
ΣY (θ̃),µY,0+cα

2
,N

√
ΣY (θ̃)

]}
for φm equal to either (A.17) or (A.18). This convergence in probability holds jointly for all

finite collections of values µY,0, however, which implies (A.19). The same argument works

for the median unbiased estimator µ̂1
2
, which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. �

Proof of Proposition 9 We prove this result for the unconditional case, noting that

since Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→1, the result conditional on

{
θ̂= θ̃,γ̂= γ̃

}
follows immediately.

Note that Prµm

{
θ̂= θ̃,γ̂= γ̃

}
→ 1 implies PrµY,m

{
θ̂= θ̃,γ̂= γ̃|Zθ̃

}
→p 1. Hence,

for g(µY , z) = PrµY

{
θ̂= θ̃,γ̂= γ̃|Zθ̃=z

}
, we see that g(µY,m, Zθ̃) →p 1. Note, next,
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that for d the Euclidian distance between the endpoints, if we define hε(µY , z) =

PrµY {d(CIU ,CIN)>ε|Zθ̃=z}, Lemma 2 implies that for any sequence (µY,m,zm) such that

g(µY,m,zm)→1, hε(µY,m,zm)→0. Hence, if we define G(δ)={(µY ,z):g(µY ,z)>1−δ} and

H(ε)={(µY ,z):hε(µY ,z)<ε}, for all ε>0 there exists δ(ε)>0 such that G(δ(ε))⊆H(ε).

Hence, since our argument above implies that for all δ>0, Prµm{(µY,m,Zθ̃)∈G(δ)}→1,

we see that for all ε>0, Prµm{(µY,m,Zθ̃)∈H(ε)}→1 as well, which suffices to prove the

desired claim for confidence intervals. The same argument likewise implies the result for

our median unbiased estimator. �

Proof of Lemma 3 Note that we can assume without loss of generality that µY,0 =0 and

ΣY (θ̃)=1 since we can define Y ∗(θ̃)=
(
Y (θ̃)−µY,0

)
/
√

ΣY (θ̃) and consider the problem

of testing that the mean of Y ∗(θ̃) is zero (transforming the set Ym accordingly). After

deriving critical values (c∗l ,c
∗
u) in this transformed problem, we can recover critical values

for our original problem as (cl,cu)=
√

ΣY (θ̃)(c∗l ,c
∗
u)+µY,0. Hence, for the remainder of the

proof we assume that µY,0 =0 and ΣY (θ̃)=1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects

if and only if Y (θ̃) 6∈ [cl,ET (Y),cu,ET (Y)], where we suppress the dependence of the critical

values on µY,0 =0 for simplicity, and (cl,ET (Y),cu,ET (Y)) solve FTN(cl,ET (Y),Y)= α
2

and

FTN (cu,ET (Y),Y) = 1− α
2
, for FTN(·,Y) the distribution function of a standard normal

random variable truncated to Y. Recall that we can write the density corresponding to

FTN(y,Y) as 1{y∈Y}
Pr{ξ∈Y}fN(y) where fN is the standard normal density and Pr{ξ∈Y} is the

probability that ξ∈Y for ξ∼N(0,1). Hence, we can write FTN(y,Y)=
∫ y
−∞1{ỹ∈Y}fN(ỹ)dỹ

Pr{ξ∈Y} .

Note next that for all y we can write FTN (y,Ym) =am(y)+FN (y), where FN is the

standard normal distribution function and am (y) =
∫ y
−∞1{ỹ∈Ym}fN(ỹ)dỹ

Pr{ξ∈Ym} −FN (y). Recall,

however, that Pr{ξ∈Ym}→1 and∣∣∣∣∫ y

−∞
1{ỹ∈Ym}fN(ỹ)dỹ−FN(y)

∣∣∣∣=∣∣∣∣∫ y

−∞
[1{ỹ∈Ym}−1]fN(ỹ)dỹ

∣∣∣∣
=

∫ y

−∞
1{ỹ 6∈Ym}fN(ỹ)dỹ≤Pr{ξ 6∈Ym}→0

for all y, so am(y)→0 for all y. Theorem 2.11 in van der Vaart (1998) then implies that

am(y)→0 uniformly in y as well.

Note next that FTN (cl,ET (Ym),Ym) = am (cl,ET (Ym)) + FN (cl,ET (Ym)) = α
2

implies

cl,ET (Ym)=F−1
N

(
α
2
−am(cl,ET (Ym))

)
, and thus that cl,ET (Ym)→F−1

N

(
α
2

)
. Using the same
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argument, we can show that cu,ET (Ym)→F−1
N

(
1−α

2

)
, as desired.

Unbiased Test We next consider the unbiased test. Recall that critical values

cl,U (Y) , cu,U (Y) for the unbiased test solve Pr {ζ∈ [cl,U(Y),cu,U(Y)]} = 1 − α and

E[ζ1{ζ∈ [cl,U(Y),cu,U(Y)]}]=(1−α)E[ζ] for ζ∼ξ|ξ∈Y where ξ∼N(0,1).

Note that for ζm the truncated normal random variable corresponding to Ym, we can

write Pr{ζm∈ [cl,cu]}=am(cl,cu)+(FN(cu)−FN(cl)) with

am(cl,cu)=(FN(cl)−Pr{ζm≤cl})−(FN(cu)−Pr{ζm≤cu}).

As in the argument for equal-tailed tests above, we see that both FN(cu)−Pr{ζm≤cu}
and FN(cl)−Pr{ζm≤cl} converge to zero pointwise, and thus uniformly in cu and cl by

Theorem 2.11 in van der Vaart (1998). Hence, am(cl,cu)→0 uniformly in (cl,cu).

Note, next, that we can write E[ζm1{ζm∈ [cl,cu]}]=[ξ1{ξ∈ [cl,cu]}]+bm(cl,cu) for

bm(cl,cu)=E[ζm1{ζm∈ [cl,cu]}]−[ξ1{ξ∈ [cl,cu]}]=
∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1

)
yfN(y)dy.

Note, however, that
∫ cu
cl

(1{y∈Ym}−1)yfN(y)dy≤E[|ξ|1{ξ 6∈Ym}]. Hence, since∣∣∣∣∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1

)
yfN(y)dy

∣∣∣∣
≤
∣∣∣∣∫ cu

cl

(1{y∈Ym}−1)yfN(y)dy

∣∣∣∣+∣∣∣∣∫ cu

cl

(
1{y∈Ym}
Pr{ξ∈Ym}

−1{y∈Ym}
)
yfN(y)dy

∣∣∣∣
≤E[|ξ|1{ξ 6∈Ym}]+

∣∣∣∣( 1

Pr{ξ∈Ym}
−1

)∣∣∣∣∫ cu

cl

1{y∈Ym}|y|fN(y)dy

≤
√
P(ξ 6∈Ym)+

∣∣∣∣( 1

Pr{ξ∈Ym}
−1

)∣∣∣∣E[|ξ|]

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t

depend on (cl,cu), bm(cl,cu) converges to zero uniformly in (cl,cu).

Next, let us define (cl,m,cu,m) as the solutions to Pr {ζm∈ [cl,cu]} = 1 − α and

E [ζm1{ζm∈ [cl,cu]}] = (1−α)E [ζm]. From our results above, we can re-write the prob-

lem solved by (cl,m,cu,m) as FN (cu)− FN (cl) = 1− α− am (cl,cu) , E [ξ1{ξ∈ [cl,cu]}] =

(1−α)E [ζm]−bm(cl,cu). Letting ām = supcl,cu |am(cl,cu)|, and b̄m = supcl,cu |bm(cl,cu)| we

thus see that (cl,m,cu,m) solves FN (cu)−FN (cl) = 1−α− a∗m and E [ξ1{ξ∈ [cl,cu]}] =

(1−α)E [ζm]−b∗m for some a∗m ∈ [−ām,ām], b∗m ∈
[
−b̄m,̄bm

]
. We will next show that for
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any sequence of values (a∗m,b
∗
m) such that a∗m ∈ [−ām,ām] and b∗m ∈

[
−b̄m,̄bm

]
for all m,

the implied solutions cl,m(a∗m,b
∗
m), cu,m(a∗m,b

∗
m) converge to F−1

N

(
α
2

)
and F−1

N

(
1−α

2

)
. This

follows from the next lemma, which is proved below.

Lemma 4

Suppose that cl,m and cu,m solve Pr{ξ∈ [cl,cu]}=1−α+am and E[ξ1{ξ∈ [cl,cu]}]=dm for

am, dm→0. Then (cl,m,cu,m)→
(
−cα

2
,N ,cα

2
,N

)
.

Using this lemma, since E[ζm]→0 as m→∞ we see that for any sequence of values

(a∗m,b
∗
m)→ 0, (cl,m(a∗m,b

∗
m),cu,m(a∗m,b

∗
m))→

(
−cα

2
,N ,cα

2
,N

)
. However, since ām,b̄m→ 0 we

know that the values a∗m and b∗m corresponding to the true cl,m, cu,m must converge to

zero. Hence (cl,m,cu,m)→
(
−cα

2
,N ,cα

2
,N

)
as we wanted to show. �

Proof of Lemma 4 Note that the critical values solve

f(am,dm,c)=

(
FN(cu)−FN(cl)−(1−α)−am∫ cu

cl
yfN(y)dy−dm

)
=0.

We can simplify this expression, since ∂
∂y
fN (y) =−yfN (y), so

∫ cu
cl
yfN (y)dy= fN (cl)−

fN(cu).

We thus must solve the system of equations g(c)−vm=0, for

g(c)=

(
FN(cu)−FN(cl)

fN(cl)−fN(cu)

)
, vm=

(
am+(1−α)

dm

)
.

Note that for vm=(1−α,0)′ this system is solved by c=
(
−cα

2
,N ,cα

2
,N

)
. Further,

∂

∂c
g(c)=

(
−fN(cl) fN(cu)

−clfN(cl) cufN(cu)

)
,

which evaluated at c=
(
−cα

2
,N ,cα

2
,N

)
is equal to(

−fN
(
cα

2
,N

)
fN
(
cα

2
,N

)
cα

2
,NfN

(
cα

2
,N

)
cα

2
,NfN

(
cα

2
,N

) )

and has full rank for all α∈(0,1). Thus, by the implicit function theorem there exists an

open neighborhood V of v∞=(1−α,0) such that g(c)−v=0 has a unique solution c(v)

for v∈V and c(v) is continuously differentiable. Hence, if we consider any sequence of
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values vm→(1−α,0), we see that c(vm)→

(
−cα

2
,N

cα
2
,N

)
, again as we wanted to show. �

D.2 Proofs for Results in Main Text

Proof of Proposition 1 Let us assume without loss of generality that θ̃=θ1. Note that

the conditioning event {maxθ∈ΘX(θ)=X(θ1)} is equivalent to {MX≥0}, where

M≡


1 −1 0 0 ... 0

1 0 −1 0 ... 0
...

...
...

...
...

...

1 0 0 0 ... −1


is a (|Θ|−1)×|Θ|matrix and the inequality is taken element-wise. LetA=

[
− M 0(|Θ|−1)×|Θ|

]
,

where 0(|Θ|−1)×|Θ| denotes the (|Θ|−1)×|Θ| matrix of zeros. Let W =(X′,Y ′)′ and note

that we can re-write the event of interest as {W :AW≤0} and that we are interested

in inference on η′µ for η the 2|Θ|×1 vector with one in the (|Θ|+1)st entry and zeros

everywhere else. Define

Z̃∗
θ̃

=W−cY (θ̃),

for c= Cov(W,Y (θ̃))/ΣY (θ̃), noting that the definition of Zθ̃ in (10) of the main text

corresponds to extracting the elements of Z̃∗
θ̃

corresponding to X. By Lemma 5.1 of Lee

et al. (2016),

{W :AW≤0}=
{
W :L(θ̃,Z̃∗

θ̃
)≤Y (θ̃)≤U(θ̃,Z̃∗

θ̃
),V(θ̃,Z̃∗

θ̃
)≥0

}
,

where for (v)j the jth element of a vector v,

L(θ̃,z)= max
j:(Ac)j<0

−(Az)j
(Ac)j

U(θ̃,z)= min
j:(Ac)j>0

−(Az)j
(Ac)j

V(θ̃,z)= min
j:(Ac)j=0

−(Az)j.
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Note, however, that (
AZ̃∗

θ̃

)
j
=Zθ̃(θj)−Zθ̃(θ1)

and

(Ac)j=−ΣXY (θ1,θ1)−ΣXY (θ1,θj)

ΣY (θ1)
.

Hence, we can re-write

−(AZ̃∗
θ̃
)j

(Ac)j
=

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

L(θ̃,Z̃∗
θ̃
)= max

j:ΣXY (θ1,θ1)>ΣXY (θ1,θj)

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

U(θ̃,Z̃∗
θ̃
)= min

j:ΣXY (θ1,θ1)<ΣXY (θ1,θj)

ΣY (θ1)(Zθ̃(θj)−Zθ̃(θ1))

ΣXY (θ1,θ1)−ΣXY (θ1,θj)
,

and

V(θ̃,Z̃∗
θ̃
)= min

j:ΣXY (θ1,θ1)=ΣXY (θ1,θj)
−(Zθ̃(θj)−Zθ̃(θ1)).

Note, however, that these are functions of Zθ̃, as expected. The result follows. �

Proof of Proposition 2 Follows as a special case of Proposition 7. �

Proof of Proposition 3 Follows as a special case of Proposition 9. �

Proof of Proposition 4 We prove the result for coverage, while the result for median

unbiasedness is analagous. Provided θ̂ is unique with probability one, we can write

Prµ

{
µ(θ̂)∈CI

}
=
∑
θ̃∈Θ

Prµ

{
θ̂= θ̃

}
Prµ

{
µ(θ̃)∈CI|θ̂= θ̃

}
.

Since
∑

θ̃∈ΘPrµ

{
θ̂= θ̃

}
=1, the result of the proposition follows immediately. �

Proof of Lemma 1 The assumption of the lemma implies that X(θ̃)−X(θ) has a

non-degenerate normal distribution for all µ. Since Θ is finite, almost-sure uniqueness of

θ̂ follows immediately. �

Proof of Proposition 5 We first establish uniqueness of µ̂Hα . To do so, it suffices to show

that FH
TN(Y (θ̃);µY (θ̃),θ̃,Zθ̃) is strictly decreasing in µY (θ̃). Note first that this holds for the

truncated normal assuming truncation that does not depend on µY (θ̃) by Lemma A.1 of
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Lee et al. (2016). When we instead consider FH
TN(Y (θ̃);µY (θ̃),θ̃,Zθ̃), we further truncate to

Y (θ̃)∈
[
µY (θ̃)−cβ

√
ΣY (θ̃),µY (θ̃)+cβ

√
ΣY (θ̃)

]
.

Since this interval shifts upwards as we increase µY (θ̃), FH
TN(Y (θ̂);µY (θ̃), θ̃,Zθ̃) is a-

fortiori decreasing in µY (θ̃). Uniqueness of µ̂Hα for α ∈ (0,1) follows. Note, next, that

FH
TN(Y (θ̃);µY (θ̃), θ̃,Zθ̃) ∈ {0,1} for µY (θ̃) 6∈ CIβP from which we immediately see that

µ̂Hα ∈CI
β
P .

Finally, note that for µY (θ̃) the true value, FH
TN(Y (θ̂);µY (θ̃),θ̃,Zθ̃)∼U[0,1] conditional

on
{
θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CIβP

}
. Since FH

TN(Y (θ̂);µY (θ̃),θ̃,Zθ̃) is decreasing in µY (θ̃),

Prµ

{
µ̂Hα ≥µY (θ̃)|θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CIβP

}
=Prµ

{
FH
TN(Y (θ̂);µY (θ̃),θ̃,γ̃,Zθ̃)≥1−α|θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CIβP

}
=α,

and thus µ̂Hα is α-quantile-unbiased conditional on
{
θ̂= θ̃,Zθ̂=zθ̃,µY (θ̃)∈CIβP

}
. We can

drop the conditioning on Zθ̃ by the law of iterated expectations, and α-quantile unbiasedness

conditional on µY (θ̃)∈CIβP follows by the same argument as in the proof of Proposition 4.

Proof of Proposition 6 The first part of the proposition follows immediately from

Proposition 5. For the second part of the proposition, note that

Prµ

{
µY (θ̂)∈CIHET

}
=Prµ

{
µY (θ̂)∈CIβP

}
×

∑
θ̃∈Θ

Prµ

{
θ̂= θ̃|µY (θ̂)∈CIβP

}
Prµ

{
µY (θ̃)∈CIHET |θ̂= θ̃,µY (θ̃)∈CIβP

}

=Prµ

{
µY (θ̂)∈CIβP

}1−α
1−β

≥(1−β)
1−α
1−β

=1−α,

where the second equality follows from the first part of the proposition. The upper bound

follows by the same argument and the fact that Prµ

{
µY (θ̂)∈CIβP

}
≤1. �

E Forecast Intervals

This appendix provides additional details on the forecast intervals discussed in the main

text. Let Z1−2,θ̃ =X− ΣXY (·,θ̃)
ΣY1−2

(θ̃)
Y1−2(θ̃) denote the analog of Zθ̃ in the main text which

uses Y1−2 in place of Y . The same argument as in Section 4 of the main text implies
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that conditional on θ̂= θ̃ and Z1−2,θ̃=z, for ΣY1−2 =ΣY +ΣY2, Y1−2(θ̃) is distributed as a

N(0,ΣY1−2(θ̃)) variable truncated to Y1−2(θ̃,z)=[L1−2(θ̃,z),U1−2(θ̃,z)], where

L1−2(θ̃,z)= max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY1−2(θ̃)
(
z(θ)−z(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

,

U1−2(θ̃,z)= min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY1−2(θ̃)
(
z(θ)−z(θ̃)

)
ΣXY (θ̃)−ΣXY (θ̃,θ)

.

The interval CI1−2
ET fails to cover zero only when Y1−2(θ̂) lies in the tails of this conditional

distribution. Letting qα(θ̃,z) denote the α quantile of the truncated normal distribution,

the resulting conditional forecast interval for Y2(θ̂) is thus

FI={y2 :Y (θ̂)−q1−α/2(θ̂,Z1−2,θ̂(y2))≤y2≤Y (θ̂)−qα/2(θ̂,Z1−2,θ̂(y2))},

where with a slight abuse of notation Z1−2,θ̃(y2)=X− ΣXY (·,θ̃)
ΣY1−2

(θ̃)
(Y (θ̃)−y2). To see why this

forecast interval has correct coverage conditional on any realization of θ̂, note that

Prµ

{
Y2(θ̂)∈FI|θ̂= θ̃,Z1−2,θ̂=z

}
=Prµ

{
Y (θ̂)−q1−α/2(θ̂,Z1−2,θ̂(Y2(θ̂)))≤Y2(θ̂)≤Y (θ̂)−qα/2(θ̂,Z1−2,θ̂(Y2(θ̂)))|θ̂= θ̃,Z1−2,θ̂=z

}
=Prµ

{
qα/2(θ̃,z)≤Y1−2(θ̃)≤q1−α/2(θ̃,z)|θ̂= θ̃,Z1−2,θ̂=z

}
=1−α

since Z1−2,θ̃(Y2(θ̃)) = Z1−2,θ̃. We can construct conditional upper and lower one-sided

forecast intervals analogously.

We can similarly construct unconditional forecast intervals for Y2(θ̂) based on our

hybrid approach. Let qHα (θ̃,β,z) denote the α-quantile of Y1−2(θ̃) truncated to YH(θ̃,β,z)=

[LH1−2(θ̃,β,z),UH1−2(θ̃,β,z)], where

LH1−2(θ̃,β,z)=max

{
−c1−2

β

√
ΣY1−2(θ̃),L1−2(θ̃,z)

}

UH1−2(θ̃,β,z)=min

{
c1−2
β

√
ΣY1−2(θ̃),U1−2(θ̃,z)

}
for c1−2

β the 1−β quantile of maxθ|Y1−2(θ)|/
√

ΣY1−2(θ) (i.e. the projection critical value).
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The unconditional forecast interval is then

FIH=

{
y2 :Y (θ̂)−qH

1− α−β
2(1−β)

(θ̂,β,Z1−2,θ̂(y2))≤y2≤Y (θ̂)−qHα−β
2(1−β)

(θ̂,β,Z1−2,θ̂(y2))

}
.

To see why this forecast interval has correct unconditional coverage, note that

Prµ

{
Y2(θ̂)∈FIH

}
=Prµ

{
Y2(θ̂)∈FIH|−c1−2

β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
×Prµ

{
−c1−2

β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
=Prµ

{
Y (θ̂)−qH

1− α−β
2(1−β)

(θ̂,β,Z1−2,θ̂(Y2(θ̂)))≤Y2(θ̂)≤Y (θ̂)−qHα−β
2(1−β)

(θ̂,β,Z1−2,θ̂(Y2(θ̂)))∣∣∣∣−c1−2
β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
×Prµ

{
−c1−2

β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
≥Prµ

{
qHα−β

2(1−β)
(θ̂,β,Z1−2,θ̂)≤Y1−2(θ̂)≤qH1− α−β

2(1−β)
(θ̂,β,Z1−2,θ̂)∣∣∣∣−c1−2

β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
×(1−β)

=

(
1−α−β

1−β

)
(1−β)=1−α,

where the inequality follows from the fact that

Prµ

{
−c1−2

β

√
ΣY1−2(θ̂)≤Y1−2(θ̂)≤c1−2

β

√
ΣY1−2(θ̂)

}
≥1−β.

F Uniform Asymptotic Validity

This section establishes uniform asymptotic validity for plug-in versions of the procedures

discussed in the main text. One could use arguments along the same lines as those below

to derive results for additional conditioning variables γ̂n, but since such arguments would

be case-specific, we do not pursue such an extension here.

Feasible finite-sample estimators and confidence intervals are denoted as their coun-
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terparts in Sections 4–5 of the main text, with the addition of an n subscript. We suppose

that the sample of size n is drawn from some (unknown) distribution P ∈Pn. To simplify

repetitive notation we work with scaled estimates (Xn,Yn) which correspond to
√
n·(X̃n,Ỹn)

for (X̃n,Ỹn) as discussed in Section 6 of the main text. Similarly, we work with a variance

estimator Σ̂n=n·Σ̃n for Σ̃n as discussed in the main text.

We first impose that (Xn,Yn) are uniformly asymptotically normal under P ∈Pn, where

the centering vectors (µX,n,µY,n) and the limiting variance Σ may depend on P .

Assumption 6

For the class of Lipschitz functions that are bounded in absolute value by one and have

Lipschitz constant bounded by one, BL1, there exist sequences of functions µX,n(P) and

µY,n(P) and a function Σ(P) such that for ξP∼N(0,Σ(P)),

lim
n→∞

sup
P∈Pn

sup
f∈BL1

∣∣∣∣∣EP
[
f

(
Xn−µX,n(P)

Yn−µY,n(P)

)]
−E[f(ξP )]

∣∣∣∣∣=0.

Uniform convergence in bounded Lipschitz metric is one formalization for uniform conver-

gence in distribution. When Xn and Yn are scaled sample averages based on independent

data, as in Section 2 of the main text, Assumption 6 will follow from moment bounds,

while for dependent data it will follow from moment and dependence bounds.

We next assume that the asymptotic variance is uniformly consistently estimable.

Assumption 7

The estimator Σ̂n is uniformly consistent in the sense that for all ε>0

lim
n→∞

sup
P∈Pn

PrP

{∥∥∥Σ̂n−Σ(P)
∥∥∥>ε}=0.

Provided we use a variance estimator appropriate to the setting (e.g. the sample variance

for iid data, long-run variance estimators for time series, and so on) Assumption 7 will

follow from the same sorts of sufficient conditions as for Assumption 6.

Finally, we restrict the asymptotic variance.

Assumption 8

There exists a finite λ̄>0 such that

1/λ̄≤ΣX(θ;P),ΣY (θ;P)≤ λ̄, for all θ∈Θ and all P ∈Pn,

1/λ̄≤
√

ΣX(θ;P)ΣX(θ̃;P)−ΣX(θ,θ̃;P) for all θ,θ̃∈Θ with θ 6= θ̃ and all P ∈Pn.
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The upper bounds on ΣX(θ;P) and ΣY (θ;P) ensure that the random variables ξP in

Assumption 6 are stochastically bounded, while the lower bounds ensure that each entry

(Xn,Yn) has a nonzero asymptotic variance. The assumption of nonzero variance rules

out the case where one element of Xn is a non-random threshold (as discussed in Section

3 of main text), but our asymptotic results can be extended to cover this case at the

cost of additional notation. The second condition ensures that no two elements of Xn are

perfectly (positively) correlated asymptotically, and hence, by Lemma 1, guarantees that

θ̂n is unique with probability tending to one. Note that this condition is weaker than a

standard assumption bounding the eigenvalues of ΣX(P) away from zero.

High-Dimensional Settings Our asymptotic analysis considers settings where |Θ|,
and hence the dimension of Xn and Yn, are fixed as n→∞. One might also be interested

in settings where |Θ| grows with n, but this will raise complications for both the normal

approximation and estimation of the asymptotic variance. Such an extension is interesting,

but beyond the scope of this paper.

Variance Estimation Practically, even for fixed |Θ| one might still worry about the

difficulty of estimating Σ in finite samples, since this matrix has |Θ|(|Θ|+1)/2 entries.

Fortunately, in many cases Σ has additional structure which renders variance estimation

more tractable than in the fully general case. Suppose, for instance, that we want to

conduct inference on the best-performing treatment from a randomized trial, as in Section

2 of the main text and Section H below. In this case, provided trial participants are drawn

independently, elements of Xn(θ) corresponding to distinct treatments are uncorrelated

and Σ is diagonal. In other cases, such as Section 7 of the main text, |Θ| may be large,

but the elements of Xn are formed by taking combinations of a much lower-dimensional

set of random variables. In this case, ΣX can be written as a known linear transformation

of a much lower-dimensional variance matrix.

F.1 Uniform Asymptotic Validity

In the finite-sample normal model, we study both conditional and unconditional properties

of our methods. We would like to do the same in our asymptotic analysis, but may have

Pr
{
θ̂n= θ̃

}
→0 for some θ̃, in which case conditioning on θ̂n= θ̃ is problematic. To address

this, we multiply conditional statements by the probability of the conditioning event.

Asymptotic uniformity results for conditional inference procedures were established by

Tibshirani et al. (2018) and Andrews, Kitagawa, and McCloskey (2021) for settings where

the target parameter is chosen in other ways. Their results, however, limit attention to

30



classes of data generating processes with asymptotically bounded means (µX,n,µY,n). This

rules out e.g. the conventional pointwise asymptotic case that fixes P and takes n→∞.

We do not require such boundedness. Moreover, the results of Tibshirani et al. (2018) do

not cover quantile-unbiased estimation, and also do not cover hybrid procedures, which

are new to the literature.3

Our proofs are based on subsequencing arguments as in D. Andrews, Cheng, and

Guggenberger (2020), though due to the differences in our setting (our interest in condi-

tional inference, and the fact that our target is random from an unconditional perspective)

we cannot directly apply their results. We first establish the asymptotic validity of our

quantile-unbiased estimators.

Proposition 10

Under Assumptions 6-8, for µ̂α,n the α-quantile unbiased estimator,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)|θ̂n= θ̃
}
−α
∣∣∣PrP{θ̂n= θ̃

}
=0, (A.20)

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂α,n≥µY,n(θ̂n;P)}−α∣∣∣=0. (A.21)

This immediately implies asymptotic validity of equal-tailed confidence intervals.

Corollary 1

Under Assumptions 6-8, for CIET,n the level 1−α equal-tailed confidence interval

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CIET,n|θ̂n= θ̃
}
−(1−α)

∣∣∣PrP{θ̂n= θ̃
}

=0,

for all θ̃∈Θ, and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CIET,n}−(1−α)
∣∣∣=0.

We can likewise establish uniform asymptotic validity of projection confidence intervals.

Proposition 11

3In a follow-up paper, Andrews, Kitagawa, and McCloskey (2021), we apply the conditional and

hybrid approaches developed here to settings where θ̂=argmax‖X(θ)‖.
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Under Assumptions 6-8, for CIP,n the level 1−α projection confidence interval,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIP,n

}
≥1−α. (A.22)

To state results for hybrid estimators and confidence intervals, let CH
n

(
θ̃;P
)

=

1
{
θ̂n= θ̃,µY,n

(
θ̂n;P

)
∈CIβP,n

}
be an indicator for the hybrid conditioning event that

θ̂n is equal to θ̃ and the parameter of interest µY (θ̃) falls in the level β projection confidence

interval CIβP,n. We can establish quantile unbiasedness of hybrid estimators given this

event, along with bounded unconditional bias.

Proposition 12

Under Assumptions 6-8, for µ̂Hα,n the α-quantile unbiased hybrid estimator based on CIβP,n,

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)|CH
n

(
θ̃;P
)

=1
}
−α
∣∣∣EP{CH

n

(
θ̃;P
)}

=0, (A.23)

for all θ̃∈Θ, and

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µ̂Hα,n≥µY,n(θ̂n;P)}−α∣∣∣≤max{α,1−α}β. (A.24)

Validity of hybrid estimators again implies validity of hybrid confidence intervals.

Corollary 2

Under Assumptions 6-8, for CIHET,n the level 1−α equal-tailed hybrid confidence interval

based on CIβP,n,

lim
n→∞

sup
P∈Pn

∣∣∣∣PrP{µY,n(θ̂n;P)∈CIHET,n|CH
n

(
θ̃;P
)

=1
}
−1−α

1−β

∣∣∣∣EP{CH
n

(
θ̃;P
)}

=0, (A.25)

for all θ̃∈Θ,

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n

}
≥1−α, (A.26)

and

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n

}
≤ 1−α

1−β
≤1−α+β. (A.27)

Hence, our procedures are uniformly asymptotically valid, unlike conventional inference.4

4The bootstrap also fails to deliver uniform validity, as it implicitly tries to estimate the difference be-
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F.2 Auxiliary Lemmas

This section collects lemmas that we will use to prove our uniformity results.

Lemma 5

Under Assumption 8, for any sequence of confidence intervals CIn, any sequence of sets

Cn(P) indexed by P , Cn(P)=1
{(
Xn,Yn,Σ̂n

)
∈Cn(P)

}
, and any constant α, to show that

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CIn|Cn(P)=1
}
−α
∣∣∣PrP{Cn(P)=1}=0

it suffices to show that for all subsequences {ns}⊆{n}, {Pns}∈P∞=×∞n=1Pn with:

1. Σ(Pns)→Σ∗∈S for

S=

{
Σ:1/λ̄≤(ΣX(θ),ΣY (θ))≤ λ̄,1/λ̄≤

√
ΣX(θ;P)ΣX(θ̃;P)−ΣX(θ,θ̃;P)

}
,

(A.28)

2. PrPns{Cns(Pns)=1}→p∗∈(0,1], and

3. µX,ns(Pns)−maxθµX,ns(θ;Pns)→µ∗X∈M∗
X for

M∗
X=

{
µX∈ [−∞,0]|Θ| :max

θ
µX(θ)=0

}
,

we have

lim
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIns|Cns(Pns)=1

}
=α. (A.29)

Lemma 6

For collections of sets Cn,1(P),...,Cn,J (P), and Cn,j (P) = 1
{(
Xn,Yn,Σ̂n

)
∈Cn,j(P)

}
, if

limn→∞supP∈PnPrP{Cn,j(P)=1,Cn,j′(P)=1}=0 for all j 6=j′ and

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CIn|Cn,j(P)=1
}
−(1−α)

∣∣∣PrP{Cn,j(P)=1}=0

for all j, then

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
≥(1−α)·liminf

n→∞
inf
P∈Pn

∑
j

PrP{Cn,j(P)=1},

tween the “winning” policy and the others, which cannot be done with sufficient precision. We are unaware
of results for subsampling, m-out-of-n bootstrap, or other resampling-based approaches for this setting.
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limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
≤1−α·liminf

n→∞
inf
P∈Pn

∑
j

PrP{Cn,j(P)=1}.

To state the next lemma, define

L
(
θ̃,Z,Σ

)
= max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY

(
θ̃
)(
Z(θ)−Z

(
θ̃
))

ΣXY

(
θ̃
)
−ΣXY

(
θ̃,θ
) (A.30)

U
(
θ̃,Z,Σ

)
= min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY

(
θ̃
)(
Z(θ)−Z

(
θ̃
))

ΣXY

(
θ̃
)
−ΣXY

(
θ̃,θ
) , (A.31)

where we define a maximum over the empty set as −∞ and a minimum over the empty

set as +∞. For (
X∗n

Y ∗n

)
=

(
Xn−maxθµX,n(θ;P)

Yn−µY,n(P)

)
,

we next show that using
(
X∗n,Y

∗
n ,Σ̂n

)
in our calculations yields the same bounds L and

U as using
(
Xn,Yn,Σ̂n

)
, up to additive shifts.

Lemma 7

For L
(
θ̃,Z,Σ

)
and U

(
θ̃,Z,Σ

)
as defined in (A.30) and (A.31), and

Zθ̃,n=Xn−
Σ̂XY,n

(
·,θ̃
)

Σ̂Y,n

(
θ̃
) Yn

(
θ̃
)
, Z∗

θ̃,n
=X∗n−

Σ̂XY,n

(
·,θ̃
)

Σ̂Y,n

(
θ̃
) Y ∗n

(
θ̃
)
,

we have

L
(
θ̃,Z∗

θ̃,n
,Σ̂n

)
=L
(
θ̃,Zθ̃,n,Σ̂n

)
−µY,n

(
θ̃;P
)
, U

(
θ̃,Z∗

θ̃,n
,Σ̂n

)
=U
(
θ̃,Zθ̃,n,Σ̂n

)
−µY,n

(
θ̃;P
)
.

For brevity, going forward we use the shorthand notation(
L
(
θ̃,Zθ̃,n,Σ̂n

)
,U
(
θ̃,Zθ̃,n,Σ̂n

)
,L
(
θ̃,Z∗

θ̃,n
,Σ̂n

)
,U
(
θ̃,Z∗

θ̃,n
,Σ̂n

))
=(Ln,Un,L∗n,U∗n).

Lemma 8

Under Assumptions 6 and 7, for any {ns} and {Pns} satisfying conditions (1)-(3) of Lemma

5 and any θ̃ with µ∗X

(
θ̃
)
>−∞,

(
Y ∗ns,L

∗
ns,U

∗
ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,L∗,U∗,Σ∗,θ̂

)
, where the
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objects on the right hand side are calculated based on (Y ∗,X∗,Σ∗) for
(
X∗
′
,Y ∗

′)′∼N(µ∗,Σ∗)

with µ∗=(µ∗′X,0
′)′.

Lemma 9

For FN again the standard normal distribution function, the function

FTN(Y (θ);µ,ΣY (θ),L,U)=

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1{Y (θ)≥L} (A.32)

is continuous in (Y (θ),µ,ΣY (θ),L,U) on the set

{
(Y (θ),µ,ΣY (θ))∈R3,L∈R∪{−∞},U∈R∪{∞} :ΣY (θ)>0,L<Y (θ)<U

}
.

F.3 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

limsup
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P)∈CIn|Cn(P)=1
}
−α
∣∣∣PrP{Cn(P)=1}=0

it suffices to show that

liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}≥0 (A.33)

and

limsup
n→∞

sup
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}≤0. (A.34)

We prove that to show (A.33), it suffices to show that for all {ns} , {Pns} satisfying

conditions (1)-(3) of the lemma,

liminf
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIns|Cns(Pns)=1

}
≥α. (A.35)

An argument along the same lines implies that to prove (A.34) it suffices to show that

limsup
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIns|Cns(Pns)=1

}
≤α. (A.36)

Note, however, that (A.35) and (A.36) together are equivalent to (A.29).
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Towards contradiction, suppose that (A.33) fails, so

liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn(P)=1

}
−α
)
PrP{Cn(P)=1}<−ε,

for some ε>0 but that (A.35) holds for all sequences satisfying conditions (1)-(3) of the

lemma. Then there exists an increasing sequence of sample sizes nq and some sequence{
Pnq
}

with Pnq∈Pnq for all q such that

limsup
q→∞

(
PrPnq

{
µY,nq

(
θ̂nq ;Pnq

)
∈CInq |Cnq

(
Pnq
)
=1
}
−α
)
PrPnq

{
Cnq
(
Pnq
)
=1
}
<−ε. (A.37)

We want to show that there exists a further subsequence {ns}⊆{nq} satisfying (1)-(3) in

the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (A.28) is compact (e.g. in the Frobenius norm),

and Assumption 8 implies that Σ
(
Pnq
)
∈S for all q, there exists a further subsequence

{nr}⊆{nq} such that

lim
r→∞

Σ(Pnr)→Σ∗

for some Σ∗∈S.
Note, next, that PrPnr{Cnr(Pnr)=1}∈ [0,1] for all r, and so converges along a subse-

quence {nt}⊆{nr}. However, (A.37) implies that PrPnr{Cnr(Pnr)=1}≥ ε
α

for all r, and

thus that PrPnt{Cnt(Pnt)=1}→p∗∈
[
ε
α
,1
]
.

Finally, let us define µ∗X,n(P)=µX,n(P)−maxθµX,n(θ;P), and note that µ∗X,n(P)≤0

by construction. Since µ∗X,n(P) is finite-dimensional and maxθµ
∗
X,n(P ;θ)=0, there exists

some θ∈Θ such that µ∗X,n(P ;θ) is equal to zero infinitely often. Let {nu}⊆{nt} extract

the corresponding sequence of sample sizes. The set [−∞,0]|Θ| is compact under the metric

d(µX,µ̃X)=‖FN(µX)−FN(µ̃X)‖ for FN(·) the standard normal cdf applied elementwise,

and ‖·‖ the Euclidean norm. Hence, there exists a further subsequence {ns}⊆{nu} along

which µ∗X,ns(Pns) converges to a limit in this metric. Note, however, that this means that

µ∗X,ns(Pns) converges to a limit µ∗∈M∗ in the usual metric.

Hence, we have shown that there exists a subsequence {ns}⊆{nq} that satisfies (1)-(3).

By supposition, (A.35) must hold along this subsequence. Thus,

liminf
n→∞

(
PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIns|Cns(Pns)=1

}
−α
)
PrP{Cns(Pns)=1}≥0,

which contradicts (A.37). Hence, we have established a contradiction and so proved

that (A.35) for all subsequences satisfying conditions (1)-(3) of the lemma implies (A.33).
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An argument along the same lines shows that (A.36) along all subsequences satisfying

conditions (1)-(3) of the lemma implies (A.34). �

Proof of Lemma 6 Define Cn,J+1(P)=1{Cn,j(P)=0 for all j∈{1,...,J}}. Note that

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
=
∑J+1

j=1PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,j(P)=1

}
PrP{Cn,j(P)=1}+o(1)

where the o(1) term is negligible uniformly over P ∈Pn as n→∞. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
−(1−α)

=
∑J+1

j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}+o(1)

and

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
−(1−α)

=liminf
n→∞

inf
P∈Pn

J+1∑
j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}

=liminf
n→∞

inf
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,J+1(P)=1

}
−(1−α)

)
PrP{Cn,J+1(P)=1}

≥−(1−α)limsup
n→∞

sup
P∈Pn

PrP{Cn,J+1(P)=1}

=−(1−α)

(
1−liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}

)
which immediately implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
≥(1−α)liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}.

Likewise,

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
−(1−α)

=limsup
n→∞

sup
P∈Pn

J+1∑
j=1

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,j(P)=1

}
−(1−α)

)
PrP{Cn,j(P)=1}
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=limsup
n→∞

sup
P∈Pn

(
PrP

{
µY,n

(
θ̂n;P

)
∈CIn|Cn,J+1(P)=1

}
−(1−α)

)
PrP{Cn,J+1(P)=1}

≤α·limsup
n→∞

sup
P∈Pn

PrP{Cn,J+1(P)=1}=α

(
1−liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1}

)
.

This immediately implies that

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIn

}
≤1−α·liminf

n→∞
inf
P∈Pn

J∑
j=1

PrP{Cn,j(P)=1},

as we wanted to show. �

Proof of Lemma 7 Note that

Z∗
θ̃,n

=Zθ̃,n−max
θ
µX,n(θ;P)+Σ̂XY,n

(
·,θ̃
)µY,n(θ̃;P)

Σ̂Y,n

(
θ̃
) ,

so

Z∗
θ̃,n

(θ)−Z∗
θ̃,n

(
θ̃
)

=Zθ̃,n(θ)−Zθ̃,n
(
θ̃
)

+
(

Σ̂XY,n

(
θ,θ̃
)
−Σ̂XY,n

(
θ̃
))µY,n(θ̃;P)

Σ̂Y,n

(
θ̃
) .

The result follows immediately. �

Proof of Lemma 8 By Assumption 6(
Xns−µX,ns(Pns)
Yns−µY,ns(Pns)

)
→dN(0,Σ∗).

Hence, by Slutsky’s lemma(
X∗ns
Y ∗ns

)
=

(
Xns−maxθµX,ns(θ;Pns)

Yns−µY,ns(Pns)

)
→d

(
X∗

Y ∗

)
∼N(µ∗,Σ∗).

We begin by considering one θ∈Θ\
{
θ̃
}

at a time. Since Σ̂ns→pΣ∗ by Assumption
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7, if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
6=0 then

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →d

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) ,

where the terms on the right hand side are based on (X∗,Y ∗,Σ∗). The limit is finite if

µ∗X(θ)>−∞, while otherwise µ∗X(θ)=−∞ and

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) =

−∞ if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
>0

+∞ if Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
<0

.

If instead Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)

=0, then since Σ∗X(θ̃,θ)<
√

Σ∗X(θ̃)Σ∗X(θ),

Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
)

=X∗(θ)−X∗
(
θ̃
)

is normally distributed with non-zero variance. Hence, in this case∣∣∣∣∣∣
Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

∣∣∣∣∣∣→∞. (A.38)

Let us define

Θ∗
(
θ̃
)

=
{
θ∈Θ\θ̃ :Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
)
6=0
}
.

The argument above implies that

max
θ∈Θ∗(θ̃):Σ̂XY,ns(θ̃)>Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

→dL∗= max
θ∈Θ:Σ∗XY (θ̃)>Σ∗XY (θ̃,θ)

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) , (A.39)

and

min
θ∈Θ∗(θ̃):Σ̂XY,ns(θ̃)<Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)
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→dU∗= min
θ∈Θ:Σ∗XY (θ̃)<Σ∗XY (θ̃,θ)

Σ∗Y

(
θ̃
)(
Z∗
θ̃
(θ)−Z∗

θ̃

(
θ̃
))

Σ∗XY

(
θ̃
)
−Σ∗XY

(
θ̃,θ
) . (A.40)

Since

max
θ∈Θ:Σ̂XY,ns(θ̃)>Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) ≤Y ∗ns(θ̃)

≤ min
θ∈Θ:Σ̂XY,ns(θ̃)<Σ̂XY,ns(θ̃,θ)

Σ̂Y,ns

(
θ̃
)(
Z∗
θ̃,ns

(θ)−Z∗
θ̃,ns

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
)

with probability one for all ns and Yns
d−→Y ∗, (A.38) implies

Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →−∞

when Σ∗XY

(
θ̃
)

=Σ∗XY

(
θ̃,θ
)

for all θ,θ̃∈Θ such that Σ̂XY,ns

(
θ̃
)
>Σ̂XY,ns

(
θ̃,θ
)

. Similarly,

Σ̂Y,ns

(
θ̃
)(
Z∗
ns,θ̃

(θ)−Z∗
ns,θ̃

(
θ̃
))

Σ̂XY,ns

(
θ̃
)
−Σ̂XY,ns

(
θ̃,θ
) →∞

when Σ∗XY

(
θ̃
)

= Σ∗XY

(
θ̃,θ
)

for all θ,θ̃ ∈Θ such that Σ̂XY,ns

(
θ̃
)
< Σ̂XY,ns

(
θ̃,θ
)

. Thus,

the same convergence results as (A.39)–(A.40) continue to hold when we minimize and

maximize over Θ rather than Θ∗(θ̃). Hence,
(
L∗ns,U

∗
ns

)
→d (L∗,U∗). Moreover, θ̂ns is almost

everywhere continuous in X∗ns, so
(
Y ∗ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,Σ∗,θ̂

)
by the continuous mapping

theorem, and this convergence holds jointly with that for
(
L∗ns,U

∗
ns

)
. Hence, we have

established the desired convergence. �

Proof of Lemma 9 Continuity for ΣY (θ)> 0,L<Y (θ)<U with all elements finite

is immediate from the functional form. Moreover, for fixed (Y (θ),µ,ΣY (θ)) ∈ R3 with

ΣY (θ)>0 and L<Y (θ)<U,

lim
U→∞

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1{Y (θ)≥L}=
FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
∞√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
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lim
L→−∞

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1{Y (θ)≥L}=
FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
and

lim
(L,U)→(−∞,∞)

FN

(
Y (θ)∧U−µ√

ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

)
FN

(
U−µ√
ΣY (θ)

)
−FN

(
L−µ√
ΣY (θ)

) 1{Y (θ)≥L}=
FN

(
Y (θ)−µ√

ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

)
FN

(
∞√
ΣY (θ)

)
−FN

(
−∞√
ΣY (θ)

).
Hence, we obtain the desired result. �

F.4 Proofs for Uniformity Results

Proof of Proposition 10 Note that

µ̂α,n≥µY,n
(
θ̂n;P

)
⇐⇒ µY,n

(
θ̂n;P

)
∈CIU,−,n

for CIU,−,n = (−∞,µ̂α,n]. Hence, by Lemma 5, to prove that (A.20) holds it suffices to

show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
{
θ̂n= θ̃

}
, we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CIU,−,ns|θ̂ns = θ̃

}
=α. (A.41)

To this end, recall that for FTN(Y (θ);µ,ΣY (θ),L,U) as defined in (A.32), the estimator

µ̂α,n solves FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
=1−α. This cdf is

strictly decreasing in µ as argued in the proof of Proposition 5, and is increasing in Yn

(
θ̂
)

.

Hence, µ̂α,n≥µY,n
(
θ̂n;P

)
if and only if

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
≥1−α.

Note, next, that by Lemma 7 and the form of the function FTN ,

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;P

)
,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,U
(
θ̂n,Zθ̂n,n,Σ̂n

))
=FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

))
,
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so µ̂α,n≥µY,n
(
θ̂n;P

)
if and only if

FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

))
≥1−α.

Lemma 8 shows that
(
Y ∗n

(
θ̂ns

)
,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns,θ̂ns

)
converges in distribution as s→∞,

so since FTN is continuous by Lemma 9 while argmaxθX
∗(θ) is almost surely unique and

continuous for X∗ as in Lemma 8, the continuous mapping theorem implies that(
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
,1
{
θ̂ns = θ̃

})
→d

(
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗

)
,1
{
θ̂= θ̃

})
.

Since we can write

PrPns

{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α|θ̂ns = θ̃

}

=
EPns

[
1
{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α

}
1
{
θ̂ns = θ̃

}]
EPns

[
1
{
θ̂ns = θ̃

}] ,

and by construction (see also Proposition 7 in the main text),

FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗,θ̂

)
|θ̂= θ̃∼U[0,1],

and Pr
{
θ̂= θ̃

}
=p∗>0, we thus have that

PrPns

{
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂ns

)
,L∗ns,U

∗
ns

)
≥1−α|θ̂ns = θ̃

}
→Pr

{
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,L∗,U∗

)
≥1−α|θ̂= θ̃

}
=α,

which verifies (A.41).

Since this argument holds for all θ̃∈Θ, and Assumptions 6 and 8 imply that for all

θ,θ̃∈Θ with θ 6= θ̃, limn→∞supP∈PnPrP

{
Xn(θ)=Xn

(
θ̃
)}

=0, Lemma 6 implies (A.21). �

Proof of Corollary 1 By construction, CIET,n=
[
µ̂α/2,n,µ̂1−α/2,n

]
, and µ̂1−α/2,n>µ̂α/2,n

for all α<1. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CIET,n|θ̂n= θ̃

}
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=PrP

{
µY,n

(
θ̂n;P

)
≤µ̂1−α/2,n|θ̂n= θ̃

}
−PrP

{
µY,n

(
θ̂n;P

)
≤µ̂α/2,n|θ̂n= θ̃

}
,

so the result is immediate from Proposition 10 and Lemma 6. �

Proof of Proposition 11 By the same argument as in the proof of Lemma 5, to show

that (A.22) holds it suffices to show that for all {ns}, {Pns} satisfying conditions (1)-(3)

of Lemma 5, liminfn→∞PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIP,ns

}
≥1−α.

To this end, note that

µY,ns

(
θ̂ns;Pns

)
∈CIP,ns if and only if Y ∗ns

(
θ̂ns

)
∈
[
−cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

)
,cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

)]

for cα(ΣY ) the 1−α quantile of maxθ|ξ(θ)|/
√

ΣY (θ) where ξ∼N(0,ΣY ). Next, note that

cα(ΣY ) is continuous in Σ on S as defined in (A.28). Hence, for all θ, cα(ΣY )
√

ΣY (θ) is

continuous as well. Assumptions 6 and 7 imply that
(
Y ∗ns,Σ̂ns,θ̂ns

)
→d

(
Y ∗,Σ∗,θ̂

)
, which

by the continuous mapping theorem implies(
Y ∗ns

(
θ̂ns

)
,cα

(
Σ̂Y,ns

)√
Σ̂Y

(
θ̂ns

))
→d

(
Y ∗
(
θ̂
)
,cα(Σ∗Y )

√
Σ∗Y

(
θ̂
))

.

Hence, since Pr

{∣∣∣Y ∗(θ̂)∣∣∣−cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)

=0

}
=0,

PrPns

{
µY,ns

(
θ̂ns

;Pns

)
∈CIP,ns

}
→Pr

{
Y ∗
(
θ̂
)
∈

[
−cα(Σ∗

Y )

√
Σ∗
Y

(
θ̂
)
,cα(Σ∗

Y )

√
Σ∗
Y

(
θ̂
)]}

(A.42)

where the right hand side is at least 1−α by construction. �

Proof of Proposition 12 Note that µ̂Hα,n ≥ µY,n
(
θ̂n;P

)
if and only if µY,n

(
θ̂n;P

)
∈

CIHU,−,n for CIHU,−,n=(−∞,µ̂Hα,n]. Hence, by Lemma 5, to prove that (A.23) holds it suffices

to show that for all {ns} and {Pns} such that conditions (1)-(3) of the lemma hold with

Cn(P)=1
{
θ̂n= θ̃,µY,n

(
θ̂n;Pn

)
∈CIβP,n

}
, we have

lim
s→∞

PrPns

{
µ̂Y,ns

(
θ̂ns;Pns

)
∈CIHU,−,n|θ̂ns = θ̃,µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

}
=α.

Recall that for FTN(Y (θ);µ,ΣY (θ),L,U) defined as in (A.32), µ̂Hα,n solves

FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,LHn
(
µ,θ̂n

)
,UHn

(
µ,θ̂n

))
=1−α,
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for

LHn
(
µ,θ̂n

)
=max

{
L
(
θ̂n,Zθ̂n,n,Σ̂n

)
,µ−cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
,

UHn
(
µ,θ̂n

)
=min

{
U
(
θ̂n,Zθ̂n,n,Σ̂n

)
,µ+cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
.

The proof of Proposition 5 shows that FTN

(
Yn

(
θ̂n

)
;µ,Σ̂Y,n

(
θ̂n

)
,LHn
(
µ,θ̂n

)
,UHn

(
µ,θ̂n

))
is

strictly decreasing in µ, so for a given value µY,0,

µ̂Hα,n≥µY,0⇐⇒ FTN

(
Yn

(
θ̂n

)
;µY,0,Σ̂Y,n

(
θ̂n

)
,LHn
(
µY,0,θ̂n

)
,UHn

(
µY,0,θ̂n

))
≥1−α.

As in the proof of Proposition 10

FTN

(
Yn

(
θ̂n

)
;µY,n

(
θ̂n;Pn

)
,Σ̂Y,n

(
θ̂n

)
,LHn

(
µY,n

(
θ̂n;Pn

)
,θ̂n

)
,UHn

(
µY,n

(
θ̂n;Pn

)
,θ̂n

))
=FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,LH∗n

(
θ̂n

)
,UH∗n

(
θ̂n

))
,

where

LH∗n
(
θ̂n

)
=max

{
L
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,−cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}
,

UH∗n
(
θ̂n

)
=min

{
U
(
θ̂n,Z

∗
θ̂n,n

,Σ̂n

)
,cα

(
Σ̂Y,n

)√
Σ̂Y

(
θ̂n

)}

so µ̂Hα,n≥µY,n
(
θ̂n;P

)
if and only if FTN

(
Y ∗n

(
θ̂n

)
;0,Σ̂Y,n

(
θ̂n

)
,LH∗n

(
θ̂n

)
,UH∗n

(
θ̂n

))
≥1−α.

Lemma 8 implies that
(
Y ∗ns,Σ̂Y,ns,L

H∗
ns

(
θ̃
)
,UH∗ns

(
θ̃
)
,θ̂ns

)
→d

(
Y ∗,Σ∗Y ,LH∗

(
θ̃
)
,UH∗

(
θ̃
)
,θ̂
)
,

where LH∗
(
θ̃
)

and UH∗
(
θ̃
)

are equal to LH∗n
(
θ̃
)

and UH∗n
(
θ̃
)

after replacing (Xn,Yn,Σ̂n) with

(X,Y,Σ∗). Then by the continuous mapping theorem and (A.42),(
FTN

(
Y ∗ns

(
θ̂ns

)
;0,Σ̂Y,ns

(
θ̂nS

)
,LH∗ns

(
θ̃
)
,UH∗ns

(
θ̃
))
,1
{
θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

})
→d

(
FTN

(
Y ∗
(
θ̂
)

;0,Σ∗Y

(
θ̂
)
,LH∗

(
θ̃
)
,UH∗

(
θ̃
))
,1

{
θ̂= θ̃,Y ∗

(
θ̂
)
∈
[
−cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)
,cα(Σ∗Y )

√
Σ∗Y

(
θ̂
)]})

.

Hence, by the same argument as in the proof of Proposition 10,

lim
s→∞

PrPns

{
µY,ns

(
θ̂ns;Pns

)
∈CIHU,−,ns|θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

}
=α,

as we aimed to show.
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To prove (A.24), note that for C̃I
H

U,+,n=(µ̂Hα,n,∞),

µ̂Hα,n≥µY,n
(
θ̂n;P

)
⇐⇒ µY,n

(
θ̂n;P

)
6∈C̃I

H

U,+,n

and thus that the argument above proves that

lim
n→∞

sup
P∈Pn

∣∣∣PrP{µY,n(θ̂n;P
)
∈C̃I

H

U,+,n|CHn
(
θ̃;P
)}
−(1−α)

∣∣∣PrP{CHn (θ̃;P)}=0

for CHn

(
θ̃;P
)

as in the statement of the proposition. Since

∑
θ̃∈Θ

PrP

{
θ̂ns= θ̃,µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

}
=PrP

{
µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

}
+o(1), (A.43)

and Proposition 11 shows that

liminf
s→∞

inf
P∈Pns

PrP

{
µY,ns

(
θ̂ns;Pns

)
∈CIβP,ns

}
≥1−β,

Lemma 6 together with (A.23) implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µ̂Hα,n<µY,n

(
θ̂n;P

)}
≥(1−α)(1−β)=(1−α)−β(1−α)

and

limsup
n→∞

sup
P∈Pn

PrP

{
µ̂Hα,n<µY,n

(
θ̂n;P

)}
≤1−α(1−β)=(1−α)+βα

from which the second result of the proposition follows immediately. �

Proof of Corollary 2 Note that by construction CIHET,n =

[
µ̂Hα−β

2(1−β) ,n
,µ̂H

1− α−β
2(1−β) ,n

]
, where

µ̂Hα−β
2(1−β) ,n

<µ̂H
1− α−β

2(1−β) ,n
provided α−β

1−β <1. Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n|CHn

(
θ̃,P
)}

=PrP

{
µY,n

(
θ̂n;P

)
≤µ̂H

1− α−β
2(1−β) ,n

|CHn
(
θ̃,P
)}
−PrP

{
µY,n

(
θ̂n;P

)
<µ̂Hα−β

2(1−β) ,n
|CHn

(
θ̃,P
)}
,

so Proposition 12 immediately implies (A.25).

Equation (A.43) in the proof of Proposition 12 together with Lemma 6 implies that

liminf
n→∞

inf
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n

}
≥ 1−α

1−β
(1−β)=1−α
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so (A.26) holds. We could likewise get an upper bound on coverage using Lemma 6, but obtain a

sharper bound by proving the result directly. Specifically, note that

µY,n

(
θ̂n;Pn

)
∈CIHET,n⇒µY,n

(
θ̂n;Pn

)
∈CIβP,n.

Hence,

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n

}
=PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n|µ̂Y,n

(
θ̂n;Pn

)
∈CIβP,n

}
Pr
{
µY,n

(
θ̂n;Pn

)
∈CIβP,n

}
.

By the first part of the proposition, this implies that

limsup
n→∞

sup
P∈Pn

PrP

{
µY,n

(
θ̂n;P

)
∈CIHET,n

}
≤ 1−α

1−β
limsup
n→∞

sup
P∈Pn

Pr
{
µY,n

(
θ̂n;Pn

)
∈CIβP,n

}

≤ 1−α
1−β

,

so (A.27) holds as well. �

G Additional Materials for Neighborhoods Application

This appendix provides additional details on the neighborhoods application discussed in Section

7 of the main text.

G.1 Simulation Design and Target Parameters

Our simulations take the census tract-level, un-shrunk estimates from the Opportunity Atlas as

the true parameter values. The true parameter value in tract t, µt, thus corresponds to tract-level

average household income rank in adulthood for children growing up in households at the 25th

percentile of the income distribution.5 We simulate estimates for tract t by drawing µ̂t∼N(µt,σ
2
t ),

for µt the Opportunity Atlas estimate and σt the Opportunity Atlas standard error. We treat

the draws µ̂t as independent across tracts. Hence, in each commuting zone, for T the set of

tracts in that CZ we generate jointly normal sets of estimates and corresponding standard errors,

{(µ̂t,σt):t∈T }. Our analysis also drops the single tract in the data where σt>1, (i.e. a standard

error in excess of 100 percentile points) which was located in the Seattle CZ. No other tract in

the CZs we consider has a standard error larger that 0.2.

As discussed in the main text, in each commuting zone we define Θ as the set of selections

containing one third of the tracts in T (rounded down), Θ={θ⊂T : |θ|=b|T |/3c}. For X(θ)=

5Specifically, we focus on kfr pooled pooled p25 from in the file tract outcomes simple.cvs, available at
https://opportunityinsights.org/wp-content/uploads/2018/10/tract_outcomes_simple.csv,
downloaded on May 10, 2022.
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1
|θ|
∑

t∈θµ̂t the average estimate over tracts in θ, θ̂=argmaxθX(θ) thus selects the third of tracts

with the largest estimates. For ct the number of voucher households with children reported to be

living in tract t,6 we define Y (θ) as a difference between X(θ) and a ct weighted average of µ̂t over

all tracts in the commuting zone Y (θ)=X(θ)−
∑
tctµ̂t∑
tct

. Our target parameter µY (θ)=E[Y (θ)]=

1
|θ|
∑

t∈θµt−
∑
tctµt∑
tct

thus measures the difference between the weighted average outcome in the

tracts where voucher households with children currently live and the average across targeted tracts.

We examine the performance of several estimators and confidence intervals for µY (θ̂) in each

of our 50 commuting zones. To do so, for each commuting zone and each draw µ̂=(µ̂1,...,µ̂|T |)

we compute the corresponding estimators µ̂Y and confidence intervals CI. For each procedure

considered (detailed in the next section) we report the median bias, Med
(
µ̂Y −µY

(
θ̂
))
, the

median absolute error, Med
(∣∣∣µ̂Y −µY (θ̂)∣∣∣), the coverage probability Pr

{
µY

(
θ̂
)
∈CI

}
, and

the median confidence interval length, Med(|CI|). Specifically, for each commuting zone and

each simulation draw s∈{1,...,S} for S=10,000 we draw µ̂s as described above. We then form

Xs(θ)= 1
|θ|
∑

t∈θµ̂
s
t and set θ̂s=argmaxθXs(θ). For µ̂Y,s and CIs the resulting point estimate

and confidence interval in simulation draw s, we then approximate the average coverage in that

commuting zone by the sample average 1
S

∑
s1
{
µY

(
θ̂s

)
∈CIs

}
, while Med

(
µ̂Y,s−µY

(
θ̂
))

and

the other medians are correspondingly approximated by sample medians across simulation draws.

We record these quantities separately in each commuting zone, and Figure IV in the main text

shows their distribution across commuting zones.

Note that in all cases we focus on unconditional performance measures, both because we

think these are of substantive interest in this application, and because computing and reporting

conditional quantities (e.g. conditional coverage probabilities Pr
{
µY

(
θ̂
)
∈CI|θ̂= θ̃

}
) is difficult

in this setting given the prohibitively large size of |Θ|, which is equal to |T | choose b|T |/3c.

G.2 Fixed-Length Projection Intervals

We report confidence intervals and, where applicable, point estimates for the conventional, pro-

jection, conditional, and hybrid approaches. Following Chetty et al. (2020) we also report results

based on an empirical Bayes approach. We defer discussion of the empirical Bayes approach to

the next section, while the conventional and conditional approaches are as described in the main

text. Due to the large size of Θ, however, we need to modify the projection (and thus hybrid)

approach for this application.

Specifically, the projection approach considered in the main text ensures that the width of

the projection interval for µY (θ̂) is proportional to

√
ΣY (θ̂). To compute these intervals, we need

to approximate the critical value cα, which we do by repeatedly drawing ξ∼N(0,ΣY ) and setting

6Computed based on the 2018 Picture of Subsidized Housing dataset from the US Department of
Housing and Urban Development, (US Department of Housing and Urban Development, 2018).
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cα equal to the 1−α quantile of maxθ|ξ(θ)|/
√

ΣY (θ). In the neighborhoods application, however,

solving the optimization problem maxθ|ξ(θ)|/
√

ΣY (θ) requires a numerical search over Θ, and

is computationally prohibitive. To sidestep this computational challenge, in this application we

consider fixed length projection intervals which set CIP =
[
Y (θ̂)−c∗α,Y (θ̂)+c∗α

]
.

We term these fixed length intervals since their length does not depend on θ̂. The critical

value c∗α corresponds to the 1−α quantile of maxθ |ξ(θ)|, again for ξ∼N(0,ΣY ). Unlike the

original critical value cα, we can easily approximate c∗α by simulation. In particular, to compute

maxθ|ξ(θ)| it suffices to independently draw ξt∼N(0,σ2
t ) in each tract t, for σt the Opportunity

Atlas standard error for that tract. We then sort the tract-level noise draws ξt and select either

the top or bottom third, whichever yields a larger average in absolute value, and take maxθ|ξ(θ)|
equal to the resulting (absolute) average. Validity of the resulting projection confidence interval

follows by the same argument as before, as does validity of hybrid estimators and intervals based

on this version of projection.

G.3 Empirical Bayes and Winner’s Curse

Chetty et al. (2020) focus on what they term forecast-unbiased estimates. These correspond

to posterior means from a correlated random effects model which treats mobility as normally

distributed conditional on a set of observable tract characteristics, with a mean that changes

linearly in the tract characteristics and a constant variance. Specifically, for Wt the characteristics

of tract t, these estimates correspond to posterior means under the prior π that takes µt

independent across tracts, with

µt|Wt∼N
(
W ′tβ,ω

2
)
. (A.44)

They then plug in estimates of ω and β, so in our simulations we do the same.

If we take the model (A.44) seriously and abstract from estimation of ω and β (for instance

because the number of tracts is large and we plug in consistent estimates), Bayesian posterior

means solve the winner’s curse problem under the prior. Specifically, note that the posterior

mean for µt given the vector of estimates µ̂ is simply the mean given µ̂t, Eπ[µt|µ̂]=Eπ[µt|µ̂t].
The law of iterated expectations implies, however, that Eπ[µt|µ̂] is unbiased for µt conditional

on µ̂, so for any set E such that Prπ{µ̂∈E}>0,

Eπ[µt−Eπ[µt|µ̂t]|µ̂∈E]=0.

Likewise, since we model µ̂t as normally distributed conditional on µt, the posterior mean is also

the posterior median, so

Prπ{Eπ[µt|µ̂t]>µt|µ̂∈E}=
1

2
,

and Eπ[µt|µ̂t] is median-unbiased under the prior conditional on the event {µ̂∈E}. Note, however,
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that selection of a particular set of target tracts can be written as an event {µ̂∈ E}, so this

argument implies that Bayesian posterior means are immune to the winner’s curse under the

prior. This depends crucially on the prior, however, since if we calculate the outer probability

with respect to some other distribution of effect sizes π̃ 6=π, we typically have

Prπ̃{Eπ[µt|µ̂t]>µt|µ̂∈E} 6=
1

2
.

G.4 Additional Figure for Movers Application

Figure 9 plots conventional, conditional, and projection intervals for the Opportunity Atlas

application described in the main text.

In our main analysis we compare a simple average over targeted tracts to a weighted average

over tracts in the same commuting zone, weighting by the number of voucher-recipient households

with children. It may also be of interest to treat the targeted and non-targeted tracts more

symmetrically, comparing a simple average over the target tracts to a simple average over the

commuting zone as a whole. Formally, this corresponds to the alternative target parameter

µ̄Y (θ)= 1
|θ|
∑

t∈θµt−
1
|T |
∑

tµt. Figures 10 and 11 report results for this alternative target in the

Opportunity Atlas data. These results are qualitatively similar to our baseline results, with the

notable exception that the coefficients are substantially smaller. The smaller coefficients from

under this weighting reflects that voucher recipient households are located in neighborhoods

with below-average mobility at baseline. Hence, a simple average of mobility across tracts in a

commuting zone yields a larger average economic mobility than the weighted average we consider

in our main results, and thus a smaller contrast with the targeted tracts

G.5 Evaluating the Normality Assumption in Empirical Bayes

As discussed in Appendix G.3, Bayesian approaches are immune to the winner’s curse in settings

where the distribution of true effects is correctly described by the prior. In Section 7 of the main

text we saw that empirical Bayes credible sets display large coverage distortions in simulations cali-

brated to the Opportunity Atlas data, which suggests that the normal approximation is not entirely

reliable in this application. This appendix formally investigates the quality of the normal approx-

imation in this application and its relationship to the coverage of empirical Bayes credible sets.

We begin by considering formal tests for normality in each of the 50 CZs used in our simulation.

Specifically, the normal prior used by empirical Bayes specifies that

µt|Wt∼N
(
W ′tβ,ω

2
)
,

for Wt a set of (observed) track-level covariates. We observe tract-level estimates µ̂t∼N
(
µt,σ

2
t

)
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Figure 9: Estimates and confidence intervals for average economic mobility for selected census
tracts based on the Chetty et al. (2020) Opportunity Atlas, relative to the within-CZ average,
weighted by number of voucher recipient households with children. CZs are ordered by the magni-
tude of the conventional estimate. A coefficient of 0.1 implies that the target tracts are associated
with a 10 percentile point higher average household income in adulthood, for children growing up in
households at the 25th percentile of the income distribution, relative to the weighted average across
the CZ. Diamonds plot the estimated standard deviation of mobility across all tracts in each CZ.
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Figure 10: Estimates and confidence intervals for average economic mobility for selected census
tracts based on the Chetty et al. (2020) Opportunity Atlas, relative to the within-CZ unweighted
average. CZs are ordered by the magnitude of the conventional estimate. A coefficient of 0.1
implies that the target tracts are associated with a 10 percentile point higher average household
income in adulthood, for children growing up in households at the 25th percentile of the income
distribution, relative to the weighted average across the CZ. Diamonds plot the estimated
standard deviation of mobility across all tracts in each CZ.
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Figure 11: Estimates and confidence intervals for average economic mobility for selected census
tracts based on the Chetty et al. (2020) Opportunity Atlas, relative to the within-CZ unweighted
average. CZs are ordered by the magnitude of the conventional estimate. A coefficient of 0.1
implies that the target tracts are associated with a 10 percentile point higher average household
income in adulthood, for children growing up in households at the 25th percentile of the income
distribution, relative to the weighted average across the CZ. Diamonds plot the estimated
standard deviation of mobility across all tracts in each CZ.
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for σ2
t known. If we knew β and ω we could thus compute

µ̂t−W ′tβ√
ω2+σ2

t

,

which would follow a standard normal distribution if the normal prior were correct. Since β and

ω are in fact unknown, within each CZ we construct an estimate β̂ by regressing µ̂t on Wt, and

construct an estimate ω̂2 as the average squared residual minus the average of σ2
t (or zero in the

case where ω̂2 would be negative). We conduct a Kolmogorov-Smirnov (KS) test for whether

µ̂t−W ′t β̂√
ω̂2+σ2

t

follows a standard normal distribution, where to account for estimation of the parameters we

compare the KS statistic to a bootstrap critical value, obtained via parametric bootstrap imposing

the normal model. The resulting KS test rejects normality in 37 CZs at the 5% level, and in

27 CZs in the 1% level.

We further examine the relationship between the quality of the normal approximation and

the performance of empirical Bayes. Specifically, we calculate the rank correlation between the

coverage of empirical Bayes credible sets and the KS statistic across the 50 CZs, obtaining a

correlation of -0.15 (with a p-value of 0.13). This correlation increases to -0.21 (with a p-value of

0.033) when we recenter the KS statistic in each CZ around the mean of its bootstrap distribution.

Hence CZs with a larger KS statistic tend to have worse coverage for empirical Bayes credible

sets, though the low correlation suggests that the KS statistic does not fully capture the features

of the distribution most important for determining the coverage of empirical Bayes credible sets.
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Index Treatment Description

0 0 Control group with no matched donations

Match ratio

1 1:1 An additional dollar up to the match limit
2 2:1 Two additional dollars up to the match limit
3 3:1 Three additional dollars up to the match limit

Match size

1 $25,000 Up to $25,000 is pledged
2 $50,000 Up to $50,000 is pledged
3 $100,000 Up to $100,000 is pledged
4 Unstated The pledged amount is not stated

Ask amount

1 Same The individual is asked to give as much as their largest past donation
2 25% more The individual is asked to give 25% more than their largest past

donation
3 50% more The individual is asked to give 50% more than their largest past

donation

Table 4: Treatment arms for Karlan and List (2007). Individuals were assigned to the control
group or to the treatment group, in the ratio 1:2. Treated individuals were randomly assigned
a match ratio, a match size and an ask amount with equal probability. There are 36 possible
combinations, plus the control group. The leftmost column specifies a reference index used
throughout this section for convenience.

H Application: Charitable Giving

Karlan and List (2007) partner with a political charity to conduct a field experiment examining

the effectiveness of matching incentives at increasing charitable giving. In matched donations,

a lead donor pledges to ‘match’ any donations made by other donors up to some threshold,

effectively lowering the price of political activism for other donors.

Karlan and List (2007) use a factorial design. Potential donors, who were previous donors to

the charity, were mailed a four page letter asking for a donation. The contents of the letter were

randomized, with one third of the sample assigned to a control group that received a standard

letter with no match. The remaining two thirds received a letter with the line “now is the time to

give!” and details for a match. Treated individuals were randomly assigned with equal probability

to one of 36 separate treatment arms. Treatment arms are characterized by a match ratio, a

match size, and an ask amount, for which further details are given in Table 4. The outcome
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Treatment Average donation Standard error 95% CI

(1,3,2) 1.52 0.35 [0.83,2.20]
(2,1,3) 1.51 0.46 [0.61,2.41]
(2,1,1) 1.42 0.39 [0.66,2.19]
(3,1,3) 1.40 0.36 [0.70,2.11]

Table 5: The average donations for the four best treatment arms according to the data,
n=50,083. Treatments are indexed by the indicators for (Match ratio, Match size, Ask amount)
defined in Table 4. The reported 95% confidence intervals are the conventional ones that do
not take selection into account.

of interest is the average dollar amount that individuals donated to the charity in the month

following the solicitation.

In total, 50,083 individuals were contacted, of which 16,687 were randomly assigned to the

control group, while 33,396 were randomly assigned to one of the 36 treatment arms. The

(unconditional) average donation was $0.81 in the control group and $0.92 in the treatment group.

Conditional on giving, these figures were $45.54 and $44.35, respectively. The discrepancy reflects

the low response rate; only 1,034 of 50,083 individuals donated.

Table 5 reports average revenue from the four best-performing treatment arms, along with

standard errors and conventional confidence intervals. The point estimates for the best-performing

arm suggest that a campaign that promises a dollar-for-dollar match up to $100,000 in donations

and asks individuals to donate 25% more than their largest past donation raises $1.52 per potential

donor, on average, with a confidence interval of $0.83 to $2.20. This estimate and confidence

interval are clearly subject to winner’s curse bias, however: we are picking the best-performing

arm out of 37 in the experiment, which will bias our estimates and confidence intervals upward.

Simulation Results To investigate the extent of winner’s curse bias and the finite-sample

performance of our corrections, we calibrate simulations to this application. We simulate datasets

by resampling observations with replacement from the Karlan and List (2007) data (i.e. by draw-

ing nonparametric bootstrap samples). In each simulated sample we re-estimate the effectiveness

of each treatment arm, pick the best-performing arm, and study the performance of estimates

and confidence intervals, treating the estimates for the original Karlan and List (2007) data as

the true values. The underlying data here are non-normal and we re-estimate the variance in

each simulation draw. Hence, these results also speak to the finite-sample performance of the

normal approximation. We report results based on 10,000 simulation draws.

Since revenue does not account for the cost of the fund-raising campaign, it is impossible

for the solicitation to raise a negative amount. We therefore set the parameter space for µ(θ̂)
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Winner
(1,3,2) (1,4,2) (1,4,3) (2,1,1) (2,1,3) (2,2,2) (2,3,3) (2,4,1) (2,4,2) (3,1,1) (3,1,3) (3,3,1)

16.0% 11.4% 1.3% 13.0% 18.9% 10.8% 1.3% 1.5% 2.8% 5.1% 10.0% 3.6%

Table 6: Frequency of simulation replications where each treatment is estimated to perform best
in simulations calibrated to Karlan and List (2007). Treatments are indexed by the indicators
for (Match ratio, Match size, Ask amount) defined in Table 4. 31 of the 37 treatments are best
in at least one replication; those that won in at least 1% of simulated samples are reported.

Estimate

Conventional Median unbiased Hybrid

Median bias 0.61 -0.18 -0.18
Probability bias 0.50 -0.07 -0.07
Median absolute error 0.61 0.65 0.64

Table 7: Performance measures for alternative estimators in simulations calibrated to Karlan
and List (2007). Probability bias is Pr{µ̂trim>µ(θ̂)}− 1

2 .

to R+, and trim the point estimators and the confidence intervals at zero, µ̂trim≡max{0,µ̂} and

CStrim = [0,∞)∩CS. This trimming does not affect the coverage of the confidence intervals,

and also preserves the α-quantile unbiasedness of the estimators so long as the true value µ(θ̂)

is greater than zero.

There is substantial variability in the “winning” arm: 31 of the 37 treatments won in at least

one simulation draw and 12 treatment arms won in at least 1% of simulated samples. Table 6

lists these 12 treatments. The variability of the winning arm suggests that there is scope for a

winner’s curse in this setting.

Table 7 examines the performance of conventional, median unbiased, and hybrid estimates, re-

porting (unconditional) median bias, probability bias (Pr{µ̂trim>µ(θ̂)}− 1
2), and median absolute

error. Trimming the estimators at zero does not affect the reported performance measures. Conven-

tional estimates suffer from substantial bias in this setting: they have a median bias of $0.61, and

over-estimate the revenue generated by the selected arm 100% of the time, up to rounding. The me-

dian unbiased and hybrid estimators substantially improve both measures of bias, though given the

finite-sample setting they do not eliminate it completely and are both somewhat downward biased,

though to a lesser degree.7 All three estimators perform similarly in terms of median absolute error.

7This is a particularly challenging setting for the normal approximation, as the outcomes distribution
is highly skewed due to the large number of zeros. In particular, there are on average only 20 nonzero
outcomes per non-control treatment (out of approximately 930 observations in each treatment group).
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Tables 8 and 9 report results for confidence intervals. Specifically, we consider the conventional,

projection, conditional, and hybrid confidence intervals with nominal coverage 95%. Table 8

reports unconditional coverage and median length, while Table 9 reports conditional coverage

probabilities given θ̂ values among the 12 treatments listed in Table 6. Conventional confidence

intervals slightly undercover unconditionally, with coverage 92%. Their conditional coverage

varies depending on which treatment is the winner. If the winning treatment is one of the

six best-performing treatments, the conditional coverage is at least 95%, while otherwise the

conventional confidence intervals under-cover with coverage probability as low as 65%. Projection

Unconditional Median length
coverage Trimmed Untrimmed

Conventional CS 0.92 1.88 1.88
CSP 1.00 3.08 3.08
CSET 0.97 2.69 5.91
CSHET 0.97 2.52 2.56

Table 8: Unconditional coverage probabilities of the confidence intervals in simulations
calibrated to Karlan and List (2007). Unconditional median lengths are reported for the trimmed
and untrimmed confidence intervals.

Treatment Average donation Conditional coverage
θ µ(θ) Conventional CS CSP CSET CSHET

(1,3,2) 1.52 0.95 1 0.98 0.98
(2,1,3) 1.51 0.97 1 0.97 0.97
(2,1,1) 1.42 0.94 1 0.97 0.97
(3,1,3) 1.40 0.95 1 0.97 0.97
(2,2,2) 1.34 0.96 1 0.97 0.98
(1,4,2) 1.27 0.99 1 0.97 0.97
(3,3,1) 1.26 0.84 1 0.96 0.97
(3,1,1) 1.24 0.89 1 0.97 0.97
(2,4,2) 1.22 0.79 1 0.99 0.99
(2,3,3) 1.12 0.65 1 0.98 0.98
(2,4,1) 1.10 0.81 1 0.97 0.97
(1,4,3) 1.03 0.78 1 0.96 0.97

Table 9: Conditional coverage probabilities, Pr{µ(θ̂)∈CStrim|θ̂=θ}, of the confidence intervals
for each of the 12 treatments in Table 6. The treatments are sorted according to the average
donation.
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Treatment (1,3,2) Estimates Equal-tailed CI

Conventional 1.52 [0.83,2.20]
Projection – [0.40,2.63]
Conditional – trimmed 0 [0, 1.42]

– untrimmed -7.49 [-47.66,1.42]
Hybrid 0.20 [0.19,1.47]

Table 10: Conventional and bias-corrected estimates and confidence intervals for best-performing
treatment in Karlan and List (2007) data.

confidence intervals over-cover unconditionally and conditionally for these treatments, with cov-

erage 100%. Conditional and hybrid confidence intervals slightly over-cover, with unconditional

and conditional coverage about 97%, and have unconditional median (trimmed) length around

35% larger than conventional intervals and around 20% shorter than projection intervals. It

is important to emphasize, however, that the conditional coverage for projection and hybrid

intervals is particular to the data generating process considered here: as illustrated in Figure

IV of the main text, these intervals do not ensure conditional coverage in general.

The median length of conditional intervals more than doubles if we leave their lower bound

untrimmed. In contrast, the median length of the hybrid confidence intervals is basically unaf-

fected by trimming. This is because despite the similarity of their upper bounds, the lower bound

of the conditional confidence intervals tends to be negative and substantially lower than the lower

bound of the hybrid confidence intervals. In other words, if the parameter space is unconstrained,

the hybrid confidence intervals are substantially shorter than conditional confidence intervals.

The good performance of the hybrid approach in applications with unconstrained parameter

space is encouraging, and in line with the results in Section 2.

Empirical results Returning to the Karlan and List (2007) data, Table 10 reports corrected

estimates and confidence intervals for the best-performing treatment in the experiment. We repeat

the conventional estimate and confidence interval for comparison. The median unbiased estimate

makes an aggressive downwards correction to the conventional estimate, suggesting negative

revenue (-$7.49) from the winning arm if not trimmed. The conditional confidence interval is

tight, ranging from 0 to $1.42, if trimmed at zero, and otherwise extremely wide, ranging from

-$47.66 to $1.42. The hybrid estimate also shifts the conventional estimate downwards, but much

less so. Moreover, the hybrid confidence interval is no wider than the conventional interval, and

excludes both zero and the conventional estimate. These results suggest that future fundraising

campaigns deploying the winning strategy in the experiment are likely to raise some revenue,

but substantially less than would be expected based on the conventional estimates.
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Conditional inference seems potentially natural in this application. The data highlight an

interpretable combination of treatment parameters (1:1 match, $100,000 pledged, with an ask 25%

above an individual’s highest past donation) as best-performing, raising the question of what we

can conclude about this particular treatment, given that it was the best in the experiment. This

is precisely the question answered by the conditional approach. By contrast, while the hybrid ap-

proach ensures correct coverage on average across different “winning” treatments which could arise,

it offers no guarantees given the particular winner observed in the Karlan and List (2007) data.
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