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Consider a researcher estimating the parameters of a regression function based on
data for all 50 states in the United States or on data for all visits to a website. What is
the interpretation of the estimated parameters and the standard errors? In practice, re-
searchers typically assume that the sample is randomly drawn from a large population
of interest and report standard errors that are designed to capture sampling variation.
This is common even in applications where it is difficult to articulate what that pop-
ulation of interest is, and how it differs from the sample. In this article, we explore
an alternative approach to inference, which is partly design-based. In a design-based
setting, the values of some of the regressors can be manipulated, perhaps through a
policy intervention. Design-based uncertainty emanates from lack of knowledge about
the values that the regression outcome would have taken under alternative interven-
tions. We derive standard errors that account for design-based uncertainty instead of,
or in addition to, sampling-based uncertainty. We show that our standard errors in gen-
eral are smaller than the usual infinite-population sampling-based standard errors and
provide conditions under which they coincide.

KEYWORDS: Finite population, potential outcomes, descriptive and causal esti-
mands.

1. INTRODUCTION

IN THE DOMINANT APPROACH to inference in the social sciences, uncertainty about pop-
ulation parameters is induced by random sampling from the population. Moreover, it is
typically assumed that the sample comprises only a small fraction of the population of
interest. This perspective is a natural and attractive one in many instances. For exam-
ple, if one analyzes individual-level data from the U.S. Current Population Survey, the
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Panel Study of Income Dynamics, or the one percent public-use sample from the U.S.
Census, it is natural to regard the sample as a small random subset of the population of
interest. In many other settings, however, this sampling perspective is less appropriate.
For example, Manski and Pepper (2018) wrote, “Random sampling assumptions, how-
ever, are not natural when considering states or counties as units of observation.” In this
article, we provide an alternative framework for the interpretation of uncertainty in re-
gression analysis regardless of whether a substantial fraction of the population or even
the entire population is included in the sample. While our framework accommodates
sampling-based uncertainty, it also takes into account design-based uncertainty, which
arises when the parameter of interest is defined in terms of the unobserved outcomes that
some units would attain under a certain intervention. Design-based uncertainty is often
explicitly accounted for in the analysis of randomized experiments where it is the basis of
randomization inference (Neyman, (1923/1990), Rosenbaum, (2002), Imbens and Rubin
(2015)), but it is rarely explicitly acknowledged in regression analyses or, more generally,
in observational studies (exceptions include Samii and Aronow (2012), Freedman (2008),
Lu (2016), Lin (2013)).

To illustrate the differences between sampling-based inference and design-based infer-
ence, consider two simple examples. In the example of Table I, there is a finite population
consisting of n units with each unit characterized by a pair of variables, Yi and Zi. Con-
sider an estimand that is a function of the full set of pairs {(Yi�Zi)}ni=1. Uncertainty about
such an estimand arises when we observe the values (Yi�Zi) only for a sample, that is, for
a subset of the population. In Table I, inclusion of unit i in a sample is coded by the binary
variable Ri ∈ {0�1}. An estimator is a function of the observed data, {(Ri�RiYi�RiZi)}ni=1.
Sampling-based inference uses information about the process that determines the sam-
pling indicators R1� � � � �Rn to assess the variability of estimators across different samples.
The second and third sets of columns in Table I depict such alternative samples. Table II
depicts a different scenario in which we observe, for each unit in the population, the value
of one of two potential outcome variables, either Y ∗

i (1) or Y ∗
i (0), but not both. The binary

variable Xi ∈ {0�1} indicates which potential outcome we observe. Consider an estimand
that is a function of the full set of triples {(Y ∗

i (1)�Y
∗
i (0)�Xi)}ni=1. As before, an estimator

is a function of the observed data, the pairs (Xi�Yi), for i= 1� � � � � n, where Yi = Y ∗
i (Xi) is

the realized value. Design-based inference uses information about the process that deter-
mines the assignments X1� � � � �Xn to assess the variability of estimators across different
samples. The second and third sets of columns in Table II depict such alternative samples.

More generally, we can have missing data processes that combine features of these two
examples, with some units not included in the sample at all, and with some of the variables

TABLE I

SAMPLING-BASED UNCERTAINTY (� IS OBSERVED, ? IS MISSING)

Actual Sample Alternative Sample I Alternative Sample II � � �

Unit Yi Zi Ri Yi Zi Ri Yi Zi Ri � � �

1 � � 1 ? ? 0 ? ? 0 � � �
2 ? ? 0 ? ? 0 ? ? 0 � � �
3 ? ? 0 � � 1 � � 1 � � �
4 ? ? 0 � � 1 ? ? 0 � � �
���

���
���

���
���

���
���

���
���

��� � � �
n � � 1 ? ? 0 ? ? 0 � � �
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TABLE II

DESIGN-BASED UNCERTAINTY (� IS OBSERVED, ? IS MISSING)

Actual Sample Alternative Sample I Alternative Sample II � � �

Unit Y∗
i (1) Y∗

i (0) Xi Y∗
i (1) Y∗

i (0) Xi Y∗
i (1) Y∗

i (0) Xi � � �

1 � ? 1 � ? 1 ? � 0 � � �
2 ? � 0 ? � 0 ? � 0 � � �
3 ? � 0 � ? 1 � ? 1 � � �
4 ? � 0 ? � 0 � ? 1 � � �
���

���
���

���
���

���
���

���
���

��� � � �
n � ? 1 ? � 0 ? � 0 � � �

not observed for the sampled units. Articulating both the exact nature of the estimand of
interest and the source of uncertainty that makes an estimator stochastic is a crucial first
step to valid inference. For this purpose, it will be useful to distinguish between descriptive
estimands, where uncertainty stems solely from not observing all units in the population
of interest, and causal estimands, where the uncertainty stems, at least partially, from
unobservability of some of the potential outcomes.

The main formal contribution of this article is to generalize the results for the approxi-
mate variance for multiple linear regression estimators associated with the work by Eicker
(1967), Huber (1967), and White (1980a, 1980b, 1982), EHW from hereon, in two ways.
First, our framework allows for sampling from a finite population, whereas the EHW
results assume random sampling from an infinite population. Second, our framework ex-
plicitly takes into account design-based uncertainty. Incorporating these generalizations
requires developing a new framework for regression analysis, nesting as special cases the
Neyman (1923/1990) analysis of randomized experiments with binary treatments, as well
as the generalizations to randomized experiments with additional regressors in Samii and
Aronow (2012), Freedman (2008), and Lin (2013). We show that in large samples, the
widely used EHW robust standard errors are conservative, and only correct in special
cases. Moreover, we show that the presence of attributes—that is, characteristics of the
units fixed in our repeated sampling thought experiments—can be exploited to improve
on the EHW variance estimator, and we propose variance estimators that do so. Another
advantage of the formal separation into sampling-based and design-based uncertainty is
that it allows us to clarify the distinction between the assumptions needed for internal and
external validity (Shadish, Cook, and Campbell (2002), Manski (2013), Deaton (2010)) in
terms of these two sources of uncertainty.

Our results are relevant in empirical settings where researchers have a random sam-
ple from a finite population and the ratio of the sample size to the population size is
sufficiently large so that the proposed finite-population correction matters. Examples of
such settings include large-scale experiments (see Muralidharan and Niehaus (2017)),
settings where the cost of data acquisition motivates the use of random samples (see,
e.g., Keels, Duncan, DeLuca, Mendenhall, and Rosenbaum (2005)), as well as analyses
based on public-use census samples, like the 2010 Integrated Public Use Microdata Se-
ries (IPUMS) data (which is a 10 percent sample of the U.S. Census). More importantly
in our view, our results are relevant in empirical settings where it is not natural to think of
the data as a random sample from a well-defined population. Instead, the researcher may
have the entire population, for example, states or counties as in the Manski and Pepper
(2018) quote, or the set of all visits to a website, or the researcher may have a convenience
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sample. In that case, our design-based approach to uncertainty provides a coherent inter-
pretation for sampling-based standard errors. It also provides methods that exploit the
presence of attributes to calculate improved (i.e., less conservative) standard errors.

2. A SIMPLE EXAMPLE

In this section, we set the stage for the problems discussed in the current article by dis-
cussing least squares estimation in a simple example with a single binary regressor. We
make four points. First, we show how design-based uncertainty affects the variance of
regression estimators. Second, we show that the standard Eicker–Huber–White (EHW)
variance estimator remains conservative when we take into account design-based uncer-
tainty. Third, we show that there is a simple finite-population correction to the EHW
variance estimator for descriptive estimands but not for causal estimands. Fourth, we dis-
cuss the relation between the two sources of uncertainty and the notions of internal and
external validity. Proofs of the results in this section are in the Supplemental Material
(Abadie, Athey, Imbens, and Wooldridge (2020)).

We focus on a setting with a finite population of size n. We sample N units from
this population, with Ri ∈ {0�1} indicating whether a unit was sampled (Ri = 1) or not
(Ri = 0), so that N = ∑n

i=1Ri. There is a single binary regressor,Xi ∈ {0�1}, and nx (resp.
Nx) is the number of units in the population (resp. the sample) with Xi = x. Units could
be U.S. states and the binary regressor Xi could be an indicator for a state regulation, say
the state having a right-to-carry law (RTC), as in Manski and Pepper (2018) and Donohue,
Aneja, and Weber (2019). We view the regressor Xi not as a fixed attribute or character-
istic of each unit, but as a cause or policy variable whose value could have been different
from the observed value. This generates missing data of the type shown in Table II, where
only some of the states of the world are observed, implying that there is design-based
uncertainty. Formally, using the Rubin causal model or potential outcome framework
(Neyman (1923/1990), Rubin (1974), Holland (1986), Imbens and Rubin (2015)), we pos-
tulate the existence of two potential outcomes for each unit, denoted by Y ∗

i (1) and Y ∗
i (0).

For the RTC example, Y ∗
i (1) and Y ∗

i (0) could be state-level crime rates with and without
RTC. The realized outcome is

Yi = Y ∗
i (Xi)=

{
Y ∗
i (1) if Xi = 1�
Y ∗
i (0) if Xi = 0�

which is the observed state-level crime rate in the RTC example.
In our setting, potential outcomes are viewed as non-stochastic attributes for unit i,

irrespective of the realized value of Xi. They remain fixed in repeated sampling thought
experiments, whereas Ri and Xi are stochastic and, as a result, so are the realized out-
comes in the sample, Yi. In the current section, we abstract from the presence of fixed
observed attributes, which will play an important role in Section 3. Let Y, Y∗(1), Y∗(0), R,
and X be the population n-vectors with ith element equal to Yi, Y ∗

i (1), Y
∗
i (0), Ri, andXi,

respectively. For sampled units (units with Ri = 1) we observe Xi and Yi. For all units we
observe Ri.

In general, estimands are functions of the full set of values (Y∗(1)�Y∗(0)�X�R) for
all units in the population, both those in the sample and those not in the sample. We
consider two types of estimands, descriptive and causal. If an estimand can be written as
a function of (Y�X), free of dependence on R and on the potential outcomes beyond the
realized outcome, we label it a descriptive estimand. Intuitively, a descriptive estimand is
an estimand whose value would be known with certainty if we observed the realized values
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of Yi andXi for all units in the population. If an estimand cannot be written as a function
of (Y�X�R) because it depends on the potential outcomes Y∗(1) and Y∗(0), then we label
it a causal estimand.1

We now consider in our binary regressor example three closely related estimands, one
descriptive and two causal:

θdescr = θdescr(Y�X)= 1
n1

n∑
i=1

XiYi − 1
n0

n∑
i=1

(1 −Xi)Yi�

θcausal�sample = θcausal�sample
(
Y∗(1)�Y∗(0)�R

) = 1
N

n∑
i=1

Ri
(
Y ∗
i (1)−Y ∗

i (0)
)
�

and

θcausal = θcausal
(
Y∗(1)�Y∗(0)

) = 1
n

n∑
i=1

(
Y ∗
i (1)−Y ∗

i (0)
)
�

In this section, we focus on the properties of the difference-in-sample-means estimator:

θ̂= 1
N1

n∑
i=1

RiXiYi − 1
N0

n∑
i=1

Ri(1 −Xi)Yi�

This is also the least squares estimator of the coefficient on Xi for the regression in the
sample of Yi onXi and a constant. There are two sources of randomness in this estimator:
a sampling component arising from the randomness of R and a design component arising
from the randomness of X. We refer to the uncertainty generated by the randomness in
the sampling component as sampling-based uncertainty, and the uncertainty generated by
the design component as design-based uncertainty.

Next, we consider the first two moments of θ̂ under the following two assumptions:

ASSUMPTION 1—Random Sampling/External Validity:

Pr(R = r)= 1
/(

n
N

)
�

for all n-vectors r with
∑n

i=1 ri =N .

ASSUMPTION 2—Random Assignment/Internal Validity:

Pr(X = x|R)= 1
/(

n
n1

)
�

for all n-vectors x with
∑n

i=1Xi = n1.

We start by studying the first moment of the estimator, conditional on (N1�N0), and
only for the cases where N1 ≥ 1 and N0 ≥ 1. We leave this latter conditioning implicit in
the notation throughout this section. We also condition implicitly on the fixed potential

1This does not define an exhaustive partition the set of all possible estimands. For example, there could be
estimands that are functions of (Y�X�R), but not of (Y�X), although it is difficult to think of interesting ones
that are.
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outcomes Y∗(1) and Y∗(0). Taking the expectation only over the random sampling, or
taking the expectation only over the random assignment, or over both, we find

E[θ̂|X�N1�N0] = θdescr� (2.1)

E[θ̂|R�N1�N0] = θcausal�sample� (2.2)

E[θ̂|N1�N0] = E
[
θdescr|N1�N0

] =E[θcausal�sample|N1�N0

] = θcausal�

Next, we look at the variance of the estimator, maintaining both the random assignment
and random sampling assumption. Define the population variances

S2
x = 1

n− 1

n∑
i=1

(
Y ∗
i (x)− 1

n

n∑
j=1

Y ∗
j (x)

)2

� for x= 0�1�

and

S2
θ = 1

n− 1

n∑
i=1

(
Y ∗
i (1)−Y ∗

i (0)− 1
n

n∑
j=1

(
Y ∗
j (1)−Y ∗

j (0)
))2

�

We consider the variance of θ̂, as well as two conditional versions of this variance. We
define the “sampling variance” conditional on X, so that only the sampling uncertainty
is taken into account. Analogously, we define the “design variance” conditional on R, so
that only the design uncertainty is taken into account. To make the different variances
interpretable, we look at the expected value of the variances, taking the expectation over
both the assignment and the sampling:

V total(N1�N0� n1� n0)= var(θ̂|N1�N0)= S2
1

N1
+ S2

0

N0
− S2

θ

n0 + n1
� (2.3)

V sampling(N1�N0� n1� n0)= E
[
var(θ̂|X�N1�N0)

∣∣N1�N0

]
= S2

1

N1

(
1 − N1

n1

)
+ S2

0

N0

(
1 − N0

n0

)
�

V design(N1�N0� n1� n0)= E
[
var(θ̂|R�N1�N0)

∣∣N1�N0

] = S2
1

N1
+ S2

0

N0
− S2

θ

N0 +N1
�

COMMENT 1—Neyman Variance: The variance V total(N1�N0� n1� n0) is the one derived
by Neyman (1923/1990) for randomized experiments.

COMMENT 2—Causal versus Descriptive Estimands: In general, the variances
V sampling(N1�N0� n1� n0) and V design(N1�N0� n1� n0) cannot be ranked: the sampling vari-
ance can be very close to zero if the sampling rates N0

n0
and N1

n1
are close to 1, but it can also

be larger than the design variance if the sampling rates are small and the variance of the
treatment effect is substantial.

COMMENT 3—Infinite Population Case: For fixed N0 and N1, if n0� n1 → ∞, the total
variance and the sampling variance are equal:

lim
n0�n1�→∞

V total(N1�N0� n1� n0)= lim
n0�n1�→∞

V sampling(N1�N0� n1� n0)= S2
1

N1
+ S2

0

N0
�

This result will be seen to carry over to more general cases in Section 3.
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COMMENT 4—Finite Population Correction: Whether the estimand is θcausal or θdescr,
ignoring the fact that the population is finite generally leads to an overstatement of the
variance on average because it ignores the fact that we observe a non-negligible share of
the population:

V total(N1�N0�∞�∞)− V total(N1�N0� n1� n0)= S2
θ

n0 + n1
≥ 0�

V sampling(N1�N0�∞�∞)− V sampling(N1�N0� n1� n0)= S2
1

n1
+ S2

0

n0
≥ 0�

If the estimand is θcausal�sample, however, the population size is irrelevant because units
in the population but not in the sample do not contribute to the estimand of interest.
Then,

V design(N1�N0�∞�∞)= V design(N1�N0� n1� n0)�

COMMENT 5—Internal versus External Validity: Often, researchers are concerned
about both the internal and external validity of estimands and estimators (Shadish, Cook,
and Campbell (2002), Manski (2013), Deaton (2010)). The distinction between sampling-
and design-based uncertainty allows us to clarify these concerns. Internal validity bears
on the question of whether E[θ̂|R�N1�N0] is equal to θcausal�sample. This relies on random
assignment of the treatment. Whether or not the sampling is random is irrelevant for this
question because θcausal�sample conditions on which units were sampled. External validity
bears on the question of whether E[θcausal�sample|N1�N0] is equal to θcausal. This relies on
the random sampling assumption and does not require that the assignment is random.
However, for θ̂ to be a good estimator of θcausal, which is often the most interesting esti-
mand, we need both internal and external validity, and thus both random assignment and
random sampling.

In this single binary regressor example, the EHW variance estimator can be written as

V̂ ehw = N1 − 1
N2

1

Ŝ2
1 + N0 − 1

N2
0

Ŝ2
0� where Ŝ2

1 = 1
N1 − 1

n∑
i=1

RiXi

(
Yi − 1

N1

n∑
i=1

RiXiYi

)2

�

and Ŝ2
0 is defined analogously. Adjusting the degrees of freedom, using the modification

proposed in MacKinnon and White (1985) specialized to this binary regressor example,
we obtain Ṽ ehw = Ŝ2

1/N1 + Ŝ2
0/N0, which is identical to the variance estimator proposed

by Neyman (1923/1990). The expectation of this modified EHW variance estimator Ṽ ehw

(conditional on N0 and N1) is equal to the sampling variance in the infinite population
case, V sampling(N1�N0�∞�∞).

We could also estimate the variance using resampling methods, which would give us
variance estimates close to V̂ ehw. To be precise, suppose we use the bootstrap where we
draw N1 bootstrap observations from the N1 treated units and N0 bootstrap units from
the N0 control units. In that case, the bootstrap variance would in expectation (over the
bootstrap replications) be equal to V̂ ehw.

COMMENT 6—Can We Improve on the EHW Variance Estimator?: The difference be-
tween E[Ṽ ehw|N1�N0] (or the Neyman variance) and the total variance is equal to S2

θ/n.
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The term S2
θ is difficult to estimate because it depends on the unobserved differences

Y ∗
i (1) − Y ∗

i (0). As a result, S2
θ/n is typically ignored in analyses of randomized exper-

iments (see Imbens and Rubin (2015)). In particular, the EHW variance estimator im-
plicitly sets the estimator of S2

θ to be equal to zero, resulting in conservative inference.
For the case of a randomized experiment with a binary treatment, Aronow, Green, and
Lee (2014) provided a lower bound for S2

θ based on the Fréchet–Hoeffding inequality. In
Section 3, we propose an improved variance estimator that exploits the presence of fixed
attributes.

The Appendix contains a Bayesian version of the analysis of the example from this sec-
tion. Similarly to the results in this section, we show that, when the estimand of interest
is defined for a finite population, the posterior variance depends not only on the sample
sizes for treated and non-treated, but also on the respective population sizes. Also sim-
ilarly to the analysis of this section, the posterior variance formula depends on whether
the estimand is descriptive or causal.

3. THE GENERAL CASE

This section contains the main formal results in the article. We focus on a regression
setting where we estimate a linear regression function for a scalar outcome and a number
of regressors. The setting we consider here allows for the presence of two types of regres-
sors: first, regressors that are causal, in the sense that they generate potential outcomes;
and second, regressors that are attributes, in the sense that they are kept fixed for each
unit in the thought experiment that provides the basis for inference. Which regressors
are viewed as causal and which are viewed as attributes depends on the interpretation
we wish to give to the regression estimates. If we wish to give a coefficient a causal in-
terpretation, the corresponding regressor must be a cause. If a regressor is an attribute,
the corresponding coefficient is simply estimating a population difference between sub-
populations of units. For example, if we regress earnings on years of education, years of
education may be the causal variable of interest. On the other hand, if we regress earn-
ings on an indicator for participation in a job search program, age, and years of education,
then the indicator for the program participation may be viewed as the causal variable of
interest and age and years of education may be viewed as attributes. Because the repeated
sampling thought experiment treats causes differently from attributes, the variance of the
regression estimator will depend on this designation.

3.1. Setup

Consider a sequence of finite populations indexed by population size, n. Unit i in pop-
ulation n is characterized by a set of fixed attributes Zn�i (including an intercept) and by
a potential outcome function, Y ∗

n�i(·), which maps causes, Un�i, into outcomes, with the
realized outcome denoted by Yn�i = Y ∗

n�i(Un�i). Zn�i and Un�i are real-valued column vec-
tors, and Yn�i is scalar. We do not place restrictions on the types of the variables: they can
be continuous, discrete, or mixed. Probabilities and expectations will be understood to
be conditional on attributes and potential outcome functions, which remain fixed in our
repeated sampling thought experiments. The realized outcomes in the sample vary from
sample to sample because the units in the sample and the values of the causal variables
change.

There is a sequence of samples associated with the sequence of populations. We will use
Rn�i = 1 to indicate that unit i of population n is sampled, and Rn�i = 0 to indicate that it
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is not sampled. For each unit in sample n, we observe the triple, (Yn�i�Un�i�Zn�i). Relative
to Section 2, we now allow for more complicated assignment mechanisms. In particular,
we relax the assumption that the causes have identical distributions.

ASSUMPTION 3—Assignment Mechanism: The assignments Un�1� � � � �Un�n are jointly in-
dependent, and independent of Rn�1� � � � �Rn�n, but not (necessarily) identically distributed
(i.n.i.d.).

We assume independence of the treatment assignments. This is somewhat in contrast
to the example in Section 2, where we fixed the marginal distribution of the regressor,
allowing us to obtain exact finite sample results. We do not need this here because we
are focused on asymptotic results. We can allow for some dependence in the assignment
mechanism, for example, clustering of the type analyzed in Abadie, Athey, Imbens, and
Wooldridge (2017).

For what follows, it is convenient to work with a transformation Xn�1� � � � �Xn�n of
Un�1� � � � �Un�n that removes the correlation with the attributes. This can be accomplished
in the following way. We assume that the population matrix

∑n

i=1Zn�iZ
′
n�i is full-rank.

Then, define

Xn�i =Un�i −ΛnZn�i� where Λn =
(

n∑
i=1

E[Un�i]Z′
n�i

)(
n∑
i=1

Zn�iZ
′
n�i

)−1

� (3.1)

Later, we formally make an assumption that will guarantee that this transformation is
well-defined for large n. It is important to notice that, because ΛnZn�i is deterministic in
our setting and Un�1� � � � �Un�n are i.n.i.d., the variables Xn�1� � � � �Xn�n are i.n.i.d., too.

For population n, let Yn, Xn, Zn, Rn, and Y∗
n(·) be matrices that collect outcomes, causes,

attributes, sampling indicators, and potential outcome functions. We analyze the proper-
ties of the estimator θ̂n obtained by minimizing least square errors in the sample:

(θ̂n� γ̂n)= arg min
(θ�γ)

n∑
i=1

Rn�i
(
Yn�i −X ′

n�iθ−Z′
n�iγ

)2
� (3.2)

The properties of the population regression residuals, en�i = Yn�i−X ′
n�iθn−Z′

n�iγn, depend
on the exact nature of the estimands, (θn�γn). In what follows, we will consider alternative
target parameters, which in turn will imply different properties for en�i. Notice also that,
although the transformation in (3.1) is typically unfeasible (because the values of E[Un�i]
may not be known), θ̂n is not affected by the transformation in the sense that the least
squares estimators (θ̃n� γ̃n), defined as

(θ̃n� γ̃n)= arg min
(θ�γ)

n∑
i=1

Rn�i
(
Yn�i −U ′

n�iθ−Z′
n�iγ

)2
�

satisfy θ̂n = θ̃n (although, in general, γ̂n �= γ̃n). As a result, we can analyze the proper-
ties of θ̂n, focusing on the properties of the regression on Xn�1� � � � �Xn�n instead of on
Un�1� � � � �Un�n.

We assume random sampling, with some conditions on the sampling rate to ensure that
the sample size increases with the population size.
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ASSUMPTION 4—Random Sampling: (i) There is a sequence of sampling probabilities,
ρn, such that

Pr(Rn = r)= ρ
∑n
i=1 ri

n (1 − ρn)n−
∑n
i=1 ri �

for all n-vectors r with ith element ri ∈ {0�1}. (ii) The sequence of sampling rates, ρn, satisfies
nρn → ∞ and ρn → ρ ∈ [0�1].

The first part of Assumption 4(ii) guarantees that as the population size increases, the
(expected) sample size also increases. The second part of Assumption 4(ii) allows for
the possibility that, as n increases, the sample size becomes a negligible fraction of the
population size so that the EHW results, corresponding to ρ= 0, are included as a special
case of our results.

The next assumption is a regularity condition bounding moments.

ASSUMPTION 5—Moments: There exists some δ > 0 such that the sequences

1
n

n∑
i=1

E
[|Yn�i|4+δ]� 1

n

n∑
i=1

E
[‖Xn�i‖4+δ]� 1

n

n∑
i=1

‖Zn�i‖4+δ

are uniformly bounded.

Let

Wn = 1
n

n∑
i=1

⎛⎝Yn�iXn�i

Zn�i

⎞⎠⎛⎝Yn�iXn�i

Zn�i

⎞⎠′

� Ωn = 1
n

n∑
i=1

E

⎡⎣⎛⎝Yn�iXn�i

Zn�i

⎞⎠⎛⎝Yn�iXn�i

Zn�i

⎞⎠′⎤⎦ �
So Ωn = E[Wn], where the expectation is taken over the distribution of Xn. We also con-
sider sample counterparts of Wn and Ωn:

W̃n = 1
N

N∑
i=1

Rn�i

⎛⎝Yn�iXn�i

Zn�i

⎞⎠⎛⎝Yn�iXn�i

Zn�i

⎞⎠′

� Ω̃n = 1
N

n∑
i=1

Rn�iE

⎡⎣⎛⎝Yn�iXn�i

Zn�i

⎞⎠⎛⎝Yn�iXn�i

Zn�i

⎞⎠′⎤⎦ �
where Ω̃n =E[W̃n|Rn]. We will use superscripts to indicate submatrices. For example,

Wn =
⎛⎝W YY

n W YX
n W YZ

n

W XY
n W XX

n W XZ
n

W ZY
n W ZX

n W ZZ
n

⎞⎠ �
with analogous partitions for Ωn, W̃n, and Ω̃n. Notice that the transformation in (3.1)
implies that ΩXZ

n and ΩZX
n are matrices with all zero entries.

We first obtain convergence results for the sample objects, W̃n and Ω̃n.

LEMMA 1: Suppose Assumptions 3–5 hold. Then, W̃n −Ωn

p→ 0, Ω̃n −Ωn

p→ 0, and W̃n −
Wn

p→ 0.

See the Appendix for proofs.
The next assumption imposes (deterministic) convergence of the expected value of the

second moments in the population.
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ASSUMPTION 6—Convergence of Moments: Ωn →Ω, which is full rank.

3.2. Descriptive and Causal Estimands

We now define the descriptive and causal estimands that generalize θdescr, θcausal�sample,
and θcausal from Section 2 to a regression context.

DEFINITION 1—Causal and Descriptive Estimands:For a given population n, with poten-
tial outcome functions Y∗

n(·), causes Xn, attributes Zn, and sampling indicators Rn:
(i) Estimands are functionals of (Y∗

n(·)�Xn�Zn�Rn), permutation-invariant in the rows
of the arguments.

(ii) Descriptive estimands are estimands that can be written in terms of Yn, Xn, and Zn,
free of dependence on Rn, and free of dependence on Y∗

n(·) beyond dependence on Yn.
(iii) Causal estimands are estimands that cannot be written in terms of Yn, Xn, Zn, and

Rn, because they depend on the potential outcome functions Y∗
n(·) beyond the realized

outcomes, Yn.

Causal estimands depend on the values of potential outcomes beyond the values that
can be inferred from the realized outcomes. Given a sample, the only reason we may not
be able to infer the exact value of a descriptive estimand is that we do not see all the units
in the population. In contrast, even if we observe all units in a population, we are unable
to infer the value of a causal estimand because its value depends on potential outcomes.

We define three estimands of interest, which, under the conditions above, exist with
probability approaching 1: (

θdescr
n

γdescr
n

)
=

(
W XX
n W XZ

n

W ZX
n W ZZ

n

)−1 (
W XY
n

W ZY
n

)
� (3.3)

(
θcausal�sample
n

γcausal�sample
n

)
=

(
Ω̃XX
n Ω̃XZ

n

Ω̃ZX
n Ω̃ZZ

n

)−1 (
Ω̃XY
n

Ω̃ZY
n

)
� (3.4)

and (
θcausal
n

γcausal
n

)
=

(
ΩXX
n ΩXZ

n

ΩZX
n ΩZZ

n

)−1 (
ΩXY
n

ΩZY
n

)
� (3.5)

Alternatively, the estimands in (3.3) to (3.5) can be defined as the coefficients that corre-
spond to the orthogonality conditions in terms of the residuals en�i = Yn�i−X ′

n�iθn−Z′
n�iγn,

1
n

n∑
i=1

(
Xn�i

Zn�i

)
en�i = 0�

1
n

n∑
i=1

Rn�iE

[(
Xn�i

Zn�i

)
en�i

]
= 0�

1
n

n∑
i=1

E

[(
Xn�i

Zn�i

)
en�i

]
= 0�

for the descriptive, causal-sample, and causal estimands, respectively. We will study the
properties of the least squares estimator, θ̂n, defined by(

θ̂n
γ̂n

)
=

(
W̃ XX
n W̃ XZ

n

W̃ ZX
n W̃ ZZ

n

)−1 (
W̃ XY
n

W̃ ZY
n

)
�

as an estimator of the parameters defined in equations (3.3) to (3.5).
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Notice that θcausal�sample
n and θcausal

n are causal estimands, while θdescr
n is not. However, the

fact that an estimand is causal according to our definition does not imply it has an inter-
pretation as an average causal effect. In Section 3.3, we present conditions under which
the regression estimand does have such an interpretation.

3.3. Causal Interpretations of the Estimands

By construction, the descriptive estimand can be interpreted as the set of coefficients
of a population best linear predictor (least squares) (e.g., Goldberger (1991)). A more
challenging question concerns the interpretation of the two causal estimands, and in par-
ticular, their relation to the potential outcome functions. In this section, we investigate
this question.

The next assumption is a generalization of random assignment and allows for a form of
dependence of the assignment Un�i on the attributes Zn�i.

ASSUMPTION 7—Expected Assignment: (i) There exists a sequence of functions hn such
that

E[Un�i] = hn(Zn�i)�
and (ii) there exists a sequence of matrices Bn such that, for all z,

hn(z)= Bnz�
for all n large enough.

Assumption 7 looks very different from conventional exogeneity or unconfoundedness
conditions, where the residuals are assumed to be (mean-) independent of the regressors,
and so it merits some discussion. First, note that if the treatmentUn�i is randomly assigned,
E[Un�i] is constant and Assumptions 7(i) and (ii) are automatically satisfied as long as Zn�i
includes an intercept.

Formally, Assumption 7 relaxes the completely randomized assignment setting by al-
lowing the distribution of Un�i to depend on the attributes. However, this dependence is
restricted in that the mean of Un�i is linear in Zn�i. For example, Assumption 7 holds auto-
matically when Un�1� � � � �Un�n are identically distributed and Zn�i contains a saturated set
of indicators for all possible values of the attributes.

In the special case where the treatment is binary and E[Un�i] is the propensity score
(Rosenbaum and Rubin (1983)), the assumption amounts to combination of an uncon-
foundedness assumption that the treatment assignment does not depend on the potential
outcomes and a linear model for the propensity score.

Later in this section, we will show that under a set of conditions that includes Assump-
tion 7, the two estimands θcausal

n and θcausal�sample can be interpreted as weighted averages of
unit-level causal effects. The connection between linearity in the propensity score, repre-
sented in our analysis by E[Un�i] = BnZn�i, and the interpretation of population regression
coefficients as weighted averages of heterogeneous causal effects has been previously no-
ticed in related contexts (see Angrist (1998), Angrist and Pischke(2008), Aronow and
Samii (2016), Słoczyński (2018)).

ASSUMPTION 8—Linearity of Potential Outcomes: For all u,

Y ∗
n�i(u)= u′θn�i + ξn�i� (3.6)

where θn�i and ξn�i are non-stochastic.
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In this formulation, any dependence of the potential outcomes Y ∗
n�i(u) on observed or

unobserved attributes is subsumed by θn�i and ξn�i, which are non-stochastic. Each element
of the vector θn�i represents the causal effect of increasing the corresponding value of Un�i

by one unit.
The linearity in Assumption 8 is a strong restriction in many settings. However, in some

leading cases—in particular, when the causal variable is binary or, more generally, when
the causal variable takes on only a finite number of values—one can ensure that this as-
sumption holds by including in Un�i indicator variables representing each but one of the
possible values of the cause. With Assumption 8, we are able to provide a more transpar-
ent interpretation of the regression estimator.

THEOREM 1: Suppose Assumptions 3–8 hold. Then, for all n large enough,

θcausal
n =

(
n∑
i=1

E
[
W XX
n�i

])−1
n∑
i=1

E
[
W XX
n�i

]
θn�i�

and, with probability approaching 1,

θcausal�sample
n =

(
n∑
i=1

Rn�iE
[
W XX
n�i

])−1
n∑
i=1

Rn�iE
[
W XX
n�i

]
θn�i�

where W XX
n�i =Xn�iX

′
n�i.

THEOREM 2: Suppose that Assumptions 3–7 hold. Moreover, assume that Xn�1� � � � �Xn�n

are continuous random variables with convex and compact supports, and that the potential
outcome functions, Y ∗

n�i(·), are continuously differentiable. Then, there exist random variables
vn�1� � � � � vn�n such that, for n sufficiently large,

θcausal
n =

(
n∑
i=1

E
[
W XX
n�i

])−1
n∑
i=1

E
[
W XX
n�i ϕn�i

]
�

and, with probability approaching 1,

θcausal�sample
n =

(
n∑
i=1

Rn�iE
[
W XX
n�i

])−1
n∑
i=1

Rn�iE
[
W XX
n�i ϕn�i

]
�

where ϕn�i is the derivative of Y ∗
n�i(·) evaluated at vn�i.

COMMENT 7: Here, we provide a simple example that shows how the result in Theo-
rems 1 and 2 may not hold in the absence of Assumption 7. Consider the population with
three units described in Table III. For simplicity, we drop the subscript n. Notice that we
could add replicates of these observations to make the example hold for any population
size. In this example, E[Ui] = 3bZ2

i − 2b is a nonlinear function of Zi. Notice that

3∑
i=1

E[Ui]/3 =
3∑
i=1

E[Ui]Zi/3 = 0�
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TABLE III

AN ARTIFICIAL EXAMPLE

Unit Y∗
i (u) Zi E[Ui] var(Ui)

1 a −1 b 1
2 0 0 −2b 1
3 2a 1 b 1

so that Xi = Ui. Therefore, E[X2
i ] = E[U2

i ]. Also, because potential outcomes do not
depend on Xi, it follows that E[XiYi] = E[Xi]Y ∗

i (1)=E[Ui]Y ∗
i (1). As a result,

θcausal =
(

3∑
i=1

E
[
X2
i

])−1 3∑
i=1

E[Xi]Y ∗
i (1)= ab

2b2 + 1
�

which is different from zero as long as ab �= 0. In this example, all the potential out-
come functions Y ∗

i (·) are flat as a function of x, so all unit-level causal effects of the type
Y ∗
i (u) − Y ∗

i (u
′) are zero, and yet the causal least squares estimand can be positive or

negative depending on the values of a and b.

3.4. The Asymptotic Distribution of the Least Squares Estimator

In this section, we present the main result of the article, describing the properties of
the least squares estimator viewed as an estimator of the causal estimands and, sepa-
rately, viewed as an estimator of the descriptive estimand. In contrast to Section 2, we
do not have exact results, relying instead on asymptotic results based on sequences of
populations.

First, we define the population residuals, denoted by εn�i, relative to the population
causal estimands,

εn�i = Yn�i −X ′
n�iθ

causal
n −Z′

n�iγ
causal
n � (3.7)

COMMENT 8: The definition of the residuals, εn�1� � � � � εn�n, mirrors that in conventional
regression analysis, but their properties are conceptually different. For instance, the resid-
uals need not be stochastic. If they are stochastic, they are so because of their dependence
on Xn.

COMMENT 9: We define the residuals here with respect to the population causal pa-
rameters θcausal

n and γcausal
n . Because we focus here on asymptotic results, the difference

between the causal and descriptive parameters vanishes, and so defining the residuals in
terms of the descriptive parameters would lead to the same results.

Under the assumption that the Xn�i are jointly independent (but not necessarily identi-
cally distributed), the n products Xn�iεn�i are also jointly independent but not identically
distributed. Most importantly, in general the expectations E[Xn�iεn�i] may vary across
i, and need not all be zero. However, as shown in Section 3.2, the averages of these
expectations over the entire population are guaranteed to be zero by the definition of
(θcausal

n � γcausal
n ). Define the limits of the population variance,

cond = lim
n→∞

1
n

n∑
i=1

var(Xn�iεn�i)�
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and the expected outer product

ehw = lim
n→∞

1
n

n∑
i=1

E
[
ε2
n�iXn�iX

′
n�i

]
�

The difference between ehw and cond is the limit of the average outer product of the
means,

μ = ehw −cond = lim
n→∞

1
n

n∑
i=1

E[Xn�iεn�i]E[Xn�iεn�i]′�

which is positive semidefinite. We assume existence of these limits.

ASSUMPTION 9—Existence of Limits: cond and ehw exist and are positive definite.

THEOREM 3:Suppose Assumptions 3–9 hold, and let �=ΩXX = limn→∞ΩXX
n . Then,

(i)
√
N
(
θ̂n − θcausal

n

) d−→N
(
0��−1

(
ρcond + (1 − ρ)ehw

)
�−1

)
�

(ii)
√
N
(
θ̂n − θcausal�sample

n

) d−→N
(
0��−1cond�−1

)
�

(iii)
√
N
(
θ̂n − θdescr

n

) d−→N
(
0� (1 − ρ)�−1ehw�−1

)
�

COMMENT 10: For both the population causal and the descriptive estimand, the asymp-
totic variance in the case with ρ= 0 reduces to the standard EHW variance, �−1ehw�−1.
If the sample size is non-negligible as a fraction of the population size, ρ > 0, the dif-
ference between the EHW variance and the finite population causal variance is positive
semidefinite and equal to ρ�−1(ehw −cond)�−1.

COMMENT 11—The Case With ρ = 0: The standard setting where we have a random
sample from a large population is covered by the result in Theorem 3, part (i) or part
(iii) with ρ= 0. For example, when we analyze data from the CPS or PSID, this seems a
reasonable perspective. Even if the sampling from the U.S. population is not completely
random, it is approximately so, and the sample is certainly small relative to the population.
In that case, we do not need to worry about whether we are interested in a causal estimand
because the standard methods are valid.

COMMENT 12—The Case With ρ= 1: The case where we observe all units in the pop-
ulation of interest, covered by the result in Theorem 3, part (i) with ρ = 1, or part (ii),
is also common. For example, we may have all the states in the United States, or all the
countries in the world, or all the individuals in the population of interest. In that case,
taking account of the causal nature of the estimand is important, because a descriptive
perspective would suggest the standard errors should be zero. This covers the case dis-
cussed in Manski and Pepper (2018).
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COMMENT 13—A Convenience Sample: The setting where we have a convenience
sample, where the relationship between the sample and the population is murky, is more
complicated. For example, we may have all internet searches during a particular day, or
all shopping trips to a single supermarket for a given week. This is, in our view, an impor-
tant and common setting. In such settings, researchers often analyze the data, and report
standard errors based on the sampling perspective, as if the sample is a random sample
from a large population. Typically, they do so implicitly, by simply using standard meth-
ods without explicitly describing a sampling process. It seems a stretch to view the sample
of shopping trips to a particular supermarket on a particular day as a random sample
from the population of interest. At best, it is a systematic sample from the population of
interest, for example, all individuals going to that particular supermarket, rather than a
random sample from the population of individuals. However, there is no way to quan-
tify the uncertainty arising from that sampling scheme without data from other periods or
other supermarkets. In that case, we recommend to analyze the uncertainty relative to the
causal sample estimand, and to be clear about what that estimand is in order to provide a
conceptually precise measure of uncertainty.

COMMENT 14—The Case With ρ ∈ (0�1): While there are clearly many cases in prac-
tice where we do observe the entire population of interest, there are also settings where
the following three things hold, at least approximately: (a) the population of interest is
finite, (b) the sample is a random sample from this population, and (c) the ratio of sam-
ple size to population size ρ is known and large enough for this to matter. For example,
Muralidharan and Niehaus (2017) discussed a number of randomized experiments in de-
velopment economics where the study sample was drawn randomly from the population
of interest. Keels et al. (2005) discussed using a 50% random sample in a mobility study,
rather than the full population, for cost or computational reasons. The Integrated Pub-
lic Use Microdata Series (IPUMS) data include a random sample of 10% of the census.
Some other recent papers include DellaVigna, Lindner, Reizer, and Schmieder (2017),
whose sample consists of a 50% de facto random sample of Hungarian citizens older than
14 and younger than 75 in 2002, Einav, Finkelstein, and Schrimpf (2015), who used a
20% random sample of Medicare Part D beneficiaries from 2007 to 2009, Hanna, Mul-
lainathan, and Schwartzstein (2014), who randomly selected 117 (from the set of respon-
dents) to participate in an experimental trial, and Farber (2015), who used a random
subsample of 2/15 of the drivers in his data set. Another interesting case, with a more
complex sample, is Munnell, Tootell, Browne, and McEneaney (1996), who used the pop-
ulation of mortgage applications in the city of Boston in 1990 for Black and Hispanic
applicants (1200 obs) and a random sample of applications by White applicants (3300
obs) for the same city and year.

COMMENT 15: Presenting a general variance formula that includes ρ= 0 and ρ= 1 as
special cases is helpful because it explicitly connects the two leading perspectives to un-
certainty, sampling-based and design-based. It shows that there is no conceptual conflict
between our proposed causal perspective and the standard sampling-based perspective
on uncertainty, that our perspective merely adds a second source of uncertainty. It also
shows that this perspective is particularly relevant when the researcher has observations
on the entire population, a case that previously had not been satisfactorily addressed in
the literature.
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3.5. The Variance Under Correct Specification

Consider a constant treatment effect assumption, which is required for a correct speci-
fication of a linear regression function as a function that describes potential outcomes.

ASSUMPTION 10—Constant Treatment Effects:

Y ∗
n�i(u)= u′θn + ξn�i�

where θn and ξn�i are non-stochastic.

This strengthens Assumption 8 by requiring that the θn�i do not vary by i.
Under Assumption 10, Theorem 1 implies that θcausal

n = θn (although it need not be the
case that θdescr = θn). Then, for

λn =
(

n∑
i=1

Zn�iZ
′
n�i

)−1
n∑
i=1

Zn�iξn�i�

we obtain that equation (3.7) holds for γcausal
n =Λ′

nθn + λn and εn�i = ξn�i −Z′
n�iλn. In this

case, the residuals, εn�i, are non-stochastic. As a result, E[Xn�iεn�i] =E[Xn�i]εn�i = 0, which
implies μ = ehw −cond = 0. This leads to the following result.

THEOREM 4: Suppose that Assumptions 3–10 hold. Then,

√
N
(
θ̂n − θcausal

n

) d−→N
(
0��−1ehw�−1

)
�

irrespective of the value of ρ.

Notice that the result of the theorem applies also with θcausal�sample
n replacing θcausal

n be-
cause the two parameter vectors are identical (with probability approaching 1) under As-
sumption 10.

COMMENT 16: The key insight in this theorem is that the asymptotic variance of θ̂n
does not depend on the ratio of the sample to the population size when the regression
function is correctly specified. Therefore, it follows that the usual EHW variance matrix
is correct for θ̂n under these assumptions. For the special case with Xn�i binary and no
attributes beyond the intercept, this result can be inferred directly from Neyman’s results
for randomized experiments (Neyman (1923/1990)). In that case, the result of Theorem 4
follows from the restriction of constant treatment effects, Y ∗

n�i(1) − Y ∗
n�i(0) = θn, which

is extended to the more general case of non-binary regressors in Assumption 10. The
asymptotic variance of γ̂n, the least squares estimator of the coefficients on the attributes,
still depends on the ratio of sample to population size, and it can be shown that the con-
ventional robust EHW estimator continues to overestimate the variance of γ̂n. For more
details, see the earlier version of this paper (Abadie et al. (2014)).

4. ESTIMATING THE VARIANCE

We now turn to the problem of estimating the variance for the descriptive and
causal estimands. In what follows, we will use the shorthands V causal = �−1(ρcond +
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(1 − ρ)ehw)�−1, V causal�sample = �−1cond�−1, V descr = (1 − ρ)�−1ehw�−1, and V ehw =
�−1ehw�−1. There are four components to the asymptotic variances, ρ, �, ehw, and cond.
The first three are straightforward to estimate. ρ can be estimated as ρ̂n =N/n, as long
as the population size is known. To estimate �, first estimate Λn as

Λ̂n =
(

n∑
i=1

Rn�iUn�iZ
′
n�i

)(
n∑
i=1

Rn�iZn�iZ
′
n�i

)−1

�

Then one can estimate � as the average of the matrix of outer products over the sample:

�̂n = 1
N

n∑
i=1

Rn�i(Un�i − Λ̂nZn�i)(Un�i − Λ̂nZn�i)
′�

It is also straightforward to estimate ehw. First, we estimate the residuals for the units in
the sample, ε̂n�i = Yn�i − (Un�i − Λ̂nZn�i)

′θ̂n −Z′
n�iγ̂n, and then we estimate ehw as

̂ehw
n = 1

N

n∑
i=1

Rn�i(Un�i − Λ̂nZn�i)̂ε
2
n�i(Un�i − Λ̂nZn�i)

′�

The EHW large sample variance, V ehw, is then estimated as

V̂ ehw
n = �̂−1

n ̂
ehw
n �̂−1

n �

LEMMA 2: Suppose Assumptions 3–7 and 9 hold with δ= 4. Then,

V̂ ehw
n

p−→ V ehw�

Let V̂ descr
n = (1 − ρ̂n)V̂ ehw

n . The result of Lemma 2 immediately implies V̂ descr
n

p→ V descr.
It is more challenging to estimate V causal and V causal�sample because they involve cond. Es-

timating cond is complicated because of the same reason that complicates the estimation
of the variance of the average treatment effect estimator in Section 2. In that case, there
are three terms in the expression for the variance in equation (2.3). The first two are
straightforward to estimate, but the third one, S2

θ/n, cannot be estimated consistently be-
cause we do not observe both potential outcomes for the same units. Often, researchers
use the conservative estimator based on ignoring S2

θ/n. If we proceed in the same fashion
for the regression context of Section 3, we obtain the conservative estimator V̂ ehw, based
on ignoring μ. We show, however, that in the presence of attributes, we can improve the
variance estimator. We build on Abadie and Imbens (2008), Abadie, Imbens, and Zheng
(2014), and Fogarty (2016) who, in contexts different than the one studied in this article,
have used the explanatory power of attributes to improve variance estimators. Abadie
and Imbens (2008) and Abadie, Imbens, and Zheng (2014) did so using nearest-neighbor
techniques. Here, we follow Fogarty (2016) and apply linear regression techniques. The
proposed estimator replaces the expectations E[Xn�iεn�i], which cannot be consistently es-
timated, with predictors from a linear least squares projection of estimates of Xn�iεn�i on
the attributes, Zn�i. Let X̂n�i =Un�i − Λ̂nZn�i, and

Ĝn =
(

1
N

n∑
i=1

Rn�iX̂n�îεn�iZ
′
n�i

)(
1
N

n∑
i=1

Rn�iZn�iZ
′
n�i

)−1

�
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The matrix Ĝn contains the coefficients of a least squares regression of X̂n�îεn�i on Zn�i.
The next assumption ensures convergence of Ĝn.

ASSUMPTION 11:

1
n

n∑
i=1

E[Xn�iεn�i]Z′
n�i

has a limit.

Consider now the following estimator:

̂Zn = 1
N

n∑
i=1

Rn�i(X̂n�îεn�i − ĜnZn�i)(X̂n�îεn�i − ĜnZn�i)
′�

which uses ĜnZn�i in lieu of a consistent estimator of E[Xn�iεn�i]. Notice that we do not
assume that E[Xn�iεn�i] is linear in Zn�i. However, we will show that, as long as the at-
tributes can linearly explain some of the variance in X̂n�îεn�i, the estimator ̂Zn is smaller
(in a matrix sense) than ̂ehw

n . These results are provided in the following lemma.

LEMMA 3: Suppose Assumptions 3–7, 9, and 11 hold with δ = 4. Then, 0 ≤ ̂Zn ≤ ̂ehw
n ,

and ̂Zn
p→ Z , where cond ≤ Z ≤ ehw (all inequalities are to be understood in a matrix

sense).

Estimators of V causal�sample and V causal follow immediately from Lemma 3 by replacing
cond with the estimate ̂Zn in the asymptotic variance formulas of Theorem 3, leading
to V̂ causal�sample

n = �̂−1
n ̂

Z
n �̂

−1
n for the estimation of V causal�sample and V̂ causal

n = ρ̂nV̂
causal�sample
n +

(1 − ρ̂n)V̂
ehw
n for the estimation of V causal. These estimators are not larger (and typically

smaller) than V̂ ehw
n and they remain conservative in large samples.

COMMENT 17: A special case of the adjusted variance arises when Zn�i is a set of ex-
haustive and mutually exclusive dummy variables, or if we reduce the information in Zn�i
to such indicators. Then, the residuals from regressing X̂n�îεn�i on Zn�i are simply stratum-
specific demeaned versions of X̂n�îεn�i, and a conservative estimator of cond can be ob-
tained using the variance formulas in Wooldridge (2001) for standard stratified samples.

5. SIMULATIONS

In this section, we use a simple data-generating process as well as simulations to illus-
trate the difference between the conventional EHW variance estimator and the variance
estimators proposed in this article. We focus on the case of a single causal variable, Xn�i.
In addition to the causal variable, the simulations employ an outcome variable, Yn�i, and
a vector of attributes, Zn�i, which consists of a constant equal to 1 and k values drawn in-
dependently from the standard normal distribution. The potential outcome function has
the form in equation (3.6). Population values of θn�i are generated as independent draws
from a normal distribution with mean Z′

n�iψ, where ψ= (0�ψ1� � � � �ψk)
′ is a k+ 1 vector,

and variance σ2
θ . Population values of ξn�i and Un�i are generated as independent draws
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from a normal distribution with mean 0 and variance 1. Because in this data-generating
process E[Un�i] = 0, it follows that Λn is a row-vector of zeros and Xn�i =Un�i. We use this
data-generating process to produce a population of size n. For this data-generating pro-
cess, it can be shown that �= 1, ehw = 1 + 3(ψ′ψ+σ2

θ) and cond = 1 + 2(ψ′ψ+σ2
θ), and

Z = 1 + 2ψ′ψ+ 3σ2
θ with probability 1. In each simulation repetition, we sample units at

random with probability ρ from the population. As a result, the sample size N is random
with E[N] = nρ. For each sample, we estimate θ̂n by least squares (as in equation (3.2))
and a number of variance estimators.

In Table IV, we report the results of the simulations. We consider seven designs. The
first column reports the basic design, with ρ= 0�01 and n= 100�000, so the average sam-
ple size is 1000. In this design, there is one stochastic regressor, so k= 1, and the distri-
bution of the treatment effect, θn�i, is given by parameter values ψ = (0�2)′ and σ2

θ = 1.
The remaining designs in the second to seventh columns are variations of the basic design
in the first column. In the second design, we increase the dimensionality of Zn�i used for
estimation from two to ten. Still, in this design ψ has all entries equal to zero except for
ψ1 = 2, so only the first stochastic regressor matters for the distribution of θn�i. In the next
design, we change the population size to 10,000, so that the average sample size is 100. In
the fourth design, we change the population size to 1000 and the sampling rate, ρ, to 1.
In the fifth design, we impose ψ′ψ= 0, which makes the treatment effect unrelated to the
regressors, Zn�i. In the sixth design, we set σ2

θ = 0, which removes the stochastic part of
the treatment effect. In the last design, ψ′ψ= 0 and σ2

θ = 0, so the treatment effect is con-
stant. The first panel of Table IV provides the parameters of each of the seven simulation
designs.

The second panel of Table IV reports the standard deviations of (θ̂n − θdescr
n ),

(θ̂n − θcausal�sample
n ), and (θ̂n − θcausal

n ) across simulation iterations. The remaining panels
report feasible standard errors based on the estimators of Section 4 as well as bootstrap
standard errors, along with coverage rates of the corresponding 95 percent confidence
intervals. We employ 50,000 iterations for the simulations and 1000 bootstrap samples.
The coverage rates in each of the panels of the table are based on adding and subtracting
1.96 times the standard errors whose average appears in the first row of that panel.

For the basic design in the first column of Table IV, ρ = 0�01 is very small, and EHW
and bootstrap standard errors provide accurate estimates of the standard deviations of
(θ̂n −θdescr

n ) and (θ̂n −θcausal
n ). However, the standard deviation of (θ̂n −θcausal�sample

n ) is sub-
stantially smaller than that of (θ̂n − θdescr

n ) and (θ̂n − θcausal
n ), and the EHW and bootstrap

variance estimators are very conservative for the sample average causal effect, θcausal�sample
n .

The variance estimator based on V̂ causal�sample
n is substantially smaller, and still has more

than correct coverage for θcausal�sample. Increasing the number of regressors in the second
design leaves the result virtually unaffected. The same patterns of results appear in the
third column, albeit with less precise variance estimators due to much smaller sample
sizes. In the fourth design, ρ= 1 and, as predicted by the results in Section 4, EHW stan-
dard errors greatly overestimate the variability of (θ̂n − θdescr

n ). The same is true for boot-
strap standard errors. In the fifth design, we go back to the small sampling rate, ρ= 0�01
and this time ψ′ψ = 0, so regressors do not explain variation in treatment effects, and
Z = ehw. As suggested by the results in Sections 3 and 4, all variance estimators produce
similar results in this design. In the sixth design, where regressors explain all the variation
in treatment effects, Z = cond and standard errors based on V̂ causal�sample

n and V̂ causal
n closely

approximate the standard deviations of (θ̂n − θcausal�sample
n ) and (θ̂n − θcausal

n ), respectively.
In the final design with a constant treatment effect, all the variances are similar.
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TABLE IV

SIMULATION RESULTS WITH COVERAGE FOR NOMINAL 95% CONFIDENCE INTERVALS

E[N] = ρn 1000 1000 100 1000 1000 1000 1000
ρ 0.01 0.01 0.01 1 0.01 0.01 0.01
k 1 10 1 1 1 1 1
ψ′ψ 4 4 4 4 0 4 0
σ2
θ 1 1 1 1 1 0 0

sd(θ̂n − θdescr
n ) 0.125 0.126 0.399 0.000 0.063 0.113 0.031

sd θ̂n − θcausal�sample
n ) 0.105 0.104 0.331 0.100 0.055 0.095 0.032

sd θ̂n − θcausal
n ) 0.125 0.126 0.400 0.100 0.063 0.114 0.032

Average (V̂ ehw
n /N)1/2 0.125 0.124 0.370 0.121 0.063 0.113 0.032

Coverage θdescr
n 0.949 0.947 0.923 1.000 0.948 0.947 0.950

Coverage θcausal�sample
n 0.980 0.981 0.969 0.982 0.974 0.981 0.950

Coverage θcausal
n 0.948 0.947 0.922 0.982 0.947 0.947 0.950

Average (V̂ boot
n /N)1/2 0.126 0.127 0.426 0.122 0.064 0.115 0.032

Coverage θdescr
n 0.950 0.950 0.955 1.000 0.950 0.949 0.953

Coverage θcausal�sample
n 0.981 0.982 0.986 0.982 0.975 0.981 0.951

Coverage θcausal
n 0.950 0.949 0.955 0.982 0.949 0.949 0.951

Average (V̂ desc
n /N)1/2 0.124 0.124 0.368 0.000 0.063 0.113 0.031

Coverage θdescr
n 0.948 0.946 0.921 1.000 0.947 0.946 0.949

Coverage θcausal�sample
n 0.980 0.980 0.968 0.000 0.973 0.981 0.948

Coverage θcausal
n 0.947 0.946 0.921 0.000 0.946 0.946 0.948

Average (V̂ causal�sample
n /N)1/2 0.108 0.107 0.317 0.104 0.063 0.094 0.032

Coverage θdescr
n 0.908 0.905 0.872 1.000 0.948 0.894 0.950

Coverage θcausal�sample
n 0.956 0.957 0.937 0.957 0.974 0.948 0.949

Coverage θcausal
n 0.907 0.904 0.870 0.957 0.947 0.892 0.949

Average (V̂ causal
n /N)1/2 0.125 0.124 0.369 0.104 0.063 0.113 0.032

Coverage θdescr
n 0.949 0.947 0.922 1.000 0.948 0.947 0.950

Coverage θcausal�sample
n 0.980 0.981 0.969 0.957 0.974 0.981 0.950

Coverage θcausal
n 0.948 0.947 0.922 0.957 0.947 0.946 0.950

6. CONCLUSION

In this article, we study the interpretation of standard errors in regression analysis when
the assumption that the sample is drawn randomly from a much larger population of inter-
est is not appropriate. We base our results on a potential outcome framework, where the
estimands of interest may be descriptive or causal, and we provide a coherent interpreta-
tion for standard errors that allows for uncertainty coming from both random sampling
and from conditional random assignment. The standard errors estimators proposed in
this article may be different from the conventional ones, and they may vary depending on
(i) the specific nature of the estimand of interest (i.e., descriptive or causal), (ii) the frac-
tion of the population represented in the sample, and (iii) the extent to which measured
attributes explain variation in treatment effects.

In the current article, we focus exclusively on linear regression models. The concerns
we raise in this article arise in many other settings and for other kinds of hypotheses, and
the implications would need to be worked out for those settings. Thus, we see this article
as a first step in a broader research program.
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APPENDIX

A.1. A Bayesian Approach

Given that we are advocating for a different conceptual approach to modeling infer-
ence, it is useful to look at the problem from more than one perspective. In this section,
we consider a Bayesian perspective and re-analyze the example from Section 2. Viewing
the problem from a Bayesian perspective reinforces the point that formally modeling the
population and the sampling process leads to the conclusion that inference is different for
descriptive and causal questions. Note that in this discussion, the notation will necessarily
be slightly different from the rest of the article; notation and assumptions introduced in
this subsection apply only within this subsection.

Define Y∗
n(1), Y∗

n(0) to be the n vectors with typical elements Y ∗
i (1) and Y ∗

i (0), respec-
tively. We view the n vectors Y∗

n(1), Y∗
n(0), Rn, and Xn as random variables, some observed

and some unobserved. We assume the rows of the n× 4 matrix [Y∗
n(1)�Y∗

n(0)�Rn�Xn] are
exchangeable. Then, by appealing to DeFinetti’s theorem, we model this, with no essential
loss of generality (for large n) as the product of n independent and identically distributed
random quadruples (Y ∗

i (1)�Y
∗
i (0)�Ri�Xi) given some unknown parameter β:

f
(
Y∗
n(1)�Y∗

n(0)�Rn�Xn

) =
n∏
i=1

f
(
Y ∗
i (1)�Y

∗
i (0)�Ri�Xi|β

)
�

Inference then proceeds by specifying a prior distribution for β, say p(β). To make this
specific, consider the following model. Let Xi and Ri have Binomial distributions with
parameters q and ρ,

Pr
(
Xi = 1|Y ∗

i (1)�Y
∗
i (0)�Ri

) = q� Pr
(
Ri = 1|Y ∗

i (1)�Y
∗
i (0)

) = ρ�
The pairs (Y ∗

i (1)�Y
∗
i (0)) are assumed to be jointly normally distributed:(

Y ∗
i (1)
Y ∗
i (0)

)∣∣∣μ1�μ0�σ
2
1 �σ

2
0 �κ∼N

((
μ1

μ0

)
�

(
σ2

1 κσ1σ0

κσ1σ0 σ2
0

))
�

so that the full parameter vector is β= (q�ρ�μ1�μ0�σ
2
1 �σ

2
0 �κ).

We change the observational scheme slightly from Section 2 to allow for the analytic
derivation of posterior distributions. We assume that for all units in the population we
observe the pair (Ri�Xi), and for units with Ri = 1 we observe the outcome Yi = Y ∗

i (Xi).
Define Ỹi =RiYi, so for all units in the population we observe the triple (Ri�Xi� Ỹi). Let
Rn, Xn, and Ỹn be the n vectors of these variables. Ȳ1 denotes the average of Yi in the sub-
population with Ri = 1 andXi = 1, and Ȳ0 denotes the average of Yi in the subpopulation
with Ri = 1 and Xi = 0.

The descriptive estimand is

θdescr
n = 1

n1

n∑
i=1

XiYi − 1
n0

n∑
i=1

(1 −Xi)Yi�

The causal estimand is

θcausal
n = 1

n

n∑
i=1

(
Y ∗
i (1)−Y ∗

i (0)
)
�
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It is interesting to compare these estimands to an additional estimand, the super-
population average treatment effect,

θcausal = μ1 −μ0�

In general, these three estimands are distinct, with their own posterior distributions, but
in some cases, notably when n is large, the three posterior distributions are similar.

It is instructive to consider a very simple case where analytic solutions for the posterior
distribution for θdescr

n , θcausal
n , and θcausal are available. Suppose σ2

1 , σ2
0 , κ, and q are known,

so that the only unknown parameters are the two means μ1 and μ0. Finally, let us use
independent, diffuse (improper), prior distributions for μ1 and μ0.

Then, a standard result is that the posterior distribution for (μ1�μ0) given (Rn�Xn� Ỹn)
is (

μ1

μ0

)
|Rn�Xn� Ỹn ∼N

((
Ȳ1

Ȳ0

)
�

(
σ2

1/N1 0
0 σ2

0/N0

))
�

where N1 is the number of units with Ri = 1 and Xi = 1, and N0 is the number of units
with Ri = 1 and Xi = 0. This directly leads to the posterior distribution for θcausal:

θcausal|Rn�Xn� Ỹn ∼N
(
Ȳ1 − Ȳ0�

σ2
1

N1
+ σ2

0

N0

)
�

A longer calculation leads to the posterior distribution for the descriptive estimand:

θdescr
n |Rn�Xn� Ỹn ∼N

(
Ȳ1 − Ȳ0�

σ2
1

N1

(
1 − N1

n1

)
+ σ2

0

N0

(
1 − N0

n0

))
�

The implied posterior interval for θdescr
n is very similar to the corresponding confidence

interval based on the normal approximation to the sampling distribution for Ȳ1 − Ȳ0.
If n1 and n0 are large, this posterior distribution is close to the posterior distribution
of the causal estimand. If, on the other hand, N1 = n1 and N0 = n0, then the posterior
distribution of the descriptive estimand becomes degenerate and centered at Ȳ1 − Ȳ0.

A somewhat longer calculation for θcausal
n leads to

θcausal
n |Rn�Xn� Ỹn ∼N

(
Ȳ1 − Ȳ0�

N0

n2 σ
2
1

(
1 − κ2

)+ N1

n2 σ
2
0

(
1 − κ2

)
+ n−N

n2 σ2
1 + n−N

n2 σ2
0 − 2

n−N
n2 κσ1σ0

+ σ2
1

N1

(
1 −

(
1 − κσ0

σ1

)
N1

n

)2

+ σ2
0

N0

(
1 −

(
1 − κσ1

σ0

)
N0

n

)2)
�

Consider the special case of constant treatment effects, where Yi(1)− Yi(0) = μ1 − μ0.
Then, κ= 1, and σ1 = σ0, and the posterior distribution of θcausal

n is the same as the poste-
rior distribution of θcausal. The posterior distributions coincide for θcausal

n and θcausal in the
limit as n goes to infinity, regardless of the values of κ, σ1, and σ0.

To summarize, if the population is large, relative to the sample, the posterior distribu-
tions of θdescr

n , θcausal
n , and θcausal agree. However, if the population is small, the three poste-

rior distributions differ, and the researcher needs to be precise in defining the estimand.
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In such cases, simply using the posterior of the super-population estimand θcausal = μ1 −μ0

may not be appropriate, because the posterior inferences for θcausal will differ from those
of θcausal

n or θdescr
n .

A.2. Proofs

PROOF OF LEMMA 1: See Supplemental Material. Q.E.D.

PROOF OF THEOREM 1: For n large enough,
∑n

i=1Zn�iZ
′
n�i is full rank and Λn exists, so

ΩZX
n = 0. This implies

θcausal
n =

(
n∑
i=1

E
[
Xn�iX

′
n�i

])−1
n∑
i=1

E[Xn�iYn�i]�

Moreover, for n large enough, Λn = Bn, which implies E[Xn�i] = 0, Ω̃XZ
n = 0, and

θcausal�sample
n =

(
n∑
i=1

Rn�iE
[
Xn�iX

′
n�i

])−1
n∑
i=1

Rn�iE[Xn�iYn�i]

with probability approaching 1. Now,

E[Xn�iYn�i] = E[Xn�iU
′
n�i

]
θn�i +E[Xn�i]ξn�i

=E[Xn�iX
′
n�i

]
θn�i

implies the results. Q.E.D.

PROOF OF THEOREM 2: Let ∇Y ∗
n�i() be the gradient of Y ∗

n�i(). By the mean value the-
orem, there exist sets Tn�i ⊆ [0�1] such that for any tn�i ∈ Tn�i, we have Y ∗

n�i(Un�i) =
Y ∗
n�i(BnZn�i) + X ′

n�i∇Y ∗
n�i(BnZn�i + tn�iXn�i). We define ϕn�i = ∇Y ∗

n�i(vn�i), where vn�i =
BnZn�i + t̄n�iXn�i and t̄n�i = supTn�i. Now, E[Xn�iYn�i] = E[Xn�i]Y ∗

n�i(BnZn�i)+E[X ′
n�iϕn�i] =

E[X ′
n�iϕn�i]. The rest of the proof is as in Theorem 1. Q.E.D.

The following lemma will be useful for establishing asymptotic normality.

LEMMA A.1: Let Vn�i be a row-wise independent triangular array and μn�i = E[Vn�i]. Sup-
pose that Rn�1� � � � �Rn�n are independent of Vn�1� � � � � Vn�n and that Assumption 4 holds. More-
over, assume that

1
n

n∑
i=1

E
[|Vn�i|2+δ]

is bounded for some δ > 0,

n∑
i=1

μn�i = 0� (A.1)

1
n

n∑
i=1

var(Vn�i)→ σ2�
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and

1
n

n∑
i=1

μ2
n�i → κ2�

where σ2 + (1 − ρ)κ2 > 0. Then

1√
N

n∑
i=1

Rn�iVn�i
d−→N

(
0�σ2 + (1 − ρ)κ2

)
�

where N = ∑n

i=1Rn�i.

PROOF: Notice that

E

[
N

nρn

]
= 1

and

var
(
N

nρn

)
= nρn(1 − ρn)

(nρn)
2 → 0�

Now the continuous mapping theorem implies(
nρn

N

)1/2
p−→ 1�

As a result, it is enough to prove

1√
n

n∑
i=1

Rn�i√
ρn
Vn�i →N

(
0�σ2 + (1 − ρ)κ2

)
�

Let

s2
n = 1

n

n∑
i=1

(
var(Vn�i)+ (1 − ρn)μ2

n�i

)
�

Consider n large enough so s2
n > 0. Notice that, for i= 1� � � � � n,

E

[
Rn�iVn�i − ρnμn�i

sn
√
nρn

]
= 0�

and

var(Rn�iVn�i − ρnμn�i)= ρnE
[
V 2
n�i

]− ρ2
nμ

2
n�i

= ρn
(
var(Vn�i)+ (1 − ρn)μ2

n�i

)
�

Therefore,

n∑
i=1

var
(
Rn�iVn�i − ρnμn�i

sn
√
nρn

)
= 1�
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Using ρn ≤ ρ1/(2+δ)
n , |μn�i|2+δ ≤E[|Vn�i|2+δ], and Minkowski’s inequality, we obtain

n∑
i=1

E

[∣∣∣∣Rn�iVn�i − ρnμn�isn
√
nρn

∣∣∣∣2+δ]
≤ 1
s2+δ
n (nρn)

1+δ/2

n∑
i=1

(
ρ

1
2+δ
n

(
E
[|Vn�i|2+δ]) 1

2+δ + ρn|μn�i|
)2+δ

≤ 22+δρn
s2+δ
n (nρn)

1+δ/2

n∑
i=1

E
[|Vn�i|2+δ]

= 22+δ

s2+δ
n (nρn)

δ/2

(
1
n

n∑
i=1

E
[|Vn�i|2+δ]) → 0�

Applying Liapunov’s theorem (see, e.g., Davidson (1994)), we obtain

n∑
i=1

Rn�iVn�i − ρnμn�i
sn

√
nρn

d−→N (0�1)�

Now, the result of the lemma follows from equation (A.1) and from

sn/
√
σ2 + (1 − ρ)κ2 → 1� Q.E.D.

LEMMA A.2:Suppose Assumptions 3–9 hold, and let μ = ehw − cond, ε̃n�i =
Yn�i −X ′

n�iθ
causal�sample
n −X ′

n�iγ
causal�sample
n , and νn�i = Yn�i −X ′

n�iθ
descr
n −X ′

n�iγ
descr
n . Then,

(i)

1√
N

n∑
i=1

Rn�iXn�iεn�i
d−→N

(
0�cond + (1 − ρ)μ)�

(ii)

1√
N

n∑
i=1

Rn�iXn�ĩεn�i
d−→N

(
0�cond

)
�

(iii)

1√
N

n∑
i=1

Rn�iXn�iνn�i
d−→N

(
0� (1 − ρ)ehw

)
�

PROOF: To prove (i), consider Vn�i = a′Xn�iεn�i for a ∈ R
k. We will verify the conditions

of Lemma A.1. Notice that

1
n

n∑
i=1

E
[|Vn�i|2+δ] ≤ ‖a‖2+δ

n

n∑
i=1

E
[‖Xn�i‖2+δ(|Yn�i| + ‖Xn�i‖‖θn‖ + ‖Zn�i‖‖γn‖

)2+δ]
�

By Minkowski’s inequality and Assumption 5, the right-hand side of the last equation is
bounded. In addition,

n∑
i=1

μn�i = a′
n∑
i=1

E[Xn�iεn�i] = 0�
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Let a �= 0. Then,

1
n

n∑
i=1

var(Vn�i)= a′
(

1
n

n∑
i=1

var(Xn�iεn�i)

)
a→ a′conda > 0�

1
n

n∑
i=1

μ2
n�i = a′

(
1
n

n∑
i=1

E[Xn�iεn�i]E
[
εn�iX

′
n�i

])
a→ a′μa�

This implies

a′
(

1√
N

n∑
i=1

Rn�iXn�iεn�i

)
d→N

(
0� a′(cond + (1 − ρ)μ)a)�

Using the Cramer–Wold device, this implies

1√
N

n∑
i=1

Rn�iXn�iεn�i
d→N

(
0�cond + (1 − ρ)μ)�

The proofs of (ii) and (iii) are similar. Q.E.D.

PROOF OF THEOREM 3: To prove (i), notice that

n∑
i=1

Rn�i

(
Xn�iX

′
n�i Xn�iZ

′
n�i

Zn�iX
′
n�i Zn�iZ

′
n�i

)
is invertible with probability approaching 1. Then,(

θ̂n
γ̂n

)
=

(
n∑
i=1

Rn�i

(
Xn�iX

′
n�i Xn�iZ

′
n�i

Zn�iX
′
n�i Zn�iZ

′
n�i

))−1 n∑
i=1

Rn�i

(
Xn�iYn�i
Zn�iYn�i

)

=
(
θcausal
n

γcausal
n

)
+

(
n∑
i=1

Rn�i

(
Xn�iX

′
n�i Xn�iZ

′
n�i

Zn�iX
′
n�i Zn�iZ

′
n�i

))−1 n∑
i=1

Rn�i

(
Xn�iεn�i
Zn�iεn�i

)
�

Therefore,

√
N

(
θ̂n − θcausal

n

γ̂n − γcausal
n

)
=

(
1
N

n∑
i=1

Rn�i

(
Xn�iX

′
n�i Xn�iZ

′
n�i

Zn�iX
′
n�i Zn�iZ

′
n�i

))−1
1√
N

n∑
i=1

Rn�i

(
Xn�iεn�i
Zn�iεn�i

)

=
(
ΩXX
n ΩXZ

n

ΩZX
n ΩZZ

n

)−1 1√
N

n∑
i=1

Rn�i

(
Xn�iεn�i
Zn�iεn�i

)
+ rn�

where

rn =
⎡⎣(

W̃ XX
n W̃ XZ

n

W̃ ZX
n W̃ ZZ

n

)−1

−
(
ΩXX
n ΩXZ

n

ΩZX
n ΩZZ

n

)−1
⎤⎦ 1√

N

n∑
i=1

Rn�i

(
Xn�iεn�i
Zn�iεn�i

)
�
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Because (i) ΩXZ
n = 0, (ii) the first term of rn is op(1), and (iii) (1/

√
N)

∑n

i=1Rn�iXn�iεn�i is
Op(1) (under the conditions stated above), it follows that

√
N
(
θ̂n − θcausal

n

) = (
ΩXX
n

)−1 1√
N

n∑
i=1

Rn�iXn�iεn�i + op(1)

if we can show

(1/
√
N)

n∑
i=1

Rn�iZn�iεn�i =Op(1)�

We can write this standardized sum as

(nρn/N)
1/2

[
n−1/2

n∑
i=1

(Rn�i/
√
ρn)Zn�iεn�i

]
�

As shown in Lemma A.1, (nρn/N)1/2 p→ 1. Therefore, it suffices to show

n−1/2
n∑
i=1

(Rn�i/
√
ρn)Zn�iεn�i =Op(1)�

This expression has zero mean because Rn�i is independent of εn�i and

n∑
i=1

Zn�iE(εn�i)= 0�

We can study each element of the vector separately. By Chebyshev’s inequality, it suffices
to show that the variances are bounded. Consider the jth element. Then, by independence
across i,

var

[
n−1/2

n∑
i=1

(Rn�i/
√
ρn)Zn�i�jεn�i

]
= n−1

n∑
i=1

var
[
(Rn�i/

√
ρn)Zn�i�jεn�i

]
≤ n−1

n∑
i=1

E
{[
(Rn�i/

√
ρn)Zn�i�jεn�i

]}2

= n−1
n∑
i=1

Z2
n�i�jE

(
ε2
n�i�j

)
�

where the last equality holds because E[Rn�i] = ρn and Zn�i�j is non-random. Both Z2
n�i�j

and E[ε2
n�i] are bounded by Assumption 5, and so this completes the proof. The proofs of

(ii) and (iii) are analogous. Q.E.D.

PROOF OF THEOREM 4: The result follows directly from E[Xn�iεn�i] = 0. Q.E.D.
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PROOF OF LEMMA 2: First, notice that (with probability approaching 1) Λn exists and
it is equal to Bn. This implies

Λ̂n −Λn =
(

1
N

n∑
i=1

Rn�iXn�iZ
′
n�i

)(
1
N

n∑
i=1

Rn�iZn�iZ
′
n�i

)−1

�

which converges to zero in probability by Lemma 1 and Assumption 6. Direct calculations
yield

�̂n − W̃ XX
n = (Λ̂n −Λn)W̃

ZZ
n (Λ̂n −Λn)

′ − W̃ XZ
n (Λ̂n −Λn)

′ − (Λ̂n −Λn)W̃
XZ
n

p→ 0�

Now, Lemma 1 and Assumption 6 imply �̂n
p→ �, where � is full rank. Theorem 3 directly

implies θ̂n − θcausal
n

p→ 0. γ̂n − γcausal
n

p→ 0 follows from Lemma 1. Let

̆ehw
n = 1

N

n∑
i=1

Rn�iXn�îε
2
n�iX

′
n�i� ̃ehw

n = 1
N

n∑
i=1

Rn�iXn�iε
2
n�iX

′
n�i�

and

ehw
n = 1

n

n∑
i=1

E
[
Xn�iε

2
n�iX

′
n�i

]
�

Let α be a multi-index of dimension equal to the length of Tn�i = (Yn�i : X ′
n�i : Z′

n�i). In
addition, let

T̃ αn = 1
N

n∑
i=1

T̃ αn�i =
1
N

n∑
i=1

Rn�iT
α
n�i�

and

Ψα
n = 1

n

n∑
i=1

E
[
W α
n�i

]
�

Using the same argument as in the proof of Lemma 1 and given that Assumption 5 holds
with δ = 4, it follows that T̃ αn − Ψα

n

p→ 0 for |α| ≤ 4. This result directly implies ̃ehw
n −

ehw
n

p→ 0. By the same argument plus convergence of θ̂n and γ̂n, it follows that ̂ehw
n −

̆ehw
n

p→ 0 and ̆ehw
n − ̃ehw

n

p→ 0. Now, the result follows from ̂ehw
n −ehw = (̂ehw

n − ̆ehw
n )+

(̆ehw
n − ̃ehw

n )+ (̃ehw
n − ehw

n )+ (ehw
n − ehw)

p→ 0, where the last difference goes to zero
by Assumption 9. Q.E.D.

PROOF OF LEMMA 3: Notice that

̂Zn = ̂ehw
n − ̂proj

n � where ̂proj
n = 1

N

n∑
i=1

Rn�iĜnZn�iZ
′
n�iĜ

′
n�

so that ̂Zn is no larger than ̂ehw
n in a matrix sense.
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Let

Gn =
(

1
n

n∑
i=1

E[Xn�iεn�i]Z′
n�i

)(
1
n

n∑
i=1

Zn�iZ
′
n�i

)−1

be the expected value of Ĝn. Under the assumptions of Lemma 2 and using the same
argument as in the proof of that lemma, we obtain Ĝn−Gn

p→ 0. Therefore, ̂proj
n −proj

n

p→
0, where

proj
n = 1

n

n∑
i=1

GnZn�iZ
′
n�iG

′
n�

Moreover, ̂Zn −Zn
p→ 0, where Zn = ehw

n −proj
n and

ehw
n = 1

n

n∑
i=1

E
[
Xn�iε

2
n�iX

′
n�i

]
�

Let

μn = 1
n

n∑
i=1

E[Xn�iεn�i]E
[
εn�iX

′
n�i

]
�

Notice that

μn −proj
n = 1

n

n∑
i=1

E[Xn�iεn�i]E
[
εn�iX

′
n�i

]

−
(

1
n

n∑
i=1

E[Xn�iεn�i]Z′
n�i

)(
1
n

n∑
i=1

Zn�iZ
′
n�i

)−1(
1
n

n∑
i=1

Zn�iE
[
εn�iX

′
n�i

])
�

Let An and Dn be the matrices with ith rows equal to E[εn�iX ′
n�i]/

√
n and Z′

n�i/
√
n, respec-

tively. Let In be the identity matrix of size n. Then,

μn −proj
n = A′

n

(
In − Dn

(
D′
nDn

)−1
D′
n

)
An�

which is positive semidefinite. Because cond
n = ehw

n −μn , we obtain

cond
n ≤ Zn ≤ ehw

n �

where the inequalities are to be understood in a matrix sense. Now, it follows from As-
sumption 11 that Gn and, therefore, proj

n and Zn have limits. Then,

cond ≤ Z ≤ ehw�

where cond, Z , and ehw are the limits of cond
n , Zn , and ehw

n , respectively. Q.E.D.
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