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LARGE SAMPLE PROPERTIES OF MATCHING ESTIMATORS
FOR AVERAGE TREATMENT EFFECTS

BY ALBERTO ABADIE AND GUIDO W. IMBENS1

Matching estimators for average treatment effects are widely used in evaluation re-
search despite the fact that their large sample properties have not been established in
many cases. The absence of formal results in this area may be partly due to the fact
that standard asymptotic expansions do not apply to matching estimators with a fixed
number of matches because such estimators are highly nonsmooth functionals of the
data. In this article we develop new methods for analyzing the large sample properties
of matching estimators and establish a number of new results. We focus on matching
with replacement with a fixed number of matches. First, we show that matching esti-
mators are not N1/2-consistent in general and describe conditions under which match-
ing estimators do attain N1/2-consistency. Second, we show that even in settings where
matching estimators are N1/2-consistent, simple matching estimators with a fixed num-
ber of matches do not attain the semiparametric efficiency bound. Third, we provide a
consistent estimator for the large sample variance that does not require consistent non-
parametric estimation of unknown functions. Software for implementing these methods
is available in Matlab, Stata, and R.

KEYWORDS: Matching estimators, average treatment effects, unconfoundedness, se-
lection on observables, potential outcomes.

1. INTRODUCTION

ESTIMATION OF AVERAGE TREATMENT EFFECTS is an important goal of much
evaluation research, both in academic studies, as well as in substantive evalu-
ations of social programs. Often, analyses are based on the assumptions that
(i) assignment to treatment is unconfounded or exogenous, that is, indepen-
dent of potential outcomes conditional on observed pretreatment variables,
and (ii) there is sufficient overlap in the distributions of the pretreatment vari-
ables. Methods for estimating average treatment effects in parametric settings
under these assumptions have a long history (see, e.g., Cochran and Rubin
(1973), Rubin (1977), Barnow, Cain, and Goldberger (1980), Rosenbaum and
Rubin (1983), Heckman and Robb (1984), and Rosenbaum (1995)). Recently,
a number of nonparametric implementations of this idea have been pro-
posed. Hahn (1998) calculates the efficiency bound and proposes an asymptot-
ically efficient estimator based on nonparametric series estimation. Heckman,

1We wish to thank Donald Andrews, Joshua Angrist, Gary Chamberlain, Geert Dhaene,
Jinyong Hahn, James Heckman, Keisuke Hirano, Hidehiko Ichimura, Whitney Newey, Jack
Porter, James Powell, Geert Ridder, Paul Rosenbaum, Edward Vytlacil, a co-editor and two
anonymous referees, and seminar participants at various universities for comments, and Don
Rubin for many discussions on the topic of this article. Financial support for this research
was generously provided through National Science Foundation Grants SES-0350645 (Abadie),
SBR-9818644, and SES-0136789 (Imbens). Imbens also acknowledges financial support from the
Giannini Foundation and the Agricultural Experimental Station at UC Berkeley.
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Ichimura, and Todd (1998) focus on the average effect on the treated and
consider estimators based on local linear kernel regression methods. Hirano,
Imbens, and Ridder (2003) propose an estimator that weights the units by
the inverse of their assignment probabilities and show that nonparametric se-
ries estimation of this conditional probability, labeled the propensity score by
Rosenbaum and Rubin (1983), leads to an efficient estimator of average treat-
ment effects.

Empirical researchers, however, often use simple matching procedures to
estimate average treatment effects when assignment for treatment is believed
to be unconfounded. Much like nearest neighbor estimators, these procedures
match each treated unit to a fixed number of untreated units with similar values
for the pretreatment variables. The average effect of the treatment is then esti-
mated by averaging within-match differences in the outcome variable between
the treated and the untreated units (see, e.g., Rosenbaum (1995), Dehejia and
Wahba (1999)). Matching estimators have great intuitive appeal and are widely
used in practice. However, their formal large sample properties have not been
established. Part of the reason may be that matching estimators with a fixed
number of matches are highly nonsmooth functionals of the distribution of the
data, not amenable to standard asymptotic methods for smooth functionals.
In this article we study the large sample properties of matching estimators of
average treatment effects and establish a number of new results. Like most of
the econometric literature, but in contrast with some of the statistics literature,
we focus on matching with replacement.

Our results show that some of the formal large sample properties of match-
ing estimators are not very attractive. First, we show that matching estimators
include a conditional bias term whose stochastic order increases with the num-
ber of continuous matching variables. We show that the order of this condi-
tional bias term may be greater than N−1/2, where N is the sample size. As a
result, matching estimators are not N1/2-consistent in general. Second, even
when the simple matching estimator is N1/2-consistent, we show that it does
not achieve the semiparametric efficiency bound as calculated by Hahn (1998).
However, for the case when only a single continuous covariate is used to match,
we show that the efficiency loss can be made arbitrarily close to zero by allow-
ing a sufficiently large number of matches. Despite these poor formal proper-
ties, matching estimators do have some attractive features that may account
for their popularity. In particular, matching estimators are extremely easy to
implement and they do not require consistent nonparametric estimation of
unknown functions. In this article we also propose a consistent estimator for
the variance of matching estimators that does not require consistent nonpara-
metric estimation of unknown functions. This result is particularly relevant be-
cause the standard bootstrap does not lead to valid confidence intervals for the
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simple matching estimator studied in this article (Abadie and Imbens (2005)).
Software for implementing these methods is available in Matlab, Stata, and R.2

2. NOTATION AND BASIC IDEAS

2.1. Notation

We are interested in estimating the average effect of a binary treatment
on some outcome. For unit i, with i = 1� � � � �N , following Rubin (1973), let
Yi(0) and Yi(1) denote the two potential outcomes given the control treatment
and given the active treatment, respectively. The variable Wi, with Wi ∈ {0�1},
indicates the treatment received. For unit i, we observe Wi and the outcome
for this treatment,

Yi =
{
Yi(0)� if Wi = 0,
Yi(1)� if Wi = 1,

as well as a vector of pretreatment variables or covariates, denoted by Xi. Our
main focus is on the population average treatment effect and its counterpart
for the population of the treated:

τ = E[Yi(1)−Yi(0)] and τt = E
[
Yi(1)−Yi(0)|Wi = 1

]
�

See Rubin (1977), Heckman and Robb (1984), and Imbens (2004) for discus-
sion of these estimands.

We assume that assignment to treatment is unconfounded (Rosenbaum and
Rubin (1983)), and that the probability of assignment is bounded away from
0 and 1.

ASSUMPTION 1: Let X be a random vector of dimension k of continuous co-
variates distributed on R

k with compact and convex support X, with (a version
of the) density bounded and bounded away from zero on its support.

ASSUMPTION 2: For almost every x ∈ X, where X is the support of X ,
(i) (unconfoundedness) W is independent of (Y(0)�Y(1)) conditional on

X = x;
(ii) (overlap) η< Pr(W = 1|X = x) < 1 −η for some η> 0.

The dimension of X , denoted by k, will be seen to play an important role
in the properties of matching estimators. We assume that all covariates have

2Software for STATA and Matlab is available at http://emlab.berkeley.edu/users/imbens/
estimators.shtml. Software for R is available at http://jsekhon.fas.harvard.edu/matching/Match.
html. Abadie, Drukker, Herr, and Imbens (2004) discuss the implementation in STATA.



238 A. ABADIE AND G. W. IMBENS

continuous distributions.3 Compactness and convexity of the support of the
covariates are convenient regularity conditions. The combination of the two
conditions in Assumption 2 is referred to as strong ignorability (Rosenbaum
and Rubin (1983)). These conditions are strong and in many cases may not be
satisfied.

Heckman, Ichimura, and Todd (1998) point out that for identification of the
average treatment effect, τ, Assumption 2(i) can be weakened to mean in-
dependence (E[Y(w)|W�X] = E[Y(w)|X] for w = 0�1). For simplicity, we
assume full independence, although for most of the results, mean indepen-
dence is sufficient. When the parameter of interest is the average effect for the
treated, τt , Assumption 2(i) can be relaxed to require only that Y(0) is inde-
pendent of W conditional on X . Also, when the parameter of interest is τt ,
Assumption 2(ii) can be relaxed so that the support of X for the treated (X1)
is a subset of the support of X for the untreated (X0).

ASSUMPTION 2′: For almost every x ∈ X,
(i) W is independent of Y(0) conditional on X = x;

(ii) Pr(W = 1|X = x) < 1 −η for some η> 0.

Under Assumption 2(i), the average treatment effect for the subpopulation
with X = x equals

τ(x) = E
[
Y(1)−Y(0)|X = x

]
(1)

= E[Y |W = 1�X = x] − E[Y |W = 0�X = x]
almost surely. Under Assumption 2(ii), the difference on the right-hand side
of (1) is identified for almost all x in X. Therefore, the average effect of
the treatment can be recovered by averaging E[Y |W = 1�X = x] − E[Y |
W = 0�X = x] over the distribution of X:

τ = E[τ(X)] = E
[
E[Y |W = 1�X = x] − E[Y |W = 0�X = x]]�

Under Assumption 2′(i), the average treatment effect for the subpopulation
with X = x and W = 1 is equal to

τt(x) = E
[
Y(1)−Y(0)|W = 1�X = x

]
(2)

= E[Y |W = 1�X = x] − E[Y |W = 0�X = x]

3Discrete covariates with a finite number of support points can be easily dealt with by analyzing
estimation of average treatment effects within subsamples defined by their values. The number
of such covariates does not affect the asymptotic properties of the estimators. In small samples,
however, matches along discrete covariates may not be exact, so discrete covariates may create
the same type of biases as continuous covariates.
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almost surely. Under Assumption 2′(ii), the difference on the right-hand side
of (2) is identified for almost all x in X1. Therefore, the average effect of the
treatment on the treated can be recovered by averaging E[Y |W = 1�X = x] −
E[Y |W = 0�X = x] over the distribution of X conditional on W = 1:

τt = E[τt(X)|W = 1]
= E

[
E[Y |W = 1�X = x] − E[Y |W = 0�X = x]∣∣W = 1

]
�

Next, we introduce some additional notation. For x ∈ X and w ∈ {0�1},
let µ(x�w) = E[Y |X = x�W = w], µw(x) = E[Y(w)|X = x], σ2(x�w) =
V(Y |X = x�W = w), σ2

w(x) = V(Y(w)|X = x), and εi = Yi − µWi
(Xi). Un-

der Assumption 2, µ(x�w) = µw(x) and σ2(x�w) = σ2
w(x). Let fw(x) be the

conditional density of X given W = w and let e(x) = Pr(W = 1|X = x) be the
propensity score (Rosenbaum and Rubin (1983)). In part of our analysis, we
adopt the following assumption.

ASSUMPTION 3: Assume {(Yi�Wi�Xi)}Ni=1 are independent draws from the
distribution of (Y�W �X).

In some cases, however, treated and untreated are sampled separately and
their proportions in the sample may not reflect their proportions in the popu-
lation. Therefore, we relax Assumption 3 so that conditional on Wi, sampling
is random. As we will show later, relaxing Assumption 3 is particularly useful
when the parameter of interest is the average treatment effect on the treated.
The numbers of control and treated units are N0 and N1, respectively, with
N = N0 + N1. We assume that N0 is at least of the same order of magnitude
as N1.

ASSUMPTION 3′: Conditional on Wi = w, the sample consists of indepen-
dent draws from Y�X|W = w for w = 0�1. For some r ≥ 1, Nr

1/N0 → θ with
0 < θ<∞.

In this article we focus on matching with replacement, allowing each unit
to be used as a match more than once. For x ∈ X, let ‖x‖ = (x′x)1/2 be the
standard Euclidean vector norm.4 Let jm(i) be the index j ∈ {1�2� � � � �N} that
solves Wj = 1 −Wi and∑

l : Wl=1−Wi

1
{‖Xl −Xi‖ ≤ ‖Xj −Xi‖

} =m�

4Alternative norms of the form ‖x‖V = (x′V x)1/2 for some positive definite symmetric ma-
trix V are also covered by the results below, because ‖x‖V = ((Px)′(Px))1/2 for P such that
P ′P = V .
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where 1{·} is the indicator function, equal to 1 if the expression in brackets
is true and 0 otherwise. In other words, jm(i) is the index of the unit that is
the mth closest to unit i in terms of the covariate values, among the units with
the treatment opposite to that of unit i. In particular, j1(i), which will be some-
times denoted by j(i), is the nearest match for unit i. For notational simplicity
and because we consider only continuous covariates, we ignore the possibility
of ties, which happen with probability 0. Let JM(i) denote the set of indices for
the first M matches for unit i: JM(i)= {j1(i)� � � � � jM(i)}.5 Finally, let KM(i) de-
note the number of times unit i is used as a match given that M matches per
unit are used:

KM(i)=
N∑
l=1

1{i ∈JM(l)}�

The distribution of KM(i) will play an important role in the variance of the
estimators.

In many analyses of matching methods (e.g., Rosenbaum (1995)), match-
ing is carried out without replacement, so that every unit is used as a match
at most once and KM(i) ≤ 1. In this article, however, we focus on matching
with replacement, allowing each unit to be used as a match more than once.
Matching with replacement produces matches of higher quality than matching
without replacement by increasing the set of possible matches.6 In addition,
matching with replacement has the advantage that it allows us to consider esti-
mators that match all units, treated as well as controls, so that the estimand is
identical to the population average treatment effect.

2.2. The Matching Estimator

The unit-level treatment effect is τi = Yi(1)−Yi(0). For the units in the sam-
ple, only one of the potential outcomes, Yi(0) and Yi(1), is observed and the
other is unobserved or missing. The matching estimator imputes the missing
potential outcomes as

Ŷi(0)=


Yi� if Wi = 0,
1
M

∑
j∈JM(i)

Yj� if Wi = 1,

5For this definition to make sense, we assume that N0 ≥ M and N1 ≥ M . We maintain this
assumption implicitly throughout.

6As we show below, inexact matches generate bias in matching estimators. Therefore, expand-
ing the set of possible matches will tend to produce smaller biases.
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and

Ŷi(1)=


1
M

∑
j∈JM(i)

Yj� if Wi = 0,

Yi� if Wi = 1,

leading to the following estimator for the average treatment effect:

τ̂M = 1
N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

) = 1
N

N∑
i=1

(2Wi − 1)
(

1 + KM(i)

M

)
Yi�(3)

This estimator can easily be modified to estimate the average treatment effect
on the treated:

τ̂ t
M = 1

N1

∑
Wi=1

(
Yi − Ŷi(0)

) = 1
N1

N∑
i=1

(
Wi − (1 −Wi)

KM(i)

M

)
Yi�(4)

It is useful to compare matching estimators to covariance-adjustment
or regression imputation estimators. Let µ̂w(Xi) be a consistent estimator
of µw(Xi). Let

Ȳi(0)=
{
Yi� if Wi = 0,
µ̂0(Xi)� if Wi = 1,

(5)

Ȳi(1)=
{
µ̂1(Xi)� if Wi = 0,
Yi� if Wi = 1.

The regression imputation estimators of τ and τt are

τ̂ reg = 1
N

N∑
i=1

(
Ȳi(1)− Ȳi(0)

)
and τ̂ reg�t = 1

N1

∑
Wi=1

(
Yi − Ȳi(0)

)
�(6)

In our discussion we classify as regression imputation estimators those for
which µ̂w(x) is a consistent estimator of µw(x). The estimators proposed by
Hahn (1998) and some of those proposed by Heckman, Ichimura, and Todd
(1998) fall into this category.7

If µw(Xi) is estimated using a nearest neighbor estimator with a fixed num-
ber of neighbors, then the regression imputation estimator is identical to the
matching estimator with the same number of matches. The two estimators

7In a working paper version (Abadie and Imbens (2002)), we consider a bias-corrected ver-
sion of the matching estimator that combines some of the feature of matching and regression
estimators.
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differ in the way they change with the sample size. We classify as matching
estimators those estimators that use a finite and fixed number of matches.
Interpreting matching estimators in this way may provide some intuition for
some of the subsequent results. In nonparametric regression methods one
typically chooses smoothing parameters to balance bias and variance of the es-
timated regression function. For example, in kernel regression a smaller band-
width leads to lower bias but higher variance. A nearest neighbor estimator
with a single neighbor is at the extreme end of this. The bias is minimized
within the class of nearest neighbor estimators, but the variance of µ̂w(x) no
longer vanishes with the sample size. Nevertheless, as we shall show, match-
ing estimators of average treatment effects are consistent under weak regular-
ity conditions. The variance of matching estimators, however, is still relatively
high and, as a result, matching with a fixed number of matches does not lead
to an efficient estimator.

The first goal of this article is to derive the properties of the simple matching
estimator in large samples, that is, as N increases, for fixed M . The motivation
for our fixed-M asymptotics is to provide an approximation to the sampling dis-
tribution of matching estimators with a small number of matches. Such match-
ing estimators have been widely used in practice. The properties of interest
include bias and variance. Of particular interest is the dependence of these re-
sults on the dimension of the covariates. A second goal is to provide methods
for conducting inference through estimation of the large sample variance of
the matching estimator.

3. LARGE SAMPLE PROPERTIES OF THE MATCHING ESTIMATOR

In this section we investigate the properties of the matching estimator, τ̂M ,
defined in (3). We can decompose the difference between the matching esti-
mator τ̂M and the population average treatment effect τ as

τ̂M − τ = (
τ(X)− τ

) +EM +BM�(7)

where τ(X) is the average conditional treatment effect,

τ(X)= 1
N

N∑
i=1

(µ1(Xi)−µ0(Xi))�(8)

EM is a weighted average of the residuals,

EM = 1
N

N∑
i=1

EM�i =
1
N

N∑
i=1

(2Wi − 1)
(

1 + KM(i)

M

)
εi�(9)
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and BM is the conditional bias relative to τ(X),

BM = 1
N

N∑
i=1

BM�i(10)

= 1
N

N∑
i=1

(2Wi − 1) ·
[

1
M

M∑
m=1

(
µ1−Wi

(Xi)−µ1−Wi
(Xjm(i))

)]
�

The first two terms on the right-hand side of (7), (τ(X) − τ) and EM , have
zero mean. They will be shown to be of order N−1/2 and asymptotically nor-
mal. The first term depends only on the covariates, and its variance is V τ(X)/N ,
where V τ(X) = E[(τ(X)− τ)2] is the variance of the conditional average treat-
ment effect τ(X). Conditional on X and W (the matrix and vector with ith row
equal to X ′

i and Wi, respectively), the variance of τ̂M is equal to the conditional
variance of the second term, V(EM |X�W). We will analyze this variance in Sec-
tion 3.2. We will refer to the third term on the right-hand side of (7), BM , as
the conditional bias, and to E[BM] as the (unconditional) bias. If matching is
exact, Xi = Xjm(i) for all i and the conditional bias is equal to zero. In general
it differs from zero and its properties, in particular its stochastic order, will be
analyzed in Section 3.1.

Similarly, we can decompose the estimator for the average effect for the
treated, (4), as

τ̂ t
M − τt = (

τ(X)
t − τt

) +Et
M +Bt

M�(11)

where

τ(X)
t = 1

N1

N∑
i=1

Wi(µ(Xi�1)−µ0(Xi))�

Et
M = 1

N1

N∑
i=1

Et
M�i =

1
N1

N∑
i=1

(
Wi − (1 −Wi)

KM(i)

M

)
εi�

and

Bt
M = 1

N1

N∑
i=1

Bt
M�i =

1
N1

N∑
i=1

Wi

1
M

M∑
m=1

(
µ0(Xi)−µ0(Xjm(i))

)
�

3.1. Bias

Here we investigate the stochastic order of the conditional bias (10) and
its counterpart for the average treatment effect for the treated. The con-
ditional bias consists of sums of terms of the form µ1(Xjm(i)) − µ1(Xi) or
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µ0(Xi) − µ0(Xjm(i)). To investigate the nature of these terms, expand the dif-
ference µ1(Xjm(i))−µ1(Xi) around Xi:

µ1(Xjm(i))−µ1(Xi)

= (Xjm(i) −Xi)
′ ∂µ1

∂x
(Xi)

+ 1
2
(Xjm(i) −Xi)

′ ∂
2µ1

∂x∂x′ (Xi)(Xjm(i) −Xi)+O
(‖Xjm(i) −Xi‖3

)
�

To study the components of the bias, it is therefore useful to analyze the distri-
bution of the k vector Xjm(i) −Xi, which we term the matching discrepancy.

First, let us analyze the matching discrepancy at a general level. Fix the co-
variate value at X = z and suppose we have a random sample X1� � � � �XN with
density f (x) over a bounded support X. Now consider the closest match to z
in the sample. Let j1 = arg minj=1�����N ‖Xj − z‖ and let U1 = Xj1 − z be the
matching discrepancy. We are interested in the distribution of the k vector U1.
More generally, we are interested in the distribution of the mth closest match-
ing discrepancy, Um = Xjm − z, where jm is the mth closest match to z from the
random sample of size N . The following lemma describes some key asymptotic
properties of the matching discrepancy at interior points of the support of X .

LEMMA 1—Matching Discrepancy—Asymptotic Properties: Suppose that
f is differentiable in a neighborhood of z. Let Vm = N1/kUm and let fVm(v) be
the density of Vm. Then

lim
N→∞

fVm(v)

= f (z)

(m− 1)!
(

‖v‖k f (z)

k

2πk/2

Γ (k/2)

)m−1

exp
(

−‖v‖k f (z)

k

2πk/2

Γ (k/2)

)
�

where Γ (y) = ∫ ∞
0 e−t ty−1 dt ( for y > 0) is Euler’s gamma function. Hence

Um =Op(N
−1/k). Moreover, the first three moments of Um are

E[Um] = Γ

(
mk+ 2

k

)
1

(m− 1)!k
(
f (z)

πk/2

Γ (1 + k/2)

)−2/k

× 1
f (z)

∂f

∂x
(z)

1
N2/k

+ o

(
1

N2/k

)
�

E[UmU
′
m] = Γ

(
mk+ 2

k

)
1

(m− 1)!k
(
f (z)

πk/2

Γ (1 + k/2)

)−2/k 1
N2/k

Ik

+ o

(
1

N2/k

)
�

where Ik is the identity matrix of size k and E[‖Um‖3] = O(N−3/k).
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(All proofs are given in the Appendix.)
This lemma shows how the order of the matching discrepancy increases with

the number of continuous covariates. The lemma also shows that the first term
in the stochastic expansion of N1/kUm has a rotation invariant distribution with
respect to the origin. The following lemma shows that for all points in the sup-
port, including the boundary points not covered by Lemma 1, the normalized
moments of the matching discrepancies, Um, are bounded.

LEMMA 2—Matching Discrepancy—Uniformly Bounded Moments: If As-
sumption 1 holds, then all the moments of N1/k‖Um‖ are uniformly bounded in N
and z ∈ X.

These results allow us to establish bounds on the stochastic order of the
conditional bias.

THEOREM 1—Conditional Bias for the Average Treatment Effect: Under
Assumptions 1, 2, and 3, (i) if µ0(x) and µ1(x) are Lipschitz on X, then
BM = Op(N

−1/k), and (ii) the order of E[BM] is not in general lower than N−2/k.

Consider the implications of this theorem for the asymptotic properties of
the simple matching estimator. First notice that, under regularity conditions,√
N(τ(X)− τ) =Op(1) with a normal limiting distribution, by a standard cen-

tral limit theorem. Also, it will be shown later that, under regularity conditions√
NEM =Op(1), again with a normal limiting distribution. However, the result

of the theorem implies that
√
NBM is not Op(1) in general. In particular, if

k is large enough, the asymptotic distribution of
√
N(̂τM − τ) is dominated by

the bias term and the simple matching estimator is not N1/2-consistent. How-
ever, if only one of the covariates is continuously distributed, then k = 1 and
BM =Op(N

−1), so
√
N(̂τM − τ) will be asymptotically normal.

The following result describes the properties of the matching estimator for
the average effect on the treated.

THEOREM 2—Conditional Bias for the Average Treatment Effect on the
Treated: Under Assumptions 1, 2′, and 3′

(i) if µ0(x) is Lipschitz on X0, then Bt
M =Op(N

−r/k
1 ), and

(ii) if X1 is a compact subset of the interior of X0, µ0(x) has bounded third
derivatives in the interior of X0, and f0(x) is differentiable in the interior of X0

with bounded derivatives, then

BiastM = E[Bt
M]

= −
(

1
M

M∑
m=1

Γ

(
mk+ 2

k

)
1

(m− 1)!k

)
1

N2r/k
1
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× θ2/k

∫ (
f0(x)

πk/2

Γ (1 + k/2)

)−2/k

×
{

1
f0(x)

∂f0

∂x′ (x)
∂µ0

∂x
(x)+ 1

2
tr

(
∂2µ0

∂x′∂x
(x)

)}
× f1(x)dx+ o

(
1

N2r/k
1

)
�

This case is particularly relevant because often matching estimators have
been used to estimate the average effect for the treated in settings in which a
large number of controls are sampled separately. Typically in those cases the
conditional bias term has been ignored in the asymptotic approximation to
standard errors and confidence intervals. Theorem 2 shows that ignoring the
conditional bias term in the first-order asymptotic approximation to the dis-
tribution of the simple matching estimator is justified if N0 is of sufficiently
high order relative to N1 or, to be precise, if r > k/2. In that case it follows
that Bt

M = op(N
−1/2
1 ) and the bias term will get dominated in the large sam-

ple distribution by the two other terms, τ(X)
t − τt and Et

M , both of which
are Op(N

−1/2
1 ).

In part (ii) of Theorem 2, we show that a general expression of the bias,
E[Bt

M], can be calculated if X1 is compact and X1 ⊂ int X0 (so that the bias is
not affected by the geometric characteristics of the boundary of X0). Under
these conditions, the bias of the matching estimator is at most of order N−2/k

1 .
This bias is further reduced when µ0(x) is constant or when µ0(x) is linear and
f0(x) is constant, among other cases. Notice, however, that usual smoothness
assumptions (existence of higher order derivatives) do not reduce the order
of E[Bt

M].

3.2. Variance

In this section we investigate the variance of the matching estimator τ̂M . We
focus on the first two terms of the representation of the estimator in (7), that is,
the term that represents the heterogeneity in the treatment effect, (8), and the
term that represents the residuals, (9), ignoring for the moment the conditional
bias term (10). Conditional on X and W, the matrix and vector with ith row
equal to X ′

i and Wi, respectively, the number of times a unit is used as a match,
KM(i) is deterministic and hence the variance of τ̂M is

V(̂τM |X�W)= 1
N2

N∑
i=1

(
1 + KM(i)

M

)2

σ2(Xi�Wi)�(12)
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For τ̂ t
M we obtain

V(̂τ t
M |X�W)= 1

N2
1

N∑
i=1

(
Wi − (1 −Wi)

KM(i)

M

)2

σ2(Xi�Wi)�(13)

Let V E = NV(̂τM |X�W) and V E�t = N1V(̂τ t
M |X�W) be the corresponding nor-

malized variances. Ignoring the conditional bias term, BM , the conditional
expectation of τ̂M is τ(X). The variance of this conditional mean is there-
fore V τ(X)/N , where V τ(X) = E[(τ(X) − τ)2]. Hence the marginal variance
of τ̂M , ignoring the conditional bias term, is V(̂τM) = (E[V E] + V τ(X))/N . For
the estimator for the average effect on the treated, the marginal variance
is, again ignoring the conditional bias term, V(̂τ t

M) = (E[V E�t] + V τ(X)�t)/N1,
where V τ(X)�t = E[(τt(X)− τt)2|W = 1].

The following lemma shows that the expectation of the normalized variance
is finite. The key is that KM(i), the number of times that unit i is used as a
match, is Op(1) with finite moments.8

LEMMA 3 —Finite Variance: (i) Suppose Assumptions 1–3 hold. Then
KM(i) = Op(1) and E[KM(i)

q] is bounded uniformly in N for any q > 0. (ii) If,
in addition, σ2(x�w) are Lipschitz in X for w = 0�1, then E[V E +V τ(X)] =O(1).
(iii) Suppose Assumptions 1, 2′, and 3′. Then (N0/N1)E[KM(i)

q|Wi = 0] is uni-
formly bounded in N for any q > 0. (iv) If, in addition, σ2(x�w) are Lipschitz
in X for w = 0�1, then E[V E�t + V τ(X)�t] =O(1).

3.3. Consistency and Asymptotic Normality

In this section we show that the matching estimator is consistent for the aver-
age treatment effect and, without the conditional bias term, is N1/2-consistent
and asymptotically normal. The next assumption contains a set of weak
smoothness restrictions on the conditional distribution of Y given X . Notice
that it does not require the existence of higher order derivatives.

ASSUMPTION 4: For w = 0�1, (i) µ(x�w) and σ2(x�w) are Lipschitz in X,
(ii) the fourth moments of the conditional distribution of Y given W = w and
X = x exist and are bounded uniformly in x, and (iii) σ2(x�w) is bounded
away from zero.

THEOREM 3—Consistency of the Matching Estimator:
(i) Suppose Assumptions 1–3 and 4(i) hold. Then τ̂M − τ

p→ 0.
(ii) Suppose Assumptions 1, 2′, 3′, and 4(i) hold. Then τ̂ t

M − τt p→ 0.

8Notice that, for 1 ≤ i ≤ N , KM(i) are exchangeable random variables and therefore have
identical marginal distributions.
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Notice that the consistency result holds regardless of the dimension of the
covariates.

Next, we state the formal result for asymptotic normality. The first result
gives an asymptotic normality result for the estimators τ̂M and τ̂ t

M after sub-
tracting the bias term.

THEOREM 4—Asymptotic Normality for the Matching Estimator:
(i) Suppose Assumptions 1–4 hold. Then

(V E + V τ(X))−1/2
√
N(̂τM −BM − τ)

d−→N (0�1)�

(ii) Suppose Assumptions 1, 2′, 3′, and 4 hold. Then

(V E�t + V τ(X)�t)−1/2
√
N1(̂τ

t
M −Bt

M − τt)
d−→N (0�1)�

Although one generally does not know the conditional bias term, this result
is useful for two reasons. First, in some cases the bias term can be ignored
because it is of sufficiently low order (see Theorems 1 and 2). Second, as we
show in Abadie and Imbens (2002), under some additional smoothness con-
ditions, an estimate of the bias term based on nonparametric estimation of
µ0(x) and µ1(x) can be used in the statement of Theorem 4 without changing
the resulting asymptotic distribution.

In the scalar covariate case or when only the treated are matched and the
size of the control group is of sufficient order of magnitude, there is no need
to remove the bias.

COROLLARY 1—Asymptotic Normality for Matching Estimator—Vanishing
Bias:

(i) Suppose Assumptions 1–4 hold and k = 1. Then

(V E + V τ(X))−1/2
√
N(̂τM − τ)

d−→N (0�1)�

(ii) Suppose Assumptions 1, 2′, 3′, and 4 hold, and r > k/2. Then

(V E�t + V τ(X)�t)−1/2
√
N1(̂τ

t
M − τt)

d−→N (0�1)�

3.4. Efficiency

The asymptotic efficiency of the estimators considered here depends on the
limit of E[V E], which in turn depends on the limiting distribution of KM(i). It is
difficult to work out the limiting distribution of this variable for the general
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case.9 Here we investigate the form of the variance for the special case with a
scalar covariate (k= 1) and a general M .

THEOREM 5: Suppose k = 1. If Assumptions 1–4 hold, and f0(x) and f1(x)
are continuous on int X, then

N · V(̂τM) = E

[
σ2

1 (X)

e(X)
+ σ2

0 (X)

1 − e(X)

]
+ V τ(X)

+ 1
2M

E

[(
1

e(X)
− e(X)

)
σ2

1 (X)

+
(

1
1 − e(X)

− (1 − e(X))

)
σ2

0 (X)

]
+ o(1)�

Note that with k= 1 we can ignore the conditional bias term, BM . The semi-
parametric efficiency bound for this problem is, as established by Hahn (1998),

V eff = E

[
σ2

1 (X)

e(X)
+ σ2

0 (X)

1 − e(X)

]
+ V τ(X)�

The limiting variance of the matching estimator is in general larger. Relative
to the efficiency bound it can be written as

lim
N→∞

N · V(̂τM)− V eff

V eff
<

1
2M

�

The asymptotic efficiency loss disappears quickly if the number of matches is
large enough and the efficiency loss from using a few matches is very small. For
example, the asymptotic variance with a single match is less than 50% higher
than the asymptotic variance of the efficient estimator and with five matches,
the asymptotic variance is less than 10% higher.

4. ESTIMATING THE VARIANCE

Corollary 1 uses the square roots of V E + V τ(X) and V E�t + V τ(X)�t , respec-
tively, as normalizing factors to obtain a limiting normal distribution for match-
ing estimators. In this section, we show how to estimate these asymptotic
variances.

9The key is the second moment of the volume of the “catchment area” AM(i), defined as the
subset of X such that each observation, j, with Wj = 1 − Wi and Xj ∈ AM(i) is matched to i.
In the single match case with M = 1, these catchment areas are studied in stochastic geometry
where they are known as Poisson–Voronoi tessellations (Okabe, Boots, Sugihara, and Nok Chiu
(2000)). The variance of the volume of such objects under uniform f0(x) and f1(x), normalized
by the mean volume, has been worked out analytically for the scalar case and numerically for the
two- and three-dimensional cases.
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4.1. Estimating the Conditional Variance

Estimating the conditional variance, V E = ∑N

i=1(1 + KM(i)/M)2σ2(Xi�
Wi)/N , is complicated by the fact that it involves the conditional outcome vari-
ances, σ2(x�w). In principle, these conditional variances could be consistently
estimated using nonparametric smoothing techniques. We propose, however,
an estimator of the conditional variance of the simple matching estimator that
does not require consistent nonparametric estimation of unknown functions.
Our method uses a matching estimator for σ2(x�w), where instead of the orig-
inal matching of treated to control units, we now match treated units to treated
units and control units to control units.

Let �m(i) be the mth closest unit to unit i among the units with the same
value for the treatment. Then, for fixed J, we estimate the conditional variance
as

σ̂2(Xi�Wi)= J

J + 1

(
Yi − 1

J

J∑
m=1

Y�j(i)

)2

�(14)

Notice that if all matches are perfect so X�j(i) = Xi for all j = 1� � � � � J, then
E[σ̂2(Xi�Wi)|Xi = x�Wi = w] = σ2(x�w). In practice, if the covariates are con-
tinuous, it will not be possible to find perfect matches, so σ̂2(Xi�Wi) will be
only asymptotically unbiased. In addition, because σ̂2(Xi�Wi) is an average of
a fixed number (i.e., J) of observations, this estimator will not be consistent
for σ2(Xi�Wi). However, the next theorem shows that the appropriate aver-
ages of the σ̂2(Xi�Wi) over the sample are consistent for V E and V E�t .

THEOREM 6: Let σ̂2(Xi�Wi) be as in (14). Define

V̂ E = 1
N

N∑
i=1

(
1 + KM(i)

M

)2

σ̂2(Xi�Wi)�

V̂ E�t = 1
N1

N∑
i=1

(
Wi − (1 −Wi)

KM(i)

M

)2

σ̂2(Xi�Wi)�

If Assumptions 1–4 hold, then |V̂ E − V E| = op(1). If Assumptions 1, 2′, 3′, and 4
hold, then |V̂ E�t − V E�t| = op(1).

4.2. Estimating the Marginal Variance

Here we develop consistent estimators for V = V E + V τ(X) and V t = V E�t +
V τ(X)�t . The proposed estimators are based on the same matching approach to
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estimating the conditional error variance σ2(x�w) as in Section 4.1. In addi-
tion, these estimators exploit the fact that

E
[(
Ŷi(1)− Ŷi(0)− τ

)2] 
 V τ(X) + E

[
ε2
i + 1

M2

M∑
m=1

ε2
jm(i)

]
�

The average on the left-hand side can be estimated as
∑

i(Ŷi(1) − Ŷi(0) −
τ̂M)

2/N . To estimate the second term on the right-hand side, we use the fact
that

1
N

N∑
i=1

E

[
ε2
i + 1

M2

M∑
m=1

ε2
jm(i)

∣∣∣X�W

]
= 1

N

N∑
i=1

(
1 + KM(i)

M2

)
σ2(Xi�Wi)�

which can be estimated using the matching estimator for σ2(Xi�Wi). These
two estimates can then be combined to estimate V τ(X) and this in turn can be
combined with the previously defined estimator for V E to obtain an estimator
of V .

THEOREM 7: Let σ̂2(Xi�Wi) be as in (14). Define

V̂ = 1
N

N∑
i=1

(
Ŷi(1)− Ŷi(0)− τ̂M

)2

+ 1
N

N∑
i=1

[(
KM(i)

M

)2

+
(

2M − 1
M

)(
KM(i)

M

)]
σ̂2(Xi�Wi)

and

V̂ t = 1
N1

∑
Wi=1

(
Yi − Ŷi(0)− τ̂ t

M

)2

+ 1
N1

N∑
i=1

(1 −Wi)

(
KM(i)(KM(i)− 1)

M2

)
σ̂2(Xi�Wi)�

If Assumptions 1–4 hold, then |V̂ − V | = op(1). If Assumptions 1, 2′, 3′, and 4
hold, then |V̂ t − V t | = op(1).

5. CONCLUSION

In this article we derive large sample properties of matching estimators of
average treatment effects that are widely used in applied evaluation research.
The formal large sample properties of matching estimators are somewhat sur-
prising in the light of this popularity. We show that matching estimators include
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a conditional bias term that may be of order larger than N−1/2. Therefore,
matching estimators are not N1/2-consistent in general and standard confi-
dence intervals are not necessarily valid. We show, however, that when the
set of matching variables contains at most one continuously distributed vari-
able, the conditional bias term is op(N

−1/2), so that matching estimators are
N1/2-consistent in this case. We derive the asymptotic distribution of match-
ing estimators for the cases when the conditional bias can be ignored and also
show that matching estimators with a fixed number of matches do not reach
the semiparametric efficiency bound. Finally, we propose an estimator of the
asymptotic variance. This is particularly relevant because there is evidence that
the bootstrap is not valid for matching estimators (Abadie and Imbens (2005)).
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APPENDIX

Before proving Lemma 1, we collect some results on integration using polar
coordinates that will be useful. See, for example, Stroock (1994). Let Sk = {ω ∈
R

k :‖ω‖ = 1} be the unit k sphere and let λSk
be its surface measure. Then the

area and volume of the unit k sphere are∫
Sk

λSk
(dω)= 2πk/2

Γ (k/2)

and ∫ 1

0
rk−1

∫
Sk

λSk
(dω)dr = 2πk/2

kΓ (k/2)
= πk/2

Γ (1 + k/2)
�

respectively. In addition,∫
Sk

ωλSk
(dω)= 0

and ∫
Sk

ωω′λSk
(dω)=

∫
Sk
λSk

(dω)

k
Ik = πk/2

Γ (1 + k/2)
Ik�
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where Ik is the k-dimensional identity matrix. For any nonnegative measurable
function g(·) on R

k,∫
Rk

g(x)dx=
∫ ∞

0
rk−1

(∫
Sk

g(rω)λSk
(dω)

)
dr�

We will also use the following result on Laplace approximation of integrals.

LEMMA A.1: Let a(r) and b(r) be two real functions; a(r) is continuous in a
neighborhood of zero and b(r) has continuous first derivative in a neighborhood
of zero. Suppose that b(0) = 0, b(r) > 0 for r > 0 and that for every r̃ > 0, the
infimum of b(r) over r ≥ r̃ as positive. Suppose also that there exist positive real
numbers a0, b0, α, and β such that

lim
r→0

a(r)r1−α = a0� lim
r→0

b(r)r−β = b0� and lim
r→0

db

dr
(r)r1−β = b0β�

Suppose also that
∫ ∞

0 |a(r)|exp(−Nb(r))dr < ∞ for all sufficiently large N .
Then, for N → ∞,∫ ∞

0
a(r)exp(−Nb(r))dr = Γ

(
α

β

)
a0

βbα/β
0

1
Nα/β

+ o

(
1

Nα/β

)
�

The proof follows from Theorem 7.1 in Olver (1997, p. 81).

PROOF OF LEMMA 1: First consider the conditional probability of unit i be-
ing the mth closest match to z, given Xi = x:

Pr(jm = i|Xi = x) =
(
N − 1
m− 1

)(
Pr(‖X − z‖> ‖x− z‖))N−m

× (
Pr(‖X − z‖ ≤ ‖x− z‖))m−1

�

Because the marginal probability of unit i being the mth closest match to z is
Pr(jm = i) = 1/N and because the density of Xi is f (x), then the distribution
of Xi conditional on it being the mth closest match is

fXi|jm=i(x) = Nf(x)Pr(jm = i|Xi = x)

= Nf(x)

(
N − 1
m− 1

)(
1 − Pr(‖X − z‖ ≤ ‖x− z‖))N−m

× (
Pr(‖X − z‖ ≤ ‖x− z‖))m−1

�
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and this is also the distribution of Xjm . Now transform to the matching discrep-
ancy Um = Xjm − z to get

fUm(u) = N

(
N − 1
m− 1

)
f (z + u)

(
1 − Pr(‖X − z‖ ≤ ‖u‖))N−m

(A.1)

× (
Pr(‖X − z‖ ≤ ‖u‖))m−1

�

Transform to Vm =N1/kUm with Jacobian N−1 to obtain

fVm(v) =
(
N − 1
m− 1

)
f

(
z + v

N1/k

)(
1 − Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))N−m

×
(

Pr
(

‖X − z‖ ≤ ‖v‖
N1/k

))m−1

= N1−m

(
N − 1
m− 1

)
f

(
z + v

N1/k

)

×
(

1 − Pr
(

‖X − z‖ ≤ ‖v‖
N1/k

))N

(1 + o(1))

×
(
N Pr

(
‖X − z‖ ≤ ‖v‖

N1/k

))m−1

�

Note that

Pr
(‖X − z‖ ≤ ‖v‖N−1/k

) =
∫ ‖v‖/N1/k

0
rk−1

(∫
Sk

f (z + rω)λSk
(dω)

)
dr�

where as before Sk = {ω ∈ R
k :‖ω‖ = 1} is the unit k sphere, and λSk

is its sur-
face measure. The derivative of Pr(‖X − z‖ ≤ ‖v‖N−1/k) with respect to N is(

− 1
N2

)‖v‖k

k

∫
Sk

f

(
z + ‖v‖k

N1/k
ω

)
λSk

(dω)�

Therefore, by l’Hospital’s rule,

lim
N→∞

Pr(‖X − z‖ ≤ ‖v‖N−1/k)

1/N
= ‖v‖k

k
f (z)

∫
Sk

λSk
(dω)�

In addition, it is easy to check that for fixed m,

N1−m

(
N − 1
m− 1

)
= 1

(m− 1)! + o(1)�
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Therefore,

lim
N→∞

fVm(v) = f (z)

(m− 1)!
(

‖v‖k f (z)

k

∫
Sk

λSk
(dω)

)m−1

× exp
(

−‖v‖k f (z)

k

∫
Sk

λSk
(dω)

)
�

The previous equation shows that the density of Vm converges pointwise to a
nonnegative function that is rotation invariant with respect to the origin. As
a result, the matching discrepancy Um is Op(N

−1/k) and the limiting distribu-
tion of N1/kUm is rotation invariant with respect to the origin. This finishes the
proof of the first result.

Next, given fUm(u) in (A.1),

E[Um] = N

(
N − 1
m− 1

)
Am�

where

Am =
∫

Rk

uf (z + u)
(
1 − Pr(‖X − z‖ ≤ ‖u‖))N−m

× (
Pr(‖X − z‖ ≤ ‖u‖))m−1

du�

Boundedness of X implies that Am converges absolutely. It is easy to relax the
bounded support condition here. We maintain it because it is used elsewhere
in the article. Changing variables to polar coordinates gives

Am =
∫ ∞

0
rk−1

(∫
Sk

rωf (z + rω)λSk
(dω)

)
× (

1 − Pr(‖X − z‖ ≤ r)
)N−m(

Pr(‖X − z‖ ≤ r)
)m−1

dr�

Then, rewriting the probability Pr(‖X − z‖ ≤ r) as∫
Rk

f (x)1{‖x− z‖ ≤ r}dx =
∫

Rk

f (z + v)1{‖v‖ ≤ r}dv

=
∫ r

0
sk−1

(∫
Sk

f (z + sω)λSk
(dω)

)
ds

and substituting this into the expression for Am gives

Am =
∫ ∞

0
rk−1

(∫
Sk

rωf (z + rω)λSk
(dω)

)

×
(

1 −
∫ r

0
sk−1

(∫
Sk

f (z + sω)λSk
(dω)

)
ds

)N−m
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×
(∫ r

0
sk−1

(∫
Sk

f (z + sω)λSk
(dω)

)
ds

)m−1

dr

=
∫ ∞

0
e−Nb(r)a(r)dr�

where

b(r) = − log
(

1 −
∫ r

0
sk−1

(∫
Sk

f (z + sω)λSk
(dω)

)
ds

)
and

a(r) = rk
(∫

Sk

ωf (z + rω)λSk
(dω)

)

×
(∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

)m−1(
1 − ∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

)m �
That is, a(r) = rkc(r)g(r)m−1, where

c(r)=
∫

Sk
ωf (z + rω)λSk

(dω)

1 − ∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

�

g(r) =
∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

1 − ∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

�

First notice that b(r) is continuous in a neighborhood of zero and b(0) = 0.
By Theorem 6.20 in Rudin (1976), sk−1

∫
Sk
f (z+ sω)λSk

(dω) is continuous in s

and

db

dr
(r) = rk−1

(∫
Sk
f (z + rω)λSk

(dω)
)

1 − ∫ r

0 s
k−1

(∫
Sk
f (z + sω)λSk

(dω)
)
ds

�

which is continuous in r. Using l’Hospital’s rule,

lim
r→0

b(r)r−k = lim
r→0

1
krk−1

db

dr
(r) = 1

k
f(z)

∫
Sk

λSk
(dω)�

Similarly, c(r) is continuous in a neighborhood of zero, c(0)= 0, and

lim
r→0

c(r)r−1 = lim
r→0

dc

dr
(r) =

∫
Sk

ωω′λSk
(dω)

∂f

∂x
(z)

=
∫

Sk

λSk
(dω)

Ik

k

∂f

∂x
(z)= 1

k

∂f

∂x
(z)

∫
Sk

λSk
(dω)�
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Similarly, g(r) is continuous in a neighborhood of zero and g(0)= 0, and

lim
r→0

g(r)r−k = lim
r→0

1
krk−1

dg

dr
(r) = 1

k
f(z)

∫
Sk

λSk
(dω)�

Therefore,

lim
r→0

g(r)m−1r−(m−1)k =
(

lim
r→0

g(r)

rk

)m−1

=
(

1
k
f(z)

∫
Sk

λSk
(dω)

)m−1

�

Now, it is clear that

lim
r→0

a(r)r−(mk+1) =
(

lim
r→0

g(r)m−1r−(m−1)k
)(

lim
r→0

c(r)r−1
)

=
(

1
k
f(z)

∫
Sk

λSk
(dω)

)m−1 1
k

∂f

∂x
(z)

∫
Sk

λSk
(dω)

=
(

1
k
f(z)

∫
Sk

λSk
(dω)

)m 1
f (z)

∂f

∂x
(z)�

Therefore, the conditions of Lemma A.1 hold for α= mk+ 2, β= k,

a0 =
(

1
k
f(z)

∫
Sk

λSk
(dω)

)m 1
f (z)

∂f

∂x
(z)

and

b0 = 1
k
f(z)

∫
Sk

λSk
(dω)�

Applying Lemma A.1, we get

Am = Γ

(
mk+ 2

k

)
a0

kb(mk+2)/k
0

1
N(mk+2)/k

+ o

(
1

N(mk+2)/k

)

= Γ

(
mk+ 2

k

)
1
k

(
f (z)

πk/2

Γ (1 + k/2)

)−2/k 1
f (z)

df

dx
(z)

1
N(mk+2)/k

+ o

(
1

N(mk+2)/k

)
�
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Therefore,

E[Um] = Γ

(
mk+ 2

k

)
1

(m− 1)!k
(
f (z)

πk/2

Γ (1 + k/2)

)−2/k

× 1
f (z)

df

dx
(z)

1
N2/k

+ o

(
1

N2/k

)
�

which finishes the proof for the second result of the lemma. The results for
E[UmU

′
m] and E[‖Um‖3] follow from similar arguments. Q.E.D.

The proof of Lemma 2 is available on the authors’ webpages.

PROOF OF THEOREM 1(i): Let the unit-level matching discrepancy Um�i =
Xi −Xjm(i). Define the unit-level conditional bias from the mth match as

Bm�i = Wi

(
µ0(Xi)−µ0(Xjm(i))

) − (1 −Wi)
(
µ1(Xi)−µ1(Xjm(i))

)
= Wi

(
µ0(Xi)−µ0(Xi +Um�i)

)
− (1 −Wi)(µ1(Xi)−µ1(Xi +Um�i))�

By the Lipschitz assumption on µ0 and µ1, we obtain |Bm�i| ≤ C1‖Um�i‖ for
some positive constant C1. The bias term is

BM = 1
NM

N∑
i=1

M∑
m=1

Bm�i�

Using the Cauchy–Schwarz inequality and Lemma 2,

E[N2/k(BM)
2]

≤ C2
1N

2/k
E

[
1
N

N∑
i=1

‖UM�i‖2

]

= C2
1N

2/k−1
E

[
1

N2/k
0

∑
Wi=1

E
[
N2/k

0 ‖UM�i‖2|W1� � � � �WN�Xi

]

+ 1

N2/k
1

∑
Wi=0

E
[
N2/k

1 ‖UM�i‖2|W1� � � � �WN�Xi

]]

≤ C2E

[(
N

N0

)2/k
N1

N
+

(
N

N1

)2/k
N0

N

]
for some positive constant C2. Using Chernoff’s inequality, it can be seen that
any moment of N/N1 or N/N0 is uniformly bounded in N (with Nw ≥ M for
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w = 0�1). The result of the theorem follows now from Markov’s inequality.
This proves part (i) of the theorem. We defer the proof of Theorem 1(ii) until
after the proof of Theorem 2(ii), because the former will follow directly from
the latter. Q.E.D.

LEMMA A.2: Let X be distributed with density f (x) on some compact set X of
dimension k: X ⊂ R

k. Let Z be a compact set of dimension k that is a subset of
int X. Suppose that f (x) is bounded and bounded away from zero on X, 0 < f ≤
f (x) ≤ f̄ <∞ for all x ∈ X. Suppose also that f (x) is differentiable in the interior
of X with bounded derivatives supx∈int X

‖∂f (x)/∂X‖ < ∞. Then N2/k‖E[Um]‖ is
bounded by a constant uniformly over z ∈ Z and N >m.

The proof of Lemma A.2 is available on the authors’ webpages.

PROOF OF THEOREM 2: The proof of the first part of Theorem 2 is very
similar to the proof of Theorem 1(i) and therefore is omitted.

Consider the second part:

E[Bt
M] = E

[
1

N1M

N∑
i=1

M∑
m=1

Wi

(
µ0(Xi)−µ0(Xjm(i))

)]

= 1
M

M∑
m=1

E
[
µ0(Xi)−µ0(Xjm(i))|Wi = 1

]
�

Applying a second-order Taylor expansion, we obtain

µ0(Xjm(i))−µ0(Xi)

= ∂µ0

∂x′ (Xi)Um�i + 1
2

tr
(

∂2µ0

∂x∂x′ (Xi)Um�iU
′
m�i

)
+O(‖Um�i‖3)�

Therefore, because the trace is a linear operator,

E
[
µ0(Xjm(i))−µ0(Xi)|Xi = z�Wi = 1

]
= ∂µ0

∂x′ (z)E[Um�i|Xi = z�Wi = 1]

+ 1
2

tr
(

∂2µ0

∂x∂x′ (z)E[Um�iU
′
m�i|Xi = z�Wi = 1]

)
+O

(
E
[‖Um�i‖3|Xi = z�Wi = 1

])
�

Lemma 2 implies that the norms of N2/k
0 E[Um�iU

′
m�i|Xi = z�Wi = 1] and

N2/k
0 E[‖Um�i‖3|Xi = z�Wi = 1] are uniformly bounded over z ∈ X1 and N0.
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Lemma A.2 implies the same result for N2/k
0 E[Um�i|Xi = z�Wi = 1]. As a re-

sult, ‖N2/k
0 E[µ0(Xjm(i)) − µ0(Xi)|Xi = z�Wi = 1]‖ is uniformly bounded over

z ∈ X1 and N0. Applying Lebesgue’s dominated convergence theorem along
with Lemma 1, we obtain

N2/k
0 E

[
µ0(Xjm(i))−µ0(Xi)|Wi = 1

]
= Γ

(
mk+ 2

k

)
1

(m− 1)!k

×
∫ (

f0(x)
πk/2

Γ (1 + k/2)

)−2/k

×
{

1
f0(x)

∂f0

∂x′ (x)
∂µ0

∂x
(x)+ 1

2
tr

(
∂2µ0

∂x′∂x
(x)

)}
f1(x)dx

+ o(1)�

Now the result follows easily from the conditions of the theorem. Q.E.D.

PROOF OF THEOREM 1(ii): Consider the special case where µ1(x) is flat
over X and µ0(x) is flat in a neighborhood of the boundary, B. Then matching
the control units does not create bias. Matching the treated units creates a bias
that is similar to the formula in Theorem 2(ii), but with r = 1, θ = p/(1 − p),
and the integral taken over X ∩ B

c . Q.E.D.

PROOF OF LEMMA 3: Define f = infx�w fw(x) and f̄ = supx�w fw(x), with
f > 0 and f̄ finite. Let ū= supx�y∈X

‖x− y‖. Consider the ball B(x�u) with cen-
ter x ∈ X and radius u. Let c(u) (0 < c(u) < 1) be the infimum over x ∈ X of
the proportion that the intersection with X represents in volume of the balls.
Note that, because X is convex, this proportion is nonincreasing in u, so let
c = c(ū) and c(u) ≥ c for u ≤ ū. The proof consists of three parts. First we
derive an exponential bound for the probability that the distance to a match,
‖Xjm(i) −Xi‖, exceeds some value. Second, we use this to obtain an exponential
bound on the volume of the catchment area, AM(i), defined as the subset of X

such that i is matched to each observation, j, with Wj = 1 −Wi and Xj ∈ AM(i).
Formally,

AM(i)=
{
x
∣∣∣ ∑
l|Wl=Wi

1{‖Xl − x‖ ≤ ‖Xi − x‖} ≤M

}
�

Thus, if Wj = 1 − Wi and Xj ∈ AM(i), then i ∈ JM(j). Third, we use the expo-
nential bound on the volume of the catchment area to derive an exponential
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bound on the probability of a large KM(i), which will be used to bound the
moments of KM(i).

For the first part we bound the probability of the distance to a match. Let
x ∈ X and u <N1/k

1−Wi
ū. Then

Pr
(‖Xj −Xi‖> uN−1/k

1−Wi

∣∣W1� � � � �WN�Wj = 1 −Wi�Xi = x
)

= 1 −
∫ uN

−1/k
1−Wi

0
rk−1

∫
Sk

f1−Wi
(x+ rω)λSk(dω)dr

≤ 1 − cf

∫ uN
−1/k
1−Wi

0
rk−1

∫
Sk

λSk(dω)dr

= 1 − cfukN−1
1−Wi

πk/2

Γ (1 + k/2)
�

Similarly,

Pr
(‖Xj −Xi‖ ≤ uN−1/k

1−Wi

∣∣W1� � � � �WN�Wj = 1 −Wi�Xi = x
)

≤ f̄ ukN−1
1−Wi

πk/2

Γ (1 + k/2)
�

Notice also that

Pr
(‖Xj −Xi‖> uN−1/k

1−Wi

∣∣W1� � � � �WN�Xi = x� j ∈JM(i)
)

≤ Pr
(‖Xj −Xi‖> uN−1/k

1−Wi

∣∣W1� � � � �WN�Xi = x� j = jM(i)
)

=
M−1∑
m=0

(
N1−Wi

m

)
Pr

(‖Xj −Xi‖ > uN−1/k
1−Wi

∣∣
W1� � � � �WN�Wj = 1 −Wi�Xi = x

)N1−Wi
−m

× Pr
(‖Xj −Xi‖ ≤ uN−1/k

1−Wi

∣∣
×W1� � � � �WN�Wj = 1 −Wi�Xi = x

)m
�

In addition,(
N1−Wi

m

)
Pr

(‖Xj −Xi‖ ≤ uN−1/k
1−Wi

∣∣W1� � � � �WN�Wj = 1 −Wi�Xi = x
)m

≤ 1
m!

(
ukf̄

πk/2

Γ (1 + k/2)

)m

�
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Therefore,

Pr
(‖Xj −Xi‖ > uN−1/k

1−Wi

∣∣W1� � � � �WN�Xi = x� j ∈JM(i)
)

≤
M−1∑
m=0

1
m!

(
ukf̄

πk/2

Γ (1 + k/2)

)m

×
(

1 − ukc f
πk/2

Γ (1 + k/2)
· 1
N1−Wi

)N1−Wi
−m

�

Then, for some constant C1 > 0,

Pr
(‖Xj −Xi‖ > uN−1/k

1−Wi

∣∣W1� � � � �WN�Xi = x� j ∈JM(i)
)

≤ C1 max{1�uk(M−1)}
M−1∑
m=0

(
1 − ukc f

πk/2

Γ (1 + k/2)
· 1
N1−Wi

)N1−Wi
−m

≤ C1M max{1�uk(M−1)}exp
(

− uk

(M + 1)
c f

πk/2

Γ (1 + k/2)

)
�

Notice that this bound also holds for u≥N1/k
1−Wi

ū, because in that case the prob-
ability that ‖Xjm(i) −Xi‖> uN−1/k

1−Wi
is zero.

Next, we consider for unit i, the volume BM(i) of the catchment area AM(i),
defined as BM(i) = ∫

AM(i)
dx. Conditional on W1� � � � �WN , i ∈ JM(j), Xi = x,

and AM(i), the distribution of Xj is proportional to f1−Wi
(x)1{x ∈ AM(i)}.

Notice that a ball with radius (b/2)1/k/(πk/2/Γ (1 + k/2))1/k has volume b/2.
Therefore, for Xi in AM(i) and BM(i)≥ b, we obtain

Pr
(

‖Xj −Xi‖ > (b/2)1/k

(πk/2/Γ (1 + k/2))1/k

∣∣∣
W1� � � � �WN�Xi = x�AM(i)�BM(i)≥ b� i ∈JM(j)

)
≥ f

2f̄
�

The last inequality does not depend on Am(i) (given BM(i)≥ b). Therefore,

Pr
(

‖Xj −Xi‖ > (b/2)1/k

(πk/2/Γ (1 + k/2))1/k

∣∣∣
W1� � � � �WN�Xi = x� i ∈JM(j)�BM(i)≥ b

)
≥ f

2f̄
�
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As a result, if

Pr
(

‖Xj −Xi‖> (b/2)1/k

(πk/2/Γ (1 + k/2))1/k

∣∣∣(A.2)

W1� � � � �WN�Xi = x� i ∈JM(j)

)
≤ δ

f

2f̄
�

then it must be the case that Pr(BM(i)≥ b|W1� � � � �WN�Xi = x� i ∈JM(j))≤ δ.
In fact, inequality (A.2) has been established above for

b= 2uk

NWi

(
πk/2

Γ (1 + k/2)

)
and

δ = 2f̄
f
C1M max{1�uk(M−1)}exp

(
− uk

(M + 1)
c f

πk/2

Γ (1 + k/2)

)
�

Let t = 2ukπk/2/Γ (1 + k/2). Then

Pr
(
NWi

BM(i)≥ t|W1� � � � �WN�Xi = x� i ∈JM(j)
)

≤ C2 max{1�C3t
M−1}exp(−C4t)

for some positive constants, C2, C3, and C4. This establishes an uniform
exponential bound, so all the moments of NWi

BM(i) exist conditional on
W1� � � � �WN�Xi = x� i ∈JM(j) (uniformly in N).

For the third part of the proof, consider the distribution of KM(i), the num-
ber of times unit i is used as a match. Let PM(i) be the probability that an ob-
servation with the opposite treatment is matched to observation i conditional
on AM(i):

PM(i)=
∫

AM(i)

f1−Wi
(x)dx≤ f̄ BM(i)�

Note that for n ≥ 0,

E
[
(NWi

PM(i))
n
∣∣Xi = x�W1� � � � �WN

]
≤ E

[
(NWi

PM(i))
n
∣∣Xi = x�W1� � � � �WN� i ∈JM(j)

]
≤ f̄ n

E
[
(NWi

BM(i))
n
∣∣Xi = x�W1� � � � �WN� i ∈JM(j)

]
�
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As a result, E[(NWi
PM(i))

n|Xi = x�W1� � � � �WN] is uniformly bounded. Condi-
tional on PM(i) and on Xi = x�W1� � � � �WN , the distribution of KM(i) is bino-
mial with parameters N1−Wi

and PM(i). Therefore, conditional on PM(i) and
Xi = x�W1� � � � �WN , the qth moment of KM(i) is

E
[
K

q
M(i)|PM(i)�Xi = x�W1� � � � �WN

]
=

q∑
n=0

S(q�n)N1−Wi
!PM(i)

n

(N1−Wi
− n)! ≤

q∑
n=0

S(q�n)
(
N1−Wi

PM(i)
)n
�

where S(q�n) are Stirling numbers of the second kind and q ≥ 1 (see, e.g.,
Johnson, Kotz, and Kemp (1992)). Then, because S(q�0)= 0 for q ≥ 1,

E
[
K

q
M(i)|Xi = x�W1� � � � �WN

] ≤ C

q∑
n=1

S(q�n)

(
N1−Wi

NWi

)n

for some positive constant C . Using Chernoff’s bound for binomial tails, it
can be easily seen that E[(N1−Wi

/NWi
)n|Xi = x�Wi] = E[(N1−Wi

/NWi
)n|Wi] is

uniformly bounded in N for all n ≥ 1, so the result of the first part of the
lemma follows. Because KM(i)

q ≤ KM(i) for 0 < q < 1, this proof applies also
to the case with 0 < q < 1.

Next, consider part (ii) of Lemma 3. Because the variance σ2(x�w) is
Lipschitz on a bounded set, it is therefore bounded by some constant,
σ̄2 = supw�x σ

2(x�w). As a result, E[(1 + KM/M)2σ2(x�w)] is bounded by
σ̄2

E[(1 +KM/M)2], which is uniformly bounded in N by the result in the first
part of the lemma. Hence E[V E] = O(1).

Next, consider part (iii) of Lemma 3. Using the same argument as for
E[Kq

M(i)], we obtain

E[Kq
M(i)|Wi = 0] ≤

q∑
n=1

S(q�n)

(
N1

N0

)n

E
[
(N0PM(i))

n|Wi = 0
]
�

Therefore,(
N0

N1

)
E[Kq

M(i)|Wi = 0]

≤
q∑

n=1

S(q�n)

(
N1

N0

)n−1

E
[
(N0PM(i))

n|Wi = 0
]
�

which is uniformly bounded because r ≥ 1.
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For part (iv) notice that

E[V E�t] = E

[
1
N1

N∑
i=1

Wiσ
2(Xi�Wi)

]

+E

[
1
N1

N∑
i=1

(1 −Wi)

(
KM(i)

M

)2

σ2
Wi
(Xi)

]

≤ σ̄2 + σ̄2

(
N0

N1

)
E

[(
KM(i)

M

)2∣∣∣Wi = 0
]
�

Therefore, E[V E�t] is uniformly bounded. Q.E.D.

PROOF OF THEOREM 3: We only prove the first part of the theorem. The
second part follows the same argument. We can write τ̂M − τ = (τ(X) −
τ) + EM + BM . We consider each of the three terms separately. First, by As-
sumptions 1 and 4(i), µw(x) is bounded over x ∈ X and w = 0�1. Hence
µ1(X) − µ0(X) − τ has mean zero and finite variance. Therefore, by a stan-
dard law of large numbers, τ(X) − τ

p→ 0. Second, by Theorem 1, BM =
Op(N

−1/k) = op(1). Finally, because E[ε2
i |X�W] ≤ σ̄2 and E[εiεj|X�W] = 0

(i �= j), we obtain

E
[
(
√
NEM)

2
] = 1

N

N∑
i=1

E

[(
1 + KM(i)

M

)2

ε2
i

]

= E

[(
1 + KM(i)

M

)2

σ2(Xi�Wi)

]
=O(1)�

where the last equality comes from Lemma 3. By Markov’s inequality EM =
Op(N

−1/2)= op(1). Q.E.D.

PROOF OF THEOREM 4: We only prove the first assertion in the theorem be-
cause the second follows the same argument. We can write

√
N(̂τM −BM −τ) =√

N(τ(X) − τ) + √
NEM . First, consider the contribution of

√
N(τ(X)− τ).

By a standard central limit theorem,

√
N

(
τ(X)− τ

) d−→N (0� V τ(X))�(A.3)

Second, consider the contribution of
√
NEM/

√
V E = ∑N

i=1 EM�i/
√
NV E .

Conditional on W and X the unit-level terms EM�i = (2Wi −1)(1+KM(i)/M)εi

are independent with zero means and nonidentical distributions. The condi-
tional variance of EM�i is (1 +KM(i)/M)2σ2(Xi�Wi). We will use a Lindeberg–
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Feller central limit theorem for
√
NEM/

√
V E . For a given X�W, the Linde-

berg–Feller condition requires that

1
NV E

N∑
i=1

E
[
(EM�i)

21
{|EM�i| ≥ η

√
NV E

}∣∣X�W
] → 0(A.4)

for all η > 0. To prove that the (A.4) condition holds, notice that by Hölder’s
and Markov’s inequalities we have

E
[
(EM�i)

21
{|EM�i| ≥ η

√
NV E

}∣∣X�W
]

≤ (
E[(EM�i)

4|X�W])1/2(
E
[
1
{|EM�i| ≥ η

√
NV E

}∣∣X�W
])1/2

≤ (
E[(EM�i)

4|X�W])1/2(
Pr

(|EM�i| ≥ η
√
NV E |X�W

))
≤ (

E[(EM�i)
4|X�W])1/2 E[(EM�i)

2|X�W]
η2NV E

�

Let σ̄2 = supw�x σ
2(x�w) < ∞, σ2 = infw�x σ

2(x�w) > 0, and C̄ = supw�x E[ε4
i |

Xi = x�Wi =w] <∞. Notice that V E ≥ σ2. Therefore,

1
NV E

N∑
i=1

E
[
(EM�i)

21
{|EM�i| ≥ η

√
NV E

}∣∣X�W
]

≤ 1
NV E

N∑
i=1

((
1 + KM(i)

M

)4

E[ε4
i |X�W]

)1/2

× (1 +KM(i)/M)2σ2(Xi�Wi)

η2NV E

≤ σ̄2C̄1/2

η2σ4

1
N

(
1
N

N∑
i=1

(
1 + KM(i)

M

)4
)
�

Because E[(1+KM(i)/M)4] is uniformly bounded, by Markov’s inequality, the
factor in parentheses is bounded in probability. Hence, the Lindeberg–Feller
condition is satisfied for almost all X and W. As a result,

N1/2
∑N

i=1 EM�i(∑N

i=1(1 +KM(i)/M)2σ2(Xi�Wi)
)1/2 = N1/2EM√

V E

d−→N (0�1)�

Finally,
√
NEM/

√
V E and

√
N(τ(X) − τ) are asymptotically independent

(the central limit theorem for
√
NEM/

√
V E holds conditional on X and W).
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Thus, the fact that both converge to standard normal distributions, bound-
edness of V E and V τ(X), and boundedness away from zero of V E imply that
(V E + V τ(X))−1/2N1/2(̂τM − BM − τ) converges to a standard normal distribu-
tion. Q.E.D.

The proofs of Theorems 5, 6, and 7 are available on the authors’ webpages.
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