The Power of the Street: Evidence from Egypt’s Arab Spring

Daron Acemoglu† Tarek A. Hassan‡ Ahmed Tahoun§

October 2014

Abstract

During Egypt’s Arab Spring, unprecedented popular mobilization and protests brought down Hosni Mubarak’s government and ushered in an era of competition between three groups: elites associated with Mubarak’s National Democratic Party (NDP), the military, and the Islamist Muslim Brotherhood. Street protests continued to play an important role during this power struggle. We show that these protests are associated with differential stock market returns for firms connected to the three groups. Using daily variation in the number of protesters, we document that more intense protests in Tahrir Square are associated with lower stock market valuations for firms connected to the group currently in power relative to non-connected firms, but have no impact on the relative valuations of firms connected to other powerful groups. We further show that activity on social media may have played an important role in mobilizing protesters, but had no direct effect on relative valuations. According to our preferred interpretation, these events provide evidence that, under weak institutions, popular mobilization and protests have a role in restricting the ability of connected firms to capture excess rents.

JEL classification: E02, G12, G3, O11, O43, O53
Keywords: corruption, de facto political power, institutions, mobilization, protests, rents, value of connections.

*We thank Jesse Shapiro, Matt Gentzkow, Nancy Quian, Larry Katz, Laurence van Lent, Jacopo Ponticelli, and Antoinette Schoar for helpful comments. We also thank Karim Ouda (CEO of 25trends.me) for providing a valuable list of Twitter users, and thank seminar participants the University of Chicago, CIFAR, Duke University, IIES Stockholm, IfW Kiel, Stanford, Yale, and the NBER Political Economy meeting for valuable discussions. Leland Bybee, Chris Natoli, Siladitya Mohanti, and Hongcen Wei provided excellent research assistance. All mistakes remain our own. Hassan is grateful to the Fama-Miller Center at the University of Chicago for providing financial support. Acemoglu gratefully acknowledges financial support from ARO MURI W911NF-12-1-0509.

†Massachusetts Institute of Technology, NBER, CEPR, and CIFAR; Postal Address: 77 Massachusetts Avenue, Building E18, Cambridge MA 02142, USA; E-mail: daron@mit.edu.

‡University of Chicago, NBER, and CEPR; Postal Address: 5807 S Woodlawn Avenue, Chicago IL 60637, USA; E-mail: tarek.hassan@chicagobooth.edu.

§London Business School; Postal Address: Regent’s Park, London NW1 4SA, United Kingdom; E-mail: atahoun@london.edu.
1 Introduction

From the Arab Spring to the recent uprising against Victor Yanukovic’s government in Ukraine, corruption and favoritism have motivated people to pour into the streets to protest against the economic and political arrangements benefiting connected individuals and firms. Such protests have sometimes been successful in unseating unpopular rulers, as illustrated by the recent events in Tunisia, Egypt, Libya, and Ukraine. But are they effective at limiting the extent of corruption and favoritism that set them off in the first place?

This paper strives to shed light on this question by studying Egypt’s Arab Spring. On February 11, 2011, Hosni Mubarak, Egypt’s president and de facto dictator since his accession to power in 1981, was forced to resign in the face of large protests in the main square of Cairo, Tahrir Square. Mubarak’s regime was a perfect specimen of economic favoritism and corruption underpinned by the monopolization of political power by a narrow group centered around his National Democratic Party (NDP). Rampant corruption and repression, which excluded vast segments of the population from political participation, was a major trigger of the protests. Mubarak’s fall was followed by a phase of military rule until June 2012, when Mohammed Mursi, an Islamist, was elected president. Mursi’s presidency in turn was followed by a second phase of military rule starting in July 2013. Throughout these four phases of Egypt’s Arab Spring, politically connected firms (in particular, those connected to the NDP, the military, and the Islamists) have seen their fortunes ebb and flow, offering a window to study the real-time effects of episodic street protests against a changing cast of ruling political elites.

Our primary approach for discerning the impact of street protests and the events that they triggered is to study their influence on the stock market valuations of different types of firms. This methodology estimates the value of political connections from changes in the relative stock market valuations of politically connected firms following shifts in political power. It is particularly useful when there is a well-defined set of connected firms, as is the case in Egypt, and when direct measures of corruption and the shifting rent-seeking abilities of different groups of firms are unavailable (as they often are).

We begin our analysis with a series of event studies, which both illustrate the major political events of Egypt’s Arab Spring and document the value of political connections. We find that in the nine trading days following Mubarak’s fall, the value of firms connected to the NDP fell by about 13% relative to the value of non-connected firms, indicating a perception of major rent shifts away from these firms in the Egyptian Stock Exchange. Since NDP-connected firms were often viewed to gain significant advantage from state-sanctioned monopolies, this result is quite plausible. Consistent with some degree of anticipation of subsequent political changes in Egypt, some specifications also show an increase in the value of military-connected firms. Since Mubarak’s fall was partially precipitated by the military’s withdrawal of support, it is plausible for market participants to have expected an increased political and economic role by the military in the subsequent months — an expectation that events since then have borne out. We further document the subsequent upheaval in Egyptian politics following Mubarak’s fall, and show that the
key events that impacted the power of the military and the Islamists during this period are reflected in the stock market returns of firms connected to these groups.

Our main results focus on the direct effect of street protests on the returns of politically connected firms. Using information from Egyptian and international print and online media, we construct a daily estimate of the number of protesters in Tahrir Square and analyze the effect of these protests on the returns of firms connected to the group then in power. Our specifications estimate the differential changes in the stock market values of different types of connected firms relative to non-connected firms as a function of the size of the protests. They show a robust and quantitatively large impact of larger protests on the returns of firms connected to the incumbent group. For example, a turnout of 500,000 protesters in Tahrir Square lowers the market valuation of firms connected to the incumbent group by 0.8% relative to non-connected firms. Interestingly, we do not find an offsetting gain in the value of “rival” (non-incumbent) connected groups, a finding that will be important for our interpretation below. We also verify that the association between street protests and the stock market valuations of politically connected firms is not just a reflection of spikes in protests during some of the key events already mentioned above. In other words, even during periods when protests did not lead to changes in governments or institutions, protest activity is strongly associated with swings in the relative stock market valuations of (incumbent) connected firms.

We further use data from the universe of tweets by Egyptian Twitter users during this period to shed light on several interrelated questions. First, we document that activity on Twitter predicts protests in Tahrir Square, suggesting that social media has helped coordinate street mobilizations. Second, we also find that this social media activity has no direct effect on stock market valuations with or without simultaneously conditioning on street protests. Third, we investigate whether the cohesiveness of the coalition underpinning street protests has played a role in the relationship between protests and relative stock market valuations of connected firms. Using the “opposition turnover rate,” which we measure from changes in retweeting activity of different types of messages, we find some evidence that a less cohesive opposition (that is, a higher opposition turnover rate) reduces the impact of protests on the stock market valuation of firms connected to the incumbent group.

There are several possible interpretations of these findings. The first is that the differential fluctuation in the stock market valuation of connected and non-connected firms is unrelated to the value of political connections, but reflects the heterogeneous responses of firms with different characteristics to macroeconomic shocks during this tumultuous period. We believe that this is unlikely to be the case. In addition to controlling for various firm-level characteristics and for the sectors in which each firm operates, our methodology easily lends itself to the study of the timing of responses and to various falsification exercises. We consistently find that the relative valuations of politically connected firms change immediately following protests and key political events, and not before. Moreover, we find no systematic differential effects during other major economic and political events before the onset of Egypt’s Arab Spring. In addition, we also study the changes in profitability and in the board composition of different types of firms during these episodes.
We find not only lower profitability of NDP-connected firms after Mubarak’s fall, but also generally higher profits for firms associated with the group currently in power. Consistent with this observation, Egyptian firms appear to have shifted the composition of their boards to include more representatives from the group currently in power during each phase of Egypt’s Arab Spring. For example, during military rule firms tended to hire military officers and fire NDP members. The evidence thus suggests that Egyptian firms are not only aware of the value of connections to the incumbent group, but have also made efforts to cultivate these connections at short notice.

The second interpretation is that what we are finding is an instance of pure rent reallocation within the Egyptian economy — without any influence on the overall extent of corruption, favoritism, and rents captured by connected firms. For example, it is possible that Mubarak’s fall left the amount of corruption and rent-seeking resulting from monopolies, insider deals, and financial improprieties essentially unchanged, and merely shifted these benefits from NDP- to military-connected firms. Though the reaction of the stock market following Mubarak’s fall indicates that this is plausible, most of our results suggest that there is more than pure rent reallocation going on. While protests and certain other key events caused major drops in the relative stock market valuation of firms connected to the incumbent group, we find no positive impact on the stock market valuation of firms connected to the other two, rival groups (again relative to non-connected firms). If anything, the point estimates are consistently negative, suggesting that what we are uncovering is more than a mere reallocation of rents within the well-defined group of connected firms.

The third possibility is that protests are simply a marker for broader discontent within society, and that this broader discontent is correlated with the likelihood of a future major regime change (e.g., a coup or constitutional change). Then, as the probability of such events changes, the net present discounted value of future expected rents for connected firms respond. Though we find this quite plausible, our evidence suggests that this is also not the entirety of the story. To start with, our results from Twitter data indicate that differential stock market valuations are correlated with actual protests, but not with various types of (anti-government) activity on social media, underscoring the importance of protests rather than just general discontent in moving the perceptions about rent capture in the economy. Moreover, during many of the key episodes, there was no change in political institutions or government, nor did it appear likely that such a change would be forthcoming anytime soon, which also weighs against the interpretation that these results merely reflect changes — or expectations of imminent changes — in the identity of the government.

The fourth possibility is that large protests change the future distribution of political power in society, for example, by solving the collective action problem of certain groups and mobilizing them. If so, spikes in protests can be a source of de facto power in a society with weak political institutions and act as a constraint on the ability of connected firms to siphon off rents. This interpretation is made somewhat more plausible by the results in

\[1\] This of course does not rule out the possibility that rents will be captured by some other set of newly-emerging connected firms (e.g., firms forming new connections as political winds change).
the previous literature that protests during various critical periods have an autonomous impact both on future protests and on certain economic and political outcomes (Aidt and Franck (2014), Collins and Margo (2007), Madestam, Shoag, Veuger, and Yanagizawa-Drott (2013); see our discussion below), and by our finding on the interplay between social media activity and protests. In particular, one possible interpretation of our results using the opposition turnover rate described above is that, consistent with an autonomous role of protests in changing the future allocation of political power, a less cohesive opposition is less effective even in the midst of street mobilization.

Taken together, our preferred interpretation is a combination of the third and the fourth possibilities provided above. It appears plausible that spikes in protests change perceptions about future institutional changes. But the collage of evidence suggests that this is not all that is going on. Rather, protest activity and the broader mobilization that it generated appear to have acted as effective constraints on rent-seeking (or the market’s perception of future rent-seeking).

We should emphasize at this point that there are various threats to the validity of our conclusions and also certain shortcomings of the methodology that we are utilizing. First, as we have already indicated, there are several alternative interpretations, and even though we have suggested that the totality of the evidence is not supportive of these interpretations, our results do not completely rule them out. Second, by its nature, this type of evidence focuses on the stock market participants’ perception of future rents. It is possible that during this critical period, there was a decoupling of these perceptions from the reality of corruption and favoritism within the Egyptian economy. Though our results on firms’ efforts to change the composition of their boards suggests that this is not the case, we are not completely able to rule out this possibility. Third, because we do not know how much these events change the market participants’ perceptions, we are unable to obtain estimates of the absolute extent of profits resulting from corruption and favoritism in the Egyptian economy (e.g., our finding of a 13% change in the relative value of NDP-connected firms in the first nine trading days after Mubarak’s fall may merely represent a lower bound of the total value of these firms’ political connections). Finally, given the very specific circumstances in Egypt during this time period, it is difficult to draw inferences about the general impact of street protests and political mobilization on political and economic outcomes in other institutional and historical settings.

Our methodology builds on the literature on political connections, which uses stock market returns as a measure of the (changing) value of politically connected firms. The first study we are aware of using this is strategy is Roberts (1990) for the United States. The seminal study in economics is Fisman (2001), who exploited rumors about Indonesian President Suharto’s health and found that the value of connections accounted for 23% of firms’ value in the Indonesian stock market during the mid-1990s. Johnson and Mitton (2003) found that political connections accounted for 17% of the value of firms in the Malaysian stock market using the fall from power of Anwar Ibrahim, the Minister of Finance. Similar results are found for Pakistan by Khwaja and Mian (2005) and for

2Nevertheless, we believe that our work indicates a simple approach for studying this question in different historical settings.
Weimar Germany by Voth and Ferguson (2008). Dube, Kaplan, and Naidu (2011) use the same methodology to show how insiders captured gains from information about CIA-supported coups (with stock market returns moving before the event). See also Dinc (2005), Faccio (2006), Faccio, Masulis, and McConnell (2006), Lenz and Oberhofer-Gee (2006), and Acemoglu, Johnson, Kermani, Kwak, and Mitton (2013) for various other applications of this methodology. We differ from this literature by investigating the direct effect of street protests on firms connected to current power holders and rival groups.

The second literature we are building on studies the effect of protests and social unrest on political change. Acemoglu and Robinson (2000, 2006) emphasize the effect of protests (and the threat of revolution) on changes in political regimes. In particular, they suggest that protests which temporarily shift the de facto distribution of political power in society may force a change in political institutions so as to alter the future distribution of de jure political power. Several empirical and historical papers have found evidence consistent with the idea that democratizations, particularly in 19th-century Western Europe, have been associated with, and perhaps a response to, major uprisings, protests, and revolutionary threats (e.g., Aidt and Jensen (2013), Aidt and Franck (2013)).

Some works in this literature have modeled the decision to take part in protests and the implications of these endogenous protests on political equilibria (e.g., Kuran (1989, 1991), Lohmann (1999), Fearon (2011), Kricheli, Livne, and Magaloni (2011), and Bidner and Francois (2013)). Another branch of the literature (e.g., Collins and Margo (2007), Madestam et al. (2013)) is more closely related to our interpretation as it shows that short-run, random factors that prevent or facilitate protests have a durable impact on political organization and social and economic outcomes. To the best of our knowledge, this literature has not investigated the role of street protests on constraining or redistributing economic rents from favoritism and corruption. The closest result in the existing literature is Chaney (2013) who documents the effect of drought in Egypt throughout the last several centuries on ruler concessions to religious authorities, which he interprets as being a partial response to the threat of protests and unrest.

A related literature in economics and political science focuses on political instability and its impact on economic outcomes (e.g., Alesina and Perotti (1996), Alesina, Ezler, Roubini, and Swagel (1996), Svensson (1998), Overland, Simons, and Spagat (2005), and

3 An important difference between this literature and our paper is that rather than focusing on changes in government or collapses of certain regimes, we mostly focus on changes in the balance of power driven by street mobilization, thus enabling us to shed light on whether such protests can restrain rent seeking under otherwise weak institutions.

4 Another branch of this literature (e.g., Acemoglu and Robinson (2008)) raises the possibility that politically powerful groups will be able to take offsetting actions in order to deal with popular pressures or even institutional constraints on their power, thus re-creating some of the initial advantages and privileges they had via different channels (this also builds on Michael’s’s Iron Law of Oligarchy, 1966, as discussed in Acemoglu and Robinson (2012)). The fact that we find an increase in the value of military-connected firms during Mubarak’s fall provides some support for this view, but taken as a whole, our results also suggest that street protests do more than just reallocate rents between different powerful groups.

5 Campante and Chiori (2012), Chaney (2012), Gill (2012), and Kent and Pham (2013) discuss the origins of the Arab Spring, but do not investigate the implications of street protests and the associated events on the values of connected firms and rents in the Egyptian economy.
Haber, Maurer, and Razo (2004)). Though our work is also related to this literature, we differ sharply in our interpretation. Rather than viewing all instability as a cause of uncertainty and thus a discouragement to investment and growth, we show that certain types of protests under weak institutions (as those in Egypt) may serve as a partial check on rent-seeking activity.

Another literature related to our work concerns the role of social media in political events. Edmond (2013) provides a theoretical analysis of how social media impact collective action and ruler responses. There is also a large literature in computer science on using social media analysis for determining different political trends and political polarization (e.g., Adamic and Glance (2005), and Weber, Garimella, and Batayneh (2013) in the context of Egypt). Our paper contributes to this literature by showing the impact of social media activity on street protests and also by clarifying how this activity might or might not influence the extent and distribution of rents in the economy.

The remainder of this paper is structured as follows. Section 2 describes our dataset and our classification of politically connected Egyptian firms into three rent-seeking networks. Section 3 gives historical background and uses a series of event studies to describe the power struggle between these three networks and its impact on the stock market valuation of firms to which they are connected. Section 4 presents our main results linking the number of protesters in Tahrir Square to the size of economic rents accruing to connected firms. Section 5 investigates the impact of social media on protests, studies whether discontent expressed on social media has an independent effect on differential social returns, and explores the interaction between the cohesiveness of the opposition and street protests. Section 6 concludes.

2 Data

Our dataset comprises 177 firms that were listed on the Egyptian stock exchange on January 1, 2011. We obtain daily closing prices for each of these firms between January 1, 2005, and July 31, 2013, from Zawya, a financial data provider specializing in the Middle East. The same vendor also provides accounting data and stock return indices. We use these data to construct daily stock returns for each of the firms in our sample, as well as quarterly measures of the size (total assets) and leverage (total debt over total assets) of each firm.

As standard controls, we estimate an Egyptian- and a world-market beta for each firm by regressing the daily stock returns of each firm during the 2010 calendar year on the returns on the MSCI-Egypt and MSCI-world indices, respectively:

$$R_{it} = \alpha_i + \beta_i R^m + \nu_{it},$$

6A piece of evidence from a completely different context that is consistent with our finding that general discontent voiced on social media has limited political effects comes from the work of King, Pan, and Roberts (2013) who show that Chinese censors permit expression of general discontent on social media but aim to silence any attempt at mobilization for collective action.
where $x = \text{World, Egypt}$ and R_{it} is the return on firm i between its previous trading day and t (note that not all firms trade on each day in our sample). R^x_t denotes the return on the MSCI World and Egypt indices, respectively.

As an additional control, we use the Global Data on Events, Location, and Tone (GDELT) dataset to measure the sensitivity of each firm’s stock returns to general unrest in the county. GDELT is an open-source project that uses English-language news sources to compile a list of approximately 250 million political events that occurred across the world from 1979 to the present. For each event, GDELT uses simple grammatical rules to identify an action taken by an actor in a given location upon another actor (in essence, subject, verb, object). We use this dataset to obtain a list of strikes, boycotts, riots, and instances of ethnic clashes between Muslims and Copts (the Christian minority in Egypt) that occurred between January 1, 2005, and Dec 31, 2010. We then regress the stock returns for each firm on a dummy variable that is 1 on the two trading days following one of the events on our list, and refer to the slope coefficient of this regression as “unrest beta,” $\beta_{i}^{\text{unrest}}$.

2.1 Connected Firms

Firms listed on the Egyptian stock exchange are required to publish quarterly reports disclosing the names of their board members and principal shareholders. This requirement came into effect during the first quarter of 2011, immediately before the onset of Egypt’s Arab Spring.\(^7\) We downloaded these reports from the Egyptian stock exchange’s website on a continuous basis.

We classify a firm as connected to the NDP if the name of at least one of the firm’s major shareholders or board members appears on a list of 6,000 prominent NDP members posted online by activists in the aftermath of the fall of Mubarak’s regime. This list was created as part of a campaign, “Emsek Felool” (“to catch remnants” of the old regime), to publicly identify the cronies of the old regime.\(^8\) The list gives the full name, rank within the NDP, and any official function of each prominent NDP member by Egyptian governorate. The types of functions it lists include members of parliament, aldermen, and local and party council members. Our algorithm matches 19 names in 22 firms. (See Appendix \(^9\) for details.)

In accordance with the Egyptian constitution, the Egyptian military’s financial accounts are outside the control of the civilian government (the “two tills” system). This

\(^7\)See Appendix \(^\text{A.1}\) for details on this procedure.

\(^8\)The first reports were filed for the second quarter of 2011, but they contain a section on the status of board members and shareholder structure for the previous quarter, thus also covering the relevant information for the first quarter of 2011.

\(^9\)For a description of the “Emsek Felool” internet and street campaign, see articles published by the Guardian, (http://www.theguardian.com/world/2011/nov/16/egypt-national-democratic-party-members), and the Washington Post (http://www.washingtonpost.com/world/middle_east/egyptians-fear-return-of-mubarak-allies/2011/11/16/gIQAS58iTN_story_1.html). At the time of writing, the original list was no longer publicly available at http://www.emsekflol.com/. It is available from the authors upon request.
system has historically allowed the Egyptian military to operate autonomously and build a largely opaque empire of economic activities outside of civilian control (Harb, 2003). We classify listed firms as connected to the Egyptian military if they are wholly or partially owned by the military “till.” We identify these firms by first selecting all state-owned holding companies, that is, government-owned entities that hold stock in listed firms, from the Zawya database. Although these holdings do not officially declare which of the two “tills” they are accountable to, we distinguish between military- and civilian-government-owned holdings by checking whether the principal officers, shareholders, or board members of the holding company (or any of its affiliated firms) are linked to the military. For this, we use a variety of sources (see Appendix A.2 for details). Using this procedure, we obtain a list of 12 military-owned holding companies that own stakes in listed firms. We then classify a listed firm as connected to the Egyptian military if one of these 12 companies appears on the list of its principal shareholders, giving us 33 military-connected firms in total. Consistent with a strict division between military and civilian control, we find no overlap between NDP- and military-connected firms.

In addition to NDP- and military-connected firms, we also attempted to identify firms connected to the Muslim Brotherhood by collecting the names of prominent members from various sources and cross-referencing them with the names of principal owners and board members of listed firms. Despite committing significant resources to this effort, we identified only one connection to the Muslim Brotherhood. This negative finding may indicate that the Muslim Brotherhood did not manage to penetrate listed firms in the Mubarak era. An alternative explanation, which we find more plausible, is that those involved may have been more likely to go to great lengths to conceal any such connections, for the obvious reason that the Muslim Brotherhood was outlawed, and thus operated underground for most of its existence. As a partial substitute for identifying links to the Muslim Brotherhood, we generate a dummy variable for firms that Zawya or MSCI classify as operating according to Islamic principles. Both data vendors maintain such classifications to enable Islamic investment. MSCI also uses this classification as the basis for its Islamic stock return indices. For example, MSCI’s criteria require that firms adhere to Islamic principles both in the conduct of their business (no investment in firms that cumulatively derive more than 5% of their revenue from alcohol, tobacco, pork, weapons, gambling, etc.) and in their financing (no “excessive” leverage or significant income from interest, etc.). We refer to these firms as “Islamic” because they are likely to benefit relative to their competitors under an Islamist government. For ease of reference, we also sometimes refer to them as “connected” or with some abuse of English, “Islamic-connected.” Of the 13 Islamic firms, 8 are connected neither to the NDP nor to the military and the remaining 5 are connected to the NDP.

Panel A of Table 1 shows summary statistics for the three types of connected firms,

10 This is consistent with the fact that we were only able to compile a list of a few hundred names of publicly known Muslim Brothers, in contrast to the NDP, for which we have a list of 6,000 members.

11 See MSCI’s website for details on this classification (http://www.msci.com/products/indexes/thematic/faith-based/islamic/) and https://www.zawya.com/cm/analytics/default.cfm?full for the equivalent definition used by Zawya.
where we refer to non-connected firms as those that fall into none of the three categories. The table presents means and standard deviations of firm characteristics as of January 1, 2011, before the beginning of Egypt’s Arab Spring. The first panel gives statistics for all firms. The second and third panels show the same statistics for connected versus non-connected, as well as separately for NDP-, Military-, and Islamic-connected firms. On average, NDP-connected firms have assets of 2,436 million Egyptian pounds and are thus significantly larger than than the average military-connected firm (with assets of 240 million Egyptian pounds). NDP-connected firms also tend to have somewhat higher leverage (computed as total debt divided by total shareholder assets) than military-connected and non-connected firms. Reassuring for our comparisons below is that all types of firms appear to have similar Egyptian, world-market, and unrest betas on average.

Table 2 shows the number of NDP-, military-, and Islamic-connected firms in each of the 16 sectors of the economy. Once again reassuringly, all types of firms have representation in a variety of sectors. For example, military-connected firms cluster in industrial manufacturing but are also active in the food and beverage and the health care sectors. Not surprisingly, Islamic firms are clustered in financial services, but are also active in manufacturing, telecom, and real estate. Throughout our analysis, we include sector fixed effects in our regressions.

2.2 The Number of Protesters in Tahrir Square

Our main specifications relate stock returns of firms connected to the incumbent regime to daily variation in the number of protesters in Tahrir Square. We construct this series using text analysis of 102 English-language newspapers published between January 2011 and July 2013 in Egypt and around the world. To this end, we downloaded all newspaper articles containing the words “protesters”/“protestors” and “Tahrir” and “Egypt” from newspapers in the category “major world publications” of the Lexis Nexis Academic service and from all available English-language Egyptian news outlets (Al-Ahram Gate, Al-Ahram Weekly, Al-Akhbar English, and Daily News Egypt). We supplemented this pool of articles with the online content of Al-Masry Al-Youm, Al-Ahram English, and Copts United in order to ensure that the Egyptian press our analysis covers is broadly balanced between pro- and anti-regime news outlets.

We then programmed an algorithm that isolates the number of protesters (usually a term such as “hundreds” or “tens of thousands”) reported by each article and identifies the day for which the number is reported (e.g., an article published on Tuesday might report on events on the same day, the previous day, or even a day in the previous week). We then assigned a numerical value to each word used. Finally, we set the number of protesters equal to zero for all days on which fewer than three separate outlets report a protest, and use the median number of protesters across outlets for all other days. Appendix A.3 gives the details of this algorithm and a sample of our mapping between words and

12The political leanings of these newspapers vary. Some of them are considered to be independent (e.g., Al-Masry Al-Youm and Daily News Egypt) and others are considered loyal to the state (e.g., Al-Ahram and Al-Akhbar).
numbers. Using the same algorithm, we also constructed a daily time series of the number of protesters in Rabaa Square, which became the rallying point for pro-Islamist protesters in the later stages of Egypt’s Arab Spring.

Figure plots the resulting estimates for the number of protesters in Tahrir Square for each day through the end of July 2013. Panel B of Table presents summary statistics on the number of protesters for each of the four phases of Egypt’s Arab Spring and for all four phases combined. “Tahrir Protesters” and “Rabaa Protesters” give the numbers of protesters in thousands in Tahrir and Rabaa Square, respectively. The first phase (Mubarak’s fall) has the highest number of Tahrir protesters with an average of 838,070 per trading day. Protests in Rabaa Square began under Islamist rule and reached their peak in the fourth, post-Islamist, phase with an average of 6440 protesters per trading day. Appendix Figure shows the share of total Tahrir protesters over the sample period by weekday. It shows that the largest protests tend to be on Fridays (32.55% of total protesters), which is not surprising given that most Egyptians do not work on Fridays. Because protests frequently occur on days on which the Egyptian stock exchange is closed (typically Fridays and Saturdays), we assign the number of protesters turning out on non-trading days to the following trading day in all specifications that relate returns to protests.

2.3 Data from Social Media

In some of our specifications, we relate stock returns and the number of protesters in Tahrir Square to activity on social media. In particular, we use data from Twitter to construct a measure of mobilization for street protests, a measure of political support for the political opposition, and a measure of the cohesiveness of the opposition.

To construct these measures, we obtained a list of 318,477 Egyptian Twitter users who tweeted at least once between July 1, 2013, and September 17, 2013, from an Egyptian social media firm (25trends.me). Using the Twitter Application Programming Interface, we downloaded the entire history of tweets made by each of these users. Although Twitter limits the downloadable history of each user to 3,200 tweets, less than 20% of users exceed this limit, enabling our procedure to cover the period back to January 1, 2011, in the majority of cases. We end up with approximately 311 million tweets made by Egyptian users between January 1, 2011, and July 31, 2013.

As a simple measure for the degree of mobilization for street protests, we count the tweets that contain hashtags referring to Tahrir Square on each day. We refer to this measure as “Tahrir hashtags.” As a robustness check, we also counted all tweets that contain the words “Tahrir” anywhere in the body of the tweet. This alternative measure delivers almost identical results. To mirror our empirical approach on street protests, we assign tweets made during non-trading days to the following trading day in all specifications that relate Tahrir hashtags to stock returns.

To gauge the political support for the opposition on any given day, we used the following steps to count the retweets of tweets made by prominent opposition figures. First, we identified the Twitter accounts of all prominent opposition figures that appear on the
Socialbakers list of prominent Twitter accounts in Egypt. (Our definition of the political opposition changes as groups move in and out of power. See Appendix A.2 for details.) Second, we downloaded all daily tweets by these opposition figures. Third, we counted the number retweets of these tweets on any given day. For robustness checks, we also counted the number of unique retweeters of opposition figures as an alternative measure of political support of the opposition (this again yields almost identical results).

Finally, we used our Twitter data to construct a measure of the nature and cohesion of the political opposition on a given day. We calculate the “opposition turnover rate,” in analogy to an employee turnover rate, as the number of Twitter users who retweet a tweet of an opposition leader in \(t-1 \) but not in \(t \), divided by the average number of retweeters on the two days in percent. This daily turnover in opposition re-tweets captures the ability of opposition leaders to attract and retain re-tweeters. High turnover means low retention of followers.

See Appendix A.5 for details on the construction of our Twitter-based variables. Panel B of Table 1 lists summary statistics.

3 Egypt’s Arab Spring and Its Impact on Rents

In this section, we provide a brief historical overview of Egyptian politics, emphasizing the role of the three key power groups: the military, the NDP, and the Islamist movement. We then describe the events during the Arab Spring while also using the standard event study approach to document the impact of these political changes on the extent of rents in the Egyptian corporate sector (as reflected in stock market valuations of connected firms).

3.1 Historical Background

In 1952, a group of military officers (the “free officers”) surrounding Gamal Abdel Nasser deposed the last Egyptian king and descendant of Ottoman viceroys, Farouk. After a brief reign by Mohammed Naguib, Nasser took over the presidency of the newly proclaimed Republic of Egypt in 1954. The attempt to consolidate independence from colonial powers, repeated conflicts with Israel, and socialist economic policy dominated Nasser’s time in office. During the Suez crisis of 1956, British, French, and Israeli troops invaded the Sinai and parts of mainland Egypt to reestablish Western control of the Suez Canal. Although outgunned, the Egyptian government convinced the United States and the Soviet Union to impose economic sanctions that resulted in the withdrawal of all

13 Formally, denoting the set of opposition retweeters in \(t \) as \(T_t \), we have Opposition Turnover, \(t = \frac{|T_{t-1} \cap T_t|}{0.5(|T_{t-1}| + |T_t|)} \times 100 \), where \(T_{t-1} \cap T_t \) denotes the intersection of \(T_{t-1} \) and the complement of \(T_t \).

foreign forces. This diplomatic victory increased public support for a pan-Arab movement with Nasser at its center, paving the way to a short-lived political union between Egypt, Syria, and parts of Yemen (the “United Arab Republic,” 1958-1962). Mounting tensions over water in the Jordan valley and shipping disputes triggered the 1967 war during which Israel occupied the Sinai, Gaza, the West Bank of the Jordan River, and the Golan Heights.

After Nasser’s death in 1970, Anwar Sadat, another member of the free officers and Nasser’s long-time vice-president, reversed many of the socialist policies of his predecessor and embarked on a policy of economic and political liberalization. In 1978, Sadat signed a comprehensive peace deal with Israel that returned the Sinai to Egypt, broke Egyptian ties with the Soviet Union, and permanently aligned Egypt to the West, but also largely alienated it from its Arab allies. As part of the deal, the United States commenced payment of an annual subsidy to the Egyptian military (US$1.3bn in 2008).\(^\text{15}\)

In 1981, Sadat was assassinated by a radical Islamist. Hosni Mubarak, a former air force officer and Sadat’s vice-president, acceded to the presidency, and ruled Egypt under an emergency law that suspended civil rights and granted sweeping powers to the police until his ouster during the Arab Spring. Mubarak continued his predecessor’s policies of economic liberalization with some success. GDP per capita rose about five-fold during his reign to US$2,973 in 2011.\(^\text{16}\) However, the general view among Egyptians was that the gains from growth were largely concentrated in the hands of Mubarak’s cronies.

The internal balance of power since the formation of the Egyptian Republic in 1954 can be broadly characterized as a struggle between three centers of power: the military, a group of secular elites and cronies of the regime organized in the ruling NDP, and various Islamist movements centering around the Muslim Brotherhood. The prominent role of the military is apparent from the fact in this republic founded by a military takeover all presidents until the Arab Spring had been military men. The constitution written by the free officers reestablished civilian rule, but also dissolved all traditional political parties, put the military beyond the direct control of the civilian government, and made it a natural seat of power. Also crucial was the “two tills” system, already mentioned above, which allowed the military to build a large economic empire in civilian industries but beyond the civilian government’s tax authority. These economic activities finance a large network of patronage that supplies current and former military officers with everything from subsidized bungalows on the Mediterranean to lucrative posts in the management of military-owned firms upon retirement. The military has also been traditionally opposed to Islamists: going back to its founding as a modern army under the Ottoman viceroy Muhammad Ali, the Egyptian military has been secular and has periodically purged Islamists from its ranks.

Since 1954, Egypt has for all practical purposes been under one-party rule. After disbanding traditional political parties, Nasser founded the Liberation Rally as the civilian arm of the regime and sole political party. When Nasser aligned Egypt with the Soviet Union, the party was renamed as the Arab Socialist Union, and later Sadat re-organized

\(^{15}\)Congressional budget justification for foreign operations, fiscal year 2008.

\(^{16}\)Current US dollars, World Bank.
it into the, ostensibly centrist, NDP. Consistent with its frequent re-dedications, the NDP never had a clear ideology aside from being modernist and anti-Islamist. Instead, it collected members of the secular elite, bureaucrats, and cronies of the regime. Although founded by the free officers, the NDP quickly grew into an independent center of power, possibly because the successive presidents nurtured it as a counterweight to the military. Particularly in the final years of Mubarak’s rule, the NDP expanded its influence and prominent NDP members acquired vast fortunes. Hosni Mubarak’s son and would-be successor, Gamal Mubarak, had his power base in the NDP.

Egypt’s Islamist movement has been the main political force opposing the ruling coalition of military and NDP. Its main social organization is the Muslim Brotherhood founded by Hassan al-Banna in 1928. Its ideology is fundamentalist in the sense that it favors a literal interpretation of scriptures and advocates a return to an idealized Islamic society. Its traditional followers are the urbanized middle and lower classes. The Muslim Brotherhood and the majority of its offshoots have been outlawed almost continuously since 1948 after it was accused of instigating riots in Cairo. (In response, its supporters assassinated the prime minister Mahmoud Al-Nokrashi.) Although the Muslim Brotherhood actively supported the free officers in their coup against King Farouk, Nasser cracked down on the movement almost immediately after taking power. Sadat later eased the oppression of Islamists, in part using their support in his anti-socialist agenda. However, the Camp David Accords made him extremely unpopular with the Islamist movement (and likely prompted his assassination). Although outlawed, the Muslim Brotherhood continued operating and building a vast network of charitable organizations and religious schools throughout this period. In the later years of Mubarak’s reign, it gained a semi-official status and most of its leaders were released from prison. In the 2005 election, candidates more or less directly affiliated with the Islamist movement gained around 20% of seats in the Egyptian parliament.

The interplay of these three centers of power was disrupted in 2011, when a broad coalition of disenfranchised youths, urban middle classes, and poor took to the streets of Cairo. The Arab Spring of 2011 originally began with the so-called Jasmine Revolution in Tunisia, which was initially ignited by public outrage over the suicide of a street vendor in December of 2010. By early 2011, Tunisian President Bin Ali had stepped down, but far from abating, the revolutionary fervor against the rule of privileged elites in Tunisia was getting stronger and soon spread to Egypt.

On January 25, 2011, thousands (5,000 according to our measure) of protesters congregated in Tahrir Square for the first public demonstration against the Mubarak regime. In a country in which all public demonstrations were illegal and duly crushed, this protest was a watershed event. Moreover, the protests were organized not by Islamists but by young, middle-class Egyptians.

Following this event, Egypt’s Arab Spring unfolds in four stages: (1) the fall of Mubarak, (2) the rule of the military, (3) the rule of the Islamist Mohammed Mursi, and (4) the recovery of power by the military. In the remainder of this section, we describe and analyze each of these four phases using event studies in the Egyptian stock market.
3.2 The Arab Spring in Event Studies

We now use the standard event study methodology to describe the impact of key political events during Egypt’s Arab Spring on the rents — or the perception of rents — captured by different types of connected firms.

Our empirical strategy is to exploit changes in the cumulative returns on each firm’s stock between the opening of trade on trading day \(n \) and the closing of trade on the end trading day \(m \) (where we count all trading days relative to January 25, 2011, the day of the first large protest in Tahrir Square). Cumulative returns for firm \(i \) are defined as

\[
CR[n, m]_i = \sum_{t=n}^{m} R_{it}
\]

where \(R_{it} \) is the log return of firm \(i \) on trading day \(t \). We relate changes in cumulative returns to the type of connection of the firm—NDP, military, Islamic—summarized by the vector \(N_i \) (i.e., \(N_i \) is a vector of three dummies for NDP-, military-, and Islamic-connected firms).

The empirical model we estimate can be written as

\[
CR[n, m] = N_i' \gamma + X_i' \nu + \eta_s + \epsilon_i,
\]

where \(X_i \) is a vector of controls, \(\gamma \) is a vector of coefficients, one attached to each one of the dummies in \(N_i \), \(\eta_s \) denotes a full set of sector fixed effects, and \(\epsilon_i \) is an error term. Because our sample includes non-connected firms, the vector of coefficients \(\gamma \) measures how the cumulative stock market returns of a group of connected firms have changed relative to the returns of non-connected firms. This strategy is valid if, absent the political events taking place during this window, no systematic differences exist between the returns of the different types of connected firms and the non-connected firms. In other words, we require the standard identification assumption

\[
\text{Cov}(N_i', \epsilon_i \mid X_i, \eta_s) = 0.
\]

The plausibility of this assumption depends on the controls we include in the vector \(X_i \). In our baseline specification, these controls are, in addition to a constant term, the betas \(\beta_{World}^i, \beta_{Egypt}^i, \beta_{Unrest}^i \) (as described above), a full set of (16) sector fixed effects, and controls for size and leverage. Our specification here is a slight deviation from the earlier event study literature in that, instead of constructing abnormal returns relative to an Egyptian Capital Asset Pricing Model, we include various controls, including the Egyptian market beta, on the right-hand side. Several considerations motivate this choice. First, our specification allows for partial diversification between Egyptian and world markets, an important advantage in view of the fact that the Egyptian stock market is only a small part of the world market. Second, by separately including the betas for the world market and the Egyptian markets, as well as the unrest beta, this approach controls for omitted factors in a more flexible manner. Our inclusion of sectoral dummies

\[
\text{CAR}[n, m]_i = \sum_{t=n}^{m} R_{it} - \left(\alpha_i - \beta_{Egypt}^i R_{Egypt}^i \right).
\]

\[17\]
and controls for size and leverage is motivated by the potential differential impacts of political unrest on firms that are in different sectors or have different characteristics or exposure to various risks.

We interpret the vector γ as the effect of the event in question on market participants’ expectation of the net present value of economic rents accruing to the three types of connected firms relative to the value of non-connected firms. This interpretation is subject to a number of caveats. First, any change in the value of non-connected firms will lead to a simultaneous change in all of the components of the vector γ. This underscores that all of our results are about differential rents (or their perceptions). Because we typically do not find that all of the components of the vector γ move in the same direction, we believe that our results are not primarily driven by changes in the value of non-connected firms.

Second, rather than a decline in the rents previously captured by a given group, a negative estimate of a component of γ may instead reflect some systematic expected discrimination against these firms (in the extreme, going from zero to “negative” rents). We do not find this interpretation to be problematic for our focus, because such systematic discrimination would also be politically motivated, and given the common reading that the extent of monopoly power and rents in the Egyptian economy was (and continues to be) very high, we believe that a negative estimate is much more likely to be driven by the disappearance of significant rents rather than going from a situation of no rents to systematic discrimination.

Third, any macroeconomic changes differentially impacting some sectors or types of firms could manifest as positive or negative estimates of the components of γ. The relative stability of our results under different sets of controls and with various estimation strategies strongly weighs against this interpretation, however.

Fourth, we may find positive or negative effects even when there is no change in actual rents if perceptions of rents change. We do not see this as a serious shortcoming either, since we are also interested in how society at large, and stock market participants in particular, have perceived the constraints on rent-seeking over this time period. In any case, our results on changes in board composition and profitability of firms connected to different groups presented below suggests that it is not just perceptions of rents that are changing.

Fifth, rents may be accruing to powerful minority shareholders, and their ability to capture such rents might vary over time and affect our estimates of γ. Though this possibility is a real concern in a country with weak economic institutions, we do not believe that it invalidates our overall inferences. If in fact there is such a change in the ability of the minority shareholders to take advantage of the majority exactly during our event window, this should be interpreted as an impact of the changes in the distribution of political power associated with our events. Moreover, such effects should lead us to underestimate the size of the effect of the event on overall rents. If, for example, after the fall of Mubarak, NDP-connected minority shareholders become weaker and are no longer able to capture rents at the expense of other shareholders, we should see an increase (rather than a decrease) in the stock market returns of NDP-connected firms relative to non-connected firms, which is not the pattern we observe in the data.
All standard errors we report throughout are robust against heteroscedasticity. In addition, because there might be other factors correlated across connected firms, we have also experimented with adjusted standard errors that account for potential cross-firm correlation of residual returns (see Greenwood (2005); Becker, Bergstresser, and Subramanian (2013)).

As an alternative to the empirical model described above, we also report results from a synthetic matching estimator aimed at constructing a more informative control group for each connected firm. Following Abadie and Gardeazabal (2003), Abadie, Diamond, and Hainmueller (2010), and Acemoglu et al (2013), we construct the control group separately for each connected firm as a convex combination of the subset of non-connected firms that minimizes the deviation of the pre-event behavior of the connected firm from the control group, where the pre-event window contains all trading days between January 1 and December 23, 2010. Intuitively, in contrast to our OLS regression results, which compare firms that are similar in terms of the covariates, this approach compares firms that are similar in terms of the behavior of their pre-event stock market returns. Details on the construction of this estimator are provided in Appendix B.2.

3.3 Mubarak’s Fall

We begin by analyzing the effect of the fall of Mubarak on the relative stock market valuations of firms connected to the three competing political groups. After January 25, 2011, the protests against Mubarak’s regime quickly gained momentum. On Friday January 28, about 50,000 protesters turned out and large daily demonstrations followed in Tahrir Square. The Egyptian stock exchange, located in an adjacent side street, did not re-open the following Sunday and remained closed for a number of weeks due to continuing protests. The protests continued to grow after January 28. More than 500,000 protesters filled the square on February 1, 8, and 11, according to our estimates. On the evening of February 11, the vice president, Omar Suleiman, publicly announced Mubarak’s resignation, and the hand-over of power to the military leadership.

The following weeks were a period of instability. The police had all but disappeared from the streets, and looting, violence, and protests continued. By March 23, a measure of order had been restored and the Egyptian stock exchange resumed regular trading.

Table 3 analyzes this period using our event study methodology. The event window [0,8] ranges from January 25 until the end of the first week of trading after the re-opening of the exchange on March 30. Column 1 shows our most parsimonious specification which, in addition to the indicators for NDP-, military-, and Islamic-connected firms, includes sector fixed effects. During the event window, there was a large (approximately 20%) fall in the market overall. More importantly, we see a negative and marginally significant effect on NDP-connected firms (-0.086, s.e.=0.049) and a positive and again marginally

18To perform this, we run specification (2) for each trading day in the year prior to Egypt’s Arab Spring (the 2010 calendar year) and use the residuals from this estimation to calculate the cross-correlation matrix of residuals. We then use this estimated cross-correlation matrix to adjust our standard errors. See Appendix B.1 for details on the construction of our adjusted standard errors.
significant effect on military-connected firms (0.048, s.e.=0.028). These estimates suggest a sizable decline in the value of NDP-connected firms relative to non-connected firms and a non-trivial increase in the value of military-connected firms at the same time.

Column 2 shows our baseline specification in which we control for size and leverage as well as world-market, Egyptian-market, and unrest betas. We now find a larger effect on NDP-connected firms (-0.131, s.e.=0.049) that is statistically significant at the 5% level. The effect on military-connected firms declines in magnitude and is no longer statistically distinguishable from zero. This result implies that the loss of connections to the Mubarak regime reduced the market valuation of NDP-connected firms by 13.1 percentage points over the 65 days (9 trading days) after the first large demonstration. In monetary terms, this loss is equivalent to $2.8bn or about 4.3% of the market capitalization of all Egyptian firms on January 1, 2011. Appendix Table 1 and Appendix Figure 2 show the same results for alternative event windows, with similar results.

The remaining columns of Table 3 document the robustness of our baseline specification in column 2. In column 3, we drop the sector fixed effects and show that the same pattern is present even without these controls. In column 4, we adjust standard errors for the cross-correlation of error terms estimated in 2010 data, with very similar results and somewhat smaller standard errors, reflecting the fact that the residual correlation between connected firms is negative. In view of this result, in the rest of the paper, we focus on the generally larger non-corrected standard errors. In column 5, we weight each firm with the log number of transactions in its stock to account for the different volumes of trade across stocks. The results are again very similar to those in our baseline specification in column 2.

Column 6 reports the estimates from our synthetic matching procedure. The return on NDP-connected firms is again negative and somewhat larger (-0.200). We follow the standard procedure of constructing confidence intervals by randomly drawing 500 placebo NDP-connected groups from the non-connected firms and compute confidence intervals at each level of significance so that exactly the requisite fraction of estimates are located outside the confidence interval (see Appendix B.2 for details). The resulting confidence interval shows that the differential impact on NDP-connected firms and significant at 1%. The matching estimates also show a large and significantly negative effect on Islamic-connected firms (though this may partially result from the fact five Islamic-connected firms are also connected to the NDP and our matching procedure does not control for dual connections).

In columns 7, we use cumulative abnormal returns as dependent variable. The results are once again similar to our baseline specification.

As a falsification exercise, we repeat our estimation for the most major political events
that took place in Egypt during the 2010 calendar year. Because these events have several features common with the protests that led to the collapse of Mubarak’s regime (e.g., creating instability and surprise for the markets) but were never meant to displace the existing regime and/or limit its cronyism, investigating whether they have similar effects on connected firms is particularly informative. We should find similar results during these placebo events if, despite our controls and other strategies, the differential effects of Mubarak’s fall (and other similar events we study in the rest of the paper) on connected firms are driven by the differential sensitivities of these firms to macroeconomic or political events. If, on the other hand, the patterns we are documenting reflect the reduced prospects for the capture of rents by firms connected to the NDP, then because these events do not appear to have significantly changed the fundamental balance of power within Egyptian politics, we should not find such differential effects. The results in Table 4 are reassuring in this respect as they show no significant changes in the relative stock market valuations of the three types of connected firms during any of the six events listed.

Figure 2 shows the results of an additional falsification exercise in which we look at differential returns for NDP-connected firms in seven consecutive event windows of equal length prior to January 25, 2011. It shows that the coefficients on the dummy variable for NDP-connected firms (the dots in the figure) are indistinguishable from zero in all seven pre-event windows, contrasting with the large and statistically significant drop following Mubarak’s fall. Figure 3 shows the same result using the synthetic matching estimator, once again documenting no differential changes before the event, followed by the large differential drop of the value of NDP-connected firms in the immediate aftermath of Mubarak’s toppling.

Appendix Figure 4 shows the distribution of t-statistics on the NDP-, military-, and Islamic-connected dummies when we run our baseline specification on each trading day in the 2010 calendar year. The rate of false positives is close to 5% for the coefficients on each of the three dummy variables, suggesting that our baseline specification does not show a tendency to over-reject the null of no differential effects during the previous year.

Overall, we interpret these results as showing a fairly sizable negative effect on NDP-connected firms. Subject to the caveats outlined above, we believe the most plausible interpretation is that Mubarak’s fall triggered a change in the market’s expectations of the rents that the NDP-connected firms would be able to capture in the future. Intriguingly, we also find some evidence of a positive impact on the market’s perceptions of rents of military-connected firms. This is plausible given the ensuing power vacuum and the role the military played during the events leading up to Mubarak’s fall discussed above. It suggests that there might have been some amount of expected rent reallocation across different power groups during this period. Because the collapse of Mubarak’s regime was a major institutional change for Egypt, these results may reflect the expected consequences following from these institutional changes or the effects of changes in de facto power emanating from street protests on the rents of connected firms. We will next see that

21These are the Nag Hammadi massacre, a strike for higher minimum wages, the extension of the state of emergency by parliament, the sacking of the critical editor of the Al-Dosthour newspaper, rumors about a strict regulation of mass text messages, and the closure of four satellite TV channels.
during other key events there continues to be a negative impact on firms connected to
groups that lose power, even though there are no discernible changes in \emph{de jure} political
institutions but only changes in \emph{de facto} power. Moreover, these other events will also
show little evidence of a positive effect on firms connected to rival groups.

3.4 Later Phases

The first phase of Egypt’s Arab Spring ended on April 16, 2011, when an administrative
court dissolved the NDP on charges of corruption and seized its assets. Panel A of
Table 4 shows the differential returns for NDP-, military-, and Islamic-connected firms
during key events of the second phase under military rule. The first key event is a major
military crackdown against protesters beginning on July 31, 2011. During this period,
the Supreme Council of the Armed Forces dropped its alleged support for the protesters,
arrested key activists, and attempted repeatedly to forcibly clear Tahrir Square from
the protesters who continued to demand elections and democratic reforms. These events
ended on September 8, when the square was finally cleared, and soldiers demolished
the encampments and planted grass on the middle of the square. Following a period of
calm, protesters re-took Tahrir Square on November 17-20 (which constitutes our second
event). The demonstrations continued thereafter, pressuring the military finally to allow
presidential elections to take place, with the results of the first round announced on May
28 and the results of the runoff election announced on June 24 (corresponding to our third
and fourth events). The first round of elections led to a runoff between the former general
Ahmed Shafiq and the Islamist and Muslim Brother, Mohammed Mursi, who proceeded
to narrowly win the runoff election with 51.7\% of the vote.

A struggle for influence with the Supreme Council of Armed Forces dominated the
first two months of Mursi’s presidency. This struggle culminated with Mursi’s sacking of
Mohammed Tantawi (the Commander-in-Chief) and the four highest-ranking generals on
August 12, 2012 (the fifth key event).

On December 23, a new constitution promoting
political Islam but also granting expanded powers to the military passed in a referendum
in spite of a boycott by the secular opposition (our sixth event). From this point onward,
Mursi was generally seen to be over-stepping his mandate, and became increasingly
unpopular. A new broad-based opposition movement, \emph{tamarood} (“rebel”), first collected
millions of signatures against Mursi’s rule and then mobilized for street protests beginning
on June 30, 2013. As millions poured into the streets protesting Mursi’s rule in Tahrir
Square and elsewhere in the country, a smaller number of his supporters (up to 50,000
according to our measure) camped out in Rabaa Square. On July 4, a military coup
removed Mursi from power (our seventh and final event).

The results of this series of event studies in Table \ref{table:events} document a pattern broadly
consistent with our expectations — whenever a group loses power, there is a loss of value
for firms connected to that group, and whenever a group gains power, there is a gain.

\footnote{These are Lieutenant General Sami Anan (Chief of Staff of the Armed Forces), Vice Admiral Mohab
Mamish (Commander of the Navy), Lieutenant General Abd El Aziz Seif-Elddeen (Commander of the Air
Defense Forces), and Air Marshal Reda Mahmoud Hafez (Commander of the Air Force).}
in value for firms connected to that group. For example, after the military crackdown, military-connected firms gain 8% in value (coefficient=0.080, s.e. = 0.044), whereas they lose 2.4% when protesters re-take Tahrir Square. We see no differential returns for any group of connected firms right after the first round of the presidential elections, which may not be too surprising given that the voting outcome in this round did not strongly shift power towards any of the groups. After the second round, there is an increase in the value of all three groups, which is somewhat surprising. However, this finding might be consistent with many Egyptians’ perception at this stage that the old regime and the Islamists had worked out a deal that would favor all three powerful groups and thus all connected firms (the fact that results were announced only after a week-long delay reinforced this suspicion). Following Mursi’s sacking of the powerful generals, but not after passing of the constitution, we see a positive effect on the Islamic-connected firms (coefficient=0.010, s.e.=0.006). We also find that the passage of Mursi’s constitution has a negative effect on the value of NDP-connected firms, a finding consistent with the general belief at that time that this constitution was going to put an end to the role of the NDP in Egypt’s political arena. Finally, after Mursi’s fall, Islamic-connected firms experience a loss of value. These patterns appear to be quite robust as we show in the Appendix Tables 2 to 5. In summary, these results confirm the importance of shifting political power for the market’s expectation of future rents.

We should note that the events with the most consistent results — the military crackdown, the re-taking of Tahrir Square by the protesters, and President Mursi’s sacking of key generals — did not change de jure political power, political institutions, or the government in place. Instead, they were associated with changes in the balance of power and the de facto power of different groups, such as the protesters in Tahrir Square and the leading members of the Muslim Brotherhood. As such, these results are both a preview of our main findings on the effect of street protests and mobilization on (the perception of) future rents, which we present below, and an indication that this effect may have partly been due to shifts in de facto power that mattered in an environment with weak institutions.

Note also that, by and large, when these events changed the power of a particular group, the firms connected to other groups did not experience significant changes in value. Though exceptions to this exist (particularly in the context of the second round of the presidential election, and the impact of the passage of the Muslim Brotherhood’s constitution on the value of NDP-connected firms), this overall pattern suggests that our findings are not just a consequence of the expectation that a given amount of rents are being reallocated from one group of connected firms to another — an interpretation that will be further supported by the results presented in the next section.

24In particular, the military crackdown was a change in the military’s policy of dealing with the protesters, and thus clearly did not involve any changes in political institutions, laws, or the form of government. The re-taking of the square was likewise simply a change in the events in the streets. Mursi’s sacking of generals was also an entirely constitutional move that involved no changes in the structure of formal power.
3.5 Other Reactions and Outcomes for Connected Firms

If the political developments during Egypt’s Arab Spring truly changed the ability of different types of firms to exploit their connections and capture rents, we would also expect to see firms exerting effort to acquire more politically valuable types of connections and may even expect changes in their profitability as the balance of political power shifts in society.

Though we do not have as detailed data on these outcomes, the available data, presented in Table 5, are consistent with these expectations. Panel A shows that one year after the beginning of military rule, we see fewer NDP members on the boards of the firms in our sample and more board members using military titles, indicating attempts by firms to disassociate themselves from the NDP and build military connections. Similarly, we see a small decrease in the number of military titles after the Islamists take power. We do not see a greater number of members of the Muslim Brotherhood on boards, most likely due to our the aforementioned inability to identify these individuals.

In Panel B, we see that the significantly higher profitability of NDP-connected firms drops sharply during the period of military rule, and the profitability of military-connected firms increases. During Islamist rule, we see a small additional decrease in the profitability of NDP-connected firms, a sharp drop in the profitability of military-connected firms, and a higher profitability for Islamic firms (though the profitability of non-connected firms increases even more during this phase). Naturally, these results, which are looking over longer periods of time, could reflect other concurrent changes during these time windows. All the same, they are broadly consistent with the picture that emerges from our event studies and bolster our confidence that what we are finding is not mere spurious correlation. Moreover, they suggest that the changing valuations in the Egyptian stock market we document above are unlikely to be just a reflection of changes in the perception of stock market participants, but instead reflect real changes in rents captured by different groups of connected firms.

4 Street Protests and Economic Rents

In this section, we present our main results, which focus on the impact of street protests on (perceived) rents accruing to connected firms. Our findings in the previous section already suggest that shifts in de facto power, partly related to protest activity, have a major impact on stock market participants’ perception of the size of rents that will be captured by different groups of connected firms (and which connected firms receive them). We now exploit daily variation in protests and stock returns to show that protests have a systematic effect on the rents of firms connected to the incumbent regime, but not on the rents of other connected firms.

\[24\] Using data on insider trades, we also looked at the mean purchases of stocks by corporate insiders for each set of connected firms during the four phases of Egypt’s Arab Spring. The results in Appendix Table 1 show very little movement in this measure of net insider trades, suggesting that there is no tendency of insiders to divest or increase their holdings in these companies.
Our main specification takes the form

\[R_{it} = N_i'\gamma + (P_t \times N_i') \gamma^p + X_i'\nu_t + \delta_t + \eta_s + \epsilon_{it}, \quad (3) \]

where \(R_{it} \) is as defined above (the log return of firm \(i \) on day \(t \)) and \(P_t \) denotes the (standardized) number of protesters in Tahrir Square on trading day \(t \). In particular, in our baseline regressions, \(P_t \) is measured as the total number of protesters on that day capped at 500,000 and divided by 500,000, so that the maximum value \(P_t \) takes is 1. We cap this variable at 500,000 to reduce the impact of very large protests on a few days (we also deal with this issue by using other functional forms as discussed below). \(N_i \) and \(X_i \) are again the vector of dummies denoting affiliation to one of the three groups, and our set of standard controls, respectively. The fact that the coefficient on \(X_i, \nu_t \), is indexed by time indicates that we allow a full set of time interactions with these covariates (in some specifications also with sector fixed effects). Finally, \(\delta_t \) and \(\eta_s \) denote, respectively, time and sector dummies.

The coefficients of interest are the entries of the vector \(\gamma^p \). Under the usual assumption that there are no omitted variables conditional on our controls causing differential returns,

\[\text{Cov} (P_t \times N_i', \epsilon_{it} \mid X_i, \delta_t, \eta_s) = 0, \]

these coefficients measure the effect of the number of protesters in Tahrir Square on the relative stock market valuation of connected firms. Specifically, we require that (1) there should be no omitted variables that fluctuate at the daily frequency and are correlated with both stock returns and the number of protesters in Tahrir Square, and (2) that there is no reverse causality from daily differential returns on firms connected to different power groups to the intensity of protests.

A specific concern would be that news about the current government’s popularity or performance might impact stock returns of different types of firms while also triggering protests. Though this concern is potentially important, we believe that our use of daily data greatly alleviates it. In particular, there is a considerable degree of randomness in which days protesters are able to solve the collective action problem, organize, and mobilize, and this variation will be quite important for our results. Relatedly, we will demonstrate that future protests have no predictive power for current stock market valuations, weighing against concerns about omitted factors and reverse causality.

Columns 1-4 in Table 4 show estimates of equation (3) for each of the four phases of Egypt’s Arab Spring. Column 1 shows a negative and statistically significant effect.
of street protests on the stock market valuation of NDP-connected firms during the first phase of the revolution. Given that $P_t = 1$ corresponds to 500,000 (or more) protesters turning up to Tahrir Square, the coefficient (-1.614 s.e.=0.602) shows that the presence of 500,000 or more protesters in Tahrir Square is associated with a 1.6% decrease in the valuation of NDP-connected firms. The cumulative number of protesters during this first phase according to our standardized measure is 1.22, such that the cumulative impact of street protests on the value of NDP-connected firms is a 1.95% decrease during this phase. We find no statistically significant impact on firms connected to the two rival groups.

Column 2 shows the same specification for the second phase, under military rule. Now we see a substantial impact on military-connected firms (-0.889, s.e.= 0.326) and no significant effect on NDP-connected and Islamic firms. The cumulative impact of street protests on the value of military-connected firms is a decrease of 4.7% during this phase.

Column 3 looks at the third phase (Islamist Rule), and finds that none of the three effects of street protests are statistically distinguishable from zero, except for a marginally significant, positive effect on NDP-connected firms (0.672, s.e.=0.382). A possible reason for this lack of significant results in the third phase is that during this period, Tahrir Square saw both pro- and anti-Islamist protests.

Column 4 looks at the fourth (post-Islamist) phase, in which pro- and anti-Islamist camps separated geographically, and we see that the clear relationship between the number of protesters and the stock market valuation of firms connected to the target group of the protests reemerge. In particular, in this column, we include protests in Rabaa Square, which became the location of pro-Islamist demonstrations, whereas those in Tahrir Square were generally anti-Islamist. Consistent with this, Tahrir Square protests have a negative effect, whereas Rabaa Square protests have a positive effect on Islamic-connected firms (-1.332, s.e. =0.815, and 27.85, s.e.=12.89, respectively).

A noteworthy pattern in Table 7 is that, with the exception of the third phase of the revolution (Islamist Rule), and consistent with our event study results, we find a significantly negative effect of protests in Tahrir Square on the relative stock market valuation of firms connected to the incumbent regime, and generally no effect on firms connected to the rival (non-incumbent) groups. Motivated by this, in Table 8, we adopt a more parsimonious specification where we pool data from all four phases and include only two dummies, one for being connected to the group that is currently in power (the “incumbent group”), and the other for being connected to one of the other two rival (non-incumbent) groups. The incumbent group during Mubarak’s fall is the NDP; during military rule it is the military; during Islamist rule it is the Islamists. For the post-Islamist rule, we still code the Islamists as the “incumbent” group because anti-Islamist protests in Tahrir square continued for several weeks after Mursi’s fall (until the end of our sample). As noted above, pro-Islamist protests were in Rabaa Square during this period, and we also control for interactions of this latter type of protests with the incumbent and connected (non-incumbent) dummies. Non-connected firms are again in the regression, so all coefficients are relative to the changes in the values of non-connected firms.

Appendix Table 8 shows that our results are fully robust to dropping the post-Islamist period from our sample.
Column 1 of Table 8 shows our most parsimonious specification that relates returns to a full set of time and sector fixed effects and the interaction of the two dummies with the number of protesters in Tahrir Square. It shows a negative and statistically significant effect of the number of protesters in Tahrir Square on the relative market valuation of firms connected to the incumbent government (-0.879, s.e.=0.243), and no positive impact on firms that are connected to the other two rival groups (-0.281, s.e.=0.205). Column 2 estimates our baseline specification allowing our full set of controls fully flexible effects over time (that is, it includes the interaction of a full set of time dummies with the control vector X_i). The estimated effect of the number of protesters on the returns on firms connected to the incumbent government drops only a little to -0.751 (s.e.=0.254) and the effect on the returns of firms connected to the rival groups remains negative and insignificant at (-0.160, s.e.=0.216). We reject the hypothesis that the two coefficients are equal and of opposite sign with a p-value of 0.011. This specification thus suggests that while street protests significantly decrease the market valuation of incumbent firms, they have no effect on firms connected to non-incumbent groups. This pattern is broadly consistent with our previous results, but can be seen more clearly when pooling data across the four phases of Egypt’s Arab Spring.

The rest of the table probes the robustness of this result. Column 3 drops all dates identified in our event analysis as involving changes in government or formal institutions plus the next three trading days (in particular, we drop the fall of Mubarak, the first and the second round of the presidential elections, the passing of the Muslim Brotherhood’s Constitution, and the military coup against Mursi). In column 4, we go one step further and drop all of the events studied in the previous section plus the following three trading days. These two specifications illustrate that our results in this section are not just capturing the stock market responses of connected firms in the context of the event studies already reported. Rather, the fact that the results in columns 3 and 4 are very similar to the baseline suggests that protests have a major impact on the relative stock market valuation of firms connected to the incumbent group — even when there are no changes, and no clear expectation of imminent changes, in regime or political institutions.

This pattern bolsters our interpretation that these findings do not just reflect the consequences of changes (or expected changes) in regime or de jure political institutions. Instead, our interpretation is that, consistent with the findings in Collins and Margo (2007) and Madestam et al (2013), there is also some element of current protests signaling future mobilization and thus impacting the perception of the extent of rents that can be captured by firms connected to politically powerful groups.

As further robustness checks, column 5 adds a full set of firm fixed effects, which has essentially no impact on our estimates. Column 6 adds a quadratic in all of our controls (size, leverage, and the three betas for the Egyptian market, the world market, and unrest), again fully interacted with time dummies, with little impact on our coefficient estimates. A more appropriate test of the hypothesis that the results reflect a pure reallocation of rents from incumbent to rival connected groups is to test whether the two coefficients weighted by the market capitalization of incumbent and connected (non-incumbent) firms across the sample are equal and of opposite sign. We reject this hypothesis with a p-value of 0.034.
Column 7 goes one step further and includes interactions between the number of Tahrir Square protesters and the 16 sector dummies (as well as the controls already included in column 2). This reduces the coefficient on the incumbent times protesters interaction to -0.483, although it remains statistically significant at 10% (s.e. = 0.247). The slight loss of precision in this fairly demanding specification (with 3608 control variables) is most likely attributable to the loss of power. This interpretation is confirmed by column 8, which continues to include the interactions between the number of protesters and the 16 sector dummies but drops the other time-interactive controls, restoring the coefficient of interest to a precisely-estimated -0.685 (s.e. = 0.234). Column 9 goes even further and includes a full set of interactions between the time and sector dummies (which of course subsumes interactions with the numbers of protesters). The estimate of the impact of protests on the relative stock market value of firms connected to the incumbent group continues to be significant at 5 percent in this very demanding specification (-0.548, s.e. = 0.271).

Table 9 turns to an investigation of whether current protests or leads or lags of protests impact the stock market valuation of connected firms. Because of limited liquidity in the Egyptian Stock Exchange and because protests often peak after trading hours, the impact of shifts in the balance of political power might be transmitted to stock market valuations over several days, making lags of protests statistically significant. If, on the other hand, leads were statistically significant, this would signal a failure of our identification assumption — in particular, it would make it likely that both protests and stock market valuations are responding to some other slow-moving change that is not being controlled for in our regressions. The results in Table 9 document that the impact of current protests is robust, and that there is no evidence of leads of protests predicting stock market reactions (i.e., no evidence that current stock market outcomes are being predicted by future protests). This pattern bolsters our confidence in the results presented so far, and weighs against an interpretation in which protests and stock market valuations of different types of firms are being driven by omitted factors or news about other events weakening the regime in power.

The results in columns 3 and 4 of Table 9 indicate that the one-day lag of protests is indeed statistically significant, but there is no evidence of a statistically significant effect from longer lags, which is encouraging for our interpretation. (The specification in column 6 also shows a marginally significant effect at the second lag.)

Figure 4 shows the results of a placebo experiment in which we use the sample distribution of the number of protesters in Tahrir square between Jan 1, 2011 and July 30, 2013 to randomly assign a number of protesters to trading days between Jan 1 and Nov 30, 2010. We then estimate specification (3) using the fictitious data. The figure shows results obtained from 200 random assignments of protesters to trading days, where the three panels show histograms of the t-statistics on the interaction of dummies for NDP-

29 The coefficients of interest also remain virtually unchanged (-0.727, s.e=0.254 and -0.160, s.e.=0.217) when we add controls for the interaction of the incumbent and non-incumbent dummies with the volume of trade as a fraction of all shares outstanding (not shown in the table).
military- and Islamic-connected firms with the fictitious number of protesters, respectively. The rate of false positives is smaller than 5% for the coefficients on each of the three interactions, again suggesting that our specification does not show a tendency to over-reject the null.

Additional robustness checks are included in the Appendix. Appendix Table 7 shows that the interaction between the number of protesters in Tahrir square and the incumbent dummy is negative and statistically significant even when we estimate our baseline specification separately for each of the four phases of Egypt’s Arab Spring. The only exception to this is the phase of Islamist rule, as is already apparent from Table 5. Our results also remain virtually unchanged when we include a full set of interactions between the day of the week and the number of protesters in Tahrir Square (not shown), allaying any concerns that firms connected to the incumbent group may experience systematically different returns on certain days of the week. Appendix Table 8 investigates the robustness of our results to functional forms, using the (non-capped) level of protesters, the log of protesters, and a fixed effect for protests exceeding 100,000 participants. All results are similar to those presented in Table 7.

We draw four main conclusions from the results presented in this section. First, consistent with our event study results, street protests and the shifts in de facto power engendered by them appear to affect the stock market valuation of firms connected to the three power groups relative to non-connected firms. Second, the intent of protesters appears to have real effects: in the first and second phases of the revolution, protests in Tahrir Square directed against the incumbent government (first Mubarak’s and then military’s) tend to reduce the stock market value of firms connected to the incumbent government. In the fourth phase, anti-Islamist protesters in Tahrir Square reduce the relative market valuations of Islamic firms, whereas pro-Islamist protesters in Rabaa Square appear to increase these valuations. This pattern is confirmed by the results in Table 5, which looks at the effects of protests in the entire sample and shows the effect is on firms connected to the incumbent group, while there appears to be no significant effect on the value of connections to the two rival (non-incumbent) groups. Third, this pattern of results is not consistent with the differential effects of protests on the stock market valuations of connected firms being entirely due to the reallocation of a fixed amount of rents. Had this been the case, we would have found a positive impact on the relative valuation of firms connected to rival groups. Fourth, our results to some extent reflect expectations of future changes in regimes and de jure institutions (especially since protests have sometimes been followed by such major changes, most notably with Mubarak’s fall). Nevertheless, the fact that protests impact the value of firms connected to the incumbent group even during episodes in which such changes neither occurred nor were expected imminently suggests that they cannot be explained entirely by expectations of changes.

30 In addition, we estimate the parameters of a Box-Cox transform for the specification in column 1 of Table 5 (without the covariates, X_i'). The maximum likelihood estimate of the exponent on P_t is 1.212 (s.e. = 0.832). We cannot therefore reject the hypothesis that the relationship between our main variable (the incumbent dummy interacted with the number of protesters capped at 500,000) and differential stock returns is linear.
in governments and de jure institutions. We therefore tentatively interpret the evidence as suggesting that, in addition to impacting expectations of future institutional changes, street protests may have also directly curtailed the amount of rents accruing to the firms with the most valuable political connections.

5 Social Media and Protests

Much has been written on the role of social media in triggering and coordinating protest activity during the Arab Spring. Nevertheless, there has been little systematic analysis of the impact of social media on protest activity and on the broader political equilibrium in the Arab Spring (or in any other context that we are aware of). In this section, we use our Twitter data to study a number of related questions. First, we investigate whether social media activity predicts protests. Second, we analyze whether discontent voiced on social media impacts stock market returns with or without simultaneously controlling for street protests (which we showed in the previous section to be an important determinant of these returns). Third, we use social media data to glean additional information about the nature of the protests and show that the cohesiveness of the opposition as reflected in the pattern of retweeting interacted crucially with the impact of protest activity on differential returns of connected firms.

Panel A of Table 10 shows that there is a positive association between Tahrir hashtags, our main measure of social media activity related to the protests, and the number of protesters in Tahrir Square during each of the four phases of Egypt’s Arab Spring. To facilitate the interpretation of the coefficients, we standardize both the left- and the right-hand-side variables throughout the table (subtracting the mean and dividing by standard deviation). During the first phase of the revolution (Mubarak’s fall), the authorities blocked access Twitter between January 25 and February 2, 2011 (on some days during this window, they also shut down the entire internet and some phone services). Although tweeting by telephone during this period was still possible, we control for limited access to social media and the internet by adding a dummy for this period on the right-hand side. Interestingly, the coefficient on this dummy is positive and marginally statistically significant, suggesting that invasive measures that cut access to social media may have backfired in this instance.

In all phases, except in the post-Islamist one, where many protests were by Muslim Brotherhood supporters who were unlikely to use the Tahrir hashtags, we see a strong correlation between this measure of social media activity (related to protests) and the protests themselves. Column 5 pools all phases together and confirms the pattern. The point estimate (0.219, s.e.=0.075) suggests that a one standard deviation increase in the number of tweets is associated with a 0.219 standard-deviation increase in the number of protesters in Tahrir Square.

31 As mentioned in the Introduction, an exception is Weber et al. (2013) who use Twitter data to map out the segregation between different camps in Egypt’s Arab Spring. Nevertheless, they do not investigate any of the questions we explore in this paper, and specifically in this section.
The results in columns 1-5 might be reflecting the fact that protesters turn up to Tahrir Square and then report their presence on Twitter using the Tahrir hashtag. Columns 6-8 investigate this issue by studying whether it is the leads or lags of hashtags that are correlated with protests. Reassuringly, we find that it is the lags of Tahrir hashtags that matter for protests more than the current or the lead values. If it were simply that people who are participating in protests are also tweeting about it, then there should be a contemporaneous correlation between the two variables. The lead being the dominant variable, on the other hand, would suggest that both of these variables might be reflecting some other news or omitted factors. Instead, the lagged hashtags being the dominant variable, the pattern we find in the data, supports the view that social media is being used as a vehicle for mobilizing people — who then turn out to Tahrir Square the following day.

In Panel B, we look at the amount of retweeting of tweets by opposition leaders, which we interpret as a measure of general discontent with the government in power and support for the opposition. We find very similar results, suggesting that general discontent is also associated with greater numbers of protesters in Tahrir Square. When we turn to timing, however, the evidence is less clear-cut. Because of serial correlation, when any two of the current, lag and lead values are included together, neither one is individually statistically significant (though they jointly are).

When we include both the Tahrir hashtags and the retweeting variables together in Panel C, we find that the coefficient on Tahrir hashtags remains statistically significant at the 1% level (0.140, s.e. = 0.050) while the coefficient on retweets of opposition is now only marginally significant (0.202, s.e. = 0.107). This pattern is plausible since Tahrir hashtags are presumably more directly related to the protests than the more general discontent captured by our opposition retweets variable.

Columns 1-4 of Table 11, however, show that social media activity has no impact on differential stock market returns with or without controlling for actual street protests. Though this might reflect the differential measurement error in our various different measures (e.g., perhaps our social media variables are measured with greater error), it is also consistent with the view that what matters for the actual balance of power — and the resulting economic rents — is the mobilization of people in the street, and not their general discontent. This is, in particular, consistent with the fact that discontent with Mubarak’s regime has been deep-rooted in Egyptian society for decades, but had little impact on actual politics until it poured into the streets.

In column 5, we drop our control for the number of protesters in Rabaa Square and instead use our Twitter data to construct a measure of the nature and cohesion of the opposition. In particular, we construct a measure we call “opposition turnover,” which we define (in analogy to an employee turnover rate) as the number of Twitter users

\[32\] For the purposes of this comparison between Twitter-based measures and the number of protesters in Tahrir Square we treat all independent variables symmetrically and do not cap the number of protesters at 500,000. Instead, we standardize the number of retweets, Tahrir hashtags, and Tahrir protesters by deducting their respective sample means and dividing by their respective sample standard deviations. This is why the magnitude of coefficients differs relative to that in Table 8.
who retweet a tweet of an opposition leader in $t - 1$ but not in t divided by the average number of retweeters on the two days. At one extreme, when the composition of retweeters changes from day to day, this will indicate a much less cohesive opposition (with fewer dedicated members) relative to the other extreme where the same people retweet more systematically. It might then be reasonable to imagine that a less cohesive opposition will not be able to exert as much *de facto* power as a more cohesive one. Our results in this table confirm this expectation. Though the opposition turnover variable does not have much of an effect by itself, when this turnover variable is high, protests have a more limited impact on the rents captured by firms connected to the incumbent.\footnote{It is reasonable that it should be the triple interaction of the opposition-turnover variable with protests and the incumbent and non-incumbent connected dummies that should matter — not the opposition-turnover variable interacted with these dummies for connected firms. In particular, the interaction between opposition turnover and the dummies for connected firms correspond to the impact of opposition turnover when there are no protesters. But since when there are no protesters, there is no pressure from the street on the incumbent government, the cohesion of the opposition should also not matter, which is the pattern we find.} The interaction between the incumbent dummy, the number of protesters in Tahrir Square, and the opposition turnover variable is positive and significant at the 10\% level (0.138, s.e.=0.075). The estimate implies that a one standard deviation increase in the opposition turnover rate (3.73) is associated with a 34\% drop in the effect of street protests on the relative stock market valuations of firms connected to the incumbent group.

6 Conclusion

The Arab Spring was a momentous set of changes, involving an unparalleled mobilization of people in many parts of the Arab world. In Egypt, it led to the downfall of the regime of Hosni Mubarak, who had ruled the country as a *de facto* dictator for 30 years. The broad-based mobilization unleashed by these events continued after Mubarak’s fall, underscoring the importance (but in many instances also the limitations) of the power of the street. Several theories in social science emphasize the role of *de facto* power, often resulting from groups being able to solve their collective action problems and mobilizing in the street, in changing economic allocations, and even in changing the *de jure* distribution of political power. Nevertheless, there is only limited evidence in economics and other social sciences showing that changes in the *de facto* political power of different groups and political mobilization directly matter for any economic outcome.

In this paper, we provide evidence that protests have played an important role in curtailing rents captured by politically connected firms in Egypt (or at the very least, the stock market participants’ perceptions of these rents). Starting with an application of the standard event study methodology, we document that during the various phases of Egypt’s Arab Spring, protests have reduced the stock market valuation of firms connected to the groups against whom they were organized, relative to the stock market valuation of non-connected firms. Except during Mubarak’s fall, where we see a positive impact on military-connected firms in some specifications, we do not find an effect on the valuation of
firms connected to the rival (non-incumbent) groups. Many of the events we focus on did not involve any changes in formal political institutions or the identity of the government in power. Rather, they seem to reflect the perception that, in the face of the mobilization, the ability of connected firms to exploit their political connections to their benefit — and likely to the detriment of the rest of society — would be limited. Consistent with this interpretation, we also find that listed firms have increased the number of board members who were from the military when the military was powerful, and at the same time shed board members who were associated with Mubarak’s party, the NDP; later, when the Muslim Brotherhood was powerful, they decreased the number of board members using military titles.

Our main results go beyond the event study methodology and look at the effect of daily variation in the number of protesters in Tahrir Square on the stock market valuation of connected firms. Once again, we find lower stock market valuations of firms connected to the incumbent group relative to non-connected firms during days of heightened protest activity, and no impact on the values of firms connected to the rival (non-incumbent) groups. We also illustrate that these results are unlikely to be driven by reverse causality or some omitted factors moving stock market returns first and subsequently triggering protest activity. In addition, these results are not a mere reflection of stock market reactions during periods of fall of governments or changes in formal political institutions. Finally, we also find that there are concurrent changes in profitability of firms connected to different groups.

The totality of this evidence motivates our interpretation that these patterns cannot be explained just as the changes in perceptions of stock market participants without corresponding changes in the extent of rents captured by connected firms in the Egyptian economy. Though some of the differential returns were undoubtedly related to the market’s perception that as one group falls another will rise, our evidence suggests that all of these effects are unlikely to be just a consequence of a given amount of rents being reallocated between different groups of connected firms. Nor do they appear explained entirely by swings in de jure political power (resulting from changes in formal political institutions and regime). We therefore tentatively interpret them as also reflecting stock market participants’ perceptions that the ability of connected firms to siphon off rents will be curtailed by a combination of heightened mobilization following these major protests and future changes in political power and perhaps even political institutions.

Finally, we also documented that, consistent with popular media coverage of Egypt’s Arab Spring, social media played some role in the protests. Both tweeting activity related to Tahrir Square and retweeting of opposition leaders’ tweets, which we interpret as a measure of general discontent about the government in power, predict protests. Social media data also enable us to measure daily variation in the cohesiveness of the opposition, and this cohesiveness appears to matter for how impactful street protests are.

We view our results as a first attempt to show the systematic importance of mobilization and de facto political power on important economic outcomes, including the ability of connected firms and individuals to capture rents. Several questions of course remain. First, despite the robustness of our findings and the supporting evidence we pro-
vide, we do not claim that the results in this paper estimate causal effects resulting from quasi-random variation in protest on rents of politically powerful and connected firms. Exploiting other empirical designs, natural experiments, or other sources of potentially exogenous variation to estimate such causal effects is an obvious area for future work. Second, our results are largely confined to studying the impact of various political events and street protests on stock market valuations. An important area for future work is to find other, more direct measures of rent-seeking and corruption by different types of firms. Third, and perhaps most importantly, we make no claim to external validity beyond Egypt. Though we suspect that de facto political power matters greatly in other contexts also, especially under weak institutions, our results have no implications for how this would play out in other countries. One advantage of our methodology, however, is that it can easily be applied to other settings where there is popular mobilization, so we are hopeful that similar investigations could be carried out to provide a more complete picture of how, and what type of, de facto political power may matter for political and economic equilibria. Fourth, some of the theories emphasizing the importance of de facto political power (e.g. Acemoglu and Robinson (2001, 2006)) stress their impact on political transitions. A more systematic analysis of this question is an area for future work.
References

Kent, L. and T. Phan (2014). A model of the arab spring revolutions: Why did the arab spring turn out differently across countries? *mimeo William and Mary*.

Table 1: Summary Statistics

Panel A: Firm Characteristics by Network

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Share Mean</th>
<th>Market Cap</th>
<th>Size</th>
<th>Leverage</th>
<th>Mean β_{World}</th>
<th>β_{Egypt}</th>
<th>β_{Unrest}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>177</td>
<td>1.00</td>
<td>800.87</td>
<td>0.39</td>
<td>0.53</td>
<td>0.79</td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>1986.15</td>
<td>1.05</td>
<td>0.88</td>
<td>0.80</td>
<td>0.0153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unconnected</td>
<td></td>
<td>114</td>
<td>0.41</td>
<td>465.46</td>
<td>0.37</td>
<td>0.51</td>
<td>0.79</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>1431.53</td>
<td>1.24</td>
<td>0.95</td>
<td>0.95</td>
<td>0.0192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected</td>
<td></td>
<td>63</td>
<td>0.59</td>
<td>1412.17</td>
<td>0.43</td>
<td>0.57</td>
<td>0.79</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>2627.07</td>
<td>0.59</td>
<td>0.77</td>
<td>0.47</td>
<td>0.0042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>22</td>
<td>0.33</td>
<td>2436.62</td>
<td>0.65</td>
<td>0.58</td>
<td>0.61</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>3429.74</td>
<td>0.61</td>
<td>1.23</td>
<td>0.50</td>
<td>0.0053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td></td>
<td>33</td>
<td>0.12</td>
<td>240.11</td>
<td>0.25</td>
<td>0.56</td>
<td>0.88</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>340.43</td>
<td>0.44</td>
<td>0.43</td>
<td>0.45</td>
<td>0.0035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Islamic</td>
<td></td>
<td>13</td>
<td>0.19</td>
<td>2481.98</td>
<td>0.49</td>
<td>0.77</td>
<td>0.68</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>s.d.</td>
<td>2780.73</td>
<td>0.67</td>
<td>1.51</td>
<td>0.64</td>
<td>0.0058</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The table presents means and standard deviations of firm characteristics on January 1, 2011, before the beginning of Egypt’s Arab Spring. The first panel gives statistics for all firms. The second and third panels show the same statistics for connected vs. non-connected and NDP-, Military-, and Islamic-connected firms, respectively. Among the 13 Islamic firms, 5 are connected to NDP and the other 8 are connected to neither NDP nor the military. Share Market Cap denotes the share of each group of firms in the total market capitalization of all firms in our sample on January 1, 2011. Size is a firm’s book value in millions of Egyptian pounds. Leverage is total debt over total assets. β_{World} and β_{Egypt} denote firms’ beta with respect to the MSCI-world and -Egypt indices, respectively. Both variables are calculated using return data for the 2010 calendar year. β_{Unrest} denotes our measure of the sensitivity of a firm’s return to general unrest in the country. It is calculated by regressing a firm’s return on a dummy variable that is one on the two trading days that follow strikes, boycotts, riots, and instances of ethnic clashes between Muslims and Copts (the Christian minority in Egypt) that occurred between January 1, 2005, and December 31, 2010.
Table II: Summary Statistics by Phase of Egypt’s Arab Spring

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Range</td>
<td>01/01/11</td>
<td>04/18/11</td>
<td>08/13/12</td>
<td>07/05/13</td>
<td>01/01/11</td>
</tr>
<tr>
<td></td>
<td>-04/17/11</td>
<td>-08/12/12</td>
<td>07/04/13</td>
<td>07/29/13</td>
<td>07/29/13</td>
</tr>
<tr>
<td>Trading Days</td>
<td>38.00</td>
<td>323.00</td>
<td>219.00</td>
<td>16.00</td>
<td>596.00</td>
</tr>
<tr>
<td>Means per Trading Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahrir Protesters ('000)</td>
<td>838.07</td>
<td>13.69</td>
<td>23.57</td>
<td>31.88</td>
<td>70.37</td>
</tr>
<tr>
<td>Rabaa Protesters ('000)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.46</td>
<td>6.44</td>
<td>0.34</td>
</tr>
<tr>
<td>Retweets of Opposition Leaders</td>
<td>1.74</td>
<td>3.31</td>
<td>5.56</td>
<td>12.48</td>
<td>4.28</td>
</tr>
<tr>
<td>Tahrir Hashtags</td>
<td>0.64</td>
<td>1.15</td>
<td>0.77</td>
<td>2.31</td>
<td>1.01</td>
</tr>
<tr>
<td>Opposition Turnover Rate</td>
<td>5.43</td>
<td>8.00</td>
<td>10.12</td>
<td>18.57</td>
<td>8.90</td>
</tr>
<tr>
<td>Daily Mean Return on Portfolio of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Connected Firms</td>
<td>-0.60</td>
<td>-0.09</td>
<td>-0.01</td>
<td>0.18</td>
<td>-0.08</td>
</tr>
<tr>
<td>NDP</td>
<td>-1.05</td>
<td>-0.09</td>
<td>-0.00</td>
<td>0.08</td>
<td>-0.11</td>
</tr>
<tr>
<td>Military</td>
<td>-0.31</td>
<td>-0.09</td>
<td>-0.03</td>
<td>0.24</td>
<td>-0.07</td>
</tr>
<tr>
<td>Islamic</td>
<td>-1.01</td>
<td>-0.04</td>
<td>-0.00</td>
<td>0.22</td>
<td>-0.08</td>
</tr>
<tr>
<td>Unconnected Firms</td>
<td>-0.48</td>
<td>-0.15</td>
<td>-0.04</td>
<td>0.32</td>
<td>-0.12</td>
</tr>
<tr>
<td>All Firms</td>
<td>-0.01</td>
<td>-0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>Incumbent Group</td>
<td>NDP</td>
<td>Military</td>
<td>Islamic</td>
<td>Islamic</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes: The table presents the number of trading days and means per trading day of time-series variables used in our analysis by phase of Egypt’s Arab Spring. Columns 1-4 show statistics for each of the four phases, whereas column 5 gives statistics for all four phases combined. Tahrir Protesters (’000) and Rabaa Protesters (’000) give the number of protesters in thousands in Tahrir and Rabaa Square, respectively. Retweets of Opposition Leaders refers to the number of retweets received by a list of prominent members of the opposition. Note that this list changes as groups move in and out of power; see Appendix A.4 for details. Tahrir Hashtags denotes the number of tweets containing a hashtag containing the word “Tahrir.” Opposition Turnover Rate is measured as the number of Twitter users who retweet a tweet of an opposition leader in \(t - 1 \) but not in \(t \), divided by the average number of retweeters on the two days in percent. Throughout, we assign tweets made during non-trading days and the number of protesters turning out on non-trading days to the following trading day. Daily Mean Returns denotes the returns in percent on an equally weighted portfolio of all connected firms, NDP-connected firms, military-connected firms, Islamic firms, non-connected firms, and all firms, respectively. Incumbent group denotes the group (NDP, Military, Islamist) that is the target of protests in Tahrir Square during each of the four phases of Egypt’s Arab Spring.
Table 2: Firm Connections by Sector

<table>
<thead>
<tr>
<th></th>
<th>NDP</th>
<th>Military</th>
<th>Islamic</th>
<th>Non-connected</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Construction</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Consumer Goods</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Education</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Financial Services</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Food and Beverages</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Health Care</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Industrial Manufacturing</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>23</td>
<td>37</td>
</tr>
<tr>
<td>Leisure and Tourism</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Media</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Mining and Metals</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Oil and Gas</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Real Estate</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Services</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Transport</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>33</td>
<td>13</td>
<td>114</td>
<td>177</td>
</tr>
</tbody>
</table>

Notes: The table shows the number of NDP-connected, military-connected, Islamic, non-connected, and all firms in each of the 16 sectors of the economy. There is no overlap between NDP-, military-, and nonconnected firms. Among the 13 Islamic firms, 5 are connected to NDP and the other 8 are connected to neither the NDP nor the military. Definitions of sectors are taken from Zawya.
Table 3: Mubarak’s Fall

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR[n,0.8]</td>
<td>CAR[n,0.8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>-0.086*</td>
<td>-0.131**</td>
<td>-0.142**</td>
<td>-0.131**</td>
<td>-0.142**</td>
<td>-0.200***</td>
<td>-0.145**</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.049)</td>
<td>(0.059)</td>
<td>(0.046)</td>
<td>(0.054)</td>
<td>[-0.099,0.101]</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Military</td>
<td>0.048*</td>
<td>0.032</td>
<td>0.075**</td>
<td>0.032</td>
<td>0.035</td>
<td>0.053</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.030)</td>
<td>(0.021)</td>
<td>(0.026)</td>
<td>(0.033)</td>
<td>[-0.066,0.082]</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Islamic</td>
<td>-0.031</td>
<td>-0.064</td>
<td>-0.058</td>
<td>-0.064</td>
<td>-0.090</td>
<td>-0.159***</td>
<td>-0.125*</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.051)</td>
<td>(0.063)</td>
<td>(0.041)</td>
<td>(0.058)</td>
<td>[-0.107,0.130]</td>
<td>(0.066)</td>
</tr>
<tr>
<td>β_{World}</td>
<td>0.037**</td>
<td>0.023</td>
<td>0.037</td>
<td>0.050**</td>
<td>0.132**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.013)</td>
<td>(0.046)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{Egypt}</td>
<td>-0.028</td>
<td>-0.021</td>
<td>-0.028</td>
<td>-0.093**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.025)</td>
<td>(0.023)</td>
<td>(0.030)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{Unrest}</td>
<td>2.134*</td>
<td>0.897</td>
<td>2.134</td>
<td>1.812</td>
<td>11.219**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.182)</td>
<td>(1.337)</td>
<td>(2.253)</td>
<td>(2.039)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>0.024**</td>
<td>0.022**</td>
<td>0.024**</td>
<td>0.016*</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>-0.024</td>
<td>-0.003</td>
<td>-0.024*</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.019)</td>
<td>(0.014)</td>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.252</td>
<td>0.320</td>
<td>0.138</td>
<td>0.320</td>
<td>0.387</td>
<td>0.451</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>145</td>
<td>143</td>
<td>143</td>
<td>143</td>
<td>143</td>
<td></td>
<td>143</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification (2) for the event window January 25 to March 30, 2011

\[
CR[n,m] = N_i'\gamma + X_i'\nu + \eta_s + \epsilon_i.
\]

The dependent variable in columns 1-6 is $CR[n,m]$, the cumulative return on each firm’s stock between the opening of trade on the start date n and the closing of trade on the end date m. Columns 7 instead uses the cumulative abnormal return relative to an Egyptian market CAPM, $CAR[n,m]$, as dependent variable. N_i denotes the vector of dummies reflecting NDP-, military-, and Islamic-connected firms. The vector of controls, X_i, contains a constant term, each firm’s world-market beta, $\beta_{i\text{World}}$, Egyptian-market beta, $\beta_{i\text{Egypt}}$, unrest beta, $\beta_{i\text{Unrest}}$, and controls for size and leverage. η_s denotes a full set of (16) sector fixed effects. Robust standard errors are in parentheses. In column 5, each observation is weighted with the log number of transactions on the last trading day of the event window. Standard errors in column 4 are adjusted for the cross-correlation of firms’ returns in pre-event data. Columns 6 uses a synthetic matching estimators calculated from comparing the returns on 20 NDP-, 32 military-, and 13 Islamic-connected firms with 97 non-connected firms. 95% confidence intervals are in brackets.
Table 4: Placebo Events during 2010 Calendar Year

<table>
<thead>
<tr>
<th></th>
<th>(1) CR[-270,-269]</th>
<th>(2) CR[-192,-190]</th>
<th>(3) CR[-185,-184]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>-0.005 (0.010)</td>
<td>0.021 (0.018)</td>
<td>-0.013 (0.014)</td>
</tr>
<tr>
<td>Military</td>
<td>0.016 (0.012)</td>
<td>0.038 (0.026)</td>
<td>-0.006 (0.019)</td>
</tr>
<tr>
<td>Islamic</td>
<td>-0.004 (0.011)</td>
<td>-0.016 (0.016)</td>
<td>-0.007 (0.013)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.203</td>
<td>0.063</td>
<td>0.060</td>
</tr>
<tr>
<td>N</td>
<td>135</td>
<td>136</td>
<td>136</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1) CR[-80,-79]</th>
<th>(2) CR[-75,-74]</th>
<th>(3) CR[-73,-72]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>-0.002 (0.006)</td>
<td>-0.001 (0.006)</td>
<td>-0.003 (0.009)</td>
</tr>
<tr>
<td>Military</td>
<td>-0.004 (0.005)</td>
<td>0.004 (0.008)</td>
<td>0.006 (0.008)</td>
</tr>
<tr>
<td>Islamic</td>
<td>0.008 (0.012)</td>
<td>0.008 (0.005)</td>
<td>0.010 (0.010)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>-0.021</td>
<td>0.076</td>
<td>0.002</td>
</tr>
<tr>
<td>N</td>
<td>129</td>
<td>146</td>
<td>144</td>
</tr>
</tbody>
</table>

Notes: The table applies our baseline specification from column 2 of Table 3 to different political events from the 2010 calendar year. The table reports only the coefficients of interest and omits covariates in order to save space. See the caption of Table 3 for details on the specification. Events in Panel A: 10 dead after attacks on Coptic Christians in the town of Nag Hammadi (worst sectarian violence since 2000); strikes for a higher minimum wage; parliament votes to extend the state of emergency for 2 years; Events in Panel B: the independent Al-Dostour newspaper sacks its outspoken editor-in-chief, Ibrahim Issa, raising protests within the journalistic community; rumors in government press that the Ministry of Communications is planning to impose new regulations on mass text messaging; government shuts down four independent satellite channels.
Table 5: Post-Mubarak Events

Panel A: Events during Military Rule

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military</td>
<td>Retake</td>
<td>Presidential</td>
<td>Elections</td>
</tr>
<tr>
<td>Crackdown</td>
<td>Tahrir</td>
<td>1st round</td>
<td>2nd round</td>
</tr>
<tr>
<td>NDP</td>
<td>0.004</td>
<td>-0.010</td>
<td>-0.015</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.012)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Military</td>
<td>0.080*</td>
<td>-0.024**</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.008)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Islamic</td>
<td>-0.009</td>
<td>0.001</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.012)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.025</td>
<td>0.250</td>
<td>0.068</td>
</tr>
<tr>
<td>N</td>
<td>138</td>
<td>141</td>
<td>126</td>
</tr>
<tr>
<td>Sector F.E.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Std. Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification (2) for the event windows July 31-September 08, 2011 (column 1), November 12-21, 2011 (column 2), May 28-29, 2012 (column 3), and June 24-25, 2012 (column 4):

$$CR[n, m] = N_i'\gamma + X_i'\nu + \eta_s + \epsilon_i.$$

The dependent variables in all columns is $CR[n, m]$, the cumulative return on each firm’s stock between the opening of trade on the start date n and the closing of trade on the end date m. N_i denotes the vector of dummies reflecting NDP-, military-, and Islamic-connected firms. The vector of controls, X_i, contains a constant term, each firm’s world-market beta, $\beta_{i, World}$, Egyptian-market beta, $\beta_{i, Egypt}$, unrest beta, $\beta_{i, Unrest}$, and controls for size and leverage. η_s denotes a full set of (16) sector fixed effects. Robust standard errors in parentheses. The table shows only the coefficients of interest and omits covariates to save space.
Table 5: Post-Mubarak Events (continued)

Panel B: Events during Islamist Rule

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generals</td>
<td>Constitution</td>
<td>Mursi</td>
<td></td>
</tr>
<tr>
<td>sacked</td>
<td>passes</td>
<td>sacked</td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>-0.002</td>
<td>-0.011**</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Military</td>
<td>-0.004</td>
<td>0.003</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.005)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Islamic</td>
<td>0.010*</td>
<td>-0.005</td>
<td>-0.054**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.069</td>
<td>0.050</td>
<td>0.054</td>
</tr>
<tr>
<td>N</td>
<td>122</td>
<td>128</td>
<td>127</td>
</tr>
<tr>
<td>Sector F.E.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Std. Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification (2) for the event windows August 12-13, 2012 (column 1), December 23-23, 2012 (column 2), and June 4-July 4, 2013 (column 3):

$$CR[n, m] = N_i'\gamma + X_i'\nu + \eta_s + \epsilon_i.$$

The dependent variable in all columns is $CR[n, m]$, the cumulative return on each firm’s stock between the opening of trade on the start date n and the closing of trade on the end date m. N_i denotes the vector of dummies reflecting NDP-, military-, and Islamic-connected firms. The vector of controls, X_i, contains a constant term, each firm’s world-market beta, β_i^{World}, Egyptian-market beta, β_i^{Egypt}, unrest beta, β_i^{Unrest}, and controls for size and leverage. η_s denotes a full set of (16) sector fixed effects. Robust standard errors in parentheses. The table shows only the coefficients of interest and omits covariates to save space.
Table 6: External Validity

<table>
<thead>
<tr>
<th>Panel A</th>
<th>Number of Board Members</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Revolution</td>
<td>Military Rule</td>
<td>Islamist Rule</td>
</tr>
<tr>
<td>Prominent NDP members</td>
<td>19</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Using military titles</td>
<td>21</td>
<td>28</td>
<td>22</td>
</tr>
<tr>
<td>Known Muslim Brothers</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B</th>
<th>Profitability of Connected and Non-connected Firms</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-Revolution</td>
<td>Military Rule</td>
<td>Islamist Rule</td>
</tr>
<tr>
<td>NDP-connected firms</td>
<td>11%</td>
<td>2.8%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Military-connected firms</td>
<td>8%</td>
<td>11.4%</td>
<td>- 0.01%</td>
</tr>
<tr>
<td>Islamic firms</td>
<td>7.9%</td>
<td>2.4%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Non-connected firms</td>
<td>7%</td>
<td>4%</td>
<td>11.9%</td>
</tr>
</tbody>
</table>

Notes: Panel A shows the total number of board members of firms in our sample who appear on a list of 6,000 prominent NDP members, who use military titles, or who are known Muslim Brothers (see section 2.1 of the main text for details). Panel B shows the profitability of NDP-connected, military-connected, Islamic, and non-connected firms in the reporting years 2010, 2012, and 2013. Note that the reporting years 2012 and 2013 coincide roughly with our definition of the “Military Rule” and “Islamist Rule” periods as defined in Table 1.
Table 7: The Effect of Street Protests on Stock Market Valuations

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mubarak’s Military Islamistic Post-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>Rule</td>
<td>Rule</td>
<td>Islamist</td>
</tr>
<tr>
<td>Daily Log Returns × 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP x Tahrir Protesters</td>
<td>-1.614***</td>
<td>-0.135</td>
<td>0.672*</td>
<td>-0.308</td>
</tr>
<tr>
<td></td>
<td>(0.602)</td>
<td>(0.411)</td>
<td>(0.382)</td>
<td>(0.742)</td>
</tr>
<tr>
<td>Military x Tahrir Protesters</td>
<td>-0.886</td>
<td>-0.889***</td>
<td>-0.527</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>(0.612)</td>
<td>(0.326)</td>
<td>(0.324)</td>
<td>(0.617)</td>
</tr>
<tr>
<td>Islamic x Tahrir Protesters</td>
<td>1.773</td>
<td>0.600</td>
<td>0.421</td>
<td>-1.332*</td>
</tr>
<tr>
<td></td>
<td>(1.213)</td>
<td>(0.382)</td>
<td>(0.477)</td>
<td>(0.815)</td>
</tr>
<tr>
<td>NDP x Rabaa Protesters</td>
<td></td>
<td></td>
<td></td>
<td>-8.089</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(11.595)</td>
</tr>
<tr>
<td>Military x Rabaa Protesters</td>
<td></td>
<td></td>
<td>-6.406</td>
<td>(9.539)</td>
</tr>
<tr>
<td>Islamic x Rabaa Protesters</td>
<td></td>
<td></td>
<td>27.850**</td>
<td>(12.895)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.610</td>
<td>0.331</td>
<td>0.421</td>
<td>0.423</td>
</tr>
<tr>
<td>N</td>
<td>5603</td>
<td>43997</td>
<td>27210</td>
<td>1895</td>
</tr>
<tr>
<td>Total # Tahrir Protesters</td>
<td>1.220</td>
<td>5.290</td>
<td>4.175</td>
<td>1.020</td>
</tr>
<tr>
<td>Total # Rabaa Protesters</td>
<td></td>
<td></td>
<td></td>
<td>0.206</td>
</tr>
<tr>
<td>Incumbent</td>
<td>NDP</td>
<td>Military</td>
<td>Islamic</td>
<td>Islamic</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification (3),

\[R_{it} = N_i \gamma + (P_t \times N_i') \gamma_p + X_i' \nu_t + \delta_t + \eta_s + \epsilon_{it}, \]

for each of the four phases of Egypt’s Arab Spring. Dependent variable in all columns is \(R_{it}\), the log return on firm \(i\) at time \(t\) multiplied by 100. \(N_i\) denotes the vector of dummies reflecting NDP-connected, military-connected, and Islamic firms. \(P_t\) denotes the number of protesters in Tahrir Square, capped at and normalized with 500,000. \(X_i\) denotes the vector of controls that contains \(\beta_i^{World}\), \(\beta_i^{Egypt}\), \(\beta_i^{Unrest}\), and controls for firm size and leverage. \(\delta_t\) and \(\eta_s\) are time and sector fixed effects, respectively. The specification in column 4 also contains the interaction between \(N_i\) and the number of (pro-Islamist) protesters in Rabaa Square. Total # Protesters gives the sum of our (capped and normalized) measure of Tahrir and Rabaa protesters by phase. Robust standard errors are in parentheses.
Table 8: Protests Reduce Stock Market Valuation of Firms Connected to Incumbent Government

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily Log Returns × 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-0.879***</td>
<td>-0.751***</td>
<td>-0.834***</td>
<td>-0.855***</td>
<td>-0.754***</td>
<td>-0.695***</td>
<td>-0.483*</td>
<td>-0.685***</td>
<td>-0.548**</td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.254)</td>
<td>(0.278)</td>
<td>(0.281)</td>
<td>(0.255)</td>
<td>(0.252)</td>
<td>(0.247)</td>
<td>(0.234)</td>
<td>(0.271)</td>
</tr>
<tr>
<td>Other Connected x Tahrir Prot.</td>
<td>-0.281</td>
<td>-0.160</td>
<td>-0.110</td>
<td>-0.122</td>
<td>-0.165</td>
<td>-0.092</td>
<td>-0.008</td>
<td>-0.166</td>
<td>-0.243</td>
</tr>
<tr>
<td></td>
<td>(0.205)</td>
<td>(0.216)</td>
<td>(0.227)</td>
<td>(0.228)</td>
<td>(0.228)</td>
<td>(0.217)</td>
<td>(0.222)</td>
<td>(0.208)</td>
<td>(0.223)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.386</td>
<td>0.404</td>
<td>0.337</td>
<td>0.320</td>
<td>0.404</td>
<td>0.404</td>
<td>0.387</td>
<td>0.404</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>78705</td>
<td>78705</td>
<td>72527</td>
<td>66857</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td></td>
</tr>
<tr>
<td>Include time effect $\times X_i$</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Drop changes in gov't or constitution</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Drop all events analyzed in section</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include firm fixed effect</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include time effect $\times X_i^2$</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include sector effect \times Tahrir Protesters</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Include time effect \times firm effect</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification

$$R_{it} = I_{it} \gamma + (P_t \times I_{it}) \gamma^p + X_i' \nu_t + \delta_t + \eta_s + \epsilon_{it}. $$

Dependent variable in all columns is R_{it}, the log return on firm i at time t multiplied by 100. I_{it} denotes a vector of two dummies reflecting connections to the incumbent government and to the two other non-incumbent power groups during each of the four phases of Egypt’s Arab Spring, respectively. P_t denotes the number of protesters in Tahrir Square, capped at and normalized with 500,000. X_i denotes the vector of controls that contains $\beta_{i, \text{World}}$, $\beta_{i, \text{Egypt}}$, $\beta_{i, \text{Unrest}}$, and controls for firm-size and leverage. δ_t and η_s are time and sector fixed effects, respectively. All specifications also control for the interaction between I_{it} and the number of (pro-Islamist) protesters in Rabaa Square. Robust standard errors are in parentheses. Column 2 shows our baseline specification. Column 3 drops all dates identified in our event analysis as involving changes in government or formal institutions plus the next three trading days (in particular, it drops the fall of Mubarak, the first and the second round of presidential elections, the passing of the Muslim Brotherhood’s constitution, and the military coup against Mursi). In column 4, we drop all of the events studied in Tables 6 and 7 plus three trading days after each event. Column 5 adds firm fixed effects to the baseline specification in column 2. Column 6 includes the interaction of the number of protesters in Tahrir square square of the parametric controls in the vector X_i. Column 7 includes the interaction of all (16) sector fixed effects with the number of protesters in Tahrir Square, $P_t \times \delta_s$. Column 8 shows the same specification as column 7 but drops the interaction $\delta_t \times X_i$. Column 8 also drops the interaction $\delta_t \times \delta_s$, but includes the interaction of time fixed effects with sector fixed effects, $\delta_t \times \delta_s$.
Table 9: Timing of the Effect of Protests on Market Valuation of Connected Firms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Log Returns x 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-0.757***</td>
<td>-0.736***</td>
<td>-0.751***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td>(0.255)</td>
<td>(0.256)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Connected x Tahrir Protesters</td>
<td>-0.143</td>
<td>-0.153</td>
<td>-0.146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.218)</td>
<td>(0.217)</td>
<td>(0.218)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Incumbent x Tahrir Prot.</td>
<td>0.003</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.250)</td>
<td>(0.254)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Other Connected x Tahrir Prot.</td>
<td>-0.099</td>
<td>-0.071</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.224)</td>
<td>(0.228)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1 Incumbent x Tahrir Prot.</td>
<td>-1.066***</td>
<td>-1.522***</td>
<td>-1.021***</td>
<td>-1.501***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.299)</td>
<td>(0.347)</td>
<td>(0.307)</td>
<td>(0.348)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 1 Oth. Connected x T. Prot.</td>
<td>0.349</td>
<td>0.465</td>
<td>0.352</td>
<td>0.464</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.336)</td>
<td>(0.260)</td>
<td>(0.336)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 2 Incumbent x Tahrir Prot.</td>
<td></td>
<td>-0.287</td>
<td>-0.580*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.342)</td>
<td>(0.349)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 2 Oth. Connected x T. Prot.</td>
<td>-0.048</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.048</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 3 Incumbent x Tahrir Prot.</td>
<td>-0.042</td>
<td>-0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.042</td>
<td>-0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag 3 Oth. Connected x T. Prot.</td>
<td>0.108</td>
<td>0.114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.108</td>
<td>0.114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
</tr>
<tr>
<td>N</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
</tr>
</tbody>
</table>

Notes: This table shows variations of the baseline specification in column 2 of Table 8 that add leads and lags of the term ($P_t \times I_{it}$), where I_{it} again denotes the vector of two dummies reflecting affiliation to the incumbent government and to the two other non-incumbent power groups during each of the four phases of Egypt’s Arab Spring. See the caption of Table 8 for details. The specifications in columns 1, 3, and 5 add leads and lags while dropping the interaction of the current number of protesters with I_{it}.
Table 10: Activity on Twitter Predicts Protests

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mubarak’s Fall Rule</td>
<td>Military Islam</td>
<td>Islam</td>
<td>Post- Islam</td>
<td>All Phases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tahrir Hashtags</td>
<td>3.834*** (1.922) 0.089*** (0.025) 0.642** (0.261) 0.707 (0.738) 0.219*** (0.075) 0.108 (0.115) 0.237* (0.133)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lag Tahrir Hashtags</td>
<td>0.225*** (0.077) 0.137 (0.123)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Tahrir Hashtags</td>
<td>-0.022 (0.117)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Shutdown</td>
<td>2.006* (1.090) 1.859* (1.069) 1.865* (1.070) 1.871* (1.070) 1.858* (1.070)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.148 0.046 0.250 0.112 0.078 0.080 0.083 0.077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>83 483 326 25 917 917 917 916</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B

<table>
<thead>
<tr>
<th></th>
<th>Number of Tahrir Protesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retweets of Opp.</td>
<td>-1.037 (1.265) 0.047*** (0.018) 0.469*** (0.123) 0.035 (0.063) 0.258** (0.103) 0.181 (0.136) 0.137 (0.195)</td>
</tr>
<tr>
<td>Lag Retweets of Opp.</td>
<td>0.240*** (0.091) 0.098 (0.102)</td>
</tr>
<tr>
<td>Lead Retweets of Opp.</td>
<td>0.155 (0.151)</td>
</tr>
<tr>
<td>Internet Shutdown</td>
<td>1.232 (1.076) 1.987* (1.074) 1.974* (1.074) 2.005* (1.075) 2.016* (1.073)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.021 0.002 0.370 -0.043 0.095 0.087 0.098 0.104</td>
</tr>
<tr>
<td>N</td>
<td>83 483 326 25 917 917 917 916</td>
</tr>
</tbody>
</table>

Panel C

<table>
<thead>
<tr>
<th></th>
<th>Number of Tahrir Protesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tahrir Hashtags</td>
<td>0.140*** (0.050) 0.080 (0.107) 0.174* (0.101)</td>
</tr>
<tr>
<td>Lag Tahrir Hashtags</td>
<td>0.155** (0.061) 0.079 (0.120)</td>
</tr>
<tr>
<td>Lead Tahrir Hashtags</td>
<td>-0.055 (0.104)</td>
</tr>
<tr>
<td>Retweets of Opp.</td>
<td>0.202* (0.107) 0.133 (0.138) 0.086 (0.198)</td>
</tr>
<tr>
<td>Lag Retweets of Opp.</td>
<td>0.178* (0.092) 0.081 (0.107)</td>
</tr>
<tr>
<td>Lead Retweets of Opp.</td>
<td>0.151 (0.159)</td>
</tr>
<tr>
<td>Internet Shutdown</td>
<td>1.993* (1.074) 1.984* (1.074) 2.012* (1.076) 2.018* (1.074)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.111 0.106 0.116 0.117</td>
</tr>
<tr>
<td>N</td>
<td>917 917 917 917</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates with robust standard errors in parentheses. Dependent variable in all columns is the number of protesters in Tahrir Square on any given day. Independent variables are the number of tweets with Tahrir hashtags (Panels A and B) and the number of retweets received by opposition leaders (Panels B and C). The dependent variable and these independent variables are normalized by deducting the sample mean and dividing by the sample standard deviation. All specifications contain a constant term (not reported) and a fixed effect for days in which Twitter was blocked in Egypt (Internet Shutdown, not reported in Panel C).
Table 11: Activity on Twitter and Stock Returns

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily Log Returns × 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-0.072***</td>
<td>-0.084***</td>
<td>-1.548*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.805)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Connected x Tahrir Prot.</td>
<td>-0.003</td>
<td>-0.004</td>
<td>0.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.026)</td>
<td>(0.026)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Hashtags</td>
<td>0.015</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.026)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Connected x T. Hashtags</td>
<td>-0.018</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.025)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Retweets of Opposition</td>
<td>0.050*</td>
<td>0.060**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.030)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Connected x Retweets of Opp.</td>
<td>-0.013</td>
<td>-0.015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.025)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Opposition Turnover</td>
<td>-0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected x Opposition Turnover</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Prot. x Opp. Turnover</td>
<td>0.138*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Connected x T. Prot. x Opp. Turnover</td>
<td>-0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
</tr>
<tr>
<td>N</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
</tr>
</tbody>
</table>

Notes: Ordinary Least Squares estimates of specification,

\[R_{it} = \gamma_0^I \gamma^P + \gamma^T + X_t' \nu_t + \delta_t + \eta_s + \epsilon_{it}. \]

Dependent variable in all columns is \(R_{it} \), the log return on firm \(i \) at time \(t \) multiplied by 100. \(I_{it} \) denotes the vector of two dummies reflecting affiliation to the incumbent government and to the two other non-incumbent power groups, respectively. \(P_t \) denotes the number of protesters in Tahrir Square. \(T_t \) denotes measures of activity on Twitter (Tahrir Hashtags and Retweets of Opposition). \(T_t \) and \(P_t \) are normalized by deducting the sample mean and dividing by the sample variance. \(X_t \) denotes the vector of controls that contains \(\beta_{i}^{World} \), \(\beta_{i}^{Egypt} \), \(\beta_{i}^{Unrest} \), and controls for firm size and leverage. \(\delta_t \) and \(\eta_s \) are time and sector fixed effects, respectively. Robust standard errors are in parentheses. Column 5 adds the triple-interaction \(I_t \times P_t \times O_t \) where \(O_t \) is the opposition turnover rate measured as the number Twitter users who re-tweet a tweet of an opposition leader in \(t - 1 \) but not in \(t \), divided by the average number of re-tweeters on the two days in percent.
Figure 1: Number of Protesters in Tahrir Square

Note: Number of protesters in Tahrir Square on each day between January 1, 2011, and July 30, 2013. See section ** of the main text for details.
Figure 2: Placebo Regressions in Pre-Event Windows

Note: Coefficients and 99%, and 95% confidence intervals on the dummy variable for NDP-connected firms in specifications corresponding to column 2 of Table 3. The figure shows coefficients for seven consecutive event windows prior to Jan 25, 2011 (event trading day 0). Each event window consists of 8 consecutive trading days. For comparison, the coefficient on the far-right side depicts the treatment effect of Mubarak’s fall shown in column 2 of Table 3.
Figure 3: Placebo Regressions in Pre-Event Windows using Matching Estimator

Note: Coefficients and 99% and 95% confidence intervals on the dummy variable for NDP-connected firms in specifications corresponding to column 6 of Table 3. The figure shows coefficients for seven consecutive event windows prior to January 25, 2011 (event trading day 0). Each event window consists of 8 consecutive trading days. For comparison, the coefficient on the far-right side depicts the treatment effect of Mubarak’s fall shown in column 6 of Table 3.
Figure 4: Histograms of T-Statistics from Placebo Regressions for Specification (4)

Note: The figure shows the results of a placebo experiment in which we use the sample distribution of the number of protesters in Tahrir square between Jan 1, 2011 and July 30, 2013 to randomly assign a number of protesters to trading days between January 1 and November 30, 2010. We then estimate specification (3) using the fictitious data. The figure shows results obtained from 200 random assignments of protesters to trading days, where the three panels show histograms of the t-statistics on the interaction of dummies for NDP-, military-, and Islamic-connected firms with the fictitious number of protesters, respectively.
A Appendix to Section 2

A.1 Construction of Unrest Beta

This appendix describes the procedure for generating a time series of violent disruptions in Egypt from 2005 through 2010. We use the Global Data on Events, Location, and Tone (GDELT) dataset that contains nearly a quarter-billion political events that occurred across the world from 1979 to the present. An event is defined as an action taken by a national, subnational, or transnational actor upon another such actor. Every event and actor is coded using the Conflict and Mediation Event Observations (CAMEO) coding system. These events are extracted from news reports by the Textual Analysis by Augmented Replacement Instructions (TABARI) software with a few additional modifications specific to GDELT for information on location and tone. News sources include international, regional, and local news sources, all either in English or translated to English so that TABARI can parse the reports.

GDELT uses TABARI to analyze every sentence in a news report, although TABARI ordinarily only analyzes the lead sentence. TABARI uses simple grammatical rules of the English language to parse one sentence at a time and identify the subject, verb phrase, and direct object. The subject and object are then checked against a dictionary of 60000 political, religious, and ethnic actors (i.e., proper nouns) and 1500 agents (i.e., common nouns). If the subject or object is found in the dictionary, then it is converted into a sequence of CAMEO actor codes using the dictionaries; otherwise, the sentence is ignored. For example, the dictionary would map “Egyptian President Hosni Mubarak” to “EGYGOV” (Egyptian government). The subject who initiates the action is called the source, and the object who receives the action is called the target. Not all event records in GDELT have both a source and a target. The verb phrase is similarly checked against a dictionary of verb phrases and either converted to a CAMEO event code or ignored. The location of an actor or verb is defined as the geographic location in the text of the article that is the fewest words away from that actor or verb. For example, if “Cairo” is five words away from the source actor “Mubarak” and “Israel” is twelve words away from “Mubarak”, then Cairo will be selected as Mubarak’s location. Any event records with exactly the same date, source, target, and event codes are collapsed into a single event record.

We run five Python scripts as follows. The first script downloads files from the GDELT server a chunk at a time, stores them in our directory, and unzips the packages. We download all GDELT files from 2005 to March 2013. The second script looks at every datapoint in the subset of GDELT downloaded by the first script, checks if the event is somehow recorded as being located in Egypt and if the event is coded as 14 (protest), 18 (assault), or 19 (fight). If the event satisfies these two conditions, then the script stores its two actor codes into a list. The list of unique actor codes is then written to a separate file. This file is then manually edited into another file (we refer to this edited list as the actor sublist), so that it contains only Egyptian actors, relevant transnational actors (e.g., most UN organizations, IMF, multinational corporations), relevant ethnic actors (e.g.,
Arabs), relevant religious actors (e.g., Christians, Muslims), and all subnational actors (e.g., police, government, media, health, criminals, rebels, insurgents). The third script creates two time series, one for events under the 143 event code (strikes and boycotts) and one for events under the 145 event code (protest violently, riot). It creates these time series by filtering all GDELT data downloaded by the first script for events that (1) are somehow recorded as being located in Egypt, and in which (2) both actors are members of the actor sublist, and (3) the event base code is 143 for one time series and 145 for the other time series. It records all events that pass these filters into two time series to separate files. The fourth script creates a time series of violence involving Copts by filtering the subset of GDELT. The conditions for the filter are (1) either one of the actors is recorded as Coptic or one of the actors is both Christian and Egyptian and the event is somehow recorded as being located in Egypt, and (2) the event code is either 14 (protest), 18 (assault), 19 (fight), or 20 (mass violence). The fifth script splits the three time series above into bunchings so that each bunching can be manually verified, where a bunching is defined as a series of events such that no two consecutive events in the series are more than five days apart. This script also adds two new columns to each time series. The columns “strike” and “strike verified” are added to the 143 time series; “riot” and “riot verified” are added to the 145 time series; “copts” and “copts verified” are added to the Copts time series. The former of the two columns is recorded as 1 for every datapoint. The latter is recorded as 0 for every datapoint, to be changed to 1 if the event is verified.

Then, we manually verify each bunching in the three time series by checking each bunching to see if corresponds to an event recorded in one of the Major World Publications on LexisNexis. After performing this LexisNexis search, we look through the search results for an event that could be classified as either 143, 145, or violence involving Copts. If such an event is found, we verified the entire bunching by changing the 143/145/copts verified variable to 1 for all events in that bunching. If the bunching is long (almost a month or longer), then we do not verify all datapoints in the bunching; instead, we define an interval by the publication date of the chronologically first such article that fits the time series and the date of the last such article that fits the time series and verified all datapoints in that interval (which is a subset of the interval spanned by the bunching).

A.2 Classification of Firms

In this appendix we explain the procedures of classifying our firms as connected to the NDP or the Military.

A.2.1 NDP-Connected Firms

To classify firms as connected to the NDP, we first scrape a list of names from the website emeskfol.com. This is a list of approximately 6,000 prominent NDP members posted online by activists in the aftermath of the fall of the Mubarak regime. The list was created as part of an internet campaign called “Emsek Felool” (“to catch remnants” of the old regime) in order to identify publicly the cronies of the old regime. The list gives
the full name, the rank within the NDP, and any official function of each prominent NDP member by Egyptian governorate. The functions it lists include members of parliament, aldermen, and local and party council members. We classify a firm as connected to the NDP if the name of at least one of the firm’s major shareholders or board members appears on the felool list.

We implement the following merge procedures. If the board member (or the shareholder) name consists of two names (first and last name), we apply the following criteria: 1) do the person listed in the felool list and the person listed as a board member (or shareholder) have the same last name? If yes, 2) do the person on the felool list and the person listed as a board member (or shareholder) have the same first name? If yes, then we consider the person on the felool list and the board member (or the shareholder) as potentially the same person. If the board member (or the shareholder) name consists of more than two names, we apply the following four criteria: 1) do the person listed on the felool list and the person listed as a board member (or shareholder) have the same last name? If yes, 2) do the person on the felool list and the person listed as a board member (or shareholder) have the same first name? If yes, 3) do the person on the felool list and the person listed as a board member (or shareholder) share a first letter of any of the middle names? If yes, 4) do the person on the felool list and the person listed as a board member (or shareholder) share at least one letter of any of the middle names? If yes, then we consider the felool person and the board member (or the shareholder) as potentially the same person. We then manually review all the potential matches generated by the above merging procedures.

A.2.2 Military-Connected Firms

In accordance with the Egyptian constitution, the Egyptian military’s financial accounts are outside the control of the civilian government (the “two tills” system). We classify listed firms as connected to the Egyptian military if they are wholly or partially owned by the military “till”. We identify these firms first by selecting all state-owned holding companies, that is, government-owned entities that hold stock in listed firms, from the Zawya database. Although these holdings do not officially declare which of the two “tills” they are accountable to, we distinguish between military- and civilian-government owned holdings simply by checking whether the principal officers, shareholders, or board members of the holding company (or any of its affiliated firms) are linked to the military. Appendix Table 10 lists these entities, their link to the military and the sources that document these links.

A.3 Protester Data

We run several Python scripts to construct our time series of the number of protesters. Three main scripts fully describe this process. The first extracts the number of protesters for each article, the second extracts the date of the protest from each article, and the third edits the data. We describe each of these scripts in detail in a separate subsection.
below. The final output is a table in which each date has a single row and each newspaper has a single column. An entry in this two-dimensional grid is the maximum observation reported by that newspaper on that date.

A.3.1 Retrieving the Newspaper Articles

Starting from January 25, 2011, through the end of July 2013, we download all newspaper articles containing the words “protestors”/“protesters”, “Tahrir” and “Egypt” from newspapers in the category “major world publications” of the Lexis Nexis Academic Service and from all English-language Egyptian news outlets that are available on the service (Al-Ahram Gate, Al-Ahram Weekly, Al-Akhbar English, and Daily News Egypt). We write a script that downloads for each article, its news source, date of publication, and the text of the article. After searching for these articles, they are downloaded in sets of 500 articles (since LexisNexis caps downloads at 500 articles, and caps searches at 3000) in plain text (.txt) format. In order to ensure that the Egyptian press covered by our analysis is balanced between pro- and anti-regime news outlets, we supplement the pool of articles downloaded from LexisNexis with the online content of three Egyptian news outlets: Al-Masry Al-Youm (http://www.egyptindependent.com/), Al-Ahram English (http://english.ahram.org.eg/), and Copts United (http://www.copts-united.com/English/). These three newspapers are chosen because (1) their web sites are coded in a manner that made it possible to scrape with Python, and (2) the web sites offer coverage going back to January 25, 2011. Although each news source has its own script to scrape articles, the procedure of each is roughly the same. The script looks at the pre-filtered list of top news stories. It extracts the URL for each story and possibly the date of publication. It then goes to each URL and extracts the text of the article and the date of publication if not yet extracted. The script then goes to the next page of top stories and repeats. For Copts United in particular, the lists of top stories are not paginated like the other news sources. For Copts United, each top story has a particular index, and the list of top stories when that index is fed into the URL is that top story and the ten or so other top stories following it. Therefore, the Copts United scraper only extracts a single URL from each list of top stories (i.e., the URL of the top story with that particular index), goes to that URL, and extracts the article text. It then repeats this process for the next index.

A.3.2 Identifying the Number of Protesters

The purpose of this script is to extract the number of protesters from the articles that we collected. The script first checks to make sure that the words “protestors”/“protesters”, “Tahrir” and “Egypt” are indeed in the article. It then cuts text snippets (with a length of 61 words) surrounding numbers (including numbers like “more than a thousand” or “over a hundred thousand”), and filters these text snippets to increase the chance that these numbers are indeed the number of protesters in Tahrir Square. Specifically, there are eight sub-filters in the filter: (1) Checks that there is a synonym of “protester” in the
text snippet, (2) Checks that there is a synonym of “Tahrir Square” in the text snippet,
(3) Checks that the word following the number is not an irrelevant word, i.e., a word that
indicates that the snippet does not contain the number of protesters, e.g., “mile”, “killed”,
“soldiers”, “videos”, “gmt”, (4) Checks that the number is not a year, ranging from 1901 to
2014, with year 2000 excluded, (5) Checks that the number is not too small, i.e., less than
100, (6) Checks that words in a tighter radius (seven words) around the number are not
irrelevant words, e.g., “arrested”, “Alexandria”, “pro-regime”, “population”, “Qaddafi”,
(7) Checks that irrelevant (e.g., “Syria”, “Baghdad”, “Boston”) are not anywhere in the
snippet, and (8) Checks that specifically pro-MB words (e.g., “pro-Morsi”, “pro-Mursy”,
“pro-Brotherhood”, “Brotherhood supporters”) are not anywhere in the snippet if the
article was published after the constitutional referendum (on March 19, 2011). Once the
script has a list of text snippets for each article, it chooses the maximum number among
each article’s text snippets. It takes the maximum number rather than all numbers
because many newspapers report the total number of protesters in Tahrir Square that
day, as well as subsets who, e.g., marched to the presidential palace; choosing only the
maximum prevents a downward bias caused by observations that are only of subsets of
the protest, not the total protest.

A.3.3 Identifying the Date of the Protest

This script looks for a date near the number of protesters and also the first date that
appears in the article, using a relative date word, like “yesterday”, “last night”, or “Tues-
day”. If there are one or more dates near the number of protesters, it chooses the one
closest to the number of protesters. If there is no date near the number of protesters,
it chooses the first date in the article as the date of the protest. It then determines the
calendar date by subtracting the right number of days from the date of publication. For
example, if the chosen date is “yesterday”, then the date of the protest will be the date of
publication minus one day. If the chosen date is “Tuesday”, it checks if the date of pub-
lication is on a Tuesday, in which case it decides that the protest date is the publication
date, and if not, then it uses the last Tuesday before the publication date as the protest
date. If it cannot find any date in the article, it marks the date as missing data.

A.3.4 Editing the Data

Our final script converts numbers written as words into numbers, e.g., “one hundred” into
100, “few thousand” into 5000, “several thousand” into 5000, etc. (For a more detailed
listing of this mapping see Appendix Table 11.) It then adds an observation for days in
which no newspaper reported a protest in Tahrir; this observation has 0 protesters, and
the news source, publication date, and article text are marked as missing data.

A.4 Classification of Opposition Figures

We define the opposition during a given phase of the Arab Spring as a group of promi-
nent Twitter users asking protesters to gather in Tahrir to demand the removal of the
incumbent government. To this end, we classify prominent Twitter users listed in Appendix Table 12 into four camps: Secular, Muslim Brotherhood (MB), Salafist, and Old Regime (that is, both NDP and Military). We search official sources on the internet for public announcements made by each of the above groups regarding their intention to join Tahrir protests. Then, our choice of which political groups constitute the opposition in a given phase is defined on the basis of these public announcements. For instance, the MB’s political wing, the Freedom and Justice Party, announced their refusal to take part in the demonstrations that aimed to put an end to the Military rule. So, while Twitter accounts of Muslim Brotherhood activists are included in our definition of opposition during the Fall of Mubarak (phase 1), they are excluded during the period of Military Rule (phase 2). In July 2013, following the military coup against President Morsi, members of April 6th group participated in The Third Square, a movement that rejects both MB and military rule. So, while the April 6th members are included in phases 1, 2, and 3, they are excluded from phase 4. We end up with the following classification of opposition: Phase 1 (Mubarak’s Fall): Secular, MB, Salafist; Phase 2 (Military Rule): Secular; Phase 3 (Islamist Rule): Secular and Old Regime supporters (NDP and Military); Phase 4 (Post-Islamist): Secular, Salafist, and Old Regime supporters (NDP and Military).

A.5 Twitter Data

In this appendix we describe how we assemble our databases of Egyptian tweets. To build our Twitter databases we use a number of scripts that each serve a different function. We first describe the general ideas behind the scraping process and how the data are assembled and then we describe our two main Twitter databases.

A.5.1 The Twitter Scripts

We use the Twitter Application Programming Interface (API) to scrape our data. The Twitter API is a tool used to access data available from Twitter. It allows authorized applications to interface with Twitter’s data. We use the REST API version as it allows access to historical tweets. Twitter uses the OAuth authentication protocol to allow access to the API. In order to access the API, we first create a Twitter developer account and then get the access keys for this account. This allows us to make requests to the Twitter API. There are several types of requests that we made to the API. The first type requests the timeline of a user. To do this, we specify the screen name or Twitter ID for the user in question. The timeline is a list of all available tweets for the given user. Twitter puts a limit on the number of tweets returned by this method. We can get a maximum of the most recent 3200 tweets with a “get timeline” request. The second type of request gets the retweets for a given tweet. A request to get retweets will return the 100 most recent retweets for the given tweet. The tweet can be specified with a tweet ID, which is included in the tweet object. The two types of requests return a list of tweet objects. A tweet object is one of the basic units available from the Twitter API. It contains a large amount of information on the tweet and the user who made the tweet.
https://dev.twitter.com/docs/platform-objects/tweets.) The first key element is the text. The text contains the actual text of the tweet. This is in unicode, allowing for non-Latin characters. The text is limited by Twitter’s policy to 140 characters. The tweet also contains a created-at element which represents when the tweet was published by the user. This is a UTC time stamp. We primarily limit ourselves to days, however, the time stamp allows for more granular units of measurement. The tweet also contains an internal ID that can be used to get other information about the tweet, including retweets.

To scrape the Twitter data, we run a Python script that downloads the desired data and stores the resulting tweets in json files. These json files are later moved into a MongoDB database to make access easier.

A.5.2 The Twitter Databases

Our Twitter analyses are based on the combination of two databases. The first database covers all the tweets for a list of roughly 318 thousand Egyptian users who tweeted at least once between July 1, 2013 and September 17, 2013. We obtain this list from an Egyptian social media firm (25trends.me). We implemented the following procedure to obtain the tweets of these users. For each of these users, we had a screen name and were able to get the tweets using the “get timeline” request mentioned above. Due to the limitations of the “get timeline” request, this database only has the most recent 3200 tweets for each user. While this means that for the majority of users we have their entire timeline of tweets, there are a number of cases where the user had too many tweets to get the entire timeline. 262442 users have less than 3200 tweets (i.e., 82.4% of our list of Egyptian users). The resulting database contains 311302456 tweets made during our sample period, from January 1, 2011 through July 29, 2013. 71807168 of these 311 million tweets are retweets of other users’ tweets.

The second database covers all the retweets of the tweets by Egyptian users identified by Socialbakers (http://www.socialbakers.com/twitter/country/egypt/) as the most prominent users. It consists of retweets of a central list of roughly 620 Social Bakers users. A Social Bakers user is an Egyptian Twitter user who Social Bakers identified as socially or politically important. We extract the reweets of these 620 users from the reweets included in our first database explained above. There are two ways to identify a retweet. First, the retweet tweet object will in some cases contain an identifier indicating that the tweet is a retweet. This is a more recent feature of tweets and is only active in some cases. A more consistent method of finding retweets is to identify tweets that start with “RT”. This is the standard syntax for starting a retweet on Twitter.\footnote{We supplement our retweet database with another retweet database that we complied at the beginning of this project. This database consists of the retweets of roughly 200 Social Bakers users. To build this database, we first make a request to get the most recent 3200 tweets for each user, and then for each of these tweets, we get the most recent 100 retweets.}
B Appendix to Section 3

B.1 Adjusted standard errors

To adjust for the possibility that other factors cause correlation in the error term \(\epsilon_i \) across firms, we estimate adjusted standard errors that account for potential cross-firm correlation of residual returns. We estimate the cross-correlation matrix of residual returns using pre-event return data on a window between January 1 and December 23, 2010. For each day during this interval we estimate (2), holding constant the length of the event measured in trading days \((m - n + 1)\). This estimated cross-correlation matrix is then used to calculate our standard errors, under the assumption that the pre-event cross-correlation matrix is an appropriate estimate of the cross-correlation matrix during the event. To calculate the variance-covariance matrix of residuals we then scale the cross-correlation matrix with the mean squared error of residuals obtained from the actual event window. We use this scaling to correct for the fact that any missing observations (stocks that do not trade on a given day) would otherwise yield a downwardly biased estimate of the volatility of residuals. These adjusted standard errors should account for observed cross-sectional correlation of returns between firms in our sample (Greenwood, 2005; Becker et al., 2013).

B.2 Matching Estimator

The construction of our synthetic matching estimator follows the procedure in Acemoglu et al. (2013). The main idea of this method is to construct a synthetic match for each NDP-, military-, and Islamic-connected firm by using non-connected firms in such a way that the synthetic firm has similar behavior to the actual firm before the event of interest. We construct a synthetic match for each NDP-connected firm by solving the following optimization problem:

\[
\forall i \in \mathbb{N}, \{w_{ij}^*\}_{j \in U} = \arg\min_{\{w_j\}} \sum_i \sum_t \left[R_{it} - \sum_j w_{ij} R_{jt} \right]^2
\]

subject to

\[
\sum_j w_{ij}^* = 1 \quad \text{and} \quad \forall j \in U, \forall i \in \mathbb{N}, w_{ij}^* \geq 0,
\]

where \(R_{it} \) is the return on firm \(i \) on pre-event date \(t \), \(w_{ij}^* \) is the weight of non-connected firm \(j \in U \) employed in the optimal weighting for NDP-connected firm \(i \in \mathbb{N} \). As before, we use all trading days between January 1 and December 23, 2010 as the pre-event window for this estimation.

The return for each synthetic firm is then constructed as

\[
\hat{R}_{it} = \sum_j w_{ij}^* R_{jt}
\]
and the abnormal return is computed as the difference between the actual return and the synthetic firm return. To estimate the effect of the event we compute

$$\hat{\phi} = \frac{\sum_i \sum_{t=n+1}^{n+m} R_{it} - \hat{R}_{it}}{\sum_i \hat{\sigma}_i^{-1}}$$

where $\hat{\sigma}_i^{-1}$ is a measure of goodness of the match in the pre-event window

$$\hat{\sigma}_i = \sqrt{\frac{\sum_{t \in \text{pre-event Window}} [R_{it} - \hat{R}_{it}]^2}{T}}$$

and T is the number of trading days in the pre-event window. This formula for the average effect of intervention on the treatment group is thus a weighted average formula, with greater weight given to better matches.

To construct the confidence intervals, we randomly draw 500 placebo NDP-connected groups from the non-connected firms, with each group having the same size as the real treatment group, and construct the confidence interval for hypothesis testing of whether the coefficient is significantly different from 0. The effect of the NDP-connection is significant at 5% if it does not belong to the interval that contains the [2.5, 97.5] percentiles of the effect of the NDP-connection for placebo treatment groups.

The matching estimators for military- and Islamic-connected firms are constructed analogously.
Appendix Table 1: Mubarak’s Fall - Alternative Event Windows

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CR[0,4]</td>
<td>CR[0,5]</td>
<td>CR[0,6]</td>
<td>CR[0,7]</td>
<td>CR[0,8]</td>
</tr>
<tr>
<td>NDP</td>
<td>-0.058**</td>
<td>-0.097**</td>
<td>-0.104**</td>
<td>-0.124**</td>
<td>-0.131**</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.032)</td>
<td>(0.038)</td>
<td>(0.046)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Military</td>
<td>-0.010</td>
<td>0.014</td>
<td>0.005</td>
<td>0.020</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Islamic</td>
<td>-0.023</td>
<td>-0.033</td>
<td>-0.042</td>
<td>-0.062</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.039)</td>
<td>(0.042)</td>
<td>(0.047)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.231</td>
<td>0.255</td>
<td>0.258</td>
<td>0.285</td>
<td>0.320</td>
</tr>
<tr>
<td>N</td>
<td>137</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td>143</td>
</tr>
<tr>
<td>Sector F.E.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Standard Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Variations of the baseline specification in column 2 of Table 1 using different end-dates, m. The table reports only the coefficients of interest and omits covariates in order to save space. See the caption of Table 1 for details.
Appendix Table 2: Events during Military Rule

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Crackdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>0.030</td>
<td>0.004</td>
<td>0.005</td>
<td>0.004</td>
<td>0.010</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.029)</td>
<td>(0.022)</td>
<td>(0.034)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>Military</td>
<td>0.091**</td>
<td>0.080*</td>
<td>0.079**</td>
<td>0.080**</td>
<td>0.084</td>
<td>0.083*</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.044)</td>
<td>(0.033)</td>
<td>(0.012)</td>
<td>(0.055)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Islamic</td>
<td>0.008</td>
<td>-0.009</td>
<td>-0.013</td>
<td>-0.009</td>
<td>-0.033</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.024)</td>
<td>(0.025)</td>
<td>(0.028)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.012</td>
<td>0.025</td>
<td>0.096</td>
<td>0.025</td>
<td>-0.013</td>
<td>0.004</td>
</tr>
<tr>
<td>N</td>
<td>144</td>
<td>138</td>
<td>138</td>
<td>138</td>
<td>129</td>
<td>138</td>
</tr>
</tbody>
</table>

Retake Tahrir						
NDP	0.009	-0.010	-0.009	-0.010	-0.012	-0.022
	(0.012)	(0.012)	(0.011)	(0.011)	(0.012)	(0.018)
Military	-0.019*	-0.024**	-0.003	-0.024**	-0.020**	-0.008
	(0.010)	(0.008)	(0.008)	(0.004)	(0.009)	(0.013)
Islamic	0.003	0.001	-0.006	0.001	0.003	-0.031
	(0.013)	(0.012)	(0.011)	(0.005)	(0.013)	(0.031)
R^2	0.077	0.250	0.140	0.250	0.274	0.347
N	147	141	141	141	131	141

Presidential Elections 1st round						
NDP	-0.009	-0.015	-0.013	-0.015	-0.014*	-0.022
	(0.009)	(0.010)	(0.011)	(0.011)	(0.008)	(0.014)
Military	0.004	0.002	0.009*	0.002	0.003	0.008
	(0.007)	(0.007)	(0.005)	(0.004)	(0.007)	(0.008)
Islamic	0.011	0.010	0.002	0.010**	0.004	-0.008
	(0.008)	(0.008)	(0.007)	(0.005)	(0.010)	(0.014)
R^2	0.042	0.068	0.032	0.068	0.028	0.237
N	131	126	126	126	114	126

Presidential Elections 2nd round						
NDP	0.012	0.018**	0.021**	0.018	0.016**	0.028**
	(0.008)	(0.008)	(0.009)	(0.012)	(0.007)	(0.013)
Military	0.010	0.015*	-0.000	0.015**	0.012	0.004
	(0.009)	(0.009)	(0.008)	(0.004)	(0.008)	(0.012)
Islamic	0.018	0.022*	0.020*	0.022**	0.020**	0.045**
	(0.011)	(0.012)	(0.006)	(0.009)	(0.022)	(0.022)
R^2	0.179	0.241	0.113	0.241	0.272	0.291
N	143	137	137	137	135	137

Notes: The table reports specifications analogous to those in columns 1-5 and 7 in Table 3 for all events shown in Panel A of Table 5. The table reports only the coefficients of interest and omits covariates in order to save space. See the caption of Table 3 for details.
Appendix Table 3: Events during Military Rule - Matching Estimators

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Military</td>
<td>Retake</td>
<td>Presidential Elections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crackdown</td>
<td>Tahrir</td>
<td>1st round</td>
<td>2nd round</td>
</tr>
<tr>
<td>NDP</td>
<td>0.002</td>
<td>-0.006</td>
<td>-0.019**</td>
<td>0.045***</td>
</tr>
<tr>
<td></td>
<td>[-0.051,0.040]</td>
<td>[-0.022,0.022]</td>
<td>[-0.018,0.020]</td>
<td>[-0.019,0.017]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># NDP-connected</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Military</td>
<td>0.055***</td>
<td>-0.001</td>
<td>0.006</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>[-0.044,0.028]</td>
<td>[-0.017,0.017]</td>
<td>[-0.015,0.017]</td>
<td>[-0.013,0.019]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># Military-connected</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Islamic</td>
<td>-0.009</td>
<td>-0.011</td>
<td>-0.014</td>
<td>0.047***</td>
</tr>
<tr>
<td></td>
<td>[-0.061,0.047]</td>
<td>[-0.028,0.026]</td>
<td>[-0.022,0.024]</td>
<td>[-0.022,0.023]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># Islamic-connected</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Notes: The table reports specifications analogous to those in column 6 in Table 3 for all events shown in Panel A of Table 5. See the caption of Table 3 for details. All columns use the synthetic matching estimator described in detail in Appendix B.2.
Appendix Table 4: Events during Islamist Rule

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generals sacked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR[343,344]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.003</td>
</tr>
<tr>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td>-0.007</td>
<td>-0.004</td>
<td>-0.008</td>
<td>-0.004</td>
<td>-0.002</td>
<td>-0.006</td>
</tr>
<tr>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.003)</td>
<td>(0.008)</td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>Islamic</td>
<td>0.009*</td>
<td>0.010*</td>
<td>0.011**</td>
<td>0.010**</td>
<td>0.008</td>
<td>0.015**</td>
</tr>
<tr>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.007)</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.045</td>
<td>0.069</td>
<td>0.070</td>
<td>0.069</td>
<td>0.142</td>
<td>0.206</td>
</tr>
<tr>
<td>N</td>
<td>128</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>117</td>
<td>122</td>
</tr>
</tbody>
</table>

Constitution passes						
CR[433,433]						
NDP	-0.000	-0.011**	-0.012**	-0.011	-0.007	-0.011**
(0.004)	(0.005)	(0.005)	(0.008)	(0.004)	(0.005)	
Military	0.004	0.003	0.001	0.003	0.003	0.002
(0.005)	(0.005)	(0.004)	(0.004)	(0.004)	(0.005)	
Islamic	0.000	-0.005	-0.004	-0.005	-0.003	-0.002
(0.005)	(0.005)	(0.004)	(0.004)	(0.004)	(0.004)	
R^2	-0.027	0.050	0.059	0.050	0.132	0.038
N	133	128	128	128	123	128

Mursi sacked						
CR[541,562]						
NDP	0.020	-0.019	-0.010	-0.019	-0.017	-0.016
(0.020)	(0.021)	(0.019)	(0.032)	(0.019)	(0.022)	
Military	-0.005	-0.009	-0.002	-0.009	-0.003	-0.014
(0.028)	(0.029)	(0.017)	(0.011)	(0.029)	(0.029)	
Islamic	-0.026	-0.054**	-0.059**	-0.054**	-0.054**	-0.093**
(0.019)	(0.016)	(0.017)	(0.020)	(0.016)	(0.014)	
R^2	-0.049	0.054	0.097	0.054	0.025	-0.001
N	132	127	127	127	126	127

Sector F.E. | yes | yes | no | yes | yes | yes |
γ_{World} | no | yes | yes | yes | yes | yes |
γ_{Egypt} | yes | yes | yes | yes | yes | yes |
$\gamma_{Genrest}$ | yes | yes | yes | yes | yes | yes |
Size, Leverage | no | yes | yes | yes | yes | yes |
Weights | no | no | no | yes | no | no |
Adjusted S.E. | no | no | no | yes | no | no |

Notes: The table reports specifications analogous to those in columns 1-5 and 7 in Table 4 for all events shown in Panel B of Table 5. The table reports only the coefficients of interest and omits covariates in order to save space. See the caption of Table 4 for details.
Appendix Table 5: Events during Islamist Rule - Matching Estimators

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generals sacked</td>
<td>Constitution passes</td>
<td>Mursi sacked</td>
</tr>
<tr>
<td>NDP</td>
<td>0.008**</td>
<td>-0.008**</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>[-0.009,0.007]</td>
<td>[-0.008,0.009]</td>
<td>[-0.054,0.054]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># NDP-connected</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Military</td>
<td>0.002</td>
<td>0.001</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>[-0.007,0.007]</td>
<td>[-0.008,0.008]</td>
<td>[-0.052,0.043]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># Military-connected</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Islamic</td>
<td>0.015***</td>
<td>-0.003</td>
<td>-0.018</td>
</tr>
<tr>
<td></td>
<td>[-0.012,0.009]</td>
<td>[-0.011,0.014]</td>
<td>[-0.059,0.054]</td>
</tr>
<tr>
<td># Non-connected</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td># Islamic-connected</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

Notes: The table reports specifications analogous to those in column 6 in Table 3 for all events shown in Panel B of Table 5. See the caption of Table 3 for details. All columns use the synthetic matching estimator described in detail in Appendix B.2.
Appendix Table 6: Mean Net Purchases of Stock by Insiders as a Percentage of Total Stock Outstanding

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mubarak’s</td>
<td>Military</td>
<td>Islamist</td>
<td>Post-Islamist</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>Rule</td>
<td>Rule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-04/17/11</td>
<td>-08/12/12</td>
<td>07/04/13</td>
<td>07/29/13</td>
</tr>
<tr>
<td>NDP-connected</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>Military-connected</td>
<td>0.00</td>
<td>-0.47</td>
<td>-0.16</td>
<td>0.00</td>
</tr>
<tr>
<td>Islamic-connected</td>
<td>-0.00</td>
<td>-0.11</td>
<td>-0.00</td>
<td>-0.01</td>
</tr>
<tr>
<td>Non-connected</td>
<td>0.08</td>
<td>-2.89</td>
<td>-0.60</td>
<td>-0.08</td>
</tr>
</tbody>
</table>

Notes: The table shows the mean across firms of net purchases of stock by insiders of the firm as a share of total stock outstanding in percent for NDP-, military-, Islamic-, and Non-connected firms. For each of the four groups the table also reports the minimum and maximum net purchases across firms.

Appendix Table 7: Effect of Protests on Stock Market Valuation by Phase

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mubarak’s</td>
<td>Military</td>
<td>Islamist</td>
<td>Post-Islamist</td>
</tr>
<tr>
<td></td>
<td>Fall</td>
<td>Rule</td>
<td>Rule</td>
<td></td>
</tr>
<tr>
<td>Daily Log Returns x 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-1.193**</td>
<td>-0.912***</td>
<td>0.706</td>
<td>-1.370*</td>
</tr>
<tr>
<td></td>
<td>(0.560)</td>
<td>(0.328)</td>
<td>(0.573)</td>
<td>(0.799)</td>
</tr>
<tr>
<td>Connected x Tahrir Protesters</td>
<td>-0.195</td>
<td>0.082</td>
<td>-0.413</td>
<td>-0.199</td>
</tr>
<tr>
<td></td>
<td>(0.589)</td>
<td>(0.360)</td>
<td>(0.342)</td>
<td>(0.540)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.610</td>
<td>0.331</td>
<td>0.421</td>
<td>0.424</td>
</tr>
<tr>
<td>N</td>
<td>5603</td>
<td>43997</td>
<td>27210</td>
<td>1895</td>
</tr>
<tr>
<td>Incumbent</td>
<td>NDP</td>
<td>Military</td>
<td>Islamic</td>
<td>Islamic</td>
</tr>
</tbody>
</table>

Notes: This table shows results from our baseline specification in column 2 of Table 8, estimated separately for each of the four phases of Egypt’s Arab Spring. See the caption of Table 8 for details on the specification and Panel B of Table 8 for the beginning and end date of each phase.
Appendix Table 8: Results from Regressions that Drop the Post-Islamist Phase

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily Log Returns × 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Post-Islamist Rule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-0.906***</td>
<td>-0.704***</td>
<td>-0.867***</td>
<td>-0.891***</td>
<td>-0.707***</td>
<td>-0.613**</td>
<td>-0.401</td>
<td>-0.683***</td>
<td>-0.555*</td>
</tr>
<tr>
<td></td>
<td>(0.253)</td>
<td>(0.264)</td>
<td>(0.291)</td>
<td>(0.295)</td>
<td>(0.266)</td>
<td>(0.262)</td>
<td>(0.259)</td>
<td>(0.245)</td>
<td>(0.283)</td>
</tr>
<tr>
<td>Other Connected x Tahrir Prot.</td>
<td>-0.359</td>
<td>-0.155</td>
<td>-0.092</td>
<td>-0.106</td>
<td>-0.161</td>
<td>-0.091</td>
<td>-0.037</td>
<td>-0.268</td>
<td>-0.292</td>
</tr>
<tr>
<td></td>
<td>(0.219)</td>
<td>(0.233)</td>
<td>(0.247)</td>
<td>(0.250)</td>
<td>(0.234)</td>
<td>(0.233)</td>
<td>(0.237)</td>
<td>(0.223)</td>
<td>(0.236)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.385</td>
<td>0.403</td>
<td>0.337</td>
<td>0.321</td>
<td>0.403</td>
<td>0.404</td>
<td>0.386</td>
<td>0.404</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>76810</td>
<td>76810</td>
<td>71003</td>
<td>65333</td>
<td>76810</td>
<td>76810</td>
<td>76810</td>
<td>76810</td>
<td>76810</td>
</tr>
<tr>
<td>Include time effect × X_1</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Drop changes in g’ment or constitution</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Drop all events analyzed in section 3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include firm fixed effect</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include time effect × X_1^2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include sector effect × Tahrir Protesters</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Include time effect × firm effect</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: This table shows specifications identical to those in Table 8 estimated on a restricted sample that drops the post-Islamist phase of Egypt’s Arab Spring. See the caption of Table 8 for details.
Appendix Table 9: Functional Forms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily Log Returns $\times 100$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Protesters</td>
<td>-0.751***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected x Tahrir Protesters</td>
<td>-0.160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Tahrir Prot. (standardized)</td>
<td>-0.065***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected x Tahrir Prot. (standardized)</td>
<td>-0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x Log(Tahrir Prot. (standardized))</td>
<td>-0.469***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.174)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected x Log(Tahrir Prot. (standardized))</td>
<td>-0.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent x $1_{\text{Tahrir Protesters}>100k}$</td>
<td>-0.547***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connected x $1_{\text{Tahrir Protesters}>100k}$</td>
<td>-0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.150)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
<td>0.404</td>
</tr>
<tr>
<td>N</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
<td>78705</td>
</tr>
</tbody>
</table>

Notes: This table shows variations of the functional form relating returns to the interaction between I_{it} and the number of protesters in Tahrir square. Column 1 reproduces our baseline specification from column 2 in Table 8, where the number of protesters is divided by and capped at 500,000. In column 2, the number of protesters is not capped and standardized by deducting the sample mean and dividing by the sample standard deviation of the number of protesters (the same functional form as in Table 11). Column 3 interacts I_{it} with the log of this standardized number. Column 4 instead uses the interaction between I_{it} and a dummy that is one on days with 100,000 or more protesters in Tahrir square.
Appendix Table 10: Holding Companies Controlled by the Egyptian Military

<table>
<thead>
<tr>
<th>Holdings Fully Owned by Military</th>
<th>Link to Military</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arab Organization for Industrialization (AOI)</td>
<td>It is one of the three main economic military enterprises</td>
<td>http://carnegieendowment.org/2014/06/24/military-crowds-out-civilian-business-in-egypt; http://fas.org/nuke/guide/egypt/facility/mark0033.htm</td>
</tr>
<tr>
<td>Other Evidence of Military Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holding Company for Maritime and Land transport</td>
<td>At least partially owned by the military; Its chairman is an Admiral; the chairman, managing director and board members of affiliated firms are generals (Direct Transport company and Canal Shipping Agencies)</td>
<td>http://www.hcmilt.com/e_mysite/e_board.htm; http://www.merip.org/mer/mer262/egypts-generals-transnational-capital; http://www.jadaliyya.com/pages/index/4311/egypts-other-revolution-modernizing-the-military-i</td>
</tr>
<tr>
<td>Chemical Industries Holding Company</td>
<td>Affiliated firms are run by generals (National Cement); Major shareholders supervised by members of the military</td>
<td>http://www.cihc-eg.com/</td>
</tr>
<tr>
<td>Holding Company for food industries</td>
<td>The chairman and managing directors and board members of affiliated firms are generals (General Siles and Storage). Affiliated firm (Egyptian Sugar and Integrated Industries Company) has a general representing its ownership stake in Delta Sugar</td>
<td>http://www.zawya.com/middle-east/company/profile/4947/Holding_Company_for_Food_Industries/; https://www.zawya.com/middle-east/company/profile/1001684/Egyptian_Sugar_and_Integrated_Industries_Company/</td>
</tr>
<tr>
<td>Holding Company for spinning and weaving</td>
<td>The products of its affiliated firms (KABO) are described as part of the military economic empire</td>
<td>http://www.egypt-business.com/Paper/details/1206-xg-The-Egyptian-Military-between-Politics-and-Economy/3808; http://deficientbrain.blogspot.co.uk/2013/08/al-sisis-underwear-manufacturer-hacked.html</td>
</tr>
<tr>
<td>Holding Company for Pharmaceuticals</td>
<td>It holds its shareholder meetings regularly in a military installation (The Engineering Authority of the Armed Forces)</td>
<td>http://alexcopharma.net/En/Assembly.aspx; http://www.holdipharma.com/en/Home/Pages/alexandria.aspx</td>
</tr>
</tbody>
</table>
Appendix Table 11: Sample of Mapping from Words in Newspaper Articles to Numbers

<table>
<thead>
<tr>
<th>Word</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>a thousand</td>
<td>1,000</td>
</tr>
<tr>
<td>few thousand</td>
<td>2,000</td>
</tr>
<tr>
<td>several thousand</td>
<td>3,000</td>
</tr>
<tr>
<td>less than several thousand</td>
<td>2,500</td>
</tr>
<tr>
<td>less than a thousand</td>
<td>750</td>
</tr>
<tr>
<td>under a thousand</td>
<td>750</td>
</tr>
<tr>
<td>more than a thousand</td>
<td>1,250</td>
</tr>
<tr>
<td>over a thousand</td>
<td>1,250</td>
</tr>
<tr>
<td>thousands</td>
<td>5,000</td>
</tr>
<tr>
<td>tens of thousands</td>
<td>50,000</td>
</tr>
<tr>
<td>hundreds of thousands</td>
<td>500,000</td>
</tr>
<tr>
<td>over a quarter-million</td>
<td>300,000</td>
</tr>
</tbody>
</table>
Appendix Table 12: List of Twitter Accounts of Prominent Opposition Figures

<table>
<thead>
<tr>
<th>Phase of Egypt’s Arab Spring</th>
<th>Twitter Users Included in Opposition Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mubarak’s Fall</td>
<td>ElBaradei HamdeenSabahy HamzawyAmr shabab6april GhostyMaher moussacampaign Mitapril Khaledali251 GalaLamer Dr_Heba_Raouf DrEssamSharaf DrAbolfotoh AsmaaMahfouz DrBassemYoussef amrkhaled belalfadl YosriFouda amrwaked Ghonim AlaaAswany NaguibSawiris AymanNour GameelaIsmail Youssefalhosiny amremoussa HamdyKandil alnagar80 nawaranegm bothainakamel1 Ibrahim_essa3 Reemmagued Elshaheeed Dinabeldrahman SalmaSabahy MohamedAbuHamed ElBaradeiOffice MohammadSawy Ibrahim_Jeissa FatimaNaoot waelabbas moiegy MahmoudSaadpage ONtvLIVE SamiraIbrahim4 SabahyCampaign MasreyeenAhrrar Madaneya2012 waeladelphiafattah SalafyCosta HezbElnoor naderbakkar Alwasatpartyeg arahmanyusuf MoatazAFattah MuhammadMorsi EsSam_Sultan Essam_Elterafin MustafaHosny alqaradawy Saad_Elkatatny FJ-party HazemSalahTW ajmimis almorshid khairatAlshater FadelSoliman El_Awa MohmedAlbeltagy m_abotrekh ikhwantawasol ANAS_ELSHAER NabdAlekhwan khairatelsheh</td>
</tr>
</tbody>
</table>
Appendix Figure 1: Number of Protesters by Weekday

Note: The figure shows the percentage of all protesters that turned out in Tahrir Square between January 25, 2011, and July 30, 2013, by weekday. See Section 2 of the main text for details.
Appendix Figure 2: Persistence of the Effect of Mubarak’s Fall on NDP-connected Firms

Note: Coefficients and 95% confidence intervals on the dummy variable for NDP-connected firms in specifications corresponding to column 2 of Table B. The figure shows coefficients for cumulatively longer event windows beginning on January 25, 2011 (event trading day 0), and ending on the date indicated.
Appendix Figure 3: Placebo Regressions for all Trading Days in 2010

Note: Histograms on T-statistics on the dummy variables for connected firms in specifications corresponding to column 2 of Table 3. The figure shows histograms of T-statistics obtained from running the baseline specification in column 2 of Table 3 for each trading day between January 1, 2010, and November 30, 2010.