Determinacy without Taylor principle Plus: FTPL; beliefs, AD, and inflation

George-Marios Angeletos Chen Lian

Stanford University: May 2, 2022

Outline

1 Introduction

- Preample: Flexible vs Rigid vs Sticky Prices
- 3 A simplified NK economy (and our game representation)
- 4 Standard paradigm
- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

Indeterminacy in NK Model

- Q: What determines P? Can MP regulate AD? Does ZLB trigger a deflationary spiral?
- Inconvenient truth: correct answers depend on equilibrium selection
 - ▶ same path for $i_t \Rightarrow$ multiple equilibrium paths for π_t and y_t
- Taylor Principle vs Fiscal Theory of Price Level: a choice of "religion"?

Standard Paradigm (Leeper)					
	Fiscal Policy is				
	Ricardian	Non-Ricardian			
Taylor Principle holds	Determinacy	No equilibrium			
does not hold	Multiplicity	Determinacy			

This Paper: A New Perspective

- NK indeterminacy depends on a delicate "infinite chain"
 - sunspots matter only because future agents are expected to keep responding in perpetuity
- Small perturbations in info/coordination \Rightarrow break the chain \Rightarrow determinacy
 - ► always select standard equil (aka MSV solution), even with interest rate pegs

With Our Perturbations				
	Fiscal Policy is			
	Ricardian	Non-Ricardian		
Taylor Principle holds	Determinacy	No equilibrium		
does not hold	Determinacy	No equilibrium		

- Applied lessons:
 - recast Taylor principle as stabilization instead equil selection
 - push for reformulating FTPL outside the equil selection conundrum

Outline

1 Introduction

2 Preample: Flexible vs Rigid vs Sticky Prices

3 A simplified NK economy (and our game representation)

4 Standard paradigm

- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

• Flex prices $(\kappa = \infty)$:

Fisher eq + Taylor rule in $\pi_t \Rightarrow \mathbb{E}_t[\pi_{t+1}] = i_t = \phi \pi_t \Rightarrow \text{unique iff } |\phi| > 1$

• Flex prices $(\kappa = \infty)$:

 $\begin{array}{lll} \text{Fisher eq + Taylor rule in } \pi_t & \Rightarrow & \mathbb{E}_t[\pi_{t+1}] = i_t = \phi \pi_t & \Rightarrow & \text{unique iff } |\phi| > 1 \\ \text{Fisher eq + Taylor rule in } p_t & \Rightarrow & \mathbb{E}_t[p_{t+1}] - p_t = i_t = \chi p_t & \Rightarrow & \text{unique iff } |1 + \chi| > 1 \end{array}$

• Flex prices $(\kappa = \infty)$:

 $\begin{array}{lll} \text{Fisher eq} + \text{Taylor rule in } \pi_t & \Rightarrow & \mathbb{E}_t[\pi_{t+1}] = i_t = \phi \pi_t & \Rightarrow & \text{unique iff } |\phi| > 1 \\ \text{Fisher eq} + \text{Taylor rule in } p_t & \Rightarrow & \mathbb{E}_t[p_{t+1}] - p_t = i_t = \chi p_t & \Rightarrow & \text{unique iff } |1 + \chi| > 1 \end{array}$

• Rigid prices ($\kappa = 0$):

 $\mathsf{DIS} + \mathsf{MC} + \mathsf{Taylor} \text{ rule in } y_t \ \Rightarrow \ \mathbb{E}_t[c_{t+1}] - c_t = i_t = \chi c_t \ \Rightarrow \ \mathsf{unique iff} \ |1 + \chi| > 1$

• Flex prices $(\kappa = \infty)$:

 $\begin{array}{lll} \text{Fisher eq} + \text{Taylor rule in } \pi_t & \Rightarrow & \mathbb{E}_t[\pi_{t+1}] = i_t = \phi \pi_t & \Rightarrow & \text{unique iff } |\phi| > 1 \\ \text{Fisher eq} + \text{Taylor rule in } p_t & \Rightarrow & \mathbb{E}_t[p_{t+1}] - p_t = i_t = \chi p_t & \Rightarrow & \text{unique iff } |1 + \chi| > 1 \end{array}$

• Rigid prices ($\kappa = 0$):

 $\mathsf{DIS} + \mathsf{MC} + \mathsf{Taylor} \text{ rule in } y_t \ \Rightarrow \ \mathbb{E}_t[c_{t+1}] - c_t = i_t = \chi c_t \ \Rightarrow \ \mathsf{unique iff} \ |1 + \chi| > 1$

- Same math, but subtle differences:
 - nominal vs real indeterminacy
 - puts spotlight on spending decisions and Keynesian multipliers

Sticky Prices \approx Rigid Prices

- General NK case $(0 < \kappa < \infty)$
 - conditional on $\{c_t\}$, no indeterminacy in $\{\pi_t\}$ or $\{p_t\}$
 - useful to stop thinking "nominal indeterminacy translates to real indeterminacy"
 - ▶ rather the inverse: understand AD, then price path follows from Phillips cure
- What's next: represent NK economy as a game among consumers
 - ▶ a clear way to think about GE feedbacks and expectations
 - any $\kappa < \infty$ is basically the same as $\kappa = 0$ (but discontinuity at $\kappa = \infty$)
 - ▶ shed new light on determinacy, Taylor Principle, FTPL ...

Outline

1 Introduction

2 Preample: Flexible vs Rigid vs Sticky Prices

3 A simplified NK economy (and our game representation)

4 Standard paradigm

- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

A Simplified NK Economy

- Cashless, nominal bond in zero net supply, zero taxes
- Overlapping generations of consumers, each living two periods:

$$u(C_{i,t}^{1}) + \beta u(C_{i,t+1}^{2})e^{-\rho_{t}}$$

$$P_{t}C_{i,t}^{1} + B_{i,t} = P_{t}Y_{t} \qquad P_{t+1}C_{i,t+1}^{2} = P_{t}Y_{t+1} + I_{t}B_{i,t}$$

- Old = "robots" or "hand to mouth"
 - C_{it}^2 adjusts to meet second-period budget
- Young = "strategic"
 - optimally choose (C_{it}^1, B_{it}) given beliefs about Y_t , I_t , P_t and P_{t+1} .

The DIS curve

• Log-linearized optimal *c* for the young:

$$c_{i,t}^{1} = E_{i,t} \left[\frac{1}{1+\beta} y_t + \frac{\beta}{1+\beta} y_{t+1} - \frac{\beta}{1+\beta} \sigma(i_t - \pi_{t+1} - \rho_t) \right]$$

- Zero agg saving (plus young and old earn same y) $\Rightarrow \int c_{i,t}^1 di = \int c_{i,t}^2 di = c_t = y_t$
- Combining \Rightarrow a DIS equation, featuring avg beliefs:

$$c_t = \bar{E}_t \left[\frac{1}{1+\beta} c_t + \frac{\beta}{1+\beta} c_{t+1} - \frac{\beta\sigma}{1+\beta} (i_t - \pi_{t+1} - \rho_t) \right]$$

The DIS curve

• Log-linearized optimal *c* for the young:

$$c_{i,t}^{1} = E_{i,t} \left[\frac{1}{1+\beta} y_t + \frac{\beta}{1+\beta} y_{t+1} - \frac{\beta}{1+\beta} \sigma(i_t - \pi_{t+1} - \rho_t) \right]$$

- Zero agg saving (plus young and old earn same y) $\Rightarrow \int c_{i,t}^1 di = \int c_{i,t}^2 di = c_t = y_t$
- Combining \Rightarrow a DIS equation, featuring avg beliefs:

$$c_t = \bar{E}_t \left[\frac{1}{1+\beta} c_t + \frac{\beta}{1+\beta} c_{t+1} - \frac{\beta\sigma}{1+\beta} (i_t - \pi_{t+1} - \rho_t) \right]$$

• FIRE $\Rightarrow \bar{E}_t[\cdot] = \mathbb{E}_t[\cdot] \equiv \mathbb{E}[\cdot|\text{full info}] \Rightarrow \text{above reduces to familiar RA's Euler:}$

$$c_t = \mathbb{E}_t[c_{t+1}] - \sigma(i_t - \mathbb{E}_t[\pi_{t+1}] - \rho_t)$$

• Here: stylized Intertemporal Keynesian Cross, with flexible info/beliefs

The economy in 3 equations

OIS equation:

$$c_t = \bar{E}_t \left[\frac{1}{1+\beta} c_t + \frac{\beta}{1+\beta} c_{t+1} - \frac{\beta\sigma}{1+\beta} (i_t - \pi_{t+1} - \rho_t) \right]$$
(DIS)

Phillips curve (ad hoc for now):

$$\pi_t = \kappa c_t + \xi_t$$
 (PC)

③ Taylor rule (with $\phi \ge 0$ for simplicity):

$$i_t = \iota_t + \phi \pi_t$$
 (MP)

From 3 eqs to 1 eq (and a game representation)

 $\bullet\,$ Substituting MP and PC in DIS $\Rightarrow\,$

$$c_t \;=\; ar{E}_t \left[\; \delta_0 c_t \;+\; \delta_1 c_{t+1} \;+\; (1\!-\!\delta_0) heta_t \;
ight]$$

where $\delta_0 \equiv \frac{1-\beta\sigma\phi\kappa}{1+\beta} < 1$, $\delta_1 \equiv \frac{\beta+\beta\sigma\kappa}{1+\beta} > 0$ and $\{\theta_t\}$ is a transformation of $\{\rho_t, \xi_t, \iota_t\}$

From 3 eqs to 1 eq (and a game representation)

 $\bullet\,$ Substituting MP and PC in DIS $\Rightarrow\,$

$$c_t ~=~ ar{E}_t \left[egin{array}{ccc} \delta_0 c_t ~+~ \delta_1 c_{t+1} ~+~ (1\!-\!\delta_0) heta_t \end{array}
ight]$$

where $\delta_0 \equiv \frac{1-\beta\sigma\phi\kappa}{1+\beta} < 1$, $\delta_1 \equiv \frac{\beta+\beta\sigma\kappa}{1+\beta} > 0$ and $\{\theta_t\}$ is a transformation of $\{\rho_t, \xi_t, \iota_t\}$

- NK economy = a game among consumers
 - ► individual best responses: $c_{i,t} = E_{i,t}[(1 \delta_0)\theta_t + \delta_0c_t + \delta_1c_{t+1}]$
 - game summarizes three GE feedbacks:

(1) income \leftrightarrow spending (2) output \leftrightarrow inflation (3) MP response

• MP "regulates" the game: different ϕ map to different (δ_0, δ_1) and different bite of beliefs

Fundamentals, Sunspots, and Equilibrium Definition

• State of nature, or infinite history, at t:

$$h^t = \{\theta_{t-k}, \eta_{t-k}\}_{k=0}^{\infty}$$

- $heta_t = ext{fundamental}, \ \eta_t = ext{sunspot}$
- here: both are i.i.d.; in paper: general stochasticity
- Equilibrium concept: linear, stationary, bounded REE
 - linear = MA representation

$$c_t = c(h^t) = \sum_{k=0}^{\infty} a_k \eta_{t-k} + \sum_{k=0}^{\infty} \gamma_k \theta_{t-k}$$

- bounded = $\sup_k \{|a_k|, |\gamma_k|\} < \infty$
- expectations rational but possibly based on limited info about h^t

Outline

1 Introduction

- 2 Preample: Flexible vs Rigid vs Sticky Prices
- 3 A simplified NK economy (and our game representation)

4 Standard paradigm

- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

Standard Paradigm

• FIRE: $E_{it}[\cdot] = \mathbb{E}_t^{\star}[\cdot] \equiv \mathbb{R} \mathbb{E}$ conditional on full information about h^t

• Since both c_t and θ_t are measurable in h^t

$$c_{t} = \bar{E}_{t} \left[\delta_{0} c_{t} + \delta_{1} c_{t+1} + (1 - \delta_{0}) \theta_{t} \right] \xrightarrow{\mathsf{FIRE}} c_{t} = \theta_{t} + \delta \mathbb{E}_{t}^{\star} \left[c_{t+1} \right]$$

 $\delta\equivrac{\delta_1}{1-\delta_0}=rac{1+\sigma\kappa}{1+\sigma\kappa\phi}>0~$ summarizes GE feedbacks under FIRE

• Fundamental or MSV (minimum state variable) solution:

$$c_t = c_t^F \equiv heta_t \quad (ext{e.g.}, \ c_t = -\sigma \iota_t)$$

• Is MSV the only REE? Depends on $\delta \leqslant 1$, or equivalently $\phi \gtrless 1$

Standard Paradigm

Proposition 1. FIRE

- When $\phi > 1$ (Taylor principle), the MSV solution, $c_t = c_t^F \equiv \theta_t$, is the unique equilibrium
- When $\phi < 1$, there exist a continuum of equilibria

$$c_t = (1-b)c_t^F + bc_t^B + ac_t^{\eta},$$

where $a, b \in \mathbb{R}$ are arbitrary scalars,

$$\underbrace{c_t^{\eta} \equiv \sum_{k=0}^{\infty} \delta^{-k} \eta_{t-k}}_{\text{sunspot eq.}} \quad \text{and} \underbrace{c_t^{B} \equiv -\sum_{k=1}^{\infty} \delta^{-k} \theta_{t-k}}_{\text{backward-looking, pseudo-fundamental eq.}}$$

Understanding the Multiplicity (when $\phi < 1,$ i.e. $\delta > 1)$

• Equilibrium condition:

$$c_{t-1} = \theta_{t-1} + \delta \mathbb{E}_{t-1}^{\star} [c_t]$$

• Solving backwards:

$$\begin{array}{lcl} \mathcal{C}_{t-1}^{\star}[c_t] &=& \delta^{-1}(c_{t-1} - \theta_{t-1}) \\ c_t &=& \delta^{-1}(c_{t-1} - \theta_{t-1}) + \eta_t \\ c_t &=& \underbrace{-\sum_{k=1}^{\infty} \delta^{-k} \theta_{t-k}}_{\text{backward-looking}} &+ \underbrace{\sum_{k=0}^{\infty} \delta^{-k} \eta_{t-k}}_{\text{sunspot}} \\ && \text{sunspot} \\ \end{array}$$

- Infinite chain: current agents respond to payoff-irrelevant histories because they expect future agents to do the same, ad infinitum
- What's next: small perturbations breaking this chain

F

Outline

1 Introduction

- 2 Preample: Flexible vs Rigid vs Sticky Prices
- 3 A simplified NK economy (and our game representation)
- 4 Standard paradigm
- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

Fading Social Memory

- At every t, a young consumer learns (θ_t, η_t)
- With prob. λ , she learns nothing more
- With prob. $1-\lambda$, she inherits the info of a random old consumer

Assumption. Fading Social Memory

For every i and t, information is given by

$$I_{i,t} = \{(\theta_t, \eta_t), \cdots, (\theta_{t-s_{i,t}}, \eta_{t-s_{i,t}})\},\$$

where $s_{i,t} \in \{0, 1, \dots\}$ is an idiosyncratic draw from a geometric distribution with $\lambda \in (0, 1)$.

Determinacy without the Taylor Principle

- For every k, mass who know past k shocks is $\mu_k \equiv (1 \lambda)^k$
- \bullet As $\lambda \to 0^+,$ almost all agents have arbitrarily long memory
 - ▶ also, nearly perfectly informed about $\{c_{t-k}, \pi_{t-k}\}_{k=0}^{K}$ for K finite but arbitrarily large
- But zero mass of agents has truly *infinite* memory
 - $\lim_{k\to\infty}\mu_k=0 \,\,\forall\,\,\lambda>0$

Determinacy without the Taylor Principle

- For every k, mass who know past k shocks is $\mu_k \equiv (1-\lambda)^k$
- As $\lambda \to 0^+,$ almost all agents have arbitrarily long memory
 - ▶ also, nearly perfectly informed about $\{c_{t-k}, \pi_{t-k}\}_{k=0}^{K}$ for K finite but arbitrarily large
- But zero mass of agents has truly *infinite* memory
 - $\lim_{k\to\infty}\mu_k=0 \,\,\forall\,\,\lambda>0$

Proposition 2. Determinacy without the Taylor Principle

With fading social memory, the MSV solution is the unique REE

- \bullet regardless of $\delta,$ or equivalently of ϕ (e.g., even with pegs)
- no matter how slow the memory decay is (i.e., how small $\lambda > 0$ is)

Proof Sketch

- Simplification (general proof in paper):
 - \blacktriangleright focus on coordination cross time (formally, let $\delta_0=0$ and $\delta_1=\delta)$
 - Focus on IRF of c_t to η_0 (let only shock be η_0) and look for solutions $c_t = a_t \eta_0$
- Equil. condition:

$$egin{array}{rcl} egin{array}{rcl} ec c_t &=& \delta ar E_t[c_{t+1}] \ &=& \delta ar E_t[a_{t+1}\eta_0] \ &=& \delta a_{t+1} m \mu_t \eta_0 \ &=& \delta m \mu_t \mathbb E_t^*[c_{t+1}] \end{array}$$

• Maps to "twin" FIRE economy with modified best response:

$$c_t = \delta \bar{E}_t [c_{t+1}] \longrightarrow c_t = \mu_t \delta \mathbb{E}_t^* [c_{t+1}]$$

- $\lim_{t \to \infty} \mu_t = 0 \Rightarrow \mu_T \delta < 1$ for T large enough \Rightarrow uniqueness after T
- By backward induction, uniqueness also before T

Logic

- Key idea: anticipation that social memory will fade
 - \implies perceived complementarity fades with horizon
 - \implies determinacy
- In simpler words:
 - I can see the current sunspot very clearly
 - > It would make sense to react if all future agents will keep responding to it in perpetuity
 - But I worry that agents far in the future will fail to do so
 - \star either because they will forget it
 - \star or because they may worry that agents further into the future will forget it
 - It therefore makes sense to ignore the sunspot

Outline

1 Introduction

- 2 Preample: Flexible vs Rigid vs Sticky Prices
- 3 A simplified NK economy (and our game representation)
- 4 Standard paradigm
- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

Robustness

• Criticism: sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- supported by "short" memory, $I_{i,t} = \{\eta_t, c_{t-1}\}$
- c_{t-1} serves as memory device/endogenous sunspot

Robustness

• Criticism: sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- ▶ supported by "short" memory, $I_{i,t} = \{\eta_t, c_{t-1}\}$
- ► c_{t-1} serves as memory device/endogenous sunspot
- Response: Fragility to perturbations that allow direct knowledge of past outcomes

Proposition 3

Such sunspot equil unravel with tiny idiosyncratic noise in observation of c_{t-1} (or π_{t-1}):

$$I_{i,t} = \{\eta_t, s_{i,t}\}, \qquad s_{i,t} = c_{t-1} + \varepsilon_{i,t}, \qquad \varepsilon_{i,t} \sim \mathcal{N}(0,\sigma)$$

Robustness

• Criticism: sunspot eq. can be represented in recursive form as

$$c_t = \eta_t + \delta^{-1} c_{t-1}.$$

- ▶ supported by "short" memory, $I_{i,t} = \{\eta_t, c_{t-1}\}$
- ► c_{t-1} serves as memory device/endogenous sunspot
- Response: Fragility to perturbations that allow direct knowledge of past outcomes

Proposition 3

Such sunspot equil unravel with tiny idiosyncratic noise in observation of c_{t-1} (or π_{t-1}):

$$I_{i,t} = \{\eta_t, s_{i,t}\}, \qquad s_{i,t} = c_{t-1} + \varepsilon_{i,t}, \qquad \varepsilon_{i,t} \sim \mathcal{N}(0,\sigma)$$

Proposition 4

Even with perfect knowledge of $\{c_{t-k}, \pi_{t-k}\}_{k=0}^{K}$, uniqueness provided K is finite and immediate forgetfulness of a tiny component of θ_{t-1}

Large Class of NK Economies: Same Results

• Intertemporal Keynesian cross (proper DIS):

$$y_{t} = c_{t} = \mathscr{C}\left(\left\{\bar{E}_{t}[y_{t+k}]\right\}_{k=0}^{\infty}, \left\{\bar{E}_{t}[i_{t+k} - \pi_{t+k+1}]\right\}_{k=0}^{\infty}\right) + \rho_{t}$$

• Standard NKPC or incomple-info variant:

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t^* \left[\pi_{t+1} \right] + \xi_t \qquad \text{or} \qquad \pi_t = \Pi \left(\left\{ \bar{\mathcal{E}}_t [y_{t+k}] \right\}_{k=0}^{\infty}, \left\{ \bar{\mathcal{E}}_t [\pi_{t+k}] \right\}_{k=0}^{\infty} \right)$$

• Monetary policy:

$$i_t = \iota_t + \phi_c c_t + \phi_\pi \pi_t + \dots$$

Proposition 5

With fading memory ($\lambda > 0$), the equilibrium is unique and is given by the MSV solution.

Feedback Rules and Policy Communication

- No need for equilibrium selection via Taylor principle
- No need to communicate
 - either "a threat to blow up interest rate" (Cochrane)
 - ▶ or "sophisticated" off-equilibrium policies (Atkeson, Chari & Kehoe)
- Use feedback rules merely for stabilization/replication of optimal contingencies

A New Take on Animal Spirits

• Despite unique equil, room for sunspot-like fluctuations via

- overreaction to noisy public news (Morris & Shin, 02)
- ▶ shocks to higher-order beliefs (Angeletos & La'O, 13, Benhabib et al, 15)
- bounded rationality (Angeletos & Sastry, 21)
- The slope of the Taylor rule admits a new function:
 - \blacktriangleright regulate complementarity / HOB / bounded rationality \Rightarrow
 - regulates magnitude of sunspot-like fluctuations along the unique equil
- TP recast as a form of stabilization instead equil selection

Fiscal Theory of Price Level (within NK model)

- textbook NK model = 3 equations (DIS+PC+MP)
- add 4th equation:

$$\frac{B_{t-1}}{P_t} = PVS_t$$

- Q: how is this equation satisfied? and does it matter for P_t , π_t and y_t ?
- **Conventional**: assume TP, fix P_t according to MSV, let PVS_t adjust
- **FTPL**: fiscal authority picks path for PVS_t , and path of P_t adjusts to it
 - ▶ fully coherent, does *not* require a threat to "blow up" gov budget (Bassetto, Cochrane)
 - breaks Ricardian equivalence "by force of equilibrium selection"
 - very different predictions at ZLB and more generally

Fiscal Theory of Price Level: Our Prism

Propositic	n	
Assume:	1. 2.	infinite horizons, individual optimality first-order knowledge of: Phillips curve, $Y = C$, and $B/P = PVS$
Then:	√ √	same game representation for c_t as when there is no gov gov debt and deficits are payoff irrelevant (sunspots)

Fiscal Theory of Price Level: Our Prism

Propositic	n	
Assume:	1. 2.	infinite horizons, individual optimality first-order knowledge of: Phillips curve, $Y = C$, and $B/P = PVS$
Then:	√ √	same game representation for c_t as when there is no gov gov debt and deficits are payoff irrelevant (sunspots)

• Corollary: eq. selected by FTPL is not robust to our perturbations

	Fiscal Policy is	
	Ricardian	Non-Ricardian
Taylor holds	Determinacy	No equilibrium
does not hold	Determinacy	No equilibrium

• Caveat: are our assumptions realistic? Even if not: FTPL = debt is a sunspot

Take-home Messages and Future Work

- General warning: as in global games, multiplicity can strike back with enough CK
- Still, our results
 - shed new light on NK indeterminacy
 - help bypass equil-selection conundrum
- Recast Taylor principle as stabilization instead equil selection
- Push FTPL outside the equilibrium selection logic
 - example 1: model MP-FP interaction as a game of chicken
 - ► example 2: model joint regulation of game/beliefs by MP and FP

Example 2: MP, FP, and Beliefs

- Perpetual youth OLG (survival rate ω) and rigid prices (for simplicity).
- MP and FP: $i_t = \iota_t + \phi y_t$ surpluses $t_t = s_t + \tau_b b_t + \tau_y y_t$
- Implied game among consumers:

$$c_{t} = \bar{E}_{t} \left[\theta_{t} + \left(\operatorname{mpc} \left(1 - \tau_{y} \frac{1 - \omega}{1 - \omega(1 - \tau_{b})} \right) - (1 - \operatorname{mpc}) \sigma \phi \right) \sum_{k=0}^{+\infty} \left(\beta \, \omega \right)^{k} c_{t+k} \right]$$

 $\theta_t \equiv (\iota_t, s_t, b_t)$ and mpc $\equiv 1 - \beta \omega$ c_t and π_t depend on HOB of $\theta_{t+k} \rightarrow$ beliefs of future interest rates and deficits

• Effective complementarity decreases with both ϕ and $\tau_y \implies$ more "active" policies complement each other in arresting sunspot-like beliefs

Outline

1 Introduction

- 2 Preample: Flexible vs Rigid vs Sticky Prices
- 3 A simplified NK economy (and our game representation)
- 4 Standard paradigm
- 5 Uniqueness with fading social memory
- 6 Extensions and applied lessons
- Relation to prior work on info frictions

"Fixing" the MSV solution

- Standard approach combines:
 - Ommon knowledge about sunspots / payoff-irrelevant history
 - ② Common knowledge about fundamentals / payoff-relevant future
- What we did so far: preserved (2), relaxed (1) \implies determinacy
- Complement: relax (2) \implies improve predictions of MSV solution
 - Woodford, Sims, Mankiw-Reis, Nimark, Mackowiac-Wiederholt ...
 - some of my own earlier work ...
 - different focus, but common thread: HOB anchored to steady state

"Fixing" the MSV solution (Angeletos & Huo, AER 2021)

• Start with a FIRE model:

 $x_t = \theta_t + \delta \mathbb{E}_t^{\star}[x_{t+1}]$

where $x_t = c_t, I_t, \pi_t$ or asset price_t

- Introduce noisy info and higher-order uncertainty (or, RI plus imperfect cognition)
- Main result: equivalent to FIRE plus two behavioral distortions:

$$x_t = heta_t + \omega_f \delta \mathbb{E}_t^{\star}[x_{t+1}] + \omega_b x_{t-1}$$

- $\omega_f < 1$ ("myopia") and $\omega_b > 0$ ("anchoring" or "momentum")
- ▶ myopia + habit in *C*, adj cost in *I*, hybrid NKPC, momentum in AP
- distortions increase with complementarity (e.g., liquidity frictions and slope of Keynesian cross in AD context, or fraction on short-run traders in AP context)
- disciplined by survey evidence on expectations (e.g., Coibion-Gorodnichenko)

Example: HANK meets HOB

Response of c_t to an MP shock

- Example from Angeletos & Huo "Myopia and Anchoring"
- See also Auclert et al "Micro Jumps and Macro Humps"

Frictions in Info/Coordination: Two Birds with One Stone

- Existing literature:
 - make standard solution more palatable empirically
 - reduce forward-guidance puzzle
 - add effects akin to habit in C, adjustment costs in I, or hybrid NKPC
- Our latest paper:
 - shed new light on NK indeterminacy issue
 - recast Taylor principle as stabilization
 - help push FTPL to new directions