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Systemic Risk and Stability in Financial Networks †

By Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi *

This paper argues that the extent of financial contagion exhibits a 
form of phase transition: as long as the magnitude of negative shocks 
affecting financial institutions are sufficiently small, a more densely 
connected financial network (corresponding to a more diversified 
pattern of interbank liabilities) enhances financial stability. 
However, beyond a certain point, dense interconnections serve as a 
mechanism for the propagation of shocks, leading to a more fragile 
financial system. Our results thus highlight that the same factors 
that contribute to resilience under certain conditions may function 
as significant sources of systemic risk under others. (JEL D85, E44, 
G21, G28, L14)

Since the global financial crisis of 2008, the view that the architecture of the 
financial system plays a central role in shaping systemic risk has become conven-
tional wisdom. The intertwined nature of the financial markets has not only been 
proffered as an explanation for the spread of risk throughout the system (see, e.g., 
Plosser 2009 and Yellen 2013), but also motivated many of the policy actions both 
during and in the aftermath of the crisis.1 Such views have even been incorporated 
into the new regulatory frameworks developed since.2 Yet, the exact role played by 
the financial system’s architecture in creating systemic risk remains, at best, imper-
fectly understood.

The current state of uncertainty about the nature and causes of systemic risk is 
reflected in the potentially conflicting views on the relationship between the structure 
of the financial network and the extent of financial contagion. Pioneering works by 

1 For an account of the policy actions during the crisis, see Sorkin (2009). 
2 An example of recent policy changes motivated by this perspective is the provision on “single counterparty 

exposure limits” in the Dodd-Frank Act, which attempts to prevent the distress at an institution from spreading to 
the rest of the system by limiting each firm’s exposure to any single counterparty. 
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Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000) suggested that a more 
interconnected architecture enhances the resilience of the system to the insolvency 
of any individual bank. Allen and Gale, for example, argue that in a more densely 
interconnected financial network, the losses of a distressed bank are divided among 
more creditors, reducing the impact of negative shocks to individual institutions on 
the rest of the system. In contrast to this view, however, others have suggested that 
dense interconnections may function as a destabilizing force, paving the way for 
systemic failures. For example, Vivier-Lirimont (2006) argues that as the number of 
a bank’s counterparties grows, the likelihood of a systemic collapse increases. This 
perspective is shared by Blume et al. (2011, 2013) who model interbank contagion 
as an epidemic.

In view of the conflicting perspectives noted above, this paper provides a frame-
work for studying the network’s role as a shock propagation and amplification 
mechanism. Though stylized, our model is motivated by a financial system in which 
different institutions are linked to one another via unsecured debt contracts and 
hence are susceptible to counterparty risk. Our setup enables us to provide a number 
of theoretical results that highlight the implications of the network’s structure on the 
extent of financial contagion and systemic risk.3

More concretely, we focus on an economy consisting of ​n​ financial institutions 
that lasts for three periods. In the initial period, banks borrow funds from one 
another to invest in projects that yield returns in both the intermediate and final 
periods. The liability structure that emerges from such interbank loans determines 
the financial network. In addition to its commitments to other financial institutions, 
each bank also has to make other payments with respect to claims that are senior to 
those of other banks. These claims may correspond to payments due to retail depos-
itors or other types of commitments such as wages, taxes, or claims by other senior 
creditors. We assume that the returns in the final period are not pledgeable, so all 
debts have to be repaid in the intermediate period. Thus, a bank whose short-term 
returns are below a certain level may have to liquidate its project prematurely (i.e., 
before the final period returns are realized). If the proceeds from liquidations are 
insufficient to pay all its debts, the bank defaults. Depending on the structure of the 
financial network, this may then trigger a cascade of failures: the default of a bank 
on its debt may cause the default of its creditor banks on their own counterparties, 
and so on.

The main focus of the paper is to study the extent of financial contagion as a func-
tion of the structure of interbank liabilities. By generalizing the results of Eisenberg 
and Noe (2001), we first show that, regardless of the structure of the financial net-
work, a payment equilibrium—consisting of a mutually consistent collection of 
asset liquidations and repayments on interbank loans—always exists and is generi-
cally unique.

We then characterize the role of the structure of the financial network on the 
resilience of the system. To start with, we restrict our attention to regular financial 
networks in which the total claims and liabilities of all banks are equal. Such a nor-
malization guarantees that any variation in the fragility of the system is due to the 

3 The stylized nature of our model notwithstanding, we refer to our network as a “financial network” and to its 
comprising entities as “financial institutions” or “banks” for ease of terminology. 
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financial network’s structure rather than any heterogeneity in size or leverage among 
banks.

Our first set of results shows that when the magnitude of negative shocks is below 
a certain threshold, a result similar to those of Allen and Gale (2000) and Freixas, 
Parigi, and Rochet (2000) holds: a more diversified pattern of interbank liabilities 
leads to a less fragile financial system. In particular, the complete financial network, 
in which the liabilities of each institution are equally held by all other banks, is the 
configuration least prone to contagious defaults. At the opposite end of the spec-
trum, the ring network—a configuration in which all liabilities of a bank are held 
by a single counterparty—is the most fragile of all financial network structures. The 
intuition underlying these results is simple: a more diversified pattern of interbank 
liabilities guarantees that the burden of any potential losses is shared among more 
counterparties. Hence, in the presence of relatively small shocks, the excess liquidity 
of the non-distressed banks can be efficiently utilized in forestalling further defaults.

Our next set of results shows that as the magnitude or the number of negative 
shocks crosses certain thresholds, the types of financial networks that are most prone 
to contagious failures change dramatically. In particular, a more interconnected net-
work structure is no longer a guarantee for stability. Rather, in the presence of large 
shocks, highly diversified lending patterns facilitate financial contagion and create a 
more fragile system. On the other hand, “weakly connected” financial networks—in 
which different subsets of banks have minimal claims on one another—are signifi-
cantly less fragile.4 The intuition underlying such a sharp phase transition is that, 
with large negative shocks, the excess liquidity of the banking system may no lon-
ger be sufficient for absorbing the losses. Under such a scenario, a less diversified 
lending pattern guarantees that the losses are shared with the senior creditors of the 
distressed banks, protecting the rest of the system.

Our results thus confirm a conjecture of  Haldane (2009, pp. 9–10), the Executive 
Director for Financial Stability at the Bank of England, who suggested that highly 
interconnected financial networks may be “robust-yet-fragile” in the sense that 
“within a certain range, connections serve as shock-absorbers [and] connectivity 
engenders robustness.” However, beyond that range, interconnections start to serve 
as a mechanism for the propagation of shocks, “the system [flips to] the wrong side 
of the knife-edge,” and fragility prevails. More broadly, our results highlight that the 
same features that make a financial system more resilient under certain conditions 
may function as sources of systemic risk and instability under others.

In addition to illustrating the role of the network structure on the stability of the 
financial system, we introduce a new notion of distance over the financial network, 
called the harmonic distance, which captures the susceptibility of each bank to the 
distress at any other. We show that, in the presence of large shocks, all banks whose 
harmonic distances to a distressed bank are below a certain threshold default. This 
characterization shows that, in contrast to what is often presumed in the empirical 
literature, various off-the-shelf (and popular) measures of network centrality—such 
as eigenvector or Bonacich centralities—may not be the right notions for identifying 

4 Such weakly connected financial networks are somewhat reminiscent of the old-style unit banking system, in 
which banks within a region are only weakly connected to the rest of the financial system, even though intra-region 
ties might be strong. 
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systemically important financial institutions. Rather, if the interbank interactions 
exhibit non-linearities similar to those induced by the presence of unsecured debt 
contracts, then it is the bank closest to all others according to our harmonic distance 
measure that may be “too-interconnected-to-fail.”

Related Literature.—Our paper is part of a recent but growing literature that 
focuses on the role of the architecture of the financial system as an amplification 
mechanism. Kiyotaki and Moore (1997); Allen and Gale (2000); and Freixas, 
Parigi, and Rochet (2000) provided some of the first formal models of contagion 
over networks. Using a multi-region version of Diamond and Dybvig’s (1983) 
model, Allen and Gale, for example, show that the interbank relations that emerge 
to pool region-specific shocks may at the same time create fragility in response to 
unanticipated shocks.5 Dasgupta (2004) studies how the cross-holdings of deposits 
motivated by imperfectly correlated regional liquidity shocks can lead to contagious 
breakdowns. Shin (2008, 2009), on the other hand, constructs an accounting frame-
work of the financial system as a network of interlinked balance sheets. He shows 
that securitization enables credit expansion through greater leverage of the financial 
system as a whole, drives down lending standards, and hence increases fragility.

More recently, Allen, Babus, and Carletti (2012) have argued that the pattern of 
asset commonalities between different banks determines the extent of information 
contagion and hence, the likelihood of systemic crises. Also related is the work of 
Castiglionesi, Feriozzi, and Lorenzoni (2012), who show that a higher degree of 
financial integration leads to more stable interbank interest rates in normal times, 
but to larger interest rate spikes during crises. None of the above papers, however, 
provides a comprehensive analysis of the relationship between the structure of the 
financial network and the likelihood of systemic failures due to contagion of coun-
terparty risk.6

Our paper is also related to several recent, independent works, such as Elliott, 
Golub, and Jackson (2014) and Cabrales, Gottardi, and Vega-Redondo (2014), 
that study the broad question of propagation of shocks in a network of firms with 
financial interdependencies. These papers, however, focus on a contagion mecha-
nism different from ours. In particular, they study whether and how cross-holdings 
of different organizations’ shares or assets may lead to cascading failures. Elliott, 
Golub, and Jackson (2014) consider a model with cross-ownership of equity shares 
and show that in the presence of bankruptcy costs, a firm’s default may induce 
losses on all firms owning its equity, triggering a chain reaction. On the other hand, 
Cabrales, Gottardi, and Vega-Redondo (2014) study how securitization—modeled 

5 Allen and Gale also note that compared to a four-bank ring network, a pairwise-connected (and thus overall 
disconnected) network can be less prone to financial contagion originating from a single shock. Their paper, how-
ever, does not contain any of our results on the central role played by the size of the shocks in the fragility of the 
system and the phase transition of highly interconnected networks. 

6 Other related contributions include Rochet and Tirole (1996); Cifuentes, Ferrucci, and Shin (2005); Leitner 
(2005); Nier et al. (2007); Rotemberg (2011); Zawadowski (2011); Battiston et al. (2012); Gofman (2011, 2014); 
Caballero and Simsek (2013); Georg (2013); Cohen-Cole, Patacchini, and Zenou (2013); Denbee et al. (2014); 
Di Maggio and Tahbaz-Salehi (2014); and Amini, Cont, and Minca (2013). For a more detailed discussion of the 
literature, see the survey by Allen and Babus (2009). A more recent and smaller literature focuses on the formation 
of financial networks. Examples include Babus (2013); Zawadowski (2013); and Farboodi (2014); as well as the 
working paper version of the current work (Acemoglu, Ozdaglar, and Tahbaz-Salehi 2013). For empirical evidence 
on interbank contagion, see Iyer and Peydró (2011).
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as exchange of assets among firms—may lead to the instability of the financial sys-
tem as a whole. Our work, in contrast, focuses on the likelihood of systemic failures 
due to contagion of counterparty risk.

Focusing on financial contagion through direct contractual linkages, Alvarez and 
Barlevy (2014) use a model similar to ours to study the welfare implications of 
a policy of mandatory disclosure of information in the presence of counterparty 
risk. Glasserman and Young (2015) also rely on a similar model, but rather than 
characterizing the fragility of the system as a function of the financial network’s 
structure, they provide a network-independent bound on the probability of financial 
contagion.7 Our paper is also related to Eboli (2013), who studies the extent of 
contagion in some classes of networks. In contrast to our paper, his focus is on the 
indeterminacy of interbank payments in the presence of cyclical entanglement of 
assets and liabilities.8

Gai, Haldane, and Kapadia (2011) also study a network model of interbank lend-
ing with unsecured claims. Using numerical simulations, they show how greater 
complexity and concentration in the financial network may amplify the fragility of 
the system.

The role of the networks as shock propagation and amplification mechanisms has 
also been studied in the context of production relations in the real economy. Focusing 
on the input-output linkages between different sectors, Acemoglu et al. (2012) and 
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014) show that in the presence of linear 
(or log-linear) economic interactions, the volatility of aggregate output and the like-
lihood of large economic downturns are independent of the sparseness or denseness 
of connections, but rather depend on the extent of asymmetry in different entities’ 
interconnectivity. The contrast between the insights on propagation of shocks in 
production economies with (log) linear interactions and those in the presence of 
default (due to debt-like financial instruments) presented in this paper highlights 
that the role of networks in contagion crucially depends on the nature of economic 
interactions between different entities that constitute the network.

Outline of the Paper.—The rest of the paper is organized as follows. Our model 
is presented in Section I. In Section II, we define our solution concept and show 
that a payment equilibrium always exists and is generically unique. Section III con-
tains our results on the relationship between the extent of financial contagion and 
the network structure. Section IV concludes. A discussion on the properties of the 
harmonic distance and the proofs are presented in the Appendix, while an online 
Appendix contains several omitted proofs.

7 In addition to focusing on different questions, the liability structures of the financial institutions are also dif-
ferent in the two papers. In particular, due to the absence of the outside senior claims, the model of Glasserman and 
Young (2015) imposes an implicit upper bound on the size of the negative shocks, essentially limiting the extent 
of contagion. 

8 A different strand of literature studies the possibility of indirect spillovers in the financial markets. In par-
ticular, rather than taking place through direct contractual relations as in our paper, the amplification mechanisms 
studied in this literature work through the endogenous responses of various market participants. Examples include 
Holmström and Tirole (1998); Brunnermeier and Pedersen (2005); Lorenzoni (2008); and Krishnamurthy (2010). 
For a recent survey, see Brunnermeier and Oehmke (2013). 
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I.  Model

A. Financial Institutions

Consider a single-good economy, consisting of ​n​ risk-neutral banks indexed by ​
  =  {1, 2,  … , n}​. The economy lasts for three periods, ​t  =  0, 1, 2​. At the initial 
period, each bank ​i​ is endowed with ​​k​ i​​​ units of capital that it can either hoard as cash 
(denoted by ​​c​i​​​), lend to other banks, or invest in a project that yields returns in the 
intermediate and final periods. More specifically, bank ​i​’s project yields a random 
return of ​​z​i​​​ at ​t  =  1​ , and if held to maturity, a fixed, non-pledgeable long-term 
return of ​A​ at ​t  =  2​. The bank can (partially) liquidate its project at ​t  =  1​ , but can 
only recover a fraction ​ζ  <  1​ of the project’s full value. This assumption is moti-
vated by the fact that rapid liquidation of real and financial assets on banks’ balance 
sheets may be costly.9

Interbank lending takes place through standard debt contracts signed at ​t  =  0​. 
Let ​​k​ ij​​​ denote the amount of capital borrowed by bank ​j​ from bank ​i​. The face value 
of ​j​’s debt to ​i​ is thus equal to ​​y​ij​​  = ​ R​ij​​ ​k​ ij​​​ , where ​​R​ij​​​ is the corresponding interest 
rate.10 In addition to its liabilities to other banks, each bank must also meet an out-
side obligation of magnitude ​v  >  0​ at ​t  =  1​ , which is assumed to have seniority 
relative to its other liabilities. These more senior commitments may be claims by 
the bank’s retail depositors, wages due to its workers, taxes due to the government, 
or secured claims by non-bank financial institutions such as money market funds.11 
The sum of liabilities of bank ​i​ is thus equal to ​​y​i​​ + v​ , where ​​y​i​​  = ​ ∑ j≠i​ ​​  ​y​ ji​​​.12

Given the assumption that long-term returns are not pledgeable, all debts have 
to be cleared at ​t  =  1​. If bank ​j​ is unable to meet its ​t  =  1​ liabilities in full, it has 
to liquidate its project prematurely (in part or in full), where the proceeds are dis-
tributed among its creditors. We assume that all junior creditors—that is, the other 
banks—are of equal seniority. Hence, if bank ​j​ can meet its senior liabilities, ​v​ , but 
defaults on its debt to the junior creditors, they are repaid in proportion to the face 
value of the contracts. On the other hand, if ​j​ cannot meet its more senior outside 
liabilities, its junior creditors receive nothing.

B. The Financial Network

The lending decisions of the banks and the resulting counterparty relations can 
be represented by an interbank network. In particular, we define the financial net-
work corresponding to the bilateral debt contracts in the economy as a weighted, 

9 This can be either due to inefficient abandonment of ongoing projects or due to the fact that rapid liquidation 
of financial assets may happen at depressed prices (e.g., in fire sales). Furthermore, during bankruptcy, the liabilities 
of the institution may be frozen and its creditors may not immediately receive payment, leading to an effectively 
small ​ζ​. 

10 In this version of the paper, we take the interbank lending decisions and the corresponding interest rates as 
given, and do not formally treat the banks’ actions at ​t  =  0​. This stage of the game is studied in detail in the work-
ing paper version of this article Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013). 

11 Money market funds, for example, are among the most major creditors in the repo market, in which lending 
is collateralized, making them de facto more senior than all other creditors (Bolton and Oehmke forthcoming). 

12 This formulation also allows for liabilities to outside financial institutions that have the same level of seniority 
as interbank loans by simply setting one of the banks, say bank ​n​ , to have claims but no inside-the-network liabil-
ities, i.e., ​​y​in​​  =  0​ for all ​i  ≠  n .​ 
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directed graph on ​n​ vertices, where each vertex corresponds to a bank and a directed 
edge from vertex ​j​ to vertex ​i​ is present if bank ​i​ is a creditor of bank ​j​. The weight 
assigned to this edge is equal to ​​y​ij​​​ , the face value of the contract between the two 
banks. Throughout the paper, we denote a financial network with the collection of 
interbank liabilities ​{​y​ij​​}​.

We say a financial network is symmetric if ​​y​ij​​  = ​ y​ ji​​​ for all pairs of banks ​i​ and ​j​. 
On the other hand, a financial network is said to be regular if all banks have identical 
interbank claims and liabilities; i.e., ​​∑ j≠i​ ​​  ​y​ij​​  = ​ ∑ j≠i​ ​​  ​y​ ji​​  =  y​ for some ​y​ and all 
banks ​i​. Panels A and B of Figure 1 illustrate two regular financial networks, known 
as the ring and the complete networks, respectively. The ring financial network rep-
resents a configuration in which bank ​i  >  1​ is the sole creditor of bank ​i − 1​ and 
bank ​1​ is the sole creditor of bank ​n​ ; that is, ​​y​i, i−1​​  = ​ y​1, n​​  =  y​. Hence, for a given 
value of ​y​ , the ring network is the regular financial network with the sparsest con-
nections. In contrast, in the complete network, the liabilities of each bank are held 
equally by all others; that is, ​​y​ij​​  =  y/(n − 1)​ for all ​i  ≠  j​ , implying that the inter-
bank connections in such a network are maximally dense.

Finally, we define,

Definition 1: The financial network ​{​​y ̃ ​​ij​​}​ is a ​γ​ -convex combination of financial 
networks ​{​y​ij​​}​ and ​{​​y ̂ ​​ij​​}​ if there exists ​γ  ∈  [0, 1]​ such that ​​​y ̃ ​​ij​​  =  (1 − γ)​y​ij​​ + γ   ​​y ̂ ​​ij​​​ 
for all banks ​i​ and ​j​.

Thus, for example, a financial network that is a ​γ​  -convex combination of the ring 
and the complete financial networks exhibits an intermediate degree of density of 
connections: as ​γ​ increases, the financial network approaches the complete financial 
network.

II.  Payment Equilibrium

The ability of a bank to fulfill its promises to its creditors depends on the resources 
it has available to meet those liabilities, which include not only the returns on its 
investment and the cash at hand, but also the realized value of repayments by the 
bank’s debtors. In this section, we show that a mutually consistent collection of 
repayments on interbank loans and asset liquidations always exists and is generi-
cally unique.

Let ​​x​ js​​​ denote the repayment by bank ​s​ on its debt to bank ​j​ at ​t  =  1​. By defini-
tion, ​​x​ js​​  ∈  [0, ​y​ js​​]​. The total cash flow of bank ​j​ when it does not liquidate its project 
is thus equal to ​​h​ j​​  = ​ c​ j​​ + ​z​ j​​ + ​∑ s≠j​ ​​  ​x​ js​​​ , where ​​c​ j​​​ is the cash carried over by the 
bank from the initial period. If ​​h​ j​​​ is larger than the bank’s total liabilities, ​v + ​y​ j​​​ , 
then the bank is capable of meeting its liabilities in full, and as a result, ​​x​ ij​​  = ​ y​ij​​​ for 
all ​i  ≠  j​. If, on the other hand, ​​h​ j​​  <  v + ​y​ j​​​ , the bank needs to start liquidating its 
project in order to avoid default. Given that liquidation is costly, the bank liquidates 
its project up to the point where it can cover the shortfall ​v + ​y​ j​​ − ​h​ j​​​ , or otherwise 
in its entirety to pay back its creditors as much as possible. Mathematically, the 
bank’s liquidation decision, ​​ℓ​ j​​  ∈  [0, A]​ , is given by

(1)	​ ​ℓ​ j​​  = ​​ [​min​ 
 
​ 

 
 ​​ {​ 1 _ ζ ​(v + ​y​ j​​ − ​h​ j​​), A}​]​​​ 

+

​, ​
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where ​​[ ⋅ ]​​ +​​ stands for ​max ​{ ⋅ , 0}​​ and guarantees that the bank does not liquidate its 
project if it can meet its liabilities with a combination of the cash it holds, the short-
term return on its project, and the repayment by its debtor banks.

If the bank cannot pay its debts in full even with the full liquidation of its project, 
it defaults and its creditors are repaid according to their seniority. If ​​h​ j​​ + ζA​ is less 
than ​v​ , the bank defaults on its senior liabilities and its junior creditors receive noth-
ing; that is, ​​x​ ij​​  =  0​. On the other hand, if ​​h​ j​​ + ζA  ∈  (v, v + ​y​ j​​)​ , senior liabilities 
are paid in full and the junior creditors are repaid in proportion to the face value of 
their contracts. Thus, the ​t  =  1​ payment of bank ​j​ to a creditor bank ​i​ is equal to

(2)	​ ​x​ ij​​  = ​ 
​y​ij​​ __ ​y​ j​​ ​ ​​[min​{​y​ j​​, ​h​ j​​ + ζ  ​ℓ​ j​​ − v}​]​​​ 

+
​, ​

where recall that ​​h​ j​​  = ​ c​ j​​ + ​z​ j​​ + ​∑ s≠j​ ​​ ​x​ js​​​ denotes the funds available to the bank 
in the absence of any liquidation and ​​ℓ​ j​​​ is its liquidation decision given by (1). 
Thus, equations (1) and (2) together determine the liquidation decision and the debt 
repayments of bank ​j​ as a function of its debtors’ repayments on their own liabilities.

Definition 2: For a given realization of the projects’ short-term returns and the 
cash available to the banks, the collection ​({​x​ ij​​}, {​ℓ​i​​})​ of interbank debt repayments 
and liquidation decisions is a payment equilibrium of the financial network if (1) 
and (2) are satisfied for all ​i​ and ​j​ simultaneously.

A payment equilibrium is thus a collection of mutually consistent interbank pay-
ments and liquidations at ​t  =  1​. The notion of payment equilibrium in our model is 
a generalization of the notion of a clearing vector introduced by Eisenberg and Noe 
(2001) and utilized by Shin (2008, 2009). In contrast to these papers, banks in our 
model not only have financial liabilities of different seniorities, but also can obtain 
extra proceeds by (partially or completely) liquidating their long-term projects.

1

2

3

n
y

y
n−1

Panel A. The ring �nancial network Panel B. The complete �nancial network

Figure 1. The Ring and the Complete Financial Networks
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Via equations (1) and (2), the payment equilibrium captures the possibility of 
financial contagion in the financial system. In particular, given the interdependence 
of interbank payments across the network, a (sufficiently large) negative shock to a 
bank not only leads to that bank’s default, but may also initiate a cascade of failures, 
spreading to its creditors, its creditors’ creditors, and so on. The next proposition 
shows that, regardless of the structure of the financial network, the payment equilib-
rium always exists and is uniquely determined over a generic set of parameter values 
and shock realizations.13

Proposition 1: For any given financial network, cash holdings, and realization 
of shocks, a payment equilibrium always exists and is generically unique.

Finally, for any given financial network and the corresponding payment equi-
librium, we define the (utilitarian) social surplus in the economy as the sum of the 
returns to all agents; that is,

	​ u  = ​  ∑ 
i=1

​ 
n

  ​​(​π​i​​ + ​T​ i​​),​

where ​​T​ i​​  ≤  v​ is the transfer from bank ​i​ to its senior creditors and ​​π​i​​​ is the bank’s 
profit.

III.  Financial Contagion

As discussed above, the interdependence of interbank payments over the network 
implies that distress at a single bank may induce a cascade of defaults throughout 
the financial system. In this section, we study how the structure of the financial net-
work determines the extent of contagion.

For most of our analysis, we focus on regular financial networks in which the 
total claims and liabilities of all banks are equal. Such a normalization guarantees 
that any variation in the fragility of the system is simply due to how interbank liabil-
ities are distributed, while abstracting away from effects that are driven by other fea-
tures of the financial network, such as size or leverage heterogeneity across banks.14

To simplify the analysis and the exposition of our results, we also assume that the 
short-term returns on the banks’ investments are i.i.d. and can only take two values ​​
z​i​​  ∈  {a, a − ϵ}​ , where ​a  >  v​ is the return in the “business as usual” regime and ​
ϵ  ∈  (a − v + ζA, a)​ corresponds to the magnitude of a negative shock. The upper 
bound on ​ϵ​ simply implies that the return of the project is always positive, whereas 
the lower bound guarantees that absent any payments by other banks, a “distressed 

13 As we show in the proof of Proposition 1, in any connected financial network, the payment equilibrium is 
unique as long as ​​∑ j=1​ 

n  ​​(​z​ j​​ + ​c​ j​​)  ≠  nv − nζA​. In the non-generic case in which ​​∑ j=1​ 
n  ​​(​z​ j​​ + ​c​ j​​)  =  nv − n ζ  A​ , 

there may exist a continuum of payment equilibria, in almost all of which banks default due to “coordination 
failures.” For example, if the economy consists of two banks with ​​c​1​​  = ​ c​2​​  =  v​ , bilateral contracts of face values ​​
y​12​​  = ​ y​21​​​ , no shocks and no proceeds from liquidation (that is, ​ζ  =  0​ ), then defaults can occur if banks do not pay 
one another, even though both are solvent. See Alvarez and Barlevy (2014) for a similar characterization in financial 
networks with some weak form of symmetry. 

14 For example, Acemoglu et al. (2012) show that asymmetry in the degree of interconnectivity of different 
industries as input suppliers in the real economy plays a crucial role in the propagation of shocks. 
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bank”—that is, a bank directly hit by the negative shock—would not be able to pay 
its senior creditors. Finally, in what follows we assume that all banks hold the same 
amount of cash, which we normalize to zero.

Proposition 2: Conditional on the realization of ​p​ negative shocks, the social 
surplus in the economy is equal to

	​ u  =  n(a + A) − pϵ − ​(1 − ζ )​ ​ ∑ 
i=1

​ 
n

  ​​ ​ℓ​i​​ .​

As expected, the social surplus is decreasing in the extent of liquidation in the 
corresponding payment equilibrium. In particular, in the case that proceeds from 
liquidation are “trivial,”  that is, ​ζ  =  0​ , the social surplus is simply determined by 
the number of bank failures, that is,15

	​ u  =  na − pϵ + (n −  # defaults)A .​

Under this assumption, it is natural to measure the performance of a financial net-
work in terms of the number of banks in default.

Definition 3: Consider two regular financial networks ​{​y​ij​​}​ and ​{​​y ̃ ​​ij​​}​. Conditional 
on the realization of ​p​ negative shocks,

	 (i)	 ​{​y​ij​​}​ is more stable than ​{​​y ̃ ​​ij​​}​ if ​​E​ p​​ u  ≥ ​ E​ p​​ ​u ̃ ​​ , where ​​E​ p​​​ is the expectation 
conditional on the realization of ​p​ negative shocks.

	 (ii)	 ​{​y​ij​​}​ is more resilient than ​{​​y ̃ ​​ij​​}​ if ​min u  ≥  min ​u ̃ ​​ , where the minimum is 
taken over all possible realizations of ​p​ negative shocks.

Stability and resilience capture the expected and worst-case performances of the 
financial network in the presence of ​p​ negative shocks, respectively. Clearly, both 
measures of performance not only depend on the number (   ​p​) and the size (​ϵ​) of 
the realized shocks, but also on the structure of the financial network. To illustrate 
the relation between the extent of financial contagion and the network structure in 
the most transparent manner, we initially assume that exactly one bank is hit with a 
negative shock and that the proceeds from liquidations are trivial, i.e., ​p  =  1​ and ​
ζ  =  0​. We relax these assumptions in Sections IIID and IIIE.

A. Aggregate Interbank Liabilities

Our first result formalizes the often-made claim that the size of interbank lia-
bilities in the financial system is linked to the likelihood of financial contagion. In 
particular, it shows that increasing all pairwise financial liabilities by the same factor 

15 Here ​ζ  =  0​ stands for ​ζ  →  0​ , since in the limit where ​ζ  =  0​ there is no economic reason for liquidation 
and in fact, equation (1) is not well-defined. 
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leads to a more fragile system, regardless of the structure of the original financial 
network.

Proposition 3: For a given regular financial network ​{​y​ij​​}​ , let ​​​y ̃ ​​ij​​  =  β ​y​ij​​​ for all ​
i  ≠  j​ and some constant ​β  >  1​. Then, financial network ​{​​y ̃ ​​ij​​}​ is less stable and 
resilient than ​{​y​ij​​}​.

In other words, an increase in interbank lending comes at a cost in terms of finan-
cial stability. The intuition for this result is simple: larger liabilities raise the expo-
sure of each bank to the potential distress at its counterparties, hence facilitating 
contagion.

B. Small Shock Regime

We now characterize the fragility of different financial networks when the size of 
the negative shock is less than a critical threshold.

Proposition 4: Let ​​ϵ​​ ∗​  =  n(a − v)​ and suppose that ​ϵ  < ​ ϵ​​ ∗​​. Then, there exists ​​
y​​ ∗​​ such that for ​y  > ​ y​​ ∗​​ ,

	 (i)	 The ring network is the least resilient and least stable financial network.

	 (ii)	 The complete network is the most resilient and most stable financial network.

	 (iii)	 The ​γ​-convex combination of the ring and complete networks becomes 
(weakly) more stable and resilient as ​γ​ increases.

The above proposition thus establishes that as long as the size of the negative 
shock is below the critical threshold ​​ϵ​​ ∗​​ , the ring is the financial network most 
prone to financial contagion, whereas the complete network is the least fragile. 
Furthermore, a more equal distribution of interbank liabilities leads to less fra-
gility. Proposition 4 is thus in line with, and generalizes, the observations made 
by Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000). The underly-
ing intuition is that a more diversified pattern of interbank liabilities implies that 
the burden of any potential losses is shared among more banks, creating a more 
robust financial system. In particular, in the extreme case of the complete financial 
network, the losses of a distressed bank are divided among as many creditors as 
possible, guaranteeing that the excess liquidity in the financial system can fully 
absorb the transmitted losses. On the other hand, in the ring financial network, 
the losses of the distressed bank—rather than being divided up between multiple 
counterparties—are fully transferred to its immediate creditor, leading to the cred-
itor’s possible default.

The condition that ​ϵ  < ​ ϵ​​ ∗​​ means that the size of the negative shock is less than the 
total “excess liquidity” available to the financial network as a whole.16 Proposition 4 

16 Recall that in the absence of any shock, ​a − v​ is the liquidity available to each bank after meeting its liabili-
ties to the senior creditors outside the network. 
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also requires that interbank liabilities (and claims) are above a certain threshold ​​y​​ ∗​​ , 
which is natural given that for small values of ​y​ , no contagion would occur, regard-
less of the structure of financial network.

The extreme fragility of the ring financial network established by Proposition 4 
is in contrast with the results of Acemoglu et al. (2012) and Acemoglu, Ozdaglar, 
and Tahbaz-Salehi (2014), who show that if the interactions over the network are 
linear (or log linear), the ring is as stable as any other regular network structure. This 
contrast reflects the fact that, with linear interactions, negative and positive shocks 
cancel each other out in exactly the same way, independently of the structure of the 
network. However, the often nonlinear nature of financial interactions (captured in 
our model by the presence of unsecured debt contracts) implies that the effects of 
negative and positive shocks are not necessarily symmetric. Stability and resilience 
are thus achieved by minimizing the impact of distress at any given bank on the rest 
of the system. The ring financial network is highly fragile precisely because the 
adverse effects of a negative shock to any bank are fully transmitted to the bank’s 
immediate creditor, triggering maximal financial contagion. In contrast, a more 
diversified pattern of interbank liabilities reduces the impact of a bank’s distress on 
any single counterparty.

Our next result shows that this intuition extends to a broad set of network struc-
tures. We first introduce a class of transformations that lead to a more diversified 
pattern of interbank liabilities.

Definition 4: For two given subsets of banks ​​ and ​​ , the financial network 
​{​​y ̃ ​​ij​​}​ is an ​(, , P)​-majorization of the regular financial network ​{​y​ij​​}​ if

	​​​ y ̃ ​​ij​​​  = ​​
{

​
​ ∑ 
k∉

​ 
 
 ​​ ​ p​ik​​ ​y​kj​​

​ 
if i ∉ , j ∈ 

​   
​y​ij​​

​ 
if i, j ∈ 

 ​​​  ,

where ​P​ is a doubly stochastic matrix of the appropriate size.17

Following such a transformation, the liabilities of banks in ​​ to one another 
remain unchanged, while the liabilities of banks in ​​ to banks in the complement 
of ​​ (denoted by ​​​​ c​​) become more evenly distributed. This is due to the fact that 
premultiplication of a submatrix of liabilities by a doubly stochastic matrix ​P​ cor-
responds to a mixing of those liabilities. Note also that Definition 4 does not put 
any restrictions on the liabilities of banks in ​​​​ c​​ to those in ​​ or on those of banks 
in ​​​​ c​​ to one another—beyond the fact that the resulting financial network ​{​​y ̃ ​​ij​​}​ has 
to remain regular. Thus, the ​(, , P)​  -majorization of a financial network is not 
necessarily unique. Note further that this transformation is distinct from a ​γ​  -convex 
combination with the complete network, according to which the liabilities of all 
banks become more equally distributed.

17 A square matrix is said to be doubly stochastic if it is element-wise nonnegative and each of whose rows and 
columns add up to 1. 
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Proposition 5: Suppose that ​ϵ  < ​ ϵ​​ ∗​​ and ​y  > ​ y​​ ∗​​. For a given financial network, 
let ​​ denote the set of banks in default and suppose that the distressed bank can 
meet its liabilities to its senior creditors. Then, any ​(, , P)​-majorization of the 
financial network does not increase the number of defaults.18

The intuition behind this result is similar to that of Proposition 4: a transformation 
of a financial network that spreads the financial liabilities of banks in default to the 
rest of the system guarantees that the excess liquidity available to the non-distressed 
banks are utilized more effectively. In the presence of small enough shocks, this 
can never lead to more defaults. An immediate corollary to this proposition extends 
Proposition 4 to the ​γ​  -convex combination of a given network with the complete 
network.

Corollary 1: Suppose that ​ϵ  < ​ ϵ​​ ∗​​ and ​y  > ​ y​​ ∗​​. If there is no contagion in a 
financial network, then there is no contagion in any ​γ​  -convex combination of that 
network and the complete network.

Our results thus far show that as long as ​ϵ  < ​ ϵ​​ ∗​​ , a more uniform distribution 
of interbank liabilities, formalized by the notions of convex combinations and 
majorization transformations, can never increase the fragility of an already stable 
financial network. Our next example, however, illustrates that not all transforma-
tions that equalize interbank liabilities lead to a less fragile system.

Example.—Consider the financial network depicted in Figure 2, in which inter-
bank liabilities are given by

	​ ​y​i, i+1​​  = ​ y​i+1, i​​  =​ ​​ {​
qy

​ 
if i odd

​  (1 − q)y​ 
if i even

​​​  ,

where ​1/2  ≤  q  <  1​ and ​y  > ​ y​​ ∗​​ ; i.e, the financial network consists of pairs of 
interconnected banks located on a ring-like structure, with weaker inter-pair liabili-
ties. The liabilities of a given bank ​i​ to banks ​i − 1​ and ​i + 1​ become more equal-
ized as ​q​ approaches ​1/2​.

Now suppose that bank 1 is hit with a negative shock of size ​ϵ = (3 + ω)(a − v)​ 
for some small ​ω  >  0​. If ​q  =  1/2​ , then, by symmetry, banks 1, 2, and ​n​ cannot 
meet their liabilities in full, and in particular, banks 2 and ​n​ default due to a small 
shortfall of size ​ω(a − v)​. However, given that ​n​ is just at the verge of solvency, 
increasing ​q​ slightly above ​1/2​ guarantees that bank ​n​ no longer defaults, as a larger 
fraction of the losses would now be transferred to bank ​2​. More specifically, one 
can show that if ​q  =  (1 + ω)/2​ , then only banks 1 and 2 default, whereas all other 
banks can meet their liabilities in full.

To summarize, though Propositions 4(iii) and 5 and Corollary 1 show that, in the 
presence of small shocks, ​γ​  -convex combinations with the complete network and 
various majorization transformations do not increase the fragility of the financial 

18 We would like to thank an anonymous referee for suggesting this result. 
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system, the same logic does not apply to all transformations that equalize interbank 
liabilities. For instance, in the preceding example, lower values of ​q​ which make 
the liabilities of a given bank to its two counterparties more equal, may nevertheless 
increase fragility by transferring resources away from the bank that relies on them 
for survival.

C. Large Shock Regime

Propositions 4 and 5, along with Corollary 1, show that as long as the magnitude 
of the negative shock is below the threshold ​​ϵ​​ ∗​​ , a more equal distribution of inter-
bank liabilities leads to less fragility. In particular, the complete network is the most 
stable and resilient financial network: except for the bank that is directly hit with 
the negative shock, no other bank defaults. Our next set of results, however, shows 
that when the magnitude of the shock is above the critical threshold ​​ϵ​​ ∗​​ , this picture 
changes dramatically. We start with the following definition:

Definition 5: A regular financial network is ​δ​ -connected if there exists a collec-
tion of banks ​  ⊂  ​ such that ​max {​y​ij​​, ​y​ ji​​}  ≤  δy​ for all ​i  ∈  ​ and ​j ∉ ​.

In other words, in a ​δ​ -connected financial network, the fraction of liabilities of 
banks inside and outside of ​​ to one another is no more than ​δ  ∈  [0, 1]​. Hence, for 
small values of ​δ​ , the banks in ​​ have weak ties—in terms of both claims and liabil-
ities—to the rest of the financial network. We have the following result:

Proposition 6: Suppose that ​ϵ  > ​ ϵ​​ ∗​​ and ​y  > ​ y​​ ∗​​. Then,

	 (i)	 The complete and the ring networks are the least stable and least resilient 
financial networks.

1

2

3

n
qy

qy

(1 − q)y

(1 − q)y

Figure 2. The Liabilities of Each Bank to Its Two Counterparties Become More Equalized as q 
Approaches 1/2
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	 (ii)	 For small enough values of ​δ​ , any ​δ​  -connected financial network is strictly 
more stable and resilient than the ring and complete financial networks.

Thus, when the magnitude of the negative shock crosses the critical threshold ​​
ϵ​​ ∗​​ , the complete network exhibits a form of phase transition: it flips from being the 
most to the least stable and resilient network, achieving the same level of fragility 
as the ring network. In particular, when ​ϵ  > ​ ϵ​​ ∗​​ , all banks in the complete network 
default. The intuition behind this result is simple: since all banks in the complete 
network are creditors of the distressed bank, the adverse effects of the negative 
shock are directly transmitted to them. Thus, when the size of the negative shock 
is large enough, all banks—including those originally unaffected by the negative 
shock—default.

Not all financial systems, however, are as fragile in the presence of large shocks. 
In fact, as part (ii) shows, for small enough values of ​δ​ , any ​δ​  -connected financial 
network is strictly more stable and resilient than both the complete and the ring 
networks. The presence of such “weakly connected” components in the network 
guarantees that the losses—rather than being transmitted to all other banks—are 
borne in part by the distressed bank’s senior creditors.

Taken together, Propositions 4 and 6 illustrate the robust-yet-fragile property of 
highly interconnected financial networks conjectured by Haldane (2009). They show 
that more densely interconnected financial networks, epitomized by the complete 
network, are more stable and resilient in response to a range of shocks. However, 
once we move outside this range, these dense interconnections act as a channel 
through which shocks to a subset of the financial institutions transmit to the entire 
system, creating a vehicle for instability and systemic risk.

The intuition behind such a phase transition is related to the presence of two 
types of “shock absorbers” in our model, each of which is capable of reducing 
the extent of contagion in the network. The first absorber is the excess liquidity, ​
a − v  >  0​ , of the non-distressed banks at ​t  =  1​: the impact of a shock is atten-
uated once it reaches banks with excess liquidity. This mechanism is utilized more 
effectively when the financial network is more “complete,”  an observation in line 
with the results of Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000). 
However, the claim ​v​ of senior creditors of the distressed bank also functions as a 
shock absorption mechanism. Rather than transmitting the shocks to other banks in 
the system, the senior creditors can be forced to bear (some of) the losses, and hence 
limit the extent of contagion. In contrast to the first mechanism, this shock absorp-
tion mechanism is best utilized in weakly connected financial networks and is the 
least effective in the complete network. Thus, when the shock is so large that it can-
not be fully absorbed by the excess liquidity in the system—which is exactly when 
​ϵ  > ​ ϵ​​ ∗​​—financial networks that significantly utilize the second absorber are less 
fragile.

Using Definition 4, we can extend this intuition to a broader class of financial 
networks:

Proposition 7: Suppose that ​y  > ​ y​​ ∗​​ and suppose that bank ​j​ is hit with 
a negative shock ​ϵ  > ​ ϵ​​ ∗​​. Let ​​ denote the set of banks other than ​j​ that 
default and let ​P  =  (1 − γ)I + γ / (n − 1)11′​ for some ​γ  ∈  [0, 1]​. Then, any 
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​(, {   j}, P)​ -majorization of the financial network does not decrease the number of 
defaults.

The above result, which is a large shock counterpart to Proposition 5, shows that 
in contrast to the small shock regime, a transformation that leads to a more uniform 
distribution of the distressed bank’s liabilities does not reduce—but may increase—
the extent of contagion.

The remainder of this subsection provides a characterization of the set of banks 
that default in a general financial network and shows that the intuition on the role of 
interconnectivity in the fragility of the system remains valid for a broad set of net-
work structures. We first define a new notion of distance over the financial network.

Definition 6: The harmonic distance from bank ​i​ to bank ​j​ is

(3)	​ ​m​ij​​  =  1 + ​∑ 
k≠j

​ ​​​(​ ​y​ik​​ __ y ​)​ ​m​kj​​,​

with the convention that ​​m​ii​​  =  0​ for all ​i​.19

The harmonic distance from bank ​i​ to bank ​j​ depends not only on how far each 
of its immediate debtors are from ​j​, but also on the intensity of their liabilities to ​i​. 
Such a definition implies that the harmonic distance between any pair of banks can 
be considerably different from the shortest-path, geodesic distance defined over the 
financial network. In particular, the more liability chains (direct or indirect) exist 
between banks ​i​ and ​j​ , the closer the two banks are to one another.

Proposition 8: Suppose that bank ​j​ , hit with the negative shock, defaults on its 
senior liabilities. Then, there exists ​​m​​ ∗​​ such that,

	 (i)	 If ​​m​ij​​  < ​ m​​ ∗​​ , then bank ​i​ defaults.

	 (ii)	 If all banks in the financial network default, then ​​m​ij​​  < ​ m​​ ∗​​ for all ​i​.

This result implies that banks that are closer to the distressed bank in the sense 
of the harmonic distance are more vulnerable to default. Consequently, a financial 
network in which the pairwise harmonic distances between any pairs of banks are 
smaller is less stable and resilient in the presence of large shocks.20 Proposition 8 
thus generalizes Proposition 6. In particular, one can verify that the harmonic dis-
tance between any pair of banks is minimized in the complete financial network as 
predicted by Proposition 6(i).21 On the other hand, in a ​δ​ -connected network (for 
sufficiently small ​δ​), there always exists a pair of banks whose pairwise harmonic 

19 Strictly speaking, the harmonic distance is a quasi-metric, as it does not satisfy the symmetry axiom (that is, 
in general, ​​m​ij​​  ≠ ​ m​ ji​​​). Nevertheless, for ease of reference, we simply refer to ​​m​ij​​​ as the distance from bank ​i​ to bank ​
j​. For a discussion on the properties of the harmonic distance, see Appendix A. 

20 Note that ​ϵ  > ​ ϵ​​ ∗​​ implies that the bank hit by the negative shock defaults on its senior creditors. For a proof, 
see Lemma B6 in the Appendix. 

21  See Appendix A. 
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distance is greater than ​​m​​ ∗​​ , ensuring that the network is strictly more stable and 
resilient than the complete financial network, thus establishing Proposition 6(ii) as 
a corollary.

Proposition 8 also highlights that in a given financial network, the bank that is 
closest to all others in the sense of harmonic distance is the most “systemically 
important” financial institution: a shock to such a bank would lead to the maximal 
number of defaults. This observation contrasts with much of the recent empirical 
literature that relies on off-the-shelf measures of network centrality—such as eigen-
vector or Bonacich centralities—for identifying systemically important financial 
institutions.22 Such standard network centrality measures would be appropriate if 
interbank interactions are linear. In contrast, Proposition 8 shows that if interbank 
interactions exhibit nonlinearities similar to those induced by the presence of debt 
contracts, it is the harmonic distances of other banks to a financial institution that 
determine its importance from a systemic perspective.23

Our last result in this subsection relates the interbank harmonic distances to an 
intuitive structural property of the financial network.

Definition 7: The bottleneck parameter of a financial network is

	​ ϕ  = ​  min​ 
⊆

​ ​ ​ ∑ 
i∈

​​​ ​ ∑ 
j∉

​​​ ​ 
(​y​ij​​ / y)
 _____ |||​​​ c​| ​ .​

Roughly speaking, ​ϕ​ quantifies how the financial network can be partitioned into 
two roughly equally-sized components, while minimizing the extent of interconnec-
tivity between the two.24 In particular, for a given partition of the financial network 
into two subsets of banks, ​​ and ​​​​ c​​ , the quantity ​​∑ i∈, j∉​ ​​ ​y​ij​​​ is equal to the total 
liabilities of banks in ​​​​ c​​ to those in ​​ (see Figure 3). The bottleneck parameter thus 
measures the minimal extent of interconnectivity between the banks in any partition ​
(, ​​​ c​)​ , while ensuring that neither set is significantly smaller than the other. Thus, 
a highly interconnected financial network, such as the complete network, exhibits a 
large bottleneck parameter, whereas ​ϕ  =  0​ for any disconnected network. We have 
the following result:

Lemma 1: For any symmetric financial network,

(4)	​​   1 ___ 
2nϕ ​  ≤ ​ max​ 

i≠j
​   ​ ​ m​ij​​  ≤ ​  16 ___ 

n​ϕ​​ 2​
 ​,​

where ​ϕ​ is the corresponding bottleneck parameter.

22 See, for example, Bech, Chapman, and Garratt (2010); Bech and Atalay (2010); Akram and Christophersen 
(2010); Bisias et al. (2012); and Craig, Fecht, and Tümer-Alkan (2013).

23 In their numerical simulations, Soramäki and Cook (2013) make a similar observation and propose a measure 
of relative importance of banks that is related to our notion of harmonic distance. 

24 The bottleneck parameter is closely related to the notions of conductance and Cheeger constant in spectral 
graph theory. For a discussion, see Chapters 2 and 6 of Chung (1997). 
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The above lemma thus provides bounds on the maximum harmonic distance 
between any pairs of banks in the financial network in terms of the network’s bot-
tleneck parameter. More importantly, it shows that the relationship between the 
extent of interbank connectivity and the financial network’s fragility discussed after 
Proposition 6 holds for a broad set of network structures. In particular, the interbank 
harmonic distances are smaller when the financial network is more interconnected, 
guaranteeing more defaults in the presence of a large shock. The following corollary 
to Proposition 8 and Lemma 1 formalizes this observation:

Corollary 2: Suppose that ​ϵ  > ​ ϵ​​ ∗​​. Then, there exist constants ​​ϕ 
–
 ​  > ​ ϕ 

–
 ​​ such 

that for any symmetric financial network,

	 (i)	 If ​ϕ  > ​ ϕ 
–
 ​​ , then all banks default.

	 (ii)	 If ​ϕ  < ​ ϕ 
–
 ​​ , then at least one bank does not default.

We end this discussion by demonstrating the implications of the above 
results by means of a few examples. First, consider the complete financial net-
work. It is clear that for any partition ​(, ​​​ c​)​ of the set of banks, ​​∑ i∈, j∉​ ​​ ​y​ij​​  
= ​   y

 ____ n − 1 ​ |||​​​ c​|​ , and as a result, ​​ϕ​​ comp​  =  1/(n − 1)​. On the other hand, choos-
ing ​  =  {i}​ in any arbitrary financial network guarantees that ​ϕ  ≤  1/ (n − 1)​. 
Therefore, the complete network has the largest bottleneck parameter among all 
regular financial networks. Corollary 2 thus implies that if a large shock leads to 
the default of all banks in any financial network, it would also do so in the complete 
network, as predicted by Proposition 6.

At the other end of the spectrum, in a ​δ​ -connected financial network, there exists 
a partition ​(, ​​​ c​)​ of the set of banks for which ​max {​y​ij​​, ​y​ ji​​}  ≤  δy​ for all ​i  ∈  ​ and ​
j  ∈ ​ ​​ c​​. It is then immediate to verify that the bottleneck parameter of any such 
network satisfies ​ϕ  ≤  δ​. Hence, for small enough values of ​δ​ and in the presence 

             c  

Figure 3. A Partition of the Financial Network into Subsets  and ​​​​ c​​

Note: ​​∑ i∈, j∉​ 
 
  ​​​ ​​y​ij​​​ is equal to the sum of interbank liabilities over the dashed line and measures the aggregate liabil-

ities of banks in ​​​​ c​​ to those in  and vice versa.
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of large shocks, the financial network is strictly more stable and resilient than the 
complete network, again in line with the predictions of Proposition 6.

Finally, given a regular financial network with interbank liabilities ​{​y​ij​​}​ and bot-
tleneck parameter ​ϕ​ , let

	​ ​y​ij​​(γ)  =  (1 − γ)​y​ij​​ + γ ​y​ ij​ 
comp​​

denote the interbank liabilities in the ​γ​ -convex combination of the former with 
the complete network. One can show that the corresponding bottleneck parameter 
satisfies25

	​ ϕ(γ)  =  (1 − γ)ϕ + γ ​ϕ​​ comp​ .​

In view of the observation that the complete network has the greatest bottleneck 
parameter across all financial networks, the above equality implies that ​ϕ(γ)​ is 
increasing in ​γ​ , establishing the following counterpart to Corollary 1:

Corollary 3: Suppose that ​ϵ  > ​ ϵ​​ ∗​​ , and consider a symmetric financial network 
for which ​ϕ  > ​ ϕ 

–
 ​​. Then, the ​γ​ -convex combination of the network and the complete 

network is no more stable or resilient for all ​γ​.

This corollary implies that, in contrast to our results for the small shock regime, a 
more diversified pattern of interbank liabilities cannot prevent the systemic collapse 
of the network in the presence of large shocks.

D. Multiple Shocks

The insights on the relationship between the extent of contagion and the structure of 
the financial network studied so far generalize to the case of multiple negative shocks.

Proposition 9: Let ​p​ denote the number of negative shocks and let ​​
ϵ​ p​ ∗ ​ =  n(a − v)/p​. There exist constants ​​y​ p​ ∗​  > ​​ y ˆ ​​ p​​  >  0​ , such that

	 (i)	 If ​ϵ  < ​ ϵ​ p​ ∗ ​​ and ​y  > ​ y​ p​ ∗​​ , then the complete network is the most stable and 
resilient financial network, whereas the ring network is the least resilient.

	 (ii)	 If ​ϵ  > ​ ϵ​ p​ ∗ ​​ and ​y  > ​ y​ p​ ∗​​ , then the complete and the ring financial networks are 
the least stable and resilient financial networks. Furthermore, if ​p  <  n − 1​ , 
then there exists a ​δ​ -connected financial network that is strictly more stable 
than the complete and ring financial networks.

	 (iii)	 If ​ϵ  > ​ ϵ​ p​ ∗ ​​ and ​y  ∈  (​​y ˆ ​​ p​​, ​y​ p​ ∗​)​ , then the complete network is the least stable and 
resilient financial network. Furthermore, the ring network is strictly more 
stable than the complete financial network.

25 For any subset of banks ​S​ , we have ​​∑ i∈, j∉​ ​​ ​​​​​y​ij​​(γ)  =  (1 − γ)​​​​​∑ i∈, j∉​ ​​ ​​​​​y​ij​​ + γ |  || ​​​ c​ | / (n − 1)​. 
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Parts (i) and (ii) generalize the insights of Propositions 4 and 6 to the case of 
multiple shocks. The key new observation is that the critical threshold ​​ϵ​ p​ ∗ ​​ that defines 
the boundary of the small and large shock regimes is a decreasing function of ​p​. 
Consequently, the number of negative shocks plays a role similar to that of the size 
of the shocks. More specifically, as long as the magnitude and the number of neg-
ative shocks affecting financial institutions are sufficiently small, more complete 
interbank claims enhance the stability of the financial system. The underlying intu-
ition is identical to that behind Proposition 4: the more interconnected the finan-
cial network is, the better the excess liquidity of non-distressed banks is utilized in 
absorbing the shocks. On the other hand, if the magnitude or the number of shocks 
is large enough so that the excess liquidity in the financial system is not sufficient for 
absorbing the losses, financial interconnections serve as a propagation mechanism, 
creating a more fragile financial system. Furthermore, as in Proposition 6, weakly 
connected networks ensure that the losses are shared with the senior creditors of the 
distressed banks, protecting the rest of the system.

Part (iii) of Proposition 9 contains a new result. It shows that in the presence 
of multiple shocks, the claims of the senior creditors in the ring financial network 
are used more effectively as a shock absorption mechanism than in the complete 
financial network. In particular, the closer the distressed banks in the ring financial 
network are to one another, the larger the loss their senior creditors are collectively 
forced to bear. This limits the extent of contagion in the network.26

As a final remark, we note that a multi-shock counterpart to Proposition 8 can 
also be established. In particular, if ​​m​ij​​  < ​ m​​ ∗​​ for all ​i​ and ​j​ , then all banks in the 
financial network default at the face of ​p​ shocks of size ​ϵ  > ​ ϵ​ p​ ∗ ​​.

E. Non-Trivial Liquidation Proceeds

Our results thus far were restricted to the case in which the proceeds from liqui-
dations are “trivial,” i.e., ​ζ  =  0​. The next proposition shows that our main results 
remain valid even when liquidation recovers a positive fraction ​ζ  >  0​ of a project’s 
returns (while continuing to assume that projects can be partially liquidated, an 
assumption we relax at the end of this subsection).

Proposition 10: Suppose that banks can partially liquidate their projects at ​
t  =  1​. Let ​​ϵ​∗​​(ζ)  =  n(a − v) + ζA​ and ​​ϵ​​ ∗​(ζ)  =  n(a − v) + nζA​. Then, there 
exists ​​y​​ ∗​(ζ)​ such that for ​y  > ​ y​​ ∗​(ζ)​:

	 (i)	 If ​ϵ  < ​ ϵ​∗​​(ζ)​ , then the complete and the ring financial networks are, respec-
tively, the most and the least stable and resilient financial networks.

	 (ii)	 If ​ϵ  > ​ ϵ​​ ∗​(ζ)​ , then the complete and the ring financial networks are the 
least stable and resilient networks, while any ​δ​ -connected network for small 
enough ​δ​ is strictly more stable and resilient.

26 In a related context, Alvarez and Barlevy (2014) show that the aggregate equity of the banking system with 
a ring network structure depends on the location of the shocks. Also see Barlevy and Nagaraja (2013) for an inter-
esting connection between the problem of contagion in the ring financial network and the so-called circle-covering 
problem. 
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	 (iii)	 If ​​ϵ​∗​​(ζ)  <  ϵ  < ​ ϵ​​ ∗​(ζ)​ , then the complete network is strictly more stable and 
resilient than the ring network. Furthermore, if ​ϵ  > ​ ϵ​∗​​(ζ) + ζA​ , then there 
exists a ​δ​ -connected network which is strictly more stable and resilient than 
the complete network.

Part (i) corresponds to the small shock regime, in which the complete network 
outperforms all other regular financial networks and the ring network is the most 
fragile of all. Part (ii), on the other hand, corresponds to our large shock regime 
results: for large enough shocks, the complete network becomes as fragile as the 
ring financial network,27 whereas the presence of weakly connected components in 
the financial system guarantees that the losses are shared with the distressed bank’s 
senior creditors, protecting the rest of the network.

Proposition 10 also establishes an intermediate regime, in which the complete 
network lies strictly between the ring and ​δ​ -connected financial networks in terms 
of stability and resilience. As part (iii) shows, the threshold ​​ϵ​​ ∗​(ζ)​ at which the com-
plete network becomes the most fragile financial network no longer coincides with 
the threshold ​​ϵ​∗​​(ζ) + ζA​ at which it starts underperforming ​δ​ -connected networks. 
In other words, even though both the small and large shock regimes exist regard-
less of the value of ​ζ​ , the phase transition between the two becomes smoother as ​ζ​ 
increases. Note that, as expected, the two thresholds coincide when ​ζ  =  0​.

The emergence of the intermediate regime in Proposition 10 relies not only on 
the fact that ​ζ  >  0​ , but also on the assumption that banks can partially liquidate 
their projects at ​t  =  1​. In contrast, if banks are forced to liquidate their projects in 
full (e.g., because it is difficult to liquidate a fraction of an ongoing real project), the 
sharp phase transition result from the earlier subsections is restored, even when ​ζ​ is 
strictly positive. In particular, in this case, the complete network flips from being the 
most stable to the most fragile financial network once the size of the shock crosses 
some threshold ​​ϵ​∗​​(ζ)​. The next proposition formalizes this statement.

Proposition 11: Suppose that partial liquidation at ​t  =  1​ is not feasible. Let 
​​ϵ​∗​​(ζ)​ and ​​y​​ ∗​(ζ)​ be as defined in Proposition 10, and suppose that ​y  > ​ y​​ ∗​(ζ)​.

	 (i)	 If ​ϵ  < ​ ϵ​∗​​(ζ)​ , then the complete network is the most stable and resilient finan-
cial network, whereas the ring network is the least stable and resilient finan-
cial network.

	 (ii)	 If ​ϵ  > ​ ϵ​∗​​(ζ)​ , then the complete and the ring networks are the least stable 
and resilient financial networks. Moreover, for small enough values of ​δ​ , any 
​δ​-connected financial network is strictly more stable and resilient than the 
ring and complete financial networks.

27 As in Proposition 9, the ring financial network may be more stable than the complete financial network in the 
presence of multiple shocks. 
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F. Size Heterogeneity

As mentioned earlier, our analysis has so far focused on regular financial net-
works in order to delineate the role of network structure on the financial system’s 
fragility, while abstracting from the impact of asymmetries in size and leverage 
across banks. Focusing on the large shock regime, the next result illustrates that our 
key insights continue to hold even in the presence of such asymmetries.

Suppose that all assets and liabilities of bank ​i​ are scaled by a constant ​​θ​i​​  >  0​. In 
particular, bank ​i​’s liabilities to its senior creditors and all other banks are equal to ​​
θ​i​​ v​ and ​​y​i​​  = ​ θ​i​​y​ , whereas its short-term and long-term returns are given by ​​θ​i​​ ​z​i​​​ and ​​
θ​i​​ A​. As before, we assume that only one negative shock is realized and that ​ζ  =  0​.

Proposition 12: Suppose that bank ​j​ is hit with a negative shock 
​ϵ  >  (a − v)​∑ k=1​ 

n
  ​​(​θ​k​​ / ​θ​ j​​)​. Then,

	 (i)	 Bank ​j​ defaults on its senior liabilities;

	 (ii)	 All other banks also default if and only if ​​​m ˆ ​​ij​​  < ​ θ​i​​ ​m​​ ∗​​ for all banks ​i​ , where

(5)	​​​ m ˆ ​​ij​​  = ​ θ​i​​ + ​∑ 
k≠j

​ ​​​(​ ​y​ik​​ __ ​y​i​​ ​)​ ​​m ˆ ​​kj​​ .​

In line with our earlier results, part (i) shows that a large enough shock guarantees 
that the senior creditors will bear some of the losses. Naturally, the corresponding 
threshold now depends on the relative size of the distressed bank: the greater the size 
of the bank, the smaller the threshold at which the senior creditors start to suffer.

The second part of Proposition 12 is the counterpart to Proposition 8, establishing 
that the risk of systemic failures depends on the “size-adjusted” harmonic distances 
of other banks from the distressed bank ​j​. Comparing (5) with (3) shows that the 
susceptibility of bank ​i​ to default not only depends on the intensity of the liabilities 
along the chains that connect ​j​ to ​i​ , but also on the size of all the intermediary banks 
that exist between the two. Indeed, if the financial network is connected, an increase 
in the relative size of any bank ​k  ≠  i, j​ makes bank ​i​ more robust to a shock to bank ​
j​. This is a simple consequence of the fact that any such increase would raise ​i​’s 
distance from ​j​. The effect of bank ​i​’s size on its own fragility is more subtle, as a 
greater ​​θ​i​​​ increases both the distance ​​​m ˆ ​​ij​​​ of bank ​i​ from the distressed bank ​j​ as well 
as the threshold ​​θ​i​​ ​m​​ ∗​​. The two effects, however, are not proportional: whereas ​​θ​i​​ ​m​​ ∗​​ 
increases linearly, ​​​m ˆ ​​ij​​​ is sub-linear in ​​θ​i​​​. Consequently, increasing the relative size of 
a bank makes it more vulnerable to contagious defaults.

Finally, we remark that even though our results in this section were illustrated 
for an environment in which shocks can take only two values, similar results can be 
obtained for more general shock distributions.

IV.  Concluding Remarks

The recent financial crisis has rekindled interest in the relationship between 
the structure of the financial network and systemic risk. Two polar views on this 
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relationship have been suggested in the academic literature and the policy world. 
The first maintains that the “incompleteness” of the financial network is a source 
of instability, as individual banks are overly exposed to the liabilities of a handful 
of financial institutions. According to this argument, a more complete financial net-
work which limits the exposure of banks to any single counterparty would be less 
prone to systemic failures. The second view, in stark contrast, hypothesizes that it is 
the highly interconnected nature of the financial system that contributes to its fragil-
ity, as it facilitates the spread of financial distress and solvency problems from one 
institution to the rest in an epidemic-like fashion.

This paper provides a tractable theoretical framework for the study of the eco-
nomic forces shaping the relationship between the structure of the financial network 
and systemic risk. We show that as long as the magnitude (or the number) of neg-
ative shocks is below a critical threshold, a more diversified pattern of interbank 
liabilities leads to less fragility. In particular, all else equal, the sparsely connected 
ring financial network (corresponding to a credit chain) is the most fragile of all 
configurations, whereas the highly interconnected complete financial network is the 
configuration least prone to contagion. In line with the observations made by Allen 
and Gale (2000), our results establish that, in more complete networks, the losses 
of a distressed bank are passed to a larger number of counterparties, guaranteeing a 
more efficient use of the excess liquidity in the system in forestalling defaults.

We also show, however, that when negative shocks are larger than a certain 
threshold, the second view on the relationship between the structure of the financial 
network and the extent of contagion prevails. Now, completeness is no longer a 
guarantee for stability. Rather, in the presence of large shocks, financial networks 
in which banks are only weakly connected to one another are less prone to systemic 
failures. Such a “phase transition” is due to the fact that, in addition to the excess 
liquidity within the financial network, the senior liabilities of banks can also act as 
shock absorbers. Weak interconnections guarantee that the more senior creditors 
of a distressed bank bear most of the losses, and hence protect the rest of the sys-
tem against cascading defaults. Our model thus formalizes the robust-yet-fragile 
property of interconnected financial networks conjectured by Haldane (2009). More 
broadly, our results highlight the possibility that the same features that make a finan-
cial network structure more stable under certain conditions may function as signifi-
cant sources of systemic risk and instability under other conditions.

Our results indicate that the identification of systemically important financial 
institutions in the interbank network requires some care. In particular, some of the 
existing empirical analyses that rely on off-the-shelf and well-known measures of 
network centrality may be misleading, as such measures are relevant only if the 
interbank interactions are linear. In contrast, our analysis shows that, if the financial 
interactions exhibit nonlinearities similar to those induced by unsecured debt con-
tracts, the systemic importance of a financial institution is captured via its harmonic 
distance to other banks, suggesting that this new notion of network distance should 
feature in theoretically-motivated policy analyses.

Our model also highlights several possible avenues for policy interventions. From 
an ex ante perspective, a natural objective is to increase the stability and resilience 
of the financial system by regulating the extent and nature of interbank linkages. 
The important insight of our analysis is that such interventions have to be informed 
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by the expected size of the negative shocks. For instance, imposing limits on the 
exposure between pairs of financial institutions motivated by the possibility of small 
shocks may be counterproductive if the shocks are in fact large. In addition, our 
characterization results in terms of the harmonic distance can serve as a guideline 
for ex post policy interventions once a shock is realized. In particular, our analy-
sis suggests that injecting additional funds to or bailing out systemically important 
financial institutions that have a large impact on other entities within the network 
would contain the extent of contagion (though such interventions may induce moral 
hazard-type concerns ex ante).

Another important dimension of policy analysis is the discussion of whether 
observed financial networks are likely to be (constrained) efficient. This is studied 
in some detail in the working paper version of our work (Acemoglu, Ozdaglar, and 
Tahbaz-Salehi 2013). There we show that, in the presence of covenants that make 
the interbank interest rates contingent on the borrowers’ lending decisions, the equi-
librium pattern of interbank liabilities is efficient as long as the economy consists 
of two or three banks. However, in the presence of more than three banks, a specific 
(and new) type of externality arises: given that the contracts offered to a bank do not 
condition on the asset positions of the banks to whom it lends, the borrowers do not 
internalize the effect of their decisions on their creditors’ creditors. We show that 
this may lead to the formation of inefficient networks, embedding excessive coun-
terparty risk from the viewpoint of social efficiency, both in the small and the large 
shock regimes. These results suggest that there may be room for welfare-improving 
government interventions at the network formation stage.

We view our paper as a first step in the direction of a systematic analysis of the 
broader implications of the financial network architecture. Several important issues 
remain open to future research.

First, this paper focused on the implications of a given network structure on the 
fragility of the financial system. A systematic analysis of the endogenous formation 
of financial networks and their efficiency and policy implications, along the lines 
of Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013) briefly discussed above, is an 
obvious area for future research.

Second, our focus was on a specific form of network interactions among financial 
institutions; namely, the spread of counterparty risk via unsecured debt contracts. 
In practice, however, there are other important types of financial interdependencies. 
In particular, (i) the fire sales of some assets by a bank may create distress on other 
institutions that hold similar assets; and (ii) withdrawal of liquidity by a bank (for 
example, by not rolling over a repo agreement or increasing the haircut on the col-
lateral) may lead to a chain reaction playing out over the financial network. How 
the nature of these different types of financial interdependencies determine the rela-
tionship between underlying network structure and systemic risk remains an open 
question for future research.

Third, our model purposefully abstracted from several important institutional 
details of the banking system. For example, it eschewed other forms of interbank 
lending (such as repurchase agreements) as well as the differences between depos-
it-taking institutions, investment banks, and other specialized financial institutions 
such as hedge funds. It also abstracted from the complex maturity structure of inter-
bank liabilities which can create different types of contagion owing to a mismatch in 
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the maturity of the assets and liabilities of a financial institution. Incorporating these 
important institutional realities is another obvious area of investigation.

Last but not least, a systematic empirical investigation of these and other types of 
network interactions in financial markets is an important area for research.

Appendix A: The Harmonic Distance

The harmonic distance defined in (3) provides a measure of proximity between a 
pair of banks in the financial network. According to this notion, two banks are closer 
to one another the more direct or indirect liability chains exist between them and the 
higher the face value of those liabilities are. This Appendix studies some of the basic 
properties of the harmonic distance.

The first key observation is that the notion of harmonic distance is closely related 
to a discrete-state Markov chain defined over the network. In particular, let ​Q​ be a 
matrix whose ​(i, j)​ element is equal to the fraction of bank ​j​’s liabilities to ​i​ ; that is, ​​
q​ij​​  = ​ y​ij​​ / y​. By construction, ​Q​ is a (row and column) stochastic matrix, and hence 
can be interpreted as the transition probability matrix of a Markov chain with the 
uniform stationary distribution. For this Markov chain, define the mean hitting time 
from ​i​ to ​j​ as the expected number of time steps it takes the chain to hit state ​j​ con-
ditional on starting from state ​i​. We have the following result:

Proposition A1: The harmonic distance from bank ​i​ to ​j​ is equal to the mean 
hitting time of the Markov chain from state ​i​ to state ​j​.

Thus, the harmonic distance provides an intuitive measure of proximity between 
any pair of banks: the longer it takes on average for the Markov chain to reach 
state ​j​ from state ​i​ , the larger the harmonic distance between the two corresponding 
banks in the financial network. The above observation enables us to identify the 
properties of the harmonic distance by relying on known results from the theory of 
Markov chains. For instance, given that expected hitting times in a Markov chain are 
non-symmetric, it is immediate that in general, ​​m​ij​​  ≠ ​ m​ ji​​​ , even when the financial 
network is symmetric. This observation thus implies that the harmonic distance is 
not a notion of distance in its strictest sense. Nevertheless, it satisfies a weaker form 
of symmetry:

Proposition A2: Suppose that the financial network is symmetric. For any three 
banks ​i​ , ​j​ , and ​k​ ,

(A1)	​ ​m​ij​​ + ​m​ jk​​ + ​m​ki​​  = ​ m​ik​​ + ​m​kj​​ + ​m​ ji​​ .​

The following is an immediate implication of the above result (Lovász 1996):

Corollary A1: If the financial network is symmetric, then there exists an order-
ing of banks such that if ​i​ is preceded by ​j​ , then ​​m​ij​​  ≤ ​ m​ ji​​​.

The above ordering can be obtained by fixing an arbitrary reference bank ​k​ and 
ordering the rest of the banks according to the value of ​​m​ik​​ − ​m​ki​​​. Such an ordering, 
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however, is not necessarily unique due to the possibility of ties. Nevertheless, by 
Proposition A2, pairs of banks for which ​​m​ij​​  = ​ m​ ji​​​ form an equivalence class, 
implying that there exists a well-defined ordering of the equivalence classes, inde-
pendent of the reference bank ​k​ (Lovász 1996). More specifically, there exists a 
partition ​(​​1​​,  … , ​​r​​)​ of the set of banks such that (i) ​​m​ij​​  = ​ m​ ji​​​ for all ​i, j  ∈ ​ ​t​​​; 
and (ii) if ​t  < ​ t ′ ​​ , then ​​m​ij​​  < ​ m​ ji​​​ for all ​i  ∈ ​ ​t​​​ and ​j  ∈ ​ ​ t′​​​. Therefore, in view of 
Proposition 8, banks in the higher equivalence classes are systemically more import-
ant, as a large shock to them would lead to longer chains of defaults. Yet, at the same 
time, such banks are not at much risk of contagious defaults if another bank is hit 
with a negative shock. In contrast, banks in the lower equivalence classes are prone 
to default due to contagion even though a negative shock to them would not lead to 
a large cascade of failures.

Proposition A3 (Triangle Inequality): For any triple of banks ​i​ , ​j​, and ​k​ ,

	​ ​m​ij​​ + ​m​ jk​​  ≥ ​ m​ik​​ .​

Furthermore, the inequality is tight if and only if all liability chains from ​k​ to ​i​ pass 
through bank ​j​.

The sum of harmonic distances of a given bank from all others is an invariant 
structural property of the financial network that does not depend on the identity of 
the bank:

Proposition A4: ​​∑ j≠i​ ​​ ​m​ij​​  = ​ ∑ j≠k​ ​​ ​m​kj​​​  for all pairs of banks ​i​ and ​k​.

We end this discussion by showing that the maximum pairwise harmonic dis-
tance between any two banks is minimized in the complete financial network. First, 
note that given the full symmetry in the complete financial network, ​​m​ij​​​ is the same 
for all distinct pairs of banks ​i​ and ​j​. Thus, equation (3) immediately implies that ​​
m​ij​​  =  n − 1​ for ​i  ≠  j​. On the other hand, summing both sides of (3) over ​j  ≠  i​ in 
an arbitrary financial network implies

	​​ ∑ 
j≠i

​ ​​ ​m​ij​​  =  (n − 1) + ​∑ 
j≠i

​ ​​ ​∑ 
k≠j

​ ​​ ​q​ik​​ ​m​kj​​

	 =  (n − 1) + ​∑ 
k≠i

​ ​​ ​ ∑ 
j≠k

​ ​​ ​q​ik​​ ​m​kj​​ − ​∑ 
k≠i

​ ​​ ​q​ik​​ ​m​ki​​ ​.

Given that the quantity ​​∑ j≠k​ ​​ ​m​kj​​​ does not depend on ​k​ , the above equality simpli-
fies to ​​∑ k≠i​ ​​ ​q​ik ​​​m​ki​​  =  n − 1​ , implying that

	​ ​max​ 
k≠i

​   ​ ​ m​ki​​  ≥  n − 1 .​

Thus, the maximum pairwise harmonic distance is minimized in the complete finan-
cial network.
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Appendix B: Proofs

This Appendix contains the proofs of Propositions 1–8, Corollary 1, and Lemma 
1. The rest of the proofs are provided in the online Appendix.

Notation.—Let ​Q  ∈ ​ ℝ​​ n×n​​ be the matrix whose ​(i, j)​ element is equal to the frac-
tion of bank ​j​’s liabilities to ​i​; that is, ​​q​ij​​  = ​ y​ij​​ / ​y​ j​​​. We let ​y  =  [​y​1​​, … , ​y​n​​]​′ denote 
the vector of the banks’ total liabilities to one another and use ​ℓ  =  [​ℓ​1​​,  … , ​ℓ​n​​]​′ to 
denote the vector of banks’ liquidation decisions. Thus, rewriting equations (1) and 
(2) in matrix notation implies that a payment equilibrium is simply a pair of vectors ​
(x, ℓ)​ that simultaneously solve

(B1)	​ x  = ​​ [min​{Qx + e + ζℓ, y}​]​​​ +​

(B2)	 ℓ  = ​ ​​[min​{​ 1 _ ζ ​ (y − Qx − e),  A1}]​​​​​ 
+
​,​ 

where ​​e​ j​​  = ​ c​ j​​ + ​z​ j​​ − v​ and ​​x​ j​​  = ​ ∑ i≠j​ ​​ ​x​ ij​​​ is the total debt repayment of bank ​j​ to 
the rest of the banks. Throughout the proofs, we use ​1​ to denote a vector (of appro-
priate size) whose elements are equal to 1.

A. Preliminary Lemmas

Lemma B1: Suppose that ​β  >  0​. Then,

	​​ |[min {α, β}​]​​ +​ − [min {​α ˆ ​, β}​]​​ +​|​  ≤  | α − ​α ˆ ​ | .​

Furthermore, the inequality is tight only if either ​α  = ​ α ˆ ​​ or ​α, ​α ˆ ​  ∈  [0, β]​.

Lemma B2: Suppose that ​(x, ℓ)​ is a payment equilibrium of the financial network. 
Then, ​x​ satisfies

(B3)	​ x  =  [min {Qx + e + ζA1, y}​]​​ +​ .​

Conversely, if ​x  ∈ ​ ℝ​​ n​​ satisfies (B3), then there exists ​ℓ  ∈ ​ [0, A]​​ n​​ such that ​(x, ℓ)​ is 
a payment equilibrium.

Proof:
First, suppose that the pair ​(x, ℓ)​ is a payment equilibrium of the financial net-

work. Thus, by definition, ​ζℓ  = ​ [min {y − (Qx + e), ζA1}]​​ +​​ , which implies that

	​ Qx + e + ζℓ  =  max​{Qx + e,  min {y, Qx + e + ζA1} }​ .​

Therefore,

	​ min{Qx + e + ζℓ, y}  =  min​{y, max​{Qx + e, min ​{y, Qx + e + ζA1}​}​}​ .​
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Simplifying the expression on the right-hand side above leads to

	​ min{Qx + e + ζℓ, y}  =  min {y, Qx + e + ζA1},​

and hence, ​x  = ​ [min {y, Qx + e + ζA1}]​​ +​​ , which is the same as (B3).
To prove the converse, suppose that ​x  ∈ ​ ℝ​​ n​​ satisfies (B3) and let 

​ℓ  =  (1/ζ)​[min {y − (Qx + e), ζA1}]​​ +​​. By construction, (B2) is satisfied. Thus, to 
prove that ​(x, ℓ)​ is indeed a payment equilibrium, it is sufficient to show that the pair ​
(x, ℓ)​ also satisfies (B1). It is immediate that

	 ​Qx + e + ζℓ  =  max​{Qx + e,  min{y, Qx + e + ζA1} }​,​

and therefore,

​[min{Qx + e + ζℓ, y}​]​​ +​  = ​​ [min​{y, max​{Qx + e, min{y, Qx + e + ζA1} }​}​]​​​ 
+
​

 	  =  [min{y, Qx + e + ζA1}​]​​ +​

	 =  x​,

where the last equality is simply a consequence of the assumption that ​x​ satisfies 
(B3). ∎

B. Proof of Proposition 1

Existence.—In view of Lemma B2, it is sufficient to show that there exists ​​
x​​ ∗​  ∈ ​ ℝ​ +​ n ​​ that satisfies ​​x​​ ∗​  = ​ [ min {Q​x​​ ∗​ + e + ζA1, y}]​​ +​​. Define the mapping 
​Φ :   →  ​ as

	​ Φ(x)  = ​ [min​{Qx + e + ζA1, y}​ ]​​ +​,​

where ​  = ​ ∏ i=0​ n  ​​[0, ​y​i​​]​. This mapping continuously maps a convex and com-
pact subset of the Euclidean space to itself, and hence, by the Brouwer fixed point 
theorem, there exists ​​x​​ ∗​  ∈  ​ such that ​Φ(​x​​ ∗​)  = ​ x​​ ∗​​. Lemma B2 then implies 
that the pair ​(​x​​ ∗​, ​ℓ​​ ∗​)​ is a payment equilibrium of the financial network, where 
​​ℓ​​ ∗​  =  (1/ζ)​[min {y − (Q​x​​ ∗​ + e), ζA1}]​​ +​​. In particular, the collection of pairwise 
interbank payment ​{​x​ ij​ ∗​}​ defined as ​​x​ ij​ ∗​  = ​ q​ij​​ ​x​ j​ ∗​​ alongside liquidation decisions 
​​ℓ​ i​ ∗​​ satisfy the collection of equations (1) and (2) for all ​i​ and ​j​ simultaneously.

Generic Uniqueness.—Without loss of generality, we restrict our attention to a 
connected financial network.28 Suppose that the financial network has two distinct 

28 If the financial network is not connected, the proof can be applied to each connected component separately. 
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payment equilibria, denoted by ​(x, ℓ)​ and ​(​x ˆ ​, ​ℓ ˆ ​)​ such that ​x  ≠ ​ x ̂ ​​.29 By Lemma B2, 
both ​x​ and ​​x ˆ ​​ satisfy (B3). Therefore, for any given bank ​i​ ,

(B4)  ​| ​x​ i​​ − ​​x ̂ ​​i​​ |  = ​ |[min​{(Qx​)​i​​ + ​e​i​​ + ζA, ​y​i​​}]​​ +​ − [min ​{(Q​x ̂ ​​)​i​​ + ​e​i​​ + ζA, ​y​i​​}]​​ +​|​ 

	 ≤ ​ |​(Qx)​i​​ − ​(Q​x ˆ ​)​i​​|​,​ 

where the inequality is a consequence of Lemma B1. Summing both sides of the 
above inequality over all banks ​i​ leads to

(B5)	​ ||x − ​x ˆ ​​||​1​​  ≤   || Q(x − ​x ˆ ​)​||​1​​

(B6)	 ≤   || Q​||​1​​ ·  || x − ​x ˆ ​​||​1​​

	 =   || x − ​x ˆ ​​||​1​​,​ 

where the last equality is due to the fact that the column sums of ​Q​ are equal to 
one. Consequently, inequalities (B4)–(B6) are all tight simultaneously. In particular, 
given that (B4) is tight, and in view of Lemma B1, for any given bank ​i​ either

	​ ​(Qx)​i​​  = ​ (Q​x ˆ ​)​i​​​

or

(B7)	​ 0  ≤ ​ (Qx)​i​​ + ​e​i​​ + ζA,​ (Q​x ˆ ​)​i​​ + ​e​i​​ + ζA  ≤ ​ y​i​​ .​

Denoting the set of banks that satisfy (B7) by ​​ , it is immediate that, for all ​i  ∈  ​ ,

	​​ x​ i​​  = ​ e​i​​ + ζA + ​(Qx)​i​​

​	​ x ˆ ​​i​​  = ​ e​i​​ + ζA + ​(Q​x ˆ ​)​i​​​,

and therefore,

	​ ​(Qx)​i​​ − ​(Q​x ˆ ​)​i​​  = ​ x​ i​​ − ​​x ˆ ​​i​​  ∀ i  ∈   .​

On the other hand, in view of the fact that ​​(Qx)​i​​  = ​ (Q​x ˆ ​)​i​​​ for all ​i ∉ ​ , we have

	​ Q(x − ​x ˆ ​)  = ​ [​​x​​​ − ​​x ˆ ​​​​​ 
0
 ​ ]​,​

29 The assumption that the two payment equilibria are distinct requires that ​x  ≠ ​ x ̂ ​​. Note that if ​x  = ​ x ̂ ​​ , then 
(B2) immediately implies that ​ℓ  = ​ ℓ ̂ ​​. 
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and hence,

(B8)	​ || Q(x − ​x ˆ ​)​||​1​​  =   || ​x​​​ − ​​x ˆ ​​​​​||​1​​ .​

Therefore, (B5) holds as an equality only if ​​x​ i​​  = ​​ x ˆ ​​i​​​ for all ​i ∉ ​ , as it would other-
wise violate (B8). Hence,

(B9)	​ ​Q​​​(​x​​​ − ​​x ˆ ​​​​)  = ​ x​​​ − ​​x ˆ ​​​​,​

where ​​Q​​​​ is the submatrix of ​Q​ corresponding to the banks in ​​. On the other hand, 
the fact that the financial network is connected implies that ​Q​ , and hence, ​​Q​​​​ are 
irreducible matrices.30 Given that ​x  ≠ ​ x ˆ ​​ , equality (B9) cannot hold unless ​​​​ c​​ is 
empty. As a consequence, ​​x​ i​​  = ​ e​i​​ + ζA + ​(Qx)​i​​​ for all ​i​ , and hence,

	​ ​ ∑ 
i=1

​ 
n

  ​​ ​x​ i​​  =  nζA + ​ ∑ 
i=1

​ 
n

  ​​ ​e​i​​ + ​ ∑ 
i=1

​ 
n

  ​​ ​ ∑ 
j=1

​ 
n

  ​​ ​q​ij​​ ​x​ j​​​  ,

which implies ​​∑ i=1​ 
n
  ​​ ​e​i​​  =  −nζA​ , an equality that holds only for a non-generic set of 

parameters ​​z​1​​,  … , ​z​n​​​. Thus, the payment equilibria of the economy are generically 
unique. ∎

C. Proof of Proposition 2

Denote the set of banks that default on their senior debt by ​f​ , the set of banks that 
default but can pay their debts to the senior creditors by ​d​ , and the set banks that do 
not default by ​s​. For any bank ​i  ∈  f​ , we have

	​ ​π​i​​ + ​T​ i​​  = ​ z​i​​ + ζ​ℓ​i​​ + ​∑ 
j≠i

​ ​​ ​x​ ij​​,​

whereas for ​i  ∈  d​ ,

	​ ​π​i​​ + ​T​ i​​  =  v .​

On the other hand, for any bank ​i  ∈  s​ which does not default, we have

	​ ​π​i​​ + ​T​ i​​  =  A − ​ℓ​i​​ + ζ​ℓ​i​​ + ​z​i​​ − y + ​∑ 
j≠i

​ ​​ ​x​ ij​​,​

where ​ζ​ℓ​i​​​ is the proceeds that bank ​i​ obtains from liquidating its project (if any).

30 An ​n × n​ matrix ​Q​ is said to be reducible, if for some permutation matrix ​P​ , the matrix ​​​P​ ​ ′​​QP​ is block 
upper-triangular. If a square matrix is not reducible, it is said to be irreducible. If ​Q​ is a nonnegative irreducible 
matrix with unit column sums, then all eigenvalues of any square submatrix of ​Q​ , say ​​Q  ̃​​ , lie within the unit circle, 
implying that equation ​​Q ̃ ​x  =  x​ has no non-trivial solutions. For more on this, see e.g., Berman and Plemmons 
(1979). 
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Summing the above three equalities over all banks implies that the social surplus 
in the economy is equal to

	​ u  =  s(A − y) + vd + ​∑ 
i∉d

​ ​​ (​z​i​​ + ζ​ℓ​i​​) + ​∑ 
i∉d

​ ​​ ​∑ 
j≠i

​ ​​ ​x​ ij​​ − ​∑ 
i∈s

​ ​​ ​ℓ​i​​

	 =  s(A − y) + ​ ∑ 
i=1

​ 
n

  ​​ (​z​i​​ + ζ​ℓ​i​​) + ​∑ 
i∈s

​ ​​ ​∑ 
j≠i

​ ​​ ​y​ij​​ − ​∑ 
i∈s

​ ​​ ​ℓ​i​​​,

where with some abuse of notation, we denote the size of sets ​s​ , ​d​, and ​f​ with ​s​ , ​d​, 
and ​f​ , respectively. The second equality is a consequence of the fact that for ​i  ∈  d​ 
we have, ​​∑ j≠i​ ​​(​x​ ji​​ − ​x​ ij​​)  = ​ z​i​​ + ζ​ℓ​i​​ − v​. Further simplifying the above equality 
thus implies

	​ u  = ​  ∑ 
i=1

​ 
n

  ​​ ​z​i​​ + sA + ζ ​ ∑ 
i=1

​ 
n

  ​​ ​ℓ​i​​ − ​∑ 
i∈s

​ ​​ ​ℓ​i​​

	 =  n(a + A) − pϵ − ​(1 − ζ )​ ​ ∑ 
i=1

​ 
n

  ​​ ​ℓ​i​​​,

which completes the proof. ∎

D. Proof of Proposition 3

Lemma B3: Suppose that no bank defaults on its senior liabilities. Then, banks in 
sets ​s​ and ​d​ can meet their liabilities and default, respectively, if and only if

(B10)	​​ (I − ​Q​dd​​)​​ −1​ ​e​d​​  <  0

(B11)	​ Q​sd​​​(I − ​Q​dd​​)​​ −1​ ​e​d​​ + ​e​s​​  ≥  0 ​.

Lemma B4: Suppose that the distressed bank ​j​ defaults on its senior liabilities. If ​
d​ denotes the set of all other banks that default, then

(B12)	​ ​(I − ​Q​dd​​)​​ −1​[(a − v)1 − y ​Q​dj​​]  <  0 .​

Furthermore, if (B12) is satisfied for a subset of banks ​d​ , then all banks in ​d​ default.

Proof:
To prove the first statement, suppose that ​d​ and ​s​ denote the set of banks that 

default (excluding bank ​j​) and can meet their liabilities in full, respectively. By 
definition,

	​ ​x​d​​  = ​ Q​dd​​ ​x​d​​ + y ​Q​ds​​1 + (a − v)1,​

which implies

	​ ​x​d​​  = ​ (I − ​Q​dd​​)​​ −1​​[ y​Q​ds​​1 + (a − v)1]​ .​
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On the other hand, given that ​Q​ is a stochastic matrix, we have ​​Q​ds​​1 + ​Q​dd​​1 + ​
Q​dj​​  =  1​. Therefore, for all banks in ​d​ to default, it is necessary that

	​ ​(I − ​Q​dd​​)​​ −1​​[(a − v)1 − y ​Q​dj​​]​  <  0,​

which proves the first statement.
To prove the second statement, suppose that for a given subset of banks ​d​ , inequal-

ity (B12) is satisfied. Replacing for ​​Q​dj​​  =  1 − ​Q​dd​​1 − ​Q​ds​​1​ implies that

	​ ​(I − ​Q​dd​​)​​ −1​[(a − v)1 + y ​Q​ds​​]  <  y1.​

In other words, even if no other bank outside of ​d​ (and the originally distressed bank ​
j​ ) defaults, still no bank in ​d​ can meet its liabilities in full. Therefore, regardless of 
the state of other banks, all banks in ​d​ default. ∎

Proof of Proposition 3:
We prove this proposition for three separate cases, depending on whether or not 

the distressed bank, say bank ​f​ , defaults on its senior liabilities in the two financial 
networks ​{​y​ij​​}​ and ​{​​y ̃ ​​ij​​}​ , where ​​​y ̃ ​​ij​​  =  β​y​ij​​​ for all ​i  ≠  j​ and some constant ​β  >  1​. In 
each case, we show that the set of banks that default in ​{​y​ij​​}​ is a subset of the set of 
defaulting banks in ​{​​y ̃ ​​ij​​}​. 

Case (i): First, suppose that the distressed bank ​f​ does not default on its 
senior liabilities in the financial network ​{​y​ij​​}​. Let ​d​ and ​s​ denote the set of 
banks that default and can meet their liabilities in full, and denote the cor-
responding payment equilibrium with ​x  =  (​x​d​​, y1)​. It is immediate that 
​​x​d​​  =  y1 + ​(I − ​Q​dd​​)​​ −1​​e​d​​​. Furthermore, Lemma B3 implies that inequalities (B10) 
and (B11) must be satisfied.

Now consider the financial network ​{​​y ̃ ​​ij​​}​. We verify that ​​x ̃ ​  =  (​​x ̃ ​​d​​, ​y ̃ ​1)​ is a pay-
ment equilibrium of the new financial network, where ​​y ̃ ​  =  βy​ and

	​​​ x ̃ ​​d​​  = ​ y ̃ ​ 1 + ​(I − ​Q​dd​​)​​ −1​​e​d​​ .​

Note that ​​​x ̃ ​​d​​  = ​ x​d​​ + (​y ̃ ​ − y)1  >  0​ , which implies that all banks in ​d​ , including 
the distressed bank ​f​ , can meet their senior liabilities. Moreover, given (B10), it is 
immediate that ​​​x ̃ ​​d​​  < ​ y ̃ ​ 1​. Finally, inequality (B11) and the fact that ​Q​ is a stochastic 
matrix imply that ​​Q​sd​​ ​​x ̃ ​​d​​ + ​y ̃ ​ ​Q​ss​​1 + ​e​s​​  ≥ ​ y ̃ ​ 1​. Hence, ​​x ̃ ​​ solves

	​​ x ̃ ​  = ​ [min{Q ​x ̃ ​ + e, ​y ̃ ​1}]​​ +​,​

implying that it indeed is a payment equilibrium of ​{​​y ̃ ​​ij​​}​. Consequently, the set of 
banks that default in the two financial networks are identical.

Case (ii): Next suppose that the distressed bank defaults on its senior liabilities in 
both financial networks. By Lemma B4, it is immediate that

	​ ​(I − ​Q​dd​​)​​ −1​[(a − v)1 − y​Q​df​​]  <  0,​
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where ​s​ denotes the set of banks that can meet their obligations in full and ​d​ denotes 
the set of banks, excluding bank ​f​ , that default. Now consider the financial network ​
{​​y ̃ ​​ij​​}​ , for which ​​​y ̃ ​​ij​​  =  β  ​y​ij​​​ for all ​i  ≠  j​ and ​β  >  1​. Recall that ​​(I − ​Q​dd​​)​​ −1​​ is an 
inverse M-matrix and hence, is element-wise nonnegative. Therefore, it is immedi-
ate that

	​ ​(I − ​Q​dd​​)​​ −1​[(a − v)1 − ​y ̃ ​ ​Q​ d  f  ​​]  <  0,​

where ​​y ̃ ​  =  β y​ is the total liabilities of each bank in ​{​​y ̃ ​​ij​​}​. Furthermore, by assump-
tion, bank ​f​ defaults on its senior liabilities. Thus, the second part of Lemma B4 
implies that the set of defaulting banks in ​{​​y ̃ ​​ij​​}​ contains the set of defaulting banks 
in ​{​y​ij​​}​. 

Case (iii): Finally, suppose that bank ​f​ defaults on its senior liabilities in ​{​y​ij​​}​ but 
can fully meet them in ​{​​y ̃ ​​ij​​}​. In other words, by increasing all bilateral liabilities by 
a factor ​β​ , the total resources available to bank ​f​ increases from a number smaller 
than ​v​ to a number greater than ​v​. Thus, by continuity, there exists ​b  ∈  (1, β)​ such 
that in the financial network ​{​y​ij​​(b)}​ the liquid resources available to bank ​j​ is exactly 
equal to ​v​ , where ​{​y​ij​​(b)}​ is defined as the financial network in which ​​y​ij​​(b)  =  b​y​ij​​​ 
for all ​i  ≠  j​.

Let ​​β​ 0​​​ be the smallest such ​b​. By case (ii) above, the set of defaulting 
banks in the financial network ​{​y​ij​​(​β​ 0​​)}​ contains the set of defaulting banks in 
​{​y​ij​​}  =  {​y​ij​​(1)}​. On the other hand, given that bank ​f​ can just meet its obligations 
to its senior creditors, case (i) above implies that the set of defaulting banks in 
​{​​y ̃ ​​ij​​}  =  {​y​ij​​(β)}​ coincides with the set of defaulting banks in ​{​y​ij​​(​β​ 0​​)}​. Thus, to sum-
marize, the set of banks in default does not shrink if all liabilities are increased by 
a factor ​β​. ∎

E. Two Auxiliary Lemmas

Lemma B5: Suppose that ​ζ  =  0​. The number of bank defaults satisfies

	​ p  ≤   # (defaults)  < ​   pϵ _____ a − v ​​  ,

where ​p​ is the number of realizations of negative shocks in the network.

Proof:
Given that the total interbank liabilities of each bank are equal to its total inter-

bank claims and that ​v  >  a − ϵ​ , any bank that is hit with a negative shock defaults. 
Hence, the lower bound is trivial. To obtain the upper bound, note that for any bank ​
i​ that defaults but can meet its senior liabilities in full, we have

	​ ​z​i​​ + ​∑ 
j≠i

​ ​​ ​x​ ij​​  =  v + ​∑ 
j≠i

​ ​​ ​x​ ji​​ .​
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Denoting the set of such banks by ​d​ and summing over all ​i  ∈  d​ implies

(B13)	​ ​∑ 
i∈d

​ ​​ ​z​i​​ + ​∑ 
i∈d

​ ​​ ​∑ 
j≠i

​ ​​ ​x​ ij​​  =  vd + ​∑ 
i∈d

​ ​​ ​∑ 
j≠i

​ ​​ ​x​ ji​​ .​

On the other hand, for any bank ​i​ that defaults on its senior liabilities (if such a bank 
exists), we have

	​ ​∑ 
j≠i

​ ​​ ​x​ ij​​ + ​z​i​​  <  v .​

Summing over the set of all such banks, ​f​ , implies

(B14)	​ ​∑ 
i∈f

​ ​​ ​∑ 
j≠i

​ ​​ ​x​ ij​​ + ​∑ 
i∈f

​ ​​ ​z​i​​  <  vf .​

Adding (B13) and (B14) leads to

	​ pϵ − (a − v) # (defaults)  ≥ ​ ∑ 
j∉s

​ ​​ ​∑ 
i∈s

​ ​​ (​y​ij​​ − ​x​ ij​​),​

where ​s​ is the set of banks that do not default. By definition, the right-hand side of 
the above equality is strictly positive, proving that the number of defaults is strictly 
smaller than ​pϵ / (a − v)​. ∎

Lemma B6: If ​ϵ  < ​ ϵ​ p​ ∗ ​​ , then at least one bank does not default, where ​​
ϵ​ p​ ∗ ​ =  n(a − v) / p​. On the other hand, if ​ϵ  > ​ ϵ​ p​ ∗ ​​ , then at least one bank defaults on 
its senior creditors.

Proof: 
Suppose that ​ϵ  < ​ ϵ​ p​ ∗ ​​ and that all banks default. Therefore,

	​ ​z​i​​ + ​∑ 
j≠i

​ ​​ ​x​ ij​​  ≤  v + ​∑ 
j≠i

​ ​​ ​x​ ji​​,​

for all banks ​i​. Summing over ​i​ implies

	​ na − pϵ  ≤  nv,​

which contradicts the assumption that ​ϵ  < ​ ϵ​ p​ ∗ ​​.
To prove the second statement, suppose that ​ϵ  > ​ ϵ​ p​ ∗ ​​ and that no bank defaults on 

its senior liabilities. Thus,

	​ ​z​i​​ + ​∑ 
j≠i

​ ​​ ​x​ ij​​  ≥  v + ​∑ 
j≠i

​ ​​ ​x​ ji​​,​

for all banks ​i​. Summing over ​i​ implies ​na − pϵ  ≥  nv​ , leading to a contradiction. ∎
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F. Proof of Proposition 4

Proof of Part (i):
Without loss of generality assume that bank 1 is hit with the negative shock. 

By Lemma B6, bank ​n​ does not default as it is the bank furthest away from the 
distressed bank. Moreover, as long as ​y  > ​ y​​ ∗​  =  (n − 1)(a − v)​ , bank 1—and 
consequently all banks—can meet their senior liabilities in full. This is due to the 
fact that ​y + a − ϵ  >  v​. Given that banks in default form a connected chain, say of 
length ​τ​ , the repayment of the last bank in default to its sole creditor satisfies

	​ ​x​ τ+1, τ​​  =  y + τ  (a − v) − ϵ .​

On the other hand, given that bank ​τ + 1​ does not default, we have

	​ a + ​x​ τ+1, τ​​  ≥  y + v .​

As a result, ​τ  ≥  ϵ / (a − v) − 1​ , implying that the number of defaults reaches the 
upper bound established in Lemma B5. Hence, the ring network is the least stable 
and least resilient financial network. ∎

Proof of Part (ii):
 By Lemma B6, as long as ​ϵ  < ​ ϵ​​ ∗​​ , there exists at least one bank that does not 

default. Given the full symmetry in the complete network, the ​n − 1​ banks that 
are not hit with the negative shock can thus meet their liabilities in full. Hence, the 
complete financial network is the most stable and most resilient regular financial 
network. ∎

Proof of Part (iii): 
Consider the financial network constructed as the ​γ​ -convex combination of the 

ring and the complete financial networks. Without loss of generality, we assume 
that bank 1 is hit with the negative shock. Define ​​γ​ d​​​ to be the value at which banks 
1 through ​d − 1​ default while bank ​d​ is at the verge of default. At this value of ​γ​ , 
we have

(B15)	​​ x​ 1​​  = ​ (​  ​γ​ d​​ _____ 
n − 1 ​)​ ​[(​x​ 1​​ +  ⋯  + ​x​ d​​) − ​x​ 1​​ + (n − d)y]​ 

	 + (1 − ​γ​ d​​)y + (a − v − ϵ)

(B16)	​ x​ i​​  = ​ (​  ​γ​ d​​ _____ 
n − 1 ​)​ ​[(​x​ 1​​ +  ⋯  + ​x​ d​​) − ​x​ i​​ + (n − d)y]​ 

	 + (1 − ​γ​ d​​)​x​ i−1​​ + (a − v​)

for ​2  ≤  i  ≤  d​. Hence,

	​​ Δ​2​​  = ​ x​ 2​​ − ​x​ 1​​  = (1 − ​γ​ d​​)​Δ​1​​ − ​(​  ​γ​ d​​ _____ 
n − 1 ​)​ ​Δ​2​​ + ϵ

	​ Δ​i​​  = ​ x​ i​​ − ​x​ i−1​​  = (1 − ​γ​ d​​)​Δ​i−1​​ − ​(​  ​γ​ d​​ _____ 
n − 1 ​)​ ​Δ​i​​​,
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where ​​Δ​1​​  = ​ x​ 1​​ − y​. Thus, for all ​2  ≤  i  ≤  d​ ,

	​ ​Δ​i​​  = ​ β​​ i−1​(​Δ​1​​ + ϵ / (1 − ​γ​ d​​)),​

where for notational simplicity we have defined ​β  = ​​ (1 + ​  ​γ​ d​​ ____ n − 1 ​)​​​ 
−1

​(1 − ​γ​ d​​)​. 
Given that ​​x​ d​​  =  y​ , the terms ​​Δ​i​​​ must add up to zero, that is,

	​ ​ ∑ 
i=1

​ 
d

  ​​ ​Δ​i​​  = ​ (​ 1 − ​β​​ d​ ______ 
1 − β ​)​ ​Δ​1​​ + ​(​ 1 − ​β​​ d−1​ _______ 

1 − β ​ )​ ​(​  βϵ _____ 
1 − ​γ​ d​​

 ​)​  =  0,​

which immediately implies

	​ ​Δ​1​​  =  − ​(​ 1 − ​β​​ d−1​ _______ 
1 − ​β​​ d​

 ​ )​ ​(​  βϵ _____ 
1 − ​γ​ d​​

 ​)​ .​

Therefore,

	​ ​x​ i​​  =  y + ​ ∑ 
s=1

​ 
i

  ​​ ​Δ​s​​  =  y + ​(​ ​β​​ d−1​ − ​β​​ i−1​  _________ 
1 − ​β​​ d​

 ​ )​ ​(​  βϵ _____ 
1 − ​γ​ d​​

 ​)​,​

and as a result,

	​ ​ ∑ 
i=1

​ 
d−1

​​ ​x​ i​​  =  (d − 1)y + ​[​ d​β​​ d−1​(1 − β) − (1 − ​β​​ d​)   ___________________   
(1 − ​γ​ d​​)(1 − β)(1 − ​β​​ d​)

 ​]​ βϵ .​

On the other hand, from (B15) and (B16), we have

	​ ​ ∑ 
i=1

​ 
d−1

​​ ​x​ i​​  =  (d − 1)y + ​  d(a − v) − ϵ  ______________  ​γ​ d​​(n − d)/(n − 1) ​ .​

Equating the above two equalities thus leads to

	​ n(a − v)/ϵ − 1  = ​ [​ ​β​​ d−1​(1 − β)  _________ 
1 − ​β​​ d​

 ​ ]​(n − d) .​

Therefore, the value ​​γ​ d​​​ at which ​d − 1​ banks default and bank ​d​ is at the verge 
of default must satisfy the above equality. For a fixed value of ​d​ , the right-hand side 
is increasing in ​β​ (and hence, decreasing in ​​γ​ d​​​).31 As a consequence, in order for 
the right-hand side to remain equal to the constant on the left-hand side, ​d​ has to 
decrease as ​γ​ increases. In other words, there will be weakly less defaults for higher 
values of ​γ​. ∎

31 This can be easily verified by noticing that ​​β​​ d−1​(1 − β)  =  (1 − ​β​​ d​)​​(1 + ​β​​ −1​ +  ⋯  + ​β​​ −(d−1)​)​​​ 
−1

​​. 
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G. Proof of Proposition 5

First, consider the original financial network ​{​y​ij​​}​ and label the set of banks that 
default and can meet their liabilities in full by ​d​ and ​s​ , respectively. Lemma B3 
implies that inequalities (B10) and (B11) are satisfied. Next, consider the financial 
network ​{​​y ̃ ​​ij​​}​ , which is a ​(, , P)​-majorization of ​{​y​ij​​}​ for some doubly stochastic 
matrix ​P​. By construction, ​​​Q ̃ ​​dd​​  = ​ Q​dd​​​ , which immediately implies that the trans-
formed network ​{​​y ̃ ​​ij​​}​ satisfies (B10). Thus, by Lemma B3, the proof is complete 
once we show that ​{​​y ̃ ​​ij​​}​ also satisfies inequality (B11). We have

	​​​ Q ̃ ​​sd​​​(I − ​​Q ̃ ​​dd​​)​​ 
−1​​e​d​​ + ​e​s​​  =  P​Q​sd​​​(I − ​Q​dd​​)​​ −1​​e​d​​ + ​e​s​​

	 =  P​[​Q​sd​​​(I − ​Q​dd​​)​​ −1​​e​d​​ + ​e​s​​]​​,

where we are using the fact that ​P​ is a doubly-stochastic matrix. Given that 
​{​y​ij​​}​ satisfies (B11) (and using the fact that ​P​ is a non-negative matrix), it is then 
immediate that the right-hand side of the above equality is nonnegative. ∎

H. Proof of Corollary 1

Consider the regular financial network ​{​y​ij​​}​. By assumption, only the distressed 
bank, say bank ​j​ , defaults. This means that bank ​j​ is paid in full by its creditors, 
implying that ​​x​ j​​  >  0​. To see this, note that ​​x​ j​​  =  0​ implies that

	​ ​x​ j​​  = ​ [min{y + a − v − ϵ, y}]​​ +​  =  0,​

which can arise only if ​y + a − v − ϵ  ≤  0​. That, however, would be in contradic-
tion with the assumptions that ​ϵ  < ​ ϵ​​ ∗​​ and ​y  > ​ y​​ ∗​​.

The fact that ​​x​ j​​  >  0​ implies that bank ​j​ can meet its liabilities to the senior cred-
itors in full. Thus, by Proposition 5, any ​({ j}, { j}, P)​-majorization of the financial 
network would lead to weakly less defaults.

On the other hand, note that in the absence of financial contagion, the ​γ​  -con-
vex combination of the network with the complete network is essentially a 
​({ j}, { j}, P)​ -majorization of the original network, with the doubly stochastic matrix ​
P​ given by ​P  =  (1 − γ)I + γ / (n − 1)11′​ . ∎

I. Proof of Proposition 6

Proof of Part (i):
First consider the complete financial network. By Lemma B6, the distressed bank 

defaults on its senior liabilities. Suppose that the remaining ​n − 1​ banks do not default 
and that they can all meet their liabilities in full.32 This would be the case only if

	​ (n − 2)​  y
 _____ 

n − 1 ​ + (a − v)  ≥  y,​

32 Note that given the symmetric structure of the complete network and the uniqueness of payment equilibrium, 
either all other banks default together or they all meet their liabilities fully at the same time. 
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where we are using the fact that the distressed bank does not pay anything to its 
junior creditors. The above inequality, however, contradicts the assumption that 
​y  > ​ y​​ ∗​​. Hence, all banks default, implying that the complete network is the least 
resilient and the least stable financial network.

Now consider the ring financial network and assume without loss of generality 
that bank 1 is hit with the negative shock. Once again by Lemma B6, bank 1 defaults 
on its senior liabilities, and hence does not pay anything to its junior creditor,  
bank 2. Thus, if some bank does not default, the length of the default cascade, ​τ​ , 
must satisfy

	​ τ(a − v)  >  y,​

which in light of the assumption that ​y  > ​ y​​ ∗​​ guarantees that ​τ  >  n − 1​ , leading 
to a contradiction. Hence, all banks default, implying that the ring financial network 
is the least stable and resilient financial network. ∎

Proof of Part (ii):
Consider a ​δ​  -connected financial network where ​δ  < ​  a − v ____ ny  ​​. By defini-

tion, there exists a partition ​(, ​​​ c​)​ of the set of banks such that ​​y​ij​​  ≤  δy​ for all 
​i  ∈  ​ and ​j  ∈ ​ ​​ c​​. Consequently, ​​∑ j∉​ ​​ ​y​ij​​  ≤  δy | ​​​ c​ |​ for all banks ​i  ∈  ​ , and 
therefore,

	​​  ∑ 
j∈

​​​ ​y​ij​​  ≥  y − δy | ​​​ c​ |

	 ≥  y − (a − v) ​.

Therefore, if the negative shock hits a bank in ​​​​ c​​ , all banks in ​​ can still meet their 
liabilities in full. This is a consequence of the fact that ​a − v + ​∑ j∈​ ​​ ​y​ij​​  ≥  y​ for 
all ​i  ∈  ​ , which guarantees that in the unique payment equilibrium of the financial 
network, no bank in ​​ defaults. A similar argument shows that when the shock 
hits a bank in ​​ , all banks in ​​​​ c​​ can meet their liabilities in full. Thus, the financial 
network is strictly more stable and resilient than both the complete and the ring net-
works, in which all banks default. ∎

J. Proof of Proposition 7

Consider the original financial network ​{​y​ij​​}​. Given that ​ϵ  > ​ ϵ​​ ∗​​ , Lemma B6 
implies that the distressed bank ​j​ defaults on its senior liabilities. Thus, by the first 
part of Lemma B4, inequality (B12) is satisfied, where ​d​ denotes the set of all 
other banks that default. Next, consider the financial network ​{​​y ̃ ​​ij​​}​ obtained by the ​
(, {   j}, P)​-majorization of ​{​y​ij​​}​. By construction, ​​​Q ̃ ​​dd​​  = ​ Q​dd​​​ and

	​ ​​q ̃ ​​ij​​  =  (1 − γ)​q​ij​​ + γ / (n − 1)​
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for any bank ​i  ≠  j​. Consequently,

	​​ (I − ​​Q ̃ ​​dd​​)​​ 
−1​[(a − v)1 − y ​​Q ̃ ​​dj​​]  =  (1 − γ)​(I − ​Q​dd​​)​​ −1​[(a − v)1 − y ​Q​dj​​]

 	 + γ(a − v − y/(n − 1))​(I − ​Q​dd​​)​​ −1​1 ​.

The first part of Lemma B4 guarantees that the first term on the right-hand side 
above is negative. As for the second term, note that ​​(I − ​Q​dd​​)​​ −1​​ is an inverse 
M-matrix, and hence, is element-wise nonnegative.33 Furthermore, by assump-
tion, ​y  > ​ y​​ ∗​  =  (n − 1)(a − v)​ , implying that the second term is also negative. 
Therefore, by the second part of Lemma B4, all banks in ​d​ default following the 
majorization transformation. ∎

K. Proof of Proposition 8

Proof of Part (i):
Let ​​m​​ ∗​  =  y / (a − v)​. We prove the result by showing that if a bank ​i​ does 

not default, then ​​m​ij​​  ≥ ​ m​​ ∗​​. Given that the distressed bank ​j​ defaults on its senior 
liabilities, it is immediate that ​​x​ j​​  =  0​. Let ​​x​d​​  ∈ ​ ℝ​​ d​​ denote the subvector of the 
equilibrium payment vector ​x​ corresponding to the banks in default, excluding the 
originally distressed bank ​j​. Similarly, let ​​x​s​​  ∈ ​ ℝ​​ s​​ denote the subvector correspond-
ing to the banks that can meet their liabilities in full.34 From the definition of a pay-
ment equilibrium, it is immediate that

	​ ​x​d​​  = ​ Q​dd​​ ​x​d​​ + y  ​Q​ds​​1 + (a − v)1,​

and as a result,

(B17)	​ ​x​d​​  = ​ (I − ​Q​dd​​)​​ −1​​( y  ​Q​ds​​1 + (a − v)1)​ .​

Furthermore, given that banks indexed ​s​ can meet their liabilities in full, it must 
be the case that

	​ ​Q​sd​​ ​x​d​​ + y ​Q​ss​​1 + (a − v)1  ≥  y1 .​

Substituting for ​​x​d​​​ from (B17) implies

(B18)	​ ​Q​sd​​​(I − ​Q​dd​​)​​ −1​1 + 1  ≥ ​ m​​ ∗​​[I − ​Q​ss​​ − ​Q​sd​​​(I − ​Q​dd​​)​​ −1​​Q​ds​​)]​ 1 .​

33 A square matrix ​X​ is an M-matrix if there exist a nonnegative square matrix ​B​ and a constant ​r  >  ρ(B)​ such 
that ​X  =  rI − B​ , where ​ρ(B)​ is the spectral radius of ​B​. By (Plemmons 1977, Theorem 2), the inverse of any 
non-singular M-matrix is element-wise nonnegative. For more on M-matrices and their properties, see Berman and 
Plemmons (1979). 

34 With some abuse of notation, we use ​d​ and ​s​ to not only denote the set of defaulting and solvent banks, but 
also the size of the two sets, respectively. Hence, ​s + d + 1  =  n​. 
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On the other hand, by the definition of the harmonic distance (3), we have

(B19)	​​ m​ dj​​  =  1 + ​Q​dd​​ ​m​ dj​​ + ​Q​ds​​ ​m​ sj​​

(B20)	​ m​ sj​​  =  1 + ​Q​sd​​ ​m​ dj​​ + ​Q​ss​​ ​m​ sj​​,​ 

where ​​m​ dj​​  ∈ ​ ℝ​​ d​​ and ​​m​ sj​​  ∈ ​ ℝ​​ s​​ are vectors that capture the harmonic distances of 
the defaulting and solvent banks to the distressed bank ​j​ , respectively. Solving for ​​
m​ dj​​​ in (B19) and replacing it in (B20) leads to

​​m​ sj​​  =  1 + ​Q​sd​​​(I − ​Q​dd​​)​​ −1​1 + ​Q​sd​​​(I − ​Q​dd​​)​​ −1​​Q​ds​​ ​m​ sj​​ + ​Q​ss​​ ​m​ sj​​

 	  ≥ ​ m​​ ∗​​[I − ​Q​ss​​ − ​Q​sd​​​(I − ​Q​dd​​)​​ −1​​Q​ds​​)]​ 1 + ​Q​sd​​​(I − ​Q​dd​​)​​ −1​​Q​ds​​​m​ sj​​ + ​Q​ss​​​m​ sj​​​,

where the inequality is a consequence of (B18). Rearranging the terms thus implies

	​ C​m​ sj​​  ≥ ​ m​​ ∗​(C1),​

where matrix ​C  ∈ ​ ℝ​​ s×s​​ is given by

	​ C  = ​ [I − ​Q​ss​​ − ​Q​sd​​​(I − ​Q​dd​​)​​ −1​​Q​ds​​)]​ .​

The proof is thus complete once we show that ​​C​​ −1​​ is an element-wise nonnegative 
matrix, as it would immediately imply that ​​m​ sj​​  ≥ ​ m​​ ∗​1​. To establish this, first note 
that ​C​ is the Schur complement of the non-singular, M-matrix ​G​ defined as

	​ G  = ​ [​I − ​Q​ss​​​  −​Q​sd​​​  −​Q​ds​​
​ 

I − ​Q​dd​​
​]​ .​

By Berman and Plemmons (1979, exercise 5.8, p. 159), the Schur complement 
of any non-singular M-matrix is itself a non-singular M-matrix.35 Thus, Theorem 2 
of Plemmons (1977) guarantees that ​​C​​ −1​​ is element-wise nonnegative, completing 
the proof.  ∎

Proof of Part (ii):
Suppose that all banks default if bank ​j​ is hit with the negative shock, which 

means that ​​x​ i​​  <  y​ for all banks ​i  ≠  j​. On the other hand, from the definition of a 
payment equilibrium it is immediate that

	​ ​x​ i​​  =  a − v + ​∑ 
k≠j

​ ​​ ​q​ik​​ ​x​ k​​,​

for all ​i  ≠  j​. Dividing both sides of the above equation by ​a − v​ and comparing it 
with the definition of the harmonic distance over the financial network (3) implies 
that ​​x​ i​​ / (a − v)  = ​ m​ij​​​.36 Thus, the fact that ​​x​ i​​  <  y​ guarantees that ​​m​ij​​  < ​ m​​ ∗​​. ∎

35 For a proof, see Theorem 1 of Carlson and Markham (1979). 
36 Note that we are using the fact that for any ​j​ , equation (3) has a unique solution. 
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L. Proof of Lemma 1

Lemma B7: For any regular financial network,

	​​  1 _ 
8
 ​ ​n​​ 2​ ​ϕ​​ 2​  ≤  1 − ​λ​2​​  ≤  2nϕ,​

where ​​λ​2​​​ is the second largest eigenvalue of ​Q​ and ​ϕ​ is the bottleneck parameter.

Proof:
Let ​Φ​ be the conductance of the graph, defined as

	​ Φ  = ​  min​ 
⊆

​ 
 
 ​ ​   Q(, ​​​ c​) _________  

min {||, |​​​ c​|} ​,​

where ​Q(, ​​​ c​)  = ​ ∑ i∈, j∉​ ​​ ​q​ij​​​. It is easy to verify that

	​ (n / 2)​min​ 
 
​ 

 
 ​  {||, |​​​ c​|}  ≤  |||​​​ c​|  ≤  n ​min​ 

 
​ 
 
 ​  {||, |​​​ c​|},​

which implies that

(B21)	​ Φ / n  ≤  ϕ  ≤  2Φ / n .​

On the other hand, by Theorem 2 of Sinclair (1992),

(B22)	​ ​Φ​​ 2​ / 2  ≤  1 − ​λ​2​​  ≤  2Φ .​

Combining (B21) and (B22) completes the proof. ∎

Proof of of Lemma 1:
We first prove the lower bound. Let ​M  =  [​m​ij​​]​ denote the matrix of pairwise 

harmonic distances between the banks, and define ​T  =  11′ + QM − M​. For any 
pair of banks ​i  ≠  j​ , we have

	​ ​t​ ij​​  =  1 + ​ ∑ 
k=1

​ 
n

  ​​ ​q​ik​​ ​m​kj​​ − ​m​ij​​  =  0,​

where the second equality is a consequence of the definition of the harmonic dis-
tance in (3). This means that ​T​ is a diagonal matrix. Furthermore, ​1′ T  =  n1′​ , which 
implies that all diagonal elements of ​T​ are equal to ​n​ , and as a consequence,

(B23)	​ (I − Q)M  =  11′ − nI .​

Solving the above equation for the matrix of pairwise harmonic distances ​M​ implies 
that

(B24)	​ M  =  n(11′ diag(Z) − Z),​
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where ​Z  = ​​ (I − Q + (1/n)11′ )​​​ −1​​ and ​diag(X)​ is a diagonal matrix whose ele-
ments are the diagonal entries of ​X​.37 Therefore,

	 ​M1  =  n(11′ diag(Z)1 − Z1)

	   =  n(trace(Z) − 1)1​,

where the second equality is a consequence of the fact that ​Z1  =  1​. Consequently, 
for any bank ​i​ ,

(B25)	​​  1 _ n ​ ​∑ 
j≠i

​ ​​ ​m​ij​​  =  trace(Z) − 1  = ​  ∑ 
k=2

​ 
n

  ​​ ​  1 _____ 
1 − ​λ​k​​

 ​,​

in which ​​λ​k​​​ is the ​k​ -th largest eigenvalue of ​Q​. The second equality above relies on 
the fact that the eigenvalues of ​Z​ are simply the reciprocal of the nonzero eigenval-
ues of ​I − Q​. Thus, (B25) implies

	​ ​max​ 
i≠j

​   ​ ​ m​ij​​  ≥ ​  ∑ 
k=2

​ 
n

  ​​ ​  1 _____ 
1 − ​λ​k​​

 ​  ≥ ​   1 ______ 
1 − ​λ​2​​

 ​ .​

Lemma B7 now guarantees that ​​max​ i≠j​   ​ ​ m​ij​​  ≥  1/(2nϕ)​ establishing the lower 
bound in (4).

We next establish the upper bound.38 Note that since ​Q​ is symmetric with 1 as its 
top eigenvalue, it can be written in spectral form as

	​ Q  = ​  1 _ n ​ 11′ + ​ ∑ 
k=2

​ 
n

  ​​ ​λ​k​​ ​w​k​​ ​w​k​ ′ ​,​

where ​{​w​2​​,  … , ​w​n​​}​ are eigenvectors of ​Q​ corresponding to eigenvalues ​{​λ​2​​,  … , ​λ​n​​}​  
with lengths normalized to one. Consequently, ​Z  = ​ ∑ k=2​ 

n
  ​​ ​  1 ____ 

1 − ​λ​k​​
 ​ ​w​k​​ ​w​k​ ′ ​​. Equation 

(B24) then implies

	​ ​m​ij​​  =  n ​ ∑ 
k=2

​ 
n

  ​​ ​  1 _____ 
1 − ​λ​k​​

 ​​(​w​ kj​ 2 ​ − ​w​ki​​ ​w​kj​​)​,​

for all pairs of banks ​i​ and ​j​ , and hence,

	​​ m​ij​​ + ​m​ ji​​  =  n ​ ∑ 
k=2

​ 
n

  ​​ ​  1 _____ 
1 − ​λ​k​​

 ​ ​(​w​ki​​ − ​w​kj​​)​​ 2​

 	  ≤ ​   n ______ 
1 − ​λ​2​​

 ​ ​ ∑ 
k=1

​ 
n

  ​​(​w​ ki​ 2 ​ + ​w​ kj​ 2 ​ − 2​w​ki​​ ​w​kj​​)

 	  = ​   2n ______ 
1 − ​λ​2​​

 ​ ​.

37 Since ​I − Q​ is not invertible, equation (B23) has infinitely many solutions. However, the restriction that ​​
m​ii​​  =  0​ for all ​i​ uniquely determines the matrix ​M​ of pairwise harmonic distances. 

38 The proof of the upper bound follows steps similar to those in, and generalizes, Lovász (1996, Theorem 3.1). 
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The last equality above is a consequence of the observation that the collection of 
vectors ​{​w​1​​, … , ​w​n​​}​ form an orthonormal basis, and hence, it must be the case that ​​
∑ k=1​ 

n
  ​​ ​w​ ki​ 2 ​  =  1​ for all banks ​i​ and that ​​∑ k=1​ 

n
  ​​ ​w​ki​​ ​w​kj​​  =  0​ for all ​i  ≠  j​.39 Given 

that the above inequality holds for any pairs of banks ​i  ≠  j​ , it is immediate that

(B26)	​ ​max​ 
i≠j

​   ​ ​ m​ij​​  ≤ ​   2n ______ 
1 − ​λ​2​​

 ​ .​

Combining (B26) with the lower bound in Lemma B7 completes the proof. ∎
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