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This appendix contains additional material to accompany our paper, “Wanna Get Away? Re-

gression Discontinuity Estimation of Exam School Effects Away from the Cutoff”. Section 1 presents

proofs of Theorems 1 and 2. We also discuss alternative fuzzy estimators. These are used to revisit

the estimates in Tables 4 and 5. Section 2 discusses the theoretical basis for parametric extrapola-

tion in an RD design, illustrating with additional results for 10th grade Math. Section 3 discusses

an alternative to the conditional independence test discussed in Section 3.1. The test here is based

on a comparison of RD and CIA estimates of effects at the cutoff.

1 Proofs

Proof of Theorem 1

Theorem 1 in Imbens and Angrist (1994) implies:

E [yi | Di = 1, xi]− E [yi | Di = 0, xi] = P [W1i > W0i | xi]E [Y1i − Y0i |W1i > W0i, xi]

E [Wi | Di = 1, xi]− E [Wi | Di = 0, xi] = P [W1i > W0i | xi] .
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Given the GCIA, we have:

E {E [yi | Di = 1, xi]− E [yi | Di = 0, xi] | 0 ≤ ri ≤ c}

=

ˆ
P [W1i > W0i | xi]E [Y1i − Y0i |W1i > W0i, xi] dP [xi | 0 ≤ ri ≤ c]

=

ˆ
P [W1i > W0i | xi, 0 ≤ ri ≤ c]E [Y1i − Y0i |W1i > W0i, xi] dP [xi | 0 ≤ ri ≤ c]

= P [W1i > W0i | 0 ≤ ri ≤ c]

×
ˆ
E [Y1i − Y0i |W1i > W0i, xi] dP [xi |W1i > W0i, 0 ≤ ri ≤ c]

= P [W1i > W0i | 0 ≤ ri ≤ c]E [Y1i − Y0i |W1i > W0i0 ≤ ri ≤ c] .

The GCIA can similarly be shown to imply:

E [E [Wi | Di = 1, xi]− E [Wi | Di = 0, xi] | 0 ≤ ri ≤ c]

= P [W1i > W0i | 0 ≤ ri ≤ c] .

Combining these results, the LATE can be written:

E {E [yi | Di = 1, xi]− E [yi | Di = 0, xi] | 0 ≤ ri ≤ c}
E {E [Wi | Di = 1, xi]− E [Wi | Di = 0, xi] | 0 ≤ ri ≤ c}
= E [Y1i − Y0i |W1i > W0i, 0 ≤ ri ≤ c] .

Proof of Theorem 2

Theorem 1 in Angrist and Imbens (1995) implies:

E [yi | Di = 1, xi]− E [yi | Di = 0, xi] =
∑
j

P [w1i ≥ j > w0i | xi]E [Yji − Yj−1,i | w1i ≥ j > w0i, xi]

E [wi | Di = 1, xi]− E [wi | Di = 0, xi] =
∑
j

P [w1i ≥ j > w0i | xi] .
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Given the GCIA, we have:

E {E [yi | Di = 1, xi]− E [yi | Di = 0, xi] | 0 ≤ ri ≤ c}

=
∑
j

ˆ
P [w1i ≥ j > w0i | xi]E [Yji − Yj−1,i | w1i ≥ j > w0i, xi] dP [xi | 0 ≤ ri ≤ c]

=
∑
j

ˆ
P [w1i ≥ j > w0i | xi, 0 ≤ ri ≤ c]E [Yji − Yj−1,i | w1i ≥ j > w0i, xi] dP [xi | 0 ≤ ri ≤ c]

=
∑
j

P [w1i ≥ j > w0i | 0 ≤ ri ≤ c]

×
ˆ
E [Yji − Yj−1,i | w1i ≥ j > w0i, xi] dP [xi | w1i ≥ j > w0i, 0 ≤ ri ≤ c]

=
∑
j

P [w1i ≥ j > w0i | 0 ≤ ri ≤ c]E [Yji − Yj−1,i | w1i ≥ j > w0i, 0 ≤ ri ≤ c] .

The GCIA can similarly be shown to imply:

E [E [wi | Di = 1, xi]− E [wi | Di = 0, xi] | 0 ≤ ri ≤ c]

=
∑
j

P [w1i ≥ j > w0i | 0 ≤ ri ≤ c] .

Combining these results, the ACR can be written:

E {E [yi | Di = 1, xi]− E [yi | Di = 0, xi] | 0 ≤ ri ≤ c}
E {E [wi | Di = 1, xi]− E [wi | Di = 0, xi] | 0 ≤ ri ≤ c}
=

∑
j

νjcE [Yji − Yj−1,i | w1i ≥ j > w0i, 0 ≤ ri ≤ c]

where

νijc =
P [w1i ≥ j > w0i | 0 ≤ ri ≤ c]∑
` P [w1i ≥ ` > w0i | 0 ≤ ri ≤ c]

.

Alternative Fuzzy Formulation and Estimates

Section 5.1 notes that Theorem 2 can be used to identify LATE by setting J = 1. Theorem A1

presents an alternative formulation of Theorem 1 based on this observation.

THEOREM A1 (FUZZY LOCAL AVERAGE TREATMENT EFFECTS)

E {E [yi | Di = 1, xi]− E [yi | Di = 0, xi] | 0 ≤ ri ≤ c}
E {E [Wi | Di = 1, xi]− E [Wi | Di = 0, xi] | 0 ≤ ri ≤ c}

=

= E [Y1i − Y0i |W1i > W0i, 0 ≤ ri ≤ c] (1)

Theorem A1 and Theorem 2 suggest simple procedures for constructing estimates of the LATE

and ACR parameters. These apply the linear reweighting and propensity score estimators outlined

3



Table A1: Alternative Fuzzy CIA Estimates of LATE (Effects of Exam School Enrollment) for 9th
Grade Applicants

Table 4: Fuzzy CIA Estimates of LATE (Exam School Enrollment) for 9th Grade Applicants

Latin Latin

O'Bryant School O'Bryant School

(1) (2) (3) (4)

First Stage 0.722*** 0.898*** 0.724*** 0.900***

(0.031) (0.042) (0.033) (0.041)

N untreated 513 320 516 320

N treated 486 49 489 50

LATE 0.216*** -0.035 0.273*** 0.097

(0.054) (0.096) (0.064) (0.095)

N untreated 513 320 516 320

N treated 486 49 489 50

First Stage 0.670*** 0.898*** 0.670*** 0.900***

(0.049) (0.042) (0.050) (0.041)

N untreated 509 320 512 320

N treated 482 49 485 50

LATE 0.196*** -0.041 0.352*** 0.034

(0.074) (0.064) (0.136) (0.120)

N untreated 509 320 512 320

N treated 482 49 485 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated:  2015-08-03 (MR)

Notes: This table reports fuzzy CIA estimates of the effect of exam school 

enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS. The 

O'Bryant estimates are effects on nontreated applicants to the left of the 

admissions cutoff; the BLS estimates are for treated applicants to the right of the 

cutoff. Panel A reports results from a linear reweighting estimator; Panel B 

reports results from inverse propensity score weighting, as described in the text.  

Standard errors (shown in parentheses) were computed using a nonparametric 

bootstrap with 500 replications.  The table also reports the number of treated and 

untreated (offered and not offered) observations in the relevant outcome sample.

Math ELA

Panel A: Linear Reweighting

Panel B: Propensity Score Weighting

in Section 3 to the relevant reduced form and first stages in the theorems. The resulting reduced

form estimates can therefore be constructed in the same manner used for the estimated exam school

offer effects reported in Table 3. The first stage estimator this suggests is constructed similarly,

after replacing the dependent variable, yi, with one of the treatment variables, Wi or wi.

Table A1 reports alternative estimates of LATE based on Theorem A1, with implementations

using the linear reweighting and propensity score estimators. A2 repeats the linear reweighting-

based estimates of ACR from the paper and shows alternative estimates of ACR using propensity

score weighting.
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Table A2: Alternative Fuzzy CIA Estimates of Average Causal Response (Effects of Years of Exam
School Enrollment) for 9th Grade Applicants

Table 5: Fuzzy CIA Estimates of Average Causal Response (Years of Exam School Enrollment) for 9th Grade Applicants

Latin Latin

O'Bryant School O'Bryant School

(1) (2) (3) (4)

First Stage 1.394*** 1.816*** 1.398*** 1.820***

(0.064) (0.096) (0.065) (0.093)

N untreated 513 320 516 320

N treated 486 49 489 50

ACR 0.112*** -0.017 0.142*** 0.048

(0.029) (0.050) (0.030) (0.045)

N untreated 513 320 516 320

N treated 486 49 489 50

First Stage 1.292*** 1.816*** 1.292*** 1.820***

(0.098) (0.092) (0.100) (0.087)

N untreated 509 320 512 320

N treated 482 49 485 50

ACR 0.102*** -0.021 0.182** 0.017

(0.038) (0.031) (0.071) (0.059)

N untreated 509 320 512 320

N treated 482 49 485 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated:  2015-08-03 (MR)

Notes: This table reports fuzzy RD estimates of the effect of years of exam school 

enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS.  The 

O'Bryant estimates are effects on nontreated applicants to the left of the 

admissions cutoff; the BLS estimates are for treated applicants to the right of the 

cutoff.  Panel A reports results from a linear reweighting estimator; Panel B 

reports results from inverse propensity score weighting, as described in the text. 

Standard errors (shown in parentheses) were computed using a nonparametric 

bootstrap with 500 replications.  The table also reports the number of treated and 

untreated (offered and not offered) observations in the relevant outcome sample.

Math ELA

Panel A: Linear Reweighting

Panel B: Propensity Score Weighting
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2 Parametric Extrapolation

The running variable is the star covariate in any RD scene, but the role played by the running

variable is distinct from that played by covariates in matching and regression-control strategies. In

the latter, we look to comparisons of treated and non-treated observations conditional on covariates

to eliminate omitted variables bias. However, in an RD design, there is no value of the running

variable at which both treatment and control subjects are observed. Nonparametric identification

comes from infinitesimal changes in covariate values across the RD cutoff. As a practical matter,

however, nonparametric inference procedures compare applicants with covariate values in a small

- though not infinitesimal - neighborhood to the left of the cutoff with applicants whose covariate

values put them in a small neighborhood to the right. This empirical comparison requires some

extrapolation, however modest. Identification of causal effects away from the cutoff requires a more

substantial extrapolative leap.

In the paper we consider a parametric estimating equation

yi =
∑
t

αtwit +
∑
j

βjpij +
∑
`

δ`di` + (1−Di) f0 (ri) +Dif1 (ri) + ρDi + ηi (2)

where the effects of the running variable are controlled by a pair of 3th-order polynomials that differ

on either side of the cutoff, specifically:

fj (ri) = π1jri + π2jr
2
i + ...+ πpjr

p
i ; j = 0, 1. (3)

In a parametric setup such as described by equations (2) and (3), extrapolation is easy though not

necessarily credible. For any distance, c, we have

ρ (c) ≡ E [Y1i − Y0i | ri = c] = ρ+ π∗1c+ π∗2c
2 + ...+ π∗pc

p, (4)

where π∗1 = π11 − π10, and so on. The notation in equation (4) masks the extrapolation challenge

inherent in identification away from the cutoff: potential outcomes in the treated state are observed

for ri = c > 0, but the value of E [Y0i | ri = c] for positive c is never seen. It seems natural to use

observations to the left of the cutoff in an effort to pin down functional form, and then extrapolate

this to impute E [Y0i | ri = c]. With enough data, and sufficiently well-behaved conditional mean

functions, E [Y0i | ri = c] is identified for all values of c, including those never seen in the data. It’s

easy to see, however, why this approach may not generate robust or convincing findings.

The unsatisfying nature of parametric extrapolation emerges in Figures A1a and A1b. These fig-

ures show observed and imputed counterfactual 10th grade math scores for 7th and 9th grade appli-
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cants. Specifically, the figures plot nonparametric estimates of the observed conditional mean func-

tion E [Y0i | ri = c] for O’Bryant applicants to the left of the cutoff, along with imputed E [Y1i | ri = c]

to the left. Similarly, for BLS applicants, the figures plot nonparametric estimates of observed

E [Y1i | ri = c] for applicants to the right of the cutoff, along with imputed E [Y0i | ri = c] to the

right. The imputations use linear, quadratic, and cubic specifications for fj (ri). These models

generate a wide range of estimates, especially as distance from the cutoff grows. For instance, the

estimated effect of BLS attendance to the right of the cutoff for 9th grade applicants changes sign

when the polynomial goes from second to third degree. This variability seems unsurprising and

consistent with Campbell and Stanley (1963)’s observation that, “at each greater degree of extrap-

olation, the number of plausible rival hypotheses becomes greater.” On the other hand, given that

f0 (ri) looks reasonably linear for ri < 0 and f1 (ri) looks reasonably linear for ri > 0, we might

have hoped for results consistent with those from linear models, even when the specification allows

something more elaborate.

Table A3, which reports the estimates and standard errors from the models used to construct

the fitted values plotted in Figure A1, shows that part of the problem uncovered in the figure is

imprecision. Estimates constructed with p = 3 are too noisy to be useful at c = +/ − 5 or higher.

Models setting p = 2 generate more precise estimates than when p = 3, though still fairly imprecise

for c ≥ 10. On the other hand, for very modest extrapolation (c = 1), a reasonably consistent

picture emerges. Like RD estimates at the cutoff, this slight extrapolation generates small positive

estimates at O’Bryant and small negative effects at BLS for both 7th and 9th grade applicants,

though few of these estimates are significantly different from zero.1

Using Derivatives Instead

Dong and Lewbel (2012) propose an alternative to parametric extrapolation based on the insight

that the derivatives of conditional mean functions are nonparametrically identified at the cutoff

(a similar idea appears in Section 3.3.2 of DiNardo and Lee, 2011). First-order derivative-based

extrapolation exploits the fact that

fj (c) ≈ fj (0) + f ′j (0) c. (5)

This approximation can be implemented using a nonparametric estimate of f ′j (0).

The components of equation (5) are estimated consistently by fitting linear models to fj (ri) in

a neighborhood of the cutoff, using a data-driven bandwidth and slope terms that vary across the

1Paralleling Figure A1, the estimates in Table A3 are from models omitting controls for test year, application year
and application preferences. Estimates from models with these controls differ little from those reported in the table.
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cutoff. In the paper we consider a nonparametric estimating equation

yi =
∑
t

αtwit +
∑
j

βjpij +
∑
`

δ`di` + γ0 (1−Di) ri + γ1Diri + ρDi + ηi (6)

Given this specification, the effect of an offer at cutoff value c can be approximated as

ρ (c) ≈ ρ+ γ∗c, (7)

where γ∗ = γ1−γ0. The innovation in this procedure relative to LLR estimation of equation (6) is in

the interpretation of the interaction term, γ∗. Instead of a bias-reducing nuisance parameter, γ∗ is

seen in this context as identifying a derivative that facilitates extrapolation. As a practical matter,

the picture that emerges from derivative-based extrapolation of exam school effects is similar to

that shown in Figure A1.

3 Testing Conditional Independence at the Cutoff

The RD design coupled with the conditional independence assumption provides also another testable

implication that can be used to guide our choice of the conditioning vector, xi. This is based on

the observation that under CIA the only difference between an RD estimand and a matching-style

estimand is in the way they weight the covariate-specific average treatment effects. Specifically,

under the CIA, the RD estimand is:

lim
ε↓0

E [yi | ri = +ε]− lim
ε↓0

E [yi | ri = −ε] = E {E [Y1i − Y0i | xi] | ri = 0} (8)

In other words, the RD estimand weights the covariate-specific average treatment effects using the

distribution of xi at the cutoff. This implies that under the CIA the RD estimand should equal

a matching-style estimand that uses similarly the distribution of xi at the cutoff to weight the

covariate-specific average treatment effects:

E {E [yi | xi, Di = 1]− E [yi | xi, Di = 0] | ri = 0} = E {E [Y1i − Y0i | xi] | ri = 0} . (9)

This observation motivates us to test the difference between RD and CIA estimates of the effects

at the cutoff. The RD estimates we use are based on the non-parametric estimator described in

the paper. For the CIA estimates we first estimate the covariate-specific average treatment effects

using the linear reweighting and propensity score estimators described in the paper. We then weight

these estimates as follows:

E
{
E [Y1i − Y0i | xi]× P [ri=0|xi]

P [ri=0]

}
8



We approximate P [ri=0|xi]
P [ri=0] by P [−5<ri≤5|xi]

P [−5<ri≤5] and estimate the numerator using a logit model with the

same specifiation as our propensity score model.

Table A4 reports the t-test statistics for the difference between the RD and CIA estimates of

the effects at the cutoffs (the standard errors are computed using nonparameric bootstrap with 500

replications). These results tell the same story as the CIA tests shown in the paper. For 7th grade

applicants all of the RD and CIA estimates of the effects at the cutoffs are significantly different

from each other, suggesting failure of CIA. At the same time, none of the RD and CIA estimates for

7th graders are significantly different from each other, providing additional support for the validity

of CIA.
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Table A3: Parametric Extrapolation Estimates for 10th Grade Math

c  = -1 c  = -5 c  = -10 c  = -15 c  = 1 c  = 5 c  = 10 c  = 15
(1) (2) (3) (4) (5) (6) (7) (8)

Linear 0.041 0.061 0.085 0.110 -0.076** -0.051 -0.021 0.010
(0.052) (0.057) (0.072) (0.093) (0.035) (0.040) (0.049) (0.061)
1832 1832 1832 1832 1854 1854 1854 1854

Quadratic 0.063 0.204 0.391* 0.588 -0.056 -0.111 -0.152 -0.161
(0.075) (0.125) (0.237) (0.384) (0.051) (0.088) (0.162) (0.261)
1832 1832 1832 1832 1854 1854 1854 1854

Cubic 0.034 0.167 0.247 0.266 -0.050 -0.096 -0.106 -0.065
(0.110) (0.336) (0.921) (1.927) (0.073) (0.220) (0.589) (1.215)
1832 1832 1832 1832 1854 1854 1854 1854

Linear 0.088 0.083 0.077 0.071 -0.090 0.079 0.291*** 0.502***
(0.057) (0.059) (0.070) (0.088) (0.065) (0.063) (0.108) (0.168)
1559 1559 1559 1559 606 606 606 606

Quadratic 0.170** 0.264** 0.427* 0.639* -0.147* -0.106 0.078 0.409
(0.085) (0.133) (0.237) (0.372) (0.088) (0.142) (0.303) (0.713)
1559 1559 1559 1559 606 606 606 606

Cubic 0.143 0.069 -0.059 -0.355 -0.061 0.196 0.996 3.094
(0.119) (0.327) (0.851) (1.735) (0.118) (0.338) (0.910) (2.543)
1559 1559 1559 1559 606 606 606 606

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated:  2013-03-01 (MR)

Notes: This table reports estimates of effects on 10th grade Math scores away from the RD cutoff at points indicated in the column heading. 
Columns 1-4 report estimates of the effect of O'Bryant attendance on unqualified O'Bryant applicants. Columns 5=8 report the effects of BLS 
attendance on qualified BLS applicants. The estimates are based on first, second, and third order polynomials, as inidcated in rows of the table. 
Robust standard errors are shown in parentheses.

Table 3. Parametric Extrapolation Estimates for 10th Grade Math

O'Bryant Latin School

Panel A: 7th Grade Applicants

Panel B: 9th Grade Applicants

Table A4: Alternative Conditional Independence Test Based on a Comparison of RD and CIA
Estimates

Table A2: Alternative Conditional Independence Test Based on a Comparison of RD and CIA Estimates

Latin Latin

O'Bryant School O'Bryant School

(1) (2) (3) (4)

Math 4.869 4.637 5.548 2.669

ELA 2.626 3.488 2.625 3.020

Math -0.350 0.808 -0.303 1.041

ELA 0.508 0.734 1.047 0.609

Updated:  2015-08-24 (MR)

Notes: This table reports t-test statistics for the difference between RD and CIA 

estimates of the effect of exam school offers on MCAS scores at the admissions 

cutoffs. The RD estimates use the nonparametric RD estimator described in the 

text. The CIA estimates use the linear reweighting estimator described in the 

text. Standard errors for the difference between the estimates were computed 

using nonparametric bootstrap with 500 replications.

Linear Reweighting Propensity Score Weighting

Panel A. 7th Grade Applicants

Panel B. 9th Grade Applicants
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(a) 7th Grade Applicants
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(b) 9th Grade Applicants

Figure A1: Parametric Extrapolation at O’Bryant and Boston Latin School for 10th Grade Math.
O’Bryant extrapolation is for E[Y1i|ri = c]; BLS extrapolation is for E[Y0i|ri = c].
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