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Abstract

The Supplementary Appendix contains proofs of some results stated in the paper, “One-

dimensional inference in autoregressive models with the potential presence of a unit root,”

by Anna Mikusheva. In particular, the proofs of the generalization of the results robust to

conditional heteroskedasticity can be found in Section 1 of the Supplementary Appendix.

Proofs of the results for multi-dimensional VAR models appear in Section 2. A discussion

of the Wald statistic for an IRF at long horizons is placed in Section 3. Section 4 provides

a simplified formula for u in the AR(2) case.

1 Heteroskedasticity robust inference

In this section we generalize the results of the paper to allow for conditionally het-

eroskedastic processes. There are some challenges to obtaining full uniformity over

Rδ, as Mikusheva (2007) uses conditional homoskedasticity extensively in employing

the Skorokhod representation. However, obtaining point-wise results in the local-to-

unity embedding is relatively straightforward. Andrews and Guggenberger (2010)

suggest that establishing asymptotic results for all local-to-unity sequences should be

enough to establish the uniformity.

Let us consider a sample from the process

yt = λpyt−1 + ut, B(L)ut = et, y0 = 0 (1)

where B(L) = 1+B1L+ ...+Bp−1L
p−1 is a lag polynomial of order p−1 with all roots

strictly inside the circle of radius δ < 1,ut is the stationary realization of an AR(p-1)

process, and λp = 1 + c/T is the local-to-unity root. The regression of interest is the
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correctly-specified AR(p) regression in ADF form:

yt = ρyt−1 +

p−1∑
j=1

αj∆yt−j + et.

Assumption HS. Let et be a stationary martingale-difference sequence, with

E|et|2(β+ε) < ∞ for some β > 2, ε > 0, and its mixing numbers αm satisfy
∑∞

m=1 α
1−2/β
m <

∞.

The important point here is that et is allowed to be conditionally heteroskedastic.

Introduce the following notation θ = (ρ, α′)′, xt = (∆yt−1, ..., ∆yt−p+1)
′, Xt =

(yt−1, x
′
t)
′, X = (Xp+1, ..., XT )′ is (T−p)×p regressor matrix, YT = (yp+1, ..., yT )′. Let

KT = diag(1/
√

T , 1..., 1) be a p×p diagonal matrix, ω2 = E(u2
1)+2

∑∞
k=1 E(u1uk) =

σ2

B(1)2
is the long-run variance of ut, and σ2 = Ee2

t .

Consider the GMM-based Distance-Metric statistic, which is asymptotically equiv-

alent to the LR statistic under assumptions of conditional homoskedasticity:

DMT = QT (θ̃)−QT (θ̂),

where QT (θ) = e(θ)′XΩ−1
T X ′e(θ), ΩT = 1

T

∑T
t=p+1 XtX

′
te

2
t (θ̂), e(θ) = Y −Xθ, θ̂ is the

OLS estimate, and θ̃ = arg minH0 QT (θ) is the restricted estimate of θ.

Theorem 1 Let one have a sample from the process defined in equation (1) with

errors satisfying Assumptions HS. Consider the following two sequences of hypotheses:

(i) linear hypothesis H0 : Aθ = γ0 with the coefficient A = AT satisfying limT→∞
KT AT

‖KT AT ‖ =

a, where a is a p× 1 vector;

(ii) hypothesis about the IRF at horizon h, i.e., H0 : fh(θ) = γ0 with h = hT :

limT→∞
hT√

T
= q ∈ [0,∞];

For both of them we have DMT ⇒ (t(c, u))2, where

t(c, u) =
tc + u

√∫ 1
0 J2

c (s)ds

g(c)
N(0, 1)

√
1 + u2

∫ 1
0 J2

c (s)ds

g(c)

,

2



u =

√
A′F ′FA− (i′1FA)2

(i′1FA)2
, (2)

and A = ∂
∂θ

fh(θ0) should be used in formula (2) for case (ii).

The proof uses Lemma 1 as established below.

Lemma 1 Let Assumption HS be satisfied. Then the following holds simultaneously:

(a) 1√
T

∑[rT ]
t=1 (et, e

2
t − Ee2

t )
′ ⇒ (σW1(r),W2(r)), where W = (σW1,W2)

′ is a two-

dimensional Brownian motion with the covariance matrix Σ1 =


 σ2 µ3

µ3 µ4


,

µ3 =
∑∞

k=0 Eete
2
t+k, µ4 =

∑∞
k=−∞ cov(e2

t , e
2
t+k).

(b) 1√
T
KT X ′e ⇒ (ωσ

∫ 1

0
Jc(t)dW1(t), ξ

′)′, where ξ ∼ N(0, E(e2
t xtx

′
t)), and Jc(r) =

∫ r

0
ec(r−s)dW1(s);

(c) 1
T
KT X ′XKT ⇒


 ω2

∫ 1

0
J2

c (t)dt 0

0 E(xtx
′
t)


 ;

(d) 1
T
KT

∑T
t=p+1 e2

t XtX
′
tKT ⇒


 σ2ω2

∫ 1

0
J2

c (t)dt 0

0 E(e2
t xtx

′
t)


 ;

(e) 1
T

∑T
t=1(KT XtX

′
tKT )⊗ (KT XtX

′
tKT ) = Op(1);

(f) 1
T

∑T
t=1(KT XtX

′
tKT )⊗ (KT Xtet) = Op(1).

Proof of Lemma 1 (a) Consider a vector vt = (et, ut, e
2
t −σ2)′. According to Phillips

(1988):

1√
T

[rT ]∑
t=1

vt ⇒ W (r),

where W (r) = (σW1(r),
σ

B(1)
W1(r),W2(r))

′ is a Brownian motion with covariance

matrix Σ =




σ2 σ2

B(1)
µ3

σ2

B(1)
ω2 µ3

B(1)

µ3
µ3

B(1)
µ4


. According to Lemma 3.1 in Phillips (1988), state-

ment (a) implies that
y[rT ]√

T
⇒ ωJc(r) = σ

B(1)

∫ r

0
e(r−s)cdW1, and statements (b) and (c)

hold.

3



For statement (d) notice that

1

T 2

T∑
t=1

y2
t−1e

2
t =

1

T 2

T∑
t=1

y2
t−1Ee2

t +
1

T 2

T∑
t=1

y2
t−1

(
e2

t − Ee2
t

)
.

The first term converges to ω2(Ee2
t )

∫ 1

0
J2

c (s)ds, while the second term is negligible.

Indeed, according to direct generalization of Theorems 4.2 and 4.4 in Hansen (1992)

1
T 3/2

∑T
t=1 y2

t−1 (e2
t − Ee2

t ) ⇒ ω2
∫ 1

0
J2

c (s)dW2(s) + µ3ω
∫ 1

0
Jc(s)ds, and the last expres-

sion is bounded in probability. Let us now consider an off-diagonal element in (d),

namely, the (p− 1)× 1 vector 1
T 3/2

∑T
t=1 yt−1xte

2
t and show that it converges to zero

in probability. Indeed, the i-th component of it has the following form:

1

T 3/2

T∑
t=1

yt−1∆yt−je
2
t =

1

T 3/2

T∑
t=1

yt−1ut−je
2
t +

c

T

1

T 3/2

T∑
t=1

yt−1yt−j−1e
2
t . (3)

Lemma 4(b) from Andrews and Guggenberger (2008) with vn,i = (ui, ui−je
2
i )
′ implies

that 1
T

∑T
t=1 yt−1ut−je

2
t converges in distribution to a bounded in probability random

variable, and as a result, the first term in (3) is negligible. Following the same

reasoning as above, we also know that 1
T 2

∑T
t=1 yt−1yt−j−1e

2
t converges in distribution

to a bounded in probability random variable, and thus, the last term in (3) is also

negligible. This gives statement (d).

For statement (e) we have to show the following five statements:

1

T 3

T∑
t=p+1

y4
t−1 = Op(1);

1

T 5/2

T∑
t=p+1

y3
t−1xt = Op(1);

1

T 2

T∑
t=p+1

y2
t−1xtx

′
t = Op(1);

1

T 3/2

T∑
t=p+1

yt−1xt ⊗ xtx
′
t = Op(1);

1

T

T∑
t=p+1

yt−1(xtx
′
t)⊗ (xtx

′
t) = Op(1).

First, notice that |xt|, ‖xtx
′
t‖, ‖xtx

′
txi,t‖ are uniformly integrable L1-mixingales, see

also Hamilton, chapter 7, for the reasoning. According to Andrews (1988)’s Law of

Large Numbers for L1- mixingales 1
T

∑
xt,

1
T

∑
xtx

′
t,

1
T

∑
xtx

′
txi,t satisfy the Law of

Large Numbers and thus converge in probability to constants. Since all statements

are proven in the same way, we show it for the second statement only:∣∣∣∣∣
1

T 5/2

T∑
t=p+1

y3
t−1xt

∣∣∣∣∣ ≤ max
t

∣∣∣∣
yt√
T

∣∣∣∣
3

1

T

T∑
t=1

|xt| ⇒ sup
0≤s≤1

|Jc(s)|3E|xt|.
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The last expression is bounded in probability.

The proof of part (f) is analogous to that of part (e).

Proof of Theorem 1. First notice that

DMT = (θ̂ − θ̃)′X ′XΩ−1
T X ′X(θ̂ − θ̃), (4)

Notice that

ΩT =
1

T

T∑
t=1

XtX
′
te

2
t (θ̂) =

1

T

T∑
t=1

XtX
′
t

(
et − (θ̂ − θ0)

′Xt

)2

=

=
1

T

T∑
t=1

XtX
′
te

2
t +

1

T

T∑
t=1

XtX
′
t

(
(θ̂ − θ0)

′Xt

)2

+
2

T

T∑
t=1

XtX
′
t

(
(θ̂ − θ0)

′Xt

)
et. (5)

Let us first show that the second term in equation (5) is asymptotically negligible.

Indeed,

KT
1

T

T∑
t=1

XtX
′
t

(
(θ̂ − θ0)

′Xt

)2

KT = KT
1

T

T∑
t=1

XtX
′
t

(
(θ̂ − θ0)

′K−1
T KT Xt

)2

KT =

=
(
Ip ⊗ (θ̂ − θ0)

′K−1
T

) 1

T

T∑
t=1

(KT XtX
′
tKT )⊗ (KT XtX

′
tKT )

(
Ip ⊗K−1

T (θ̂ − θ0)
)

.

According to statements (b), (c) and (e) of Lemma 1 the OLS estimator θ̂ satisfies

the following equation (θ̂ − θ0)
′K−1

T = Op(1/
√

T ), while the middle term is bounded

in probability. One can prove in a similar way by using statement (f) of Lemma 1

that the third term on the right-hand side of equation (5) is negligible So,

KT ΩT KT =
1

T
KT

T∑
t=p+1

e2
t XtX

′
tKT + Op(1/

√
T ) ⇒


 σ2ω2

∫
J2

c dt 0

0 Extx
′
te

2
t


 ,

where the last convergence follows from Lemma 1 (d).

Let us now consider case (i) of the linear test with KT AT

‖KT AT ‖ → a and ‖a‖ 6= 0. By

the usual logic we get

DMT =

(
A′(θ̂ − θ0)

)2

A′(X ′XΩ−1
T X ′X)−1A

=

(
( KT AT

‖KT AT ‖)
′(KT X ′XKT )−1KT X ′e

)2

( KT AT

‖KT AT ‖)
′(KT X ′XKT )−1KT ΩT KT (KT X ′XKT )−1 KT AT

‖KT AT ‖
.

Then

DMT ⇒

(
a1

σ
∫ 1
0 Jc(t)dW1(t)

ω
∫ 1
0 J2

c (t)dt
+ a′2N(0, V )

)2

σ2∫ 1
0 J2

c (t)dt
a2

1 + a′2V a2

= (t(u, c))2 ,
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where V = (Extx
′
t)
−1E[e2

t xtx
′
t](Extx

′
t)
−1, u =

√
a′2V a2g(c)

a2
1

. The last expression asymp-

totically coincides with equation (2) for the local-to-unity case, as in such an embed-

ding the matrix F becomes diagonal.

Now consider case (ii) H0 : θh = fh(θ) = γ0 where h = [q
√

T ]. Denote JT =

X ′XΩ−1
T X ′X and JeT = X ′XΩ−1

T X ′e. Let us consider the first-order condition for

the conditional minimization problem, when the DM statistic defined in equation (4)

is minimized over θ̃ such that fh(θ̃) = fh(θ0).


 JT Ã

A∗ 0





 θ̃ − θ0

λ


 =


 JeT

0


 ,

where Ã = ∂f
∂θ

(θ̃) and A∗ = ∂f
∂θ

(θ∗), with θ∗ being a point between θ̃ and θ0 such that

(θ̃ − θ0)
′A∗ = 0. Following the proof of Lemma 3 from the paper one gets that

DMT =

(
A∗′J−1

T JeT

)2
Ã
′
J−1

T Ã(
A∗′J−1

T Ã
)2 =

(
A∗′(X ′X)−1X ′e

)2
Ã
′
(X ′X)−1ΩT (X ′X)−1Ã(

A∗′(X ′X)−1ΩT (X ′X)−1Ã
)2 .

Repeating steps of the proofs of Lemmas 4 and 5 from the paper results in the needed

statement.

2 IRFs in VAR with a potential unit root

In this section some results of the paper are generalized to VAR systems in which at

most one root is local to unity.

Let us consider a k-dimensional process described by an unrestricted VAR(p)

regression:

yt = B1yt−1 + ... + Bpyt−p + et, (6)

Imagine for simplicity that we know the co-integrating (near co-integrating) relation

and can locate the problematic root. That is, assume that the first component y1,t

has a local-to-unity root, while all other components y−1,t = (y2,t, ..., yk,t)
′ are strictly

stationary. Formally, let us assume that the VAR lag polynomial B(L) = Ik−B1L−
...−BpL

p can be factorized in the following way: B(L) = (Ik−diag(λ, 0, ..., 0)L)B̃(L).
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Assumption VAR1

(i) All roots of the characteristic polynomial B̃ lie strictly inside and are bounded

away from the unit circle. In particular, the process xt given by B̃(L)xt = et

can be written as an MA (∞) process xt = Θ(L)et =
∑∞

j=0 Θjet−j with MA

coefficients satisfying the following condition:
∑∞

j=0 j‖Θj‖ < ∞, where ‖Θj‖ =√
trace(ΘjΘ′

j).

(ii) Assume that yt = Λyt−1 + xt, y0 = 0, where Λ = diag(λ, ..., 0), that is, y1,t =

λy1,t−1+x1,t; y−1,t = x−1,t. The problematic root λ is local to unity, in particular,

λ = λT = 1− c/T .

(iii) Errors et are a martingale-difference sequence with respect to sigma-algebra Ft,

with E (ete
′
t|Ft−1) = Ω and four finite moments.

The assumption above is a direct generalization of local-to-unity asymptotic embed-

ding to a multivariate setting. If Assumption VAR1 holds, the OLS estimator of

regression (6) demonstrates non-standard asymptotic behavior due to some linear

combination of coefficients being estimated super-consistently. A survey of local-to-

unity multivariate models can be found in Phillips (1988).

We are interested in testing a hypothesis about the coefficients H0 : f(B1, ..., Bp) =

0, where f is some function of coefficients. The following statistic is a generalization

of the LR statistic to a multi-dimensional case:

LR = T · trace(Ω̂−1(Ω̃− Ω̂)) (7)

with Ω(B) = 1
T

∑T
t=1(B(L)yt)(B(L)yt)

′, Ω̂ = Ω(B̂), Ω̃ = Ω(B̃), where B̂ is the OLS

estimator of coefficients in regression (6), while

B̃ = arg min
B=(B1,...,Bp):f(B)=0

Ttrace(Ω̂−1(Ω̂− Ω(B)))

is the restricted estimate.

Consider the hypothesis about the impulse response of the nearly non-stationary

series y1,t to j−th shock at the horizon h, call it θh =
∂y1,t+h

∂ej,t
. We consider the
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horizon h = [q
√

T ] as increasing proportionally to
√

T . This embedding implies that

uT converges to a constant in the AR(p) case and delivers the mixture of local-to-

unity and normal distributions as the limit distribution of LR± statistic. Lemma

4 below points out that the linearized hypothesis about such an impulse response

puts
√

T−increasing weight on the coefficients estimated super-consistently when

compared with weights on the asymptotically normal coefficients before stationary

regressors. Let Ã = ∂θh

∂B
. Let the hypothesis H0 : Ã′B = γ0 be the linearized version

of hypothesis H0 : θh = γ0.

Theorem 2 Let yt be k × 1 VAR(p) process satisfying Assumptions VAR1. Assume

that the linearized version of hypothesis H0 : θh =
∂y1,t+h

∂ej,t
= γ0 at the horizon hT =

q
√

T is tested using the statistic defined in equation (7). Then LR ⇒ (t(u, c))2 as

T →∞ for some u.

Theorem 2 states that in multivariate VAR model with at most one local-to-

unity root the asymptotic behavior of the LR test statistic for IRF at the horizon

proportional to
√

T is of the same nature as the same statistic for an IRF in the

univariate AR(p).

The VAR regression (6) can be linearly transformed to a canonical form in which

the non-standard coefficients are separated. Rather than regressing all components

of yt on (y′t−1, ..., y
′
t−p)

′ as in (6), the canonical-form regression has the following

regressors:

Xt = (y′t−1, ∆y1,t−1, y
′
−1,t−2, ∆y1,t−2, y

′
−1,t−3, ..., ∆y1,t−p+1, y

′
−1,t−p)

′ = (y1,t−1, X̃
′
t)
′.

Only the first regressor y1,t−1 is a local-to-unity process, while X̃t is stationary. Let

Zt = X ′
t ⊗ Ik. The model (6) can be written as yt = ZtΦ + et, where Φ, a k2p × 1

matrix of the coefficients, is a one-to-one linear transformation of VAR coefficients

B1, ..., Bp. The first k components of Φ correspond to the non-standard coefficients

on the non-stationary regressor y1,t−1. The OLS estimator Φ̂ is equal to the linearly

transformed OLS estimator of B̂, and the same linear transformation applied to B̃

produces the restricted estimator Φ̃. The linearized hypothesis described in Theorem
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2 can be written as H0 : A′Φ = γ0, where A = ∂θh

∂Φ
. For the proof of Theorem 2 we

need the following three lemmas.

Lemma 2 The LR statistic for a linear hypothesis H0 : A′Φ = γ0 defined in (7) is

equal to the Wald statistic defined as

Wald =
(A′ ((

∑
XtX

′
t)
−1 ⊗ Ik)

∑
(Xt ⊗ Ik)et)

2

A′((
∑

XtX ′
t)
−1 ⊗ Ω̂)A

.

Proof of Lemma 2. Let êt = yt − ZtΦ̂ be the OLS residuals. We can notice that

LR(Φ) = trace

(
Ω̂−1

(
2
∑

t

êt(Φ̂− Φ)′Z ′
t +

∑
t

Zt(Φ̂− Φ)(Φ̂− Φ)′Z ′
t

))
.

According to the OLS moment condition
∑

t ê
′
tΩ̂

−1Zt = 0, so,

LR(Φ) = (Φ̂− Φ)′(
∑

t

Z ′
tΩ̂

−1Zt)(Φ̂− Φ);

∂LR(Φ)

∂Φ
= −2

∑
t

Z ′
tΩ̂

−1Zt(Φ̂− Φ).

The restricted estimator Φ̃ is the solution to a system of two equations: the first order

condition (∑
t

Z ′
tΩ̂

−1Zt

)
(Φ̂− Φ̃) = µA,

where µ is a Lagrange multiplier, and the restriction A′Φ̃ = A′Φ0. Plugging in the

solution, one gets

LR = (Φ̂− Φ̃)′(
∑

t

Z ′
tΩ̂

−1Zt)(Φ̂− Φ̃) =
(A′

(∑
t Z

′
tΩ̂

−1Zt

)−1 ∑
t Z

′
tΩ̂

−1et)
2

A′
(∑

t Z
′
tΩ̂

−1Zt

)−1

A
.

Since the estimation is performed for the full VAR, that is, regression of all yi,t on

the same set of regressors, then Ω̂−1 drops out of the formula for the OLS estimate.

Indeed,
∑

t Z
′
tΩ̂

−1Zt =
∑

t(Xt ⊗ Ik)
′Ω̂−1(Xt ⊗ Ik) =

∑
t(X

′
tXt)⊗ (Ω̂−1). As a result,

(∑
t

Z ′
tΩ̂

−1Zt

)−1 ∑
t

Z ′
tΩ̂

−1et =




(∑
t

XtX
′
t

)−1

⊗ Ω̂




(∑
t

Xt ⊗ (Ω̂−1et)

)
=

=




(∑
t

XtX
′
t

)−1

⊗ Ik




(
Xt ⊗

∑
t

(et)

)
= (

∑
Z ′

tZt)
−1

∑
Z ′

tet.

This completes the proof of Lemma 2. ¤
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Lemma 3 Let Assumptions VAR1 be satisfied. Let wt = y1,t be a one-dimensional

random process and X̃t = (x′t−1, ..., x
′
t−p)

′ be a kp × 1 vector process. Also let W (·)
be a k-dimensional standard Brownian motion, and let ω2 = i′1Θ(1)ΩΘ(1)′i1 be the

long-run variance of the process x1,t.

Then the following convergences hold simultaneously:

(a) 1√
T

∑[rT ]
t=1 (e′t, x

′
t)
′ ⇒ (Ik, Θ(1)′)′Ω1/2W (r);

(b) 1√
T
w[rT ] ⇒ ωJc(r) =

∫ 1

0
e(r−s)cdW̃ (r), where W̃ (t) = 1

ω
i′1Θ(1)Ω1/2W (t) is a

standard Brownian motion;

(c) 1
T

∑T
t=1 wt−1e

′
t ⇒ ω

∫ 1

0
Jc(r)dW (r)′Ω1/2;

(d) 1
T 2

∑T
t=1 w2

t−1 ⇒ ω2
∫ 1

0
J2

c (r)dr;

(e) 1
T 3/2

∑T
t=1 wt−1X̃t →p 0;

(f) 1
T

∑T
t=1 X̃tX̃

′
t →p E[X̃tX̃

′
t] = QX̃ ;

(g) 1√
T

∑T
t=1 X̃t ⊗ et ⇒ N(0, QX̃ ⊗ Ω), and the limit is independent of W (·).

Proof of Lemma 3. Assumptions about error terms et give us the FCLT for 1√
T

∑
et

and 1√
T

∑
etet−j with independent limits. Statements (a) and (g) are results of the

Beveridge and Nelson decomposition. The proof is a multi-dimensional analog of that

of Theorem 3.2 in Phillips and Solo (1992). Statements (b), (c), (d) and (e) can be

proved along the lines of Lemma 3.1 in Phillips (1988) which covers multi-dimensional

local-to-unity processes and quantities related to them. Statements (e) and (f) are

trivial extensions of Theorem 1 from the main paper to the multi-dimensional case.

¤

Lemma 4 Assume that yt satisfies assumptions VAR1. Assume that a VAR(p) re-

gression is written in the canonical form. Assume that Π are a k × 1 vector of

coefficients on the regressor y1,t−1 in the canonical VAR. Let Φ̃ be all coefficients Φ

other than Π, that is, Φ = (Π′, Φ̃′)′. Let θ̃h =
∂y1,t+h

∂ej,t
denote the impulse response of

y1,t to shock ej,t at the horizon h. When h = q
√

T and T increases to infinity, the

following two statements hold:

10



(a) λ−h ∂θ̃h

∂Φ̃′
converges to a finite constant (k2p− k)× 1 vector;

(b) 1√
T
λ−h ∂θ̃h

∂Π′ converges to a constant k× 1 vector proportional to Θ(1)i1, where ij

is a k × 1 vector of zeros with 1 in j-th place.

Proof of Lemma 4. Let yt =
∑∞

h=0 Θ̃het−h, where Θ̃h is a matrix of impulse

responses of yt to et−h. According to Lutkepohl (1990),

∂vec(Θ̃h)

∂vec(Bl)
=

h−1∑
m=0

Θ̃′
m ⊗ Θ̃h−m−l.

Given that the regressors Xt of the canonical form are a linear transformation of the

regressors (yt−1, ..., yt−p) of the unrestricted VAR, the coefficients B1, ..., Bp are the

same linear transformation of the coefficients Φ of the canonical form. It is easy to

see that
∂vec(Θ̃h)

∂Π
=

h−1∑
m=0

(
Θ̃′

mi1

)
⊗ Θ̃h−m−1.

Notice that
∂yi,t+h

∂ej,t
= i′iΘ̃hij =

(
i′j ⊗ i′i

)
vec(Θ̃h). As a result,

∂θ̃h

∂Π
=

(
i′j ⊗ i′1

) ∂vec(Θ̃h)

∂Π
=

h−1∑
m=0

(
ij
′Θ̃′

mi1

)
i′1Θ̃h−m−1.

Since xt =
∑∞

j=0 Θjet−j and yt = Λyt−1 +xt, where Λ = diag(λ, 0, ..., 0), λ = 1− c/T ,

we have Θ̃j =
∑j

k=0 ΛkΘj−k. Along the lines of Pesavento and Rossi (2006), we arrive

at i′1Θ̃m = λmi′1 (Θ(1) + o(1)) , as m →∞, and

∂θ̃h

∂Π
=

h−1∑
m=0

(
ij
′Θ̃′

mi1

)
i′1Θ̃h−m−1 = hλh−1 ((i1

′Θ(1)ij)i1Θ(1) + o(1)) ,

as h = q
√

T and T → ∞. At the same time, the derivative of the same impulse

response with respect to any other coefficient will be of order λh. For example, let

us consider coefficients staying before the regressor y2,t−1, call them for example, Γ.

One can see that
∂vec(Θ̃h)

∂Γ
=

h−1∑
m=0

(
Θ̃′

mi2

)
⊗ Θ̃h−m−1,

and correspondingly

∂θ̃h

∂Γ
=

h−1∑
m=0

(
i2
′Θ̃mij

)
i′1Θ̃h−m−1 =

h−1∑
m=0

(i2
′Θmij) λh−m−1 (i1Θ(1) + o(1)) .

11



Assume that µ1, ..., µk2p−1 are roots of the process xt, for large enough T they are

all smaller in absolute value than λ = 1 − c/T . There exists a set of constants

C1, ..., Ck2p−1 such that i2
′Θmij =

∑k2p−1
l=1 Clµ

h
l for any horizon h. This gives us that

λ−h ∂Θ̃1j,h

∂Γ
converges to a constant as h →∞. ¤

Proof of Theorem 2. Let A = AT = λ−h ∂θh

∂Φ′ and the linearized version of

the hypothesis about impulse response be H0 : A′
T Φ = A′

T Φ0. We introduce the

following notation: AT =
√

TA1,T + A2,T , where A1,T = (a′1,T , 0, ..., 0)′, and A2,T =

(0, ..., 0, a′2,T )′. According to Lemma 4, as T → ∞ both vectors converge to some

constant vectors a1 = limT→∞ a1,T and a2 = limT→∞ a2,T , and a1 = CΘ(1)i1 for

some constant C. Let us introduce normalization matrix D∗ =




1
T

0

0 1√
T
Ikp−1




and D = D∗ ⊗ Ik, then

LR =

(
(
√

TDA)′ ((D∗ ∑
X ′

tXtD
∗)−1 ⊗ Ik)

∑
(D∗Xt ⊗ Ik)

′et

)2

(
√

TDA)′((D∗ ∑
X ′

tXtD∗)−1 ⊗ Ω̂)(
√

TDA)
.

Lemma 3 implies that

D∗ ∑
t

X ′
tXtD

∗ ⇒

 ω2

∫ 1

0
J2

c (r)dr 0

0 QX̃


 ,

Obviously,
√

TDA → (a′1, a
′
2)
′. So, the denominator is:

(
√

TDA)′(D
∑

Z ′
tΩ̂

−1ZtD)−1
√

TDA ⇒ (a′1Ωa1)
1

ω2
∫ 1

0
J2

c (r)dr
+ a′2

(
Q−1

X̃
⊗ Ω

)
a2.

Given that a1 = CΘ(1)i1, we have a′1Ωa1 = C2ω2.

As for the numerator, we have the following:

(
√

TDA)′
(
(D∗ ∑

X ′
tXtD

∗)−1 ⊗ Ik

) ∑
(D∗Xt ⊗ Ik)

′et ⇒
ω

∫ 1

0
Jc(r)dW (r)′Ω1/2a1

ω2
∫ 1

0
J2

c (t)dt
+ N(0, a′2

(
Q−1

X̃
⊗ Ω

)
a2).

We notice that

ω
∫ 1

0
Jc(r)dW (r)′Ω1/2a1

ω2
∫ 1

0
J2

c (t)dt
=

Cω
∫ 1

0
Jc(r)dW (r)′Ω1/2Θ(1)i1

ω2
∫ 1

0
J2

c (t)dt
=

=
Cω2

∫ 1

0
Jc(r)dW̃ (r)

ω2
∫ 1

0
J2

c (t)dt
= Ctc

1√∫ 1

0
J2

c (t)dt
.
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So,

LR ⇒

(
C√∫ 1

0 J2
c (t)dt

tc +

√
A′

2

(
Q−1

X̃
⊗ Ω

)
A2 ·N(0, 1)

)2

C2∫
J2

c dr
+ A′

2

(
Q−1

X̃
⊗ Ω

)
A2

= (t(c, u))2,

where u =

√
A′2(Q−1

X̃
⊗Ω)A2

C
.

3 Wald statistic for IRF in AR(p)

The paper shows that while the LR statistic for highly non-linear IRFs is well ap-

proximated by the same family of distributions as the LR statistic for the linear

hypothesis, the same does not hold for the Wald statistic. The paper presented an

AR(1) example. The same idea can be applied to higher-order processes as well.

Let the data follow an AR(1) process yt = ρyt−1 + et, and we treat it as an AR(2)

process yt = φ1yt−1+φ2yt−2+et with φ1 = ρ, φ2 = 0. Assume that we estimate AR(2)

coefficients by OLS, and calculate the estimated AR(2) roots µ̂ and λ̂. We abstract

from the unit root problem here, and assume that 0 < ρ < 1 fixed as T → ∞, then

µ̂ →p ρ, λ̂ →p 0, and both roots are
√

T asymptotically normal.

The theoretical impulse response is θk = ρk, while the estimated impulse response

is θ̂k = µ̂k+1−λ̂k+1

µ̂−λ̂
. In order to calculate the t-statistic we also need the derivatives of

the impulse response.

∂θk

∂φ1

(φ1, φ2) =
∂θk+1

∂φ2

=
k−1∑
j=0

θjθk−j−1.

In our case we need the derivative to be calculated at the estimated coefficients

∂θk

∂φ1

(φ̂1, φ̂2) =
1

(µ̂− λ̂)2

k−1∑
j=0

(µ̂j+1 − λ̂j+1)(µ̂k−j − λ̂k−j) =

=
1

(µ̂− λ̂)2

(
(k + 2)µ̂k+1 + (k + 2)λ̂k+1 − 2

µ̂k+2 − λ̂k+2

µ̂− λ̂

)
.

If we consider a sequence of hypotheses with a growing horizon kT =
√

T , then

1

k
µ̂−k−1 ∂θk

∂φ1

(φ̂1, φ̂2) →p 1.
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So, in the described setting we have t =
ρk− µ̂k+1−λ̂k+1

µ̂−λ̂

s.e.(θ̂k)
, and we showed that along the

sequence kT =
√

T we have s.e.(θ̂k) = kµ̂k(const+ op(1)). As a result, the asymptotic

behavior of the t-statistic is defined by the behavior of the ratio ρk−µ̂k

µ̂k , which is of

the same type as for the AR(1) case described in the paper.

4 Simplified formula for u for IRFs in AR(2)

This section provides a more explicit formula for parameter u defined in (2) for the

IRFs in an AR(2) model. This formula was used to construct Table 1 in the main

paper.

Imagine that we have an AR(2) process with roots λ and µ: (1−λL)(1−µL)yt = et.

The process can be alternatively written as

yt = ρyt−1 + α∆yt−1 + et = φ1yt−1 + φ2yt−2 + et

where φ1 = α+ρ, φ2 = −α, α = λµ, ρ = λ+µ−λµ. As in paper, let Xt = (yt−1, ∆yt−1)

and Σ(ρ, α) = EXtX
′
t. There is a lower-triangular matrix F such that FΣ(ρ, α)F ′ =

I2.

Let θh be the impulse response at horizon h, and A = ∂
∂(ρ,α)

θh be its derivative.

As it can be seen u is a function of ρ, α, h.

Σ(α, ρ) = γ0


 1 1− r1

1− r1 2(1− r1)


 = γ0


 1 1−ρ

1+α

1−ρ
1+α

2 1−ρ
1+α




where γ0 = V ar(yt), and r1 is the first-order correlation. According to Hamilton

([3.4.27] on p. 58), r1 = φ1

1−φ2
= α+ρ

1+α
. One can check that

F =
√

γ0


 1 0

−
√

1−ρ
1+2α+ρ

1+α√
(1−ρ)(1+2α+ρ)


 =

√
γ0


 1 0

−
√

(1−λ)(1−µ)
(1+λ)(1+µ)

1+λµ√
(1−λ2)(1−µ2)




Lütkepohl (1990) showed that

∂

∂φ1

θh =
h−1∑
m=0

θmθh−m−1;
∂

∂φ2

θh =
h−2∑
m=0

θmθh−m−2.
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Let us denote Ah = ∂
∂φ1

θh, then ∂
∂φ2

θh = Ah−1. Since θh = λh+1−µh+1

λ−µ
([2.4.14] in

Hamilton). We can see that

Ah =
h−1∑
m=0

(λm+1 − µm+1)(λh−m − µh−m)

(λ− µ)2
=

1

(λ− µ)2

(
(h + 2)λh+1 + (h + 2)µh+1 − 2

λh+2 − µh+2

λ− µ

)

Since φ1 = α + ρ, φ2 = −α, we have

∂

∂ρ
θh = Ah,

∂

∂α
θh = Ah − Ah−1

So, our vector of derivatives is A = (Ah, Ah − Ah−1). According to formula (2):

u =

∣∣∣∣∣∣∣

−
√

(1−λ)(1−µ)
(1+λ)(1+µ)

Ah + 1+λµ√
(1−λ2)(1−µ2)

(Ah − Ah−1)

Ah

∣∣∣∣∣∣∣
=

=
1√

(1− λ2)(1− µ2)

∣∣∣∣
(λ + µ)Ah − (1 + λµ)Ah−1

Ah

∣∣∣∣ .
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