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Payoff Continuity in Incomplete Information

Games: A Comment

Casey G. Rothschild 1

Department of Economics, Massachusetts Institute of Technology
Cambridge, Massachusetts 02142

Abstract

Kajii and Morris (J. Econ. Theory 1998, 267-276) provide necessary and sufficient
conditions for two priors to be strategically close. The restrictiveness of these con-
ditions establishes that strategic behavior can be highly sensitive to the assumed
prior. Their results thus recommend care in the use of priors in economic modelling.
Unfortunately, their proof of a central proposition fails for zero probability types.
This comment corrects their proof to account for these cases.

Key words: Journal of Economic Literature Classification Numbers: C72, D82.

1 Introduction

In “Payoff Continuity in Incomplete Information Games,” Kajii and Morris
(KM) make a key contribution to our understanding of these games by showing
that a change in priors will have a small effect on equilibrium play precisely
when (1) the prior probability of every event changes little and (2) the set
on which it becomes nearly common knowledge that posterior beliefs remain
close has high measure. These tight requirements for continuity of equilibrium
play highlight the importance of verifying the sensitivity of predictions to the
assumed prior. KM’s results are thus quite important, but their proof of a cen-
tral proposition fails for zero probability types—and these may matter when
multiple priors are considered. I amend the proof to avoid this problem, show-
ing their results to be correct and incidentally tightening them and correcting
a minor error in the proof of an earlier lemma. I conclude by suggesting that
starting with posteriors rather than priors would ease the analysis.

Email address: caseyr@mit.edu (Casey G. Rothschild).
1 Many thanks to Muhamet Yildiz for invaluable advice.
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2 Correcting their proof

KM consider a static game with I (2 ≤ I < ∞) players, each with a finite
action set Ai (3 ai) and a countable type set Ti (3 ti). The state space is
Ω = T1×· · ·×TI×S (3 ω), where S is a countable space of basic uncertainty.
The (common) prior µ is a probability distribution over Ω, and posterior beliefs
µ(·|ti) are defined via Bayes’ law when possible and otherwise left unspecified.
Player i has the utility function ui : A × Ω → < which extends in the usual
way to mixed strategies σi. Un-subscripted variables denote the vector with
each player’s corresponding variable. The subscript −i has its usual meaning.

KM define vi[ai, σ−i; µ, u; ti] =
∑

T−i×S µ(((ti, t−i), s)|ti)u((ai, σ−i(t−i)), ω) and
Vi[σ; µ, u] =

∑
Ω µ(ω)ui(σ(t), ω). σ is an ε-equilibrium iff: ∀ i and ∀ ti with

µ(ti) > 0, σi(ti)[ai] > 0 implies interim payoffs from ai and ti’s best response
are within ε; the term “equilibrium” is shorthand for 0-equilibrium. Beliefs
(hence common p-beliefs Cp

µ and p-evident events) are defined via

Bp
µ(F ) = {ω ∈ Ω|∀i, µ(ti) > 0 ⇒ µ(F |ti) ≥ p}.

With two priors µ and µ′, the set of events with “close” posteriors is:

Aµ,µ′(δ) ≡




(t, s) ∈ Ω
∀i, µ(ti) > 0, µ′(ti) > 0, and

|µi(F |ti)− µ′i(F |ti)| ≤ δ ∀ F ⊆ Ω





.

A game is bounded by M if |ui(a, ω)− ui(a
′, ω)| ≤ M ∀ a, a′ ∈ A, ∀ω ∈ Ω

and ∀ i. The “distance” between priors is defined via

d∗(µ, µ′) = max{d1(µ, µ′), d1(µ
′, µ), sup

E⊆Ω
|µ(F )− µ′(F )|},

where d1(µ, µ′) = inf{δ|µ′(C1−δ
µ′ (Aµ,µ′(δ))) ≥ 1− δ}.

The following proposition is central to Kajii and Morris’ results:

KM Proposition 5:Suppose that d∗(µ, µ′) ≤ δ. Then if σ is an equilibrium
of (µ, u) and u is bounded by M , there exists a 6δM -equilibrium σ′ of (µ′, u)
with |Vi[σ; µ, u]− Vi[σ

′; µ′, u]| ≤ 3δM for all i.

In their proof of this proposition, KM assert: “[B]y Lemma 4 (with E =
C1−δ

µ′ (Aµ,µ′(δ))) and ε1 = ε2 = δ there exists a 6δM -equilibrium of (µ′, u)...”

But Lemma 4 may not apply to C1−δ
µ′ (Aµ,µ′(δ)). To wit:

KM Lemma 4: Suppose that event E ⊆ Aµ,µ′(ε1) and E is (1 − ε2)-evident
under µ′. If σ is an equilibrium of (µ, u) and u is bounded by M , there exists
a (4ε1 + 2ε2)M -equilibrium σ′ of (µ′, u) with σ′(t) = σ(t) at all (t, s) ∈ E.
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Applying Lemma 4 here thus requires C1−δ
µ′ (Aµ,µ′(δ)) ⊆ Aµ,µ′(δ). This may

not hold: take a three-state, two-player, three-type (per player) game and
two priors µ and µ′ with µ((1, 1), 1) = µ′((1, 1), 1) = 1 − δ, µ((2, 2), 2) =
µ′((3, 3), 3) = δ and µ(ω) = µ′(ω) = 0 for all other ω. Then Aµ,µ′(δ) = {ω1},
where ωi ≡ ((i, i), i). But C1−δ

µ′ (Aµ,µ′(δ)) = {ω1, ω2}, so C1−δ
µ′ 6⊆ Aµ,µ′ . The key

to the flaw is in the definitions of Bp
µ and Aµ,µ′ . ω is only in the latter if the

types in state ω have positive probability, while Bp
µ′ (and hence Cp

µ′) has zero
probability types believing all events.

The following lemma can be substituted for Lemma 4 in KM’s proof of Propo-
sition 5 to make it valid (and tighter).

Lemma 1 If σ is an equilibrium of (µ, u) and u is bounded by M , ∃ a 5Mδ-
equilibrium σ′ of (µ′, u) with σ′(t) = σ(t) at all (t, s) ∈ E ≡ C ′1−δ

µ (Aµ,µ′(δ)).

Proof. Let T̂i = {ti ∈ Ti|∃(t−i, s) s.t. ((ti, t−i), s) ∈ E}. Require that σ′ = σ
on E, and take σ′ at any other state to be an equilibrium of the restricted
game that results from imposing this requirement (as in KM). It remains to
show that σ(ti) is a 5Mδ best response for any ti ∈ T̂i with µ′(ti) > 0. 2 So
suppose that µ′(ti) > 0 and µ(ti) > 0. Then, clearly,

µ′(E|ti) ≥ 1− δ. (1)

Also, for all F ⊆ Ω,

|µ(F |ti)− µ′(F |ti)| ≤ δ, (2)

for, otherwise, ti 6∈ T̂i, as ((ti, t−i), s) /∈ Bp
µ′(Aµ,µ′(δ)) for any (t−i, s) since type

ti never believes everyone’s posteriors to be close when his own aren’t. Take
any action ai with σ′i(ti)[ai] > 0 and any action bi. Let ∆v = v[ai, σ

′
−i; µ

′, u; ti]−
v[bi, σ

′
−i; µ

′, u; ti], and let Sc denote the complement of a set S. Then:

∆v =
∑

ω∈E µ′(ω|ti)
(
u(ai, σ

′
−i(t−i), ω)− u(bi, σ

′
−i(t−i), ω)

)

+
∑

ω∈Ec µ′(ω|ti)
(
u(ai, σ

′
−i(t−i), ω)− u(bi, σ

′
−i(t−i), ω)

)
.

(3)

Boundedness and (1) show the second sum in (3) to be at least −Mδ. For the
first sum, note that σ′(ti) = σ(ti) on E. Since σ is an equilibrium of (µ, u):

∑
ω∈E µ(ω|ti) (u(ai, σ−i(t−i), ω)− u(bi, σ−i(t−i), ω))

≥ ∑
ω∈Ec µ(ω|ti) (u(bi, σ−i(t−i), ω)− u(ai, σ−i(t−i), ω)) ≥ −2Mδ ,

(4)

where I have used µ(Ec|ti) ≤ 2δ, which follows from equations (1) and (2).

2 KM’s equilibrium notion allows any σ′(ti) when µ′(ti) = 0. With a notion requir-
ing ti have some beliefs, note that σ(ti) is a 2Mδ best response for µ′(·|ti) = µ(·|ti).
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Using (4) and the fact 3 that

| ∑

ω∈E

(µ′(ω|ti)− µ(ω|ti)) (u(ai, σ−i(t−i), ω)− u(bi, σ−i(t−i), ω)) | ≤ 2Mδ

gives
∑

ω∈E µ′(ω|ti) (u(ai, σ−i(t−i), ω)− u(bi, σ−i(t−i), ω)) ≥ −4Mδ. Hence, the
right hand side of equation (3) is no smaller than −5Mδ.

Incidentally, in proving Lemma 4, KM claim: “If ti ∈ T̂i, for any ai ∈ Ai,
vi[ai, σ−i; µ

′, u; ti] − vi[ai, σ−i; µ, u; ti] ≤ 2ε1M, because E ⊆ Aµ,µ′(ε1).” The
claim is false, so this proof is also incorrect. To see why, take a two player
game with states ω1 = ((1, 1), 1) and ω2 = ((1, 2), 2), with µ(ω1) = 1

2
= µ(ω2),

µ′(ω1) = 1
2
+ε1 and µ′(ω2) = 1

2
−ε1. Take M > 0 and u such that u1(a, ω1) = 3M

ε1

and u1(a, ω2) = 0 ∀ a ∈ A. The game is bounded, as |ui(a, ω)− ui(a
′, ω)| = 0

∀ω, a, a′. For E = {ω1, ω2} ⊆ Aµ,µ′(ε1), the left side of their inequality reads:
|∑T−i×S (µ′(t−i, s|ti)− µ(t−i, s|ti)) (ui((ai, σ−i(t−i)), (t, s))) |. For player 1, this

equals
∣∣∣ε1(3

M
ε1
− 0)

∣∣∣ = 3M, contradicting their claim. But the lemma is true
and can be proved using the reasoning in Lemma 1 above.

3 Discussion and conclusions

The exposition of the hole in KM’s proof highlights a difficulty which can arise
in analysis that starts from priors—namely how to deal with the beliefs of zero
probability types. KM’s definitions suffice for proving their results, but in an
earlier version of this paper I showed that the analysis is eased by starting
from posteriors. While such an approach raises the question of when and how
to introduce a common prior (needed later in KM), the recent literature on the
connection between posterior beliefs and the common prior assumption (e.g.
Samet (1998) and Feinberg (2000)) suggests that it is wise to take posteriors
as the starting point and introduce a (consistent) prior only when necessary.

References

[1] Feinberg, Y. Characterizing common priors in the form of posteriors, J. Econ.
Theory 91 (2000), 127-179.

[2] Kajii, A. and S. Morris, Payoff continuity in incomplete information games, J.
Econ. Theory 82 (1998), 267-276.

[3] Samet, D. Common priors and separation of convex sets, Games Econ. Behav.
24 (1998), 172-174.

3 Break into sums over G ≡ {ω ∈ E|(µ′(ω|ti)− µ(ω|ti)) > 0} and Gc and use (2).
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