Business Cycle Anatomy

George-Marios Angeletos1 Fabrice Collard2 Harris Dellas3
1MIT and NBER 2TSE 3University of Bern

University of Mannheim, August 30-31, 2019
Motivation and Contribution

“One is led by the facts to conclude that, with respect to the qualitative behavior of co-movements among series, business cycles are all alike. To theoretically inclined economists, this conclusion should be attractive and challenging, for it suggests the possibility of a unified explanation of business cycles.” (Lucas 1977)

- A theorist’s ambition: account for bulk of the business cycle with a single-shock model, i.e., multiple triggers but a dominant propagation mechanism
Motivation and Contribution

“One is led by the facts to conclude that, with respect to the qualitative behavior of co-movements among series, business cycles are all alike. To theoretically inclined economists, this conclusion should be attractive and challenging, for it suggests the possibility of a unified explanation of business cycles.” (Lucas 1977)

- **A theorist’s ambition:** account for bulk of the business cycle with a single-shock model
 i.e., multiple triggers but a dominant propagation mechanism

- **This paper’s contribution:** provide an empirical template of it
What We Do

- Estimate a VAR (or VECM) on a few key variables
- Recover shock that has max contribution to volatility of U over BC frequencies
- Repeat exercise by targeting other variables (e.g., TFP) or other frequencies (e.g., LR)
What We Do

- Estimate a VAR (or VECM) on a few key variables
- Recover shock that has max contribution to volatility of U over BC frequencies
- Repeat exercise by targeting other variables (e.g., TFP) or other frequencies (e.g., LR)

⇒ "Business Cycle Anatomy" = large collection of one-dimensional cuts of the data
 = rich set of restrictions on models of any size and type
Main Findings and their Use

- Establish existence of a “main business cycle (MBC) shock”
 - shocks that target u, Y, h, I, and C over BC frequencies produce similar IRFs
 - supports hypothesis of common propagation mechanism

- Document its properties
 - transitory
 - disconnected from TFP at all horizons
 - orthogonal to shock that targets inflation
 - ...

- Use its properties and overall anatomy to guide theory
 - parsimonious, semi-structural perspective
 - fully structural DSGE models
Lessons for Theory

• Good news for parsimonious theories with a dominant shock/propagation mechanism

• Bad news for the following candidates

 • technology shocks
 RBC model

 • financial, uncertainty, or other shocks that map to TFP fluctuations
 Benhabib and Farmer (1992), Bloom et al (2016)

 • news about future TFP (but not news/expectations more broadly)

 • inflationary demand shocks of the textbook type

 • propagation mechanisms in state-of-the-art DSGE models
 Smets & Wouters, Justiniano, Primiceri & Tambalott, Christiano, Motto & Rostagno
Lessons for Theory

• What fits the MBC template best?

• Non-inflationary, non-specialized, demand shocks

• Perhaps they exist (even) outside realm of sticky prices and Philips curves?

 example used later: ACD (2018)

 older literature on coordination failures

 fixes within NK DSGE: Ascari, Phaneuf, & Sims, 2016 Furlanetto, Natvik, & Seneca, 2013; Furlanetto &
 Seneca, 2014
Outline

- Empirical Analysis
- Main Findings and Lessons
- Application to Three DSGE Models
Empirical Analysis
Baseline VAR

- Quarterly U.S data: 1955Q1-2017Q4
 - Macro Quantities: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
 - Productivity: util-adjust TFP, NFB labor productivity;
 - Nominal: Inflation (GDP Delator), Federal Fund Rate, Labor Share

- Bayesian VAR, 2 Lags (robust to 4 or 6 lags and VECM)
Baseline VAR

- Quarterly U.S data: **1955Q1-2017Q4**
 - **Macro Quantities**: Unemployment, GDP, Hours, Invest. (inclusive of durables), Cons.
 - **Productivity**: util-adjust TFP, NFB labor productivity;
 - **Nominal**: Inflation (GDP Deflator), Federal Fund Rate, Labor Share

- Bayesian VAR, 2 Lags (robust to 4 or 6 lags and VECM)

- **What next? Construct the “shock to variable X”**
 Linear combination of the VAR residuals that has the maximal contribution to the volatility of a variable X at the business-cycle frequencies, 6-32 quarters.
Main Business Cycle Shock: Targeting Unemployment

Impulse Response Functions

Variance Contributions, Business-Cycle Frequencies

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>l</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
<th>Wh/Y</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.71</td>
<td>58.51</td>
<td>47.72</td>
<td>62.09</td>
<td>20.38</td>
<td>5.86</td>
<td>23.91</td>
<td>27.02</td>
<td>6.96</td>
<td>22.27</td>
</tr>
</tbody>
</table>
Main Business Cycle Shock: Alternative Targets

Interchangeable facets of the same shock!

- Unemployment
- Output
- Hours Worked
- Investment
- Consumption
- TFP
- Labor Productivity
- Labor Share
- Inflation Rate
- Nom. Int. Rate

u shock; Y shock; I shock; h shock; C shock; Shaded area: 68% HPDI.
Main Business Cycle Shock: Alternative Targets

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>I</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
<th>Wh/Y</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>73.71</td>
<td>58.51</td>
<td>47.72</td>
<td>62.09</td>
<td>20.38</td>
<td>5.86</td>
<td>23.91</td>
<td>27.02</td>
<td>6.96</td>
<td>22.27</td>
</tr>
<tr>
<td>Y</td>
<td>56.24</td>
<td>80.13</td>
<td>44.73</td>
<td>67.13</td>
<td>33.03</td>
<td>4.24</td>
<td>41.31</td>
<td>40.20</td>
<td>10.47</td>
<td>16.89</td>
</tr>
<tr>
<td>h</td>
<td>49.84</td>
<td>47.54</td>
<td>70.45</td>
<td>47.99</td>
<td>21.78</td>
<td>11.62</td>
<td>22.61</td>
<td>19.47</td>
<td>7.23</td>
<td>22.38</td>
</tr>
<tr>
<td>l</td>
<td>59.03</td>
<td>66.60</td>
<td>45.20</td>
<td>80.29</td>
<td>19.01</td>
<td>3.81</td>
<td>33.74</td>
<td>36.44</td>
<td>7.69</td>
<td>21.51</td>
</tr>
<tr>
<td>C</td>
<td>19.19</td>
<td>31.59</td>
<td>20.15</td>
<td>17.10</td>
<td>68.30</td>
<td>1.57</td>
<td>12.93</td>
<td>10.31</td>
<td>9.93</td>
<td>4.50</td>
</tr>
</tbody>
</table>
The Main Business Cycle Shock: Alternative Targets
PCA on Business Cycle Frequencies

First Principal Component, Business Cycle Frequencies

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>l</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
<th>wh/Y</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Data</td>
<td>75.33</td>
<td>92.26</td>
<td>81.24</td>
<td>99.80</td>
<td>60.19</td>
<td>6.10</td>
<td>17.73</td>
<td>3.02</td>
<td>2.33</td>
<td>12.27</td>
</tr>
<tr>
<td>VAR-Based</td>
<td>63.31</td>
<td>87.33</td>
<td>62.47</td>
<td>99.72</td>
<td>26.67</td>
<td>1.22</td>
<td>29.19</td>
<td>14.16</td>
<td>0.68</td>
<td>8.10</td>
</tr>
</tbody>
</table>

- Similar message about variance contributions: MBC \(\approx \) 1st PC
- But our approach adds info about (i) IRFs and (ii) footprint on other frequencies
The Main Long-Run Shock

<table>
<thead>
<tr>
<th>Target</th>
<th>Y</th>
<th>I</th>
<th>C</th>
<th>TFP</th>
<th>Y / h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>99.59</td>
<td>95.94</td>
<td>99.47</td>
<td>95.66</td>
<td>97.82</td>
</tr>
<tr>
<td>I</td>
<td>96.88</td>
<td>97.83</td>
<td>96.41</td>
<td>91.62</td>
<td>93.02</td>
</tr>
<tr>
<td>C</td>
<td>99.34</td>
<td>95.63</td>
<td>99.53</td>
<td>95.39</td>
<td>97.59</td>
</tr>
<tr>
<td>TFP</td>
<td>97.39</td>
<td>92.55</td>
<td>97.40</td>
<td>98.43</td>
<td>98.46</td>
</tr>
<tr>
<td>Y / h</td>
<td>98.52</td>
<td>93.36</td>
<td>98.67</td>
<td>97.70</td>
<td>99.25</td>
</tr>
</tbody>
</table>
Disconnect Between the Short Run and the Long Run

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>I</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC shock \rightarrow Long Run</td>
<td>20.83</td>
<td>4.64</td>
<td>5.45</td>
<td>5.16</td>
<td>4.13</td>
<td>4.09</td>
<td>3.88</td>
</tr>
<tr>
<td>LR TFP shock \rightarrow Short Run</td>
<td>9.63</td>
<td>24.78</td>
<td>11.01</td>
<td>17.56</td>
<td>15.58</td>
<td>22.01</td>
<td>21.89</td>
</tr>
</tbody>
</table>

MBC shock \rightarrow TFP at different horizons
MBC Shock: Main Properties and Prelim Lessons

- Explains bulk of BC volatility in key quantities

- Realistic business cycle, with u, h, Y, I, C moving in tandem

- Interchangeability: same IRFs regardless of target
 - support for parsimonious theories

- ≈ 0 comovement with TFP at BC frequencies
 - rules out technology and financial, uncertainty or other shocks that map to TFP fluctuations

- ≈ 0 footprint on the Long Run (and conversely LR has small footprint on BC)
 - hard to reconcile with Beaudry & Portier (2006)

- Disconnect from inflation (coming soon)
More on News Shocks: a Semi-structural Exercise

• Could it be that disconnect between SR and LR reflects offsetting effects of (i) expansionary news shocks and (ii) contractionary unanticipated shocks?

• Semi-structural exercise using our anatomy:
 recover these two shocks from reduced-form shocks that drive TFP in SR and LR

• Explore sensitivity to VAR size

Variance Contribution of News Shock to Unemployment

VAR\(_1\) = \{u, TFP\}, VAR\(_2\) = VAR\(_1\) \cup \{I\}, VAR\(_3\) = VAR\(_2\) \cup \{Y, C, h\}, VAR\(_4\) = Baseline VAR, VAR\(_5\) = VAR\(_4\) \cup \{SP500\}, VAR\(_6\) = VAR\(_5\) \cup \{utilization\}, VAR\(_7\) = VAR\(_6\) \cup \{credit spread\}.
Robust to

- More lags, VECM
- Varying the sample: Post vs Pre-Volcker era, w/o Great Recession/ZLB ...
- Adding variables: SP, P^1/P^C, financial variables ...
- ...
- Shifting to time domain rather than frequency domain
MBC Shock: Robustness

Short-Run Variance Contributions

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>l</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
<th>Wh/Y</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benchmark</td>
<td>73.71</td>
<td>58.51</td>
<td>47.72</td>
<td>62.09</td>
<td>20.38</td>
<td>5.86</td>
<td>23.91</td>
<td>27.02</td>
<td>6.96</td>
</tr>
<tr>
<td>2</td>
<td>4 lags</td>
<td>74.49</td>
<td>58.23</td>
<td>49.16</td>
<td>62.42</td>
<td>21.20</td>
<td>6.28</td>
<td>23.10</td>
<td>27.87</td>
<td>6.91</td>
</tr>
<tr>
<td>3</td>
<td>VECM(1)</td>
<td>62.43</td>
<td>50.27</td>
<td>48.81</td>
<td>53.39</td>
<td>34.88</td>
<td>18.13</td>
<td>23.80</td>
<td>24.11</td>
<td>10.46</td>
</tr>
<tr>
<td>4</td>
<td>VECM(2)</td>
<td>64.85</td>
<td>54.99</td>
<td>48.82</td>
<td>53.78</td>
<td>44.93</td>
<td>12.17</td>
<td>19.51</td>
<td>29.71</td>
<td>11.29</td>
</tr>
<tr>
<td>5</td>
<td>1948-2017</td>
<td>78.98</td>
<td>65.32</td>
<td>49.61</td>
<td>63.76</td>
<td>19.52</td>
<td>6.14</td>
<td>26.53</td>
<td>29.62</td>
<td>5.16</td>
</tr>
<tr>
<td>6</td>
<td>1960-2007</td>
<td>68.15</td>
<td>59.93</td>
<td>55.99</td>
<td>65.02</td>
<td>20.67</td>
<td>6.02</td>
<td>25.04</td>
<td>29.96</td>
<td>10.70</td>
</tr>
<tr>
<td>7</td>
<td>pre-Volcker</td>
<td>74.23</td>
<td>56.75</td>
<td>43.21</td>
<td>61.50</td>
<td>23.43</td>
<td>6.82</td>
<td>30.69</td>
<td>28.43</td>
<td>17.45</td>
</tr>
<tr>
<td>8</td>
<td>post-Volcker</td>
<td>73.39</td>
<td>50.37</td>
<td>50.65</td>
<td>58.44</td>
<td>20.23</td>
<td>7.94</td>
<td>18.46</td>
<td>23.01</td>
<td>4.65</td>
</tr>
<tr>
<td>9</td>
<td>Extended</td>
<td>59.33</td>
<td>50.61</td>
<td>45.50</td>
<td>52.91</td>
<td>21.83</td>
<td>4.81</td>
<td>26.69</td>
<td>27.82</td>
<td>12.12</td>
</tr>
<tr>
<td>10</td>
<td>Financial</td>
<td>68.57</td>
<td>57.56</td>
<td>46.84</td>
<td>59.95</td>
<td>25.94</td>
<td>7.04</td>
<td>27.20</td>
<td>26.86</td>
<td>8.42</td>
</tr>
<tr>
<td>11</td>
<td>Chained-Type C&I</td>
<td>81.41</td>
<td>59.04</td>
<td>45.96</td>
<td>61.52</td>
<td>17.36</td>
<td>4.03</td>
<td>20.35</td>
<td>20.19</td>
<td>5.82</td>
</tr>
</tbody>
</table>
Long-Run Variance Contributions

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>Y</th>
<th>h</th>
<th>l</th>
<th>C</th>
<th>TFP</th>
<th>Y/h</th>
<th>Wh/Y</th>
<th>π</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Benchmark</td>
<td>20.83</td>
<td>4.64</td>
<td>5.45</td>
<td>5.16</td>
<td>4.13</td>
<td>4.09</td>
<td>3.88</td>
<td>3.12</td>
<td>5.77</td>
</tr>
<tr>
<td>2</td>
<td>4 lags</td>
<td>18.22</td>
<td>4.39</td>
<td>5.19</td>
<td>4.94</td>
<td>3.98</td>
<td>3.66</td>
<td>3.67</td>
<td>2.93</td>
<td>5.44</td>
</tr>
<tr>
<td>7</td>
<td>pre-Volcker</td>
<td>29.37</td>
<td>8.15</td>
<td>9.33</td>
<td>8.23</td>
<td>7.10</td>
<td>7.31</td>
<td>7.55</td>
<td>7.17</td>
<td>8.82</td>
</tr>
<tr>
<td>8</td>
<td>post-Volcker</td>
<td>19.30</td>
<td>3.58</td>
<td>9.96</td>
<td>6.07</td>
<td>3.04</td>
<td>3.41</td>
<td>3.03</td>
<td>5.05</td>
<td>9.54</td>
</tr>
<tr>
<td>9</td>
<td>Extended</td>
<td>9.49</td>
<td>4.52</td>
<td>3.96</td>
<td>4.58</td>
<td>4.43</td>
<td>4.39</td>
<td>4.59</td>
<td>4.36</td>
<td>7.03</td>
</tr>
<tr>
<td>10</td>
<td>Financial</td>
<td>16.97</td>
<td>4.85</td>
<td>4.85</td>
<td>5.20</td>
<td>4.40</td>
<td>4.26</td>
<td>3.98</td>
<td>3.40</td>
<td>5.06</td>
</tr>
<tr>
<td>11</td>
<td>Chained-Type C&I</td>
<td>13.94</td>
<td>3.79</td>
<td>5.24</td>
<td>3.73</td>
<td>3.63</td>
<td>3.67</td>
<td>3.20</td>
<td>3.88</td>
<td>7.41</td>
</tr>
</tbody>
</table>
Robustness of IRFs

Baseline; VECM$_1$; 1960-2007; Extended; Financial
MBC as a Demand Shock along a Philips curve?

Challenge #1: tiny signal-to-noise ratio (negligible R^2)

<table>
<thead>
<tr>
<th>Target</th>
<th>u</th>
<th>π</th>
<th>Wh/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment</td>
<td>73.71</td>
<td>6.96</td>
<td>27.02</td>
</tr>
<tr>
<td>Inflation</td>
<td>4.24</td>
<td>83.03</td>
<td>1.96</td>
</tr>
<tr>
<td>Labor Share</td>
<td>26.01</td>
<td>4.03</td>
<td>85.59</td>
</tr>
</tbody>
</table>
MBC as a Demand Shock along a Philips curve?

Challenge #1: tiny signal-to-noise ratio (negligible R^2)

<table>
<thead>
<tr>
<th>Target</th>
<th>u</th>
<th>π</th>
<th>Wh/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment</td>
<td>73.71</td>
<td>6.96</td>
<td>27.02</td>
</tr>
<tr>
<td>Inflation</td>
<td>4.24</td>
<td>83.03</td>
<td>1.96</td>
</tr>
<tr>
<td>Labor Share</td>
<td>26.01</td>
<td>4.03</td>
<td>85.59</td>
</tr>
</tbody>
</table>

Challenge #2: magnitude

![Graph showing actual and predicted inflation responses over 20 quarters.](image)

- Actual inflation response;
- Predicted, textbook NKPC.
• Supports parsimonious models with dominant shock/propagation mechanism
• Rules out following candidates for that role
 • technology shocks
 • financial, uncertainty, or other shocks that map to TFP fluctuations
 • news about future TFP
 • inflationary demand shocks of textbook variety

• Remaining possibilities
 • demand shocks of DSGE variety (extremely flat Philips curve)
 • demand shocks without sticky prices/Philips curves
 • ...
Evaluating DSGE Models
Evaluating Two DSGE Models

- **JPT** (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but I shock is most important)

- **ACD** (Angeletos, Collard & Dellas, 2018)
 - RBC with variation in “confidence”
 - Waves of optimism and pessimism about SR economic outlook
 - Example of literature on demand shocks without sticky prices/Philips curves

Q: Do these models match MBC template form the data?
A: Only second meets interchangeability property
Evaluating Two DSGE Models

- **JPT** (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but I shock is most important)

- **ACD** (Angeletos, Collard & Dellas, 2018)
 - RBC with variation in “confidence”
 - Waves of optimism and pessimism about SR economic outlook
 - Example of literature on demand shocks without sticky prices/Philips curves
Evaluating Two DSGE Models

- **JPT** (Justiniano, Primiceri & Tambalotti, 2010)
 - Same as CEE, SW (but estimation more suitable for our purposes)
 - Sticky prices, Sticky wages, Monetary Policy
 - Standard Bells and Whistles (Habit, Invt Adj Costs, Utilization)
 - Multiple shocks (but 1 shock is most important)

- **ACD** (Angeletos, Collard & Dellas, 2018)
 - RBC with variation in “confidence”
 - Waves of optimism and pessimism about SR economic outlook
 - Example of literature on demand shocks without sticky prices/Philips curves

- **Q:** Do these models match MBC template form the data?
 - **A:** Only second meets interchangeability property
JPT vs ACD: Interchangeability of MBC Facets

MBC facets interchangeable in ACD model (as in data), less so in JPT
\[\Rightarrow \text{JPT/CEE/SW lacks the "right" propagation mechanism} \]
JPT and ACD: Interchangeability of MBC Facets

- Measure of Interchangeability: \(D_v = \frac{1}{4} \sum_{f \in F} \sqrt{\sum_{k=0}^{20} (Z_{f,v,k} - \overline{Z}_{v,k})^2} \)

- Smaller numbers mean more interchangeability

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>C</th>
<th>I</th>
<th>h</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.47</td>
<td>0.52</td>
<td>1.28</td>
<td>0.28</td>
<td>0.64</td>
</tr>
<tr>
<td>JPT</td>
<td>2.90</td>
<td>2.21</td>
<td>6.29</td>
<td>1.35</td>
<td>3.19</td>
</tr>
<tr>
<td>ACD</td>
<td>0.64</td>
<td>0.56</td>
<td>1.56</td>
<td>0.22</td>
<td>0.75</td>
</tr>
</tbody>
</table>

- Ranking robust to re-estimating both models on the basis of our factors
JPT and ACD: Mapping Factors to Shocks

Contribution of Theoretical Shocks to Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>JPT</th>
<th>ACD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A shock</td>
<td>I shock</td>
</tr>
<tr>
<td>Y</td>
<td>31%</td>
<td>66%</td>
</tr>
<tr>
<td>I</td>
<td>0%</td>
<td>99%</td>
</tr>
<tr>
<td>C</td>
<td>33%</td>
<td>1%</td>
</tr>
<tr>
<td>h</td>
<td>0%</td>
<td>96%</td>
</tr>
</tbody>
</table>

In JPT, “A shock” a permanent technology shock, “I shock” a transitory investment-specific demand shock, “C shock” a transitory discount-factor; “other” include monetary policy, price, wage markup shocks. In ACD, “beliefs” a transitory shock to higher-order beliefs; “other” include both transitory and permanent technology shocks, news shocks, and I and C shocks of JPT.

- JPT and many other DSGE models: specialized shocks ⇒ poor interchangeability
- ACD: “shotgun” shock ⇒ great interchangeability
JPT and ACD: Theoretical Shocks vs MBC in Data

JPT: A, I, and C shocks

\[\text{MBC Shock in Data} \]

\[\text{Technology Shock} \quad \text{Investment Shock} \quad \text{Consumption Shock} \]

\[\Rightarrow \text{JPT (and many other models): No individual shock resembles the MBC shock in the data;} \]
ACD: the confidence shock does

- needless to say, this doesn’t mean that ours is the “right” model
- but illustrates what the current paradigm misses and what it takes to match MBC template
Christiano, Motto & Rostagno (2014)

(a) Data (1985-2011)
(a) Data (1985-2011)

(b) Christiano, Motto & Rostagno (2014)

- Interchangeability: great in terms of Y, h, I, worse in terms of C
- Real-financial nexus: misses dynamics of credit spread and credit level

Y factor; h factor; I factor; C factor.
Additional Results: Second Business Cycle Shock

u shock; Y shock; I shock; h shock; C shock; Shaded area: 68% HPDI.
Additional Results: Cycles

Unemployment

Hours Worked

Unemployment

Hours Worked

Quarters

Hours Worked

Quarters

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.0
0.4
0.2
0.0
-0.2
-0.4

0.0
0.2
0.4

0.0
0.2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

4 6 120 200

0 2 4 6 8

4 6 24 32 40 64 80 120 200

4 6 24 32 40 64 80 120 200

4 6 120 200

4 6 24 32 40 64 80 120 200
Summary

• Simple and flexible method for dissecting the macroeconomic dynamics
• Supports hypothesis of dominant propagation mechanism
• Provides an empirical template for it ⇒ looks like a non-inflationary AD shock
• Detects defects in propagation dynamics of DSGE models fitted to the data
• Perhaps resolution rests on accommodating demand-driven cycles even without sticky prices
Business-Cycle Moments

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>st.dev(y_t)</td>
<td>1.41</td>
<td>1.39</td>
<td>1.01</td>
</tr>
<tr>
<td>st.dev(π_t)</td>
<td>0.21</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>corr(y_t, y_{t-1})</td>
<td>0.92</td>
<td>0.91</td>
<td>0.89</td>
</tr>
<tr>
<td>corr(y_t, y_{t-2})</td>
<td>0.70</td>
<td>0.67</td>
<td>0.61</td>
</tr>
<tr>
<td>corr(π_t, π_{t-1})</td>
<td>0.91</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>corr(π_t, π_{t-2})</td>
<td>0.67</td>
<td>0.61</td>
<td>0.49</td>
</tr>
<tr>
<td>corr(y_t, π_{t-2})</td>
<td>-0.11</td>
<td>0.11</td>
<td>-0.08</td>
</tr>
<tr>
<td>corr(y_t, π_{t-1})</td>
<td>0.06</td>
<td>0.18</td>
<td>-0.15</td>
</tr>
<tr>
<td>corr(y_t, π_t)</td>
<td>0.22</td>
<td>0.22</td>
<td>-0.17</td>
</tr>
<tr>
<td>corr(y_t, π_{t+1})</td>
<td>0.34</td>
<td>0.20</td>
<td>-0.13</td>
</tr>
<tr>
<td>corr(y_t, π_{t+2})</td>
<td>0.43</td>
<td>0.13</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

Moments obtained from bandpass-filtered series (6-32 Quarters). The two model-based experiments are those described in the text.
• Consider the VAR

\[A(L)X_t = u_t, \]

with \(A(L) \equiv \sum_{\tau=0}^{P} A_{\tau} L^\tau \), \(A(0) = I \) and \(\mathbb{E}(u_t u_t') = \Sigma \);

• Orthogonalize the residuals as \(u_t = S\varepsilon_t \) where \(\mathbb{E}(\varepsilon_t \varepsilon_t') = I \);

• Rewrite \(S \) as \(S = \tilde{S}Q \), where \(\tilde{S} \) is the Cholesky decomposition of \(\Sigma \), and \(Q \) is an orthonormal matrix \((QQ' = I) \)

\[\varepsilon_t = S^{-1}u_t = Q'\tilde{S}^{-1}u_t \]

\(\Rightarrow \) Each \(\varepsilon_t \) is associated to a column of \(Q \).
Technicalities

- Let us write the $VMA(\infty)$ representation of the VAR

$$X_t = B(L)u_t$$

where $B(L) = A(L)^{-1}$ is an infinite matrix polynomial of the form $B(L) = \sum_{\tau=0}^{\infty} B_{\tau} L^\tau$.

- Replace $u_t = \tilde{S} Q \varepsilon_t$,

$$X_t = C(L)Q \varepsilon_t = \Gamma(L) \varepsilon_t,$$

where $C(L) = B(L)\tilde{S}$ and $\Gamma(L) = C(L)Q$ are infinite matrix polynomials.

- The contribution of shock j to the spectral density of variable k over the frequency band $[\omega, \bar{\omega}]$ is given by

$$\Upsilon(q; k, \omega, \bar{\omega}) \equiv \int_{\omega \in [\omega, \bar{\omega}]} \left(C[k](e^{-i\omega})q C[k](e^{-i\omega})q \right) d\omega = q' \left(\int_{\omega \in [\omega, \bar{\omega}]} \bar{C}[k](e^{-i\omega}) C[k](e^{-i\omega}) d\omega \right)$$

- q is then determined by maximizing the latter quantity \Longrightarrow Standard eigenvalue problem.