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A.1 Formal Definitions

A.1.1 Definition of Responsive Preferences

Let h ∈ H and κh be a positive integer. We say that preference relation �h is responsive with capacity

κh if

(1) For any D′ ⊆ D with |D′| ≤ κh, d ∈ D \D′ and d′ ∈ D′, D′ ∪ d \ d′ �h D′ if and only if d �h d′,

(2) For any D′ ⊆ D with |D′| ≤ κh and d′ ∈ D′, D′ �h D′ \ d′ if and only if d′ �h ∅, and

(3) ∅ �h D′ for any D′ ⊆ D with |D′| > κh.

A.1.2 Definition of Individual Rationality

A matching µ is individually rational if

(1) µ(s)Rs∅ for every s ∈ S,

(2) µ(c)Rc(∅, ∅) for every c ∈ C, and

(3) Chh(µ(h)) = µ(h) for every h ∈ H.1

∗Kojima: Department of Economics, Stanford University, Landau Economics Building, 579 Serra Mall, Stanford, CA
94305-6072. Email: fkojima@stanford.edu. Pathak: Department of Economics (E52), Massachusetts Institute of Technology,
50 Memorial Drive, Cambridge, MA 02142. Email: ppathak@mit.edu. Roth: Department of Economics, Stanford University,
Landau Economics Building, 579 Serra Mall, Stanford, CA 94305-6072. Email: alroth@stanford.edu.

1When there is a couple (f,m) with {f,m} ⊆ µ(h), we adopt a notational convention that Chh(µ(h)) means Chh(µ(h)∪
(f,m)\{f,m}), that is, we let hospital h to consider the existing couple as a whole when choosing the most preferred subset
of doctors. Similar conventions will be used elsewhere when the choice involves a couple who are matched as a whole at the
given matching.

1



A.2 An Alternative Definition of Stability

We offer an alternative definition of stability from the one presented in the main text. This alternative

definition, which we call strong stability, allows for larger coalitions to block a matching. A strongly

stable matching is also stable according to the definition in the main text. In the proof of Theorem 1,

we establish a more general result for strong stability, and this implies existence of a stable matching as

defined in the main text.

In the definition of strong stability, we consider two cases of a block as follows:

(1) A couple-hospital pair (c, h) ∈ C ×H is a block of µ if

(a) (h, h)Pcµ(c),

(b) f,m ∈ Chh(µ(h) ∪ c) where c = (f,m).

(2) A group of doctors D′ and hospital h is a block of µ if

(a) there is no couple (f,m) such that {f,m} ⊆ D′,

(b) D′ ⊆ Chh(µ(h) ∪D′),2

(c) for all s ∈ D′ ∩ S, we have hPsµ(s),

(d) i. for all f ∈ D′∩F where c = (f,m) ∈ C, (h, h′)Pcµ(c) for some h′ and m ∈ Chh′(µ(h′)∪m),

ii. for all m ∈ D′ ∩M where c = (f,m) ∈ C, we have (h′, h)Pcµ(c) for some h′ and f ∈
Chh′(µ(h′) ∪ f).

A matching is strongly stable if it is individually rational and there is no block as defined by conditions

(1) and (2) above.

This definition allows for a couple assigned to a hospital to be blocked by two doctors (who are either

single or are a member of a couple). If one of the blocking doctors is a couple member, we require that

the member’s partner is chosen by another hospital over its assignment and that the couple together

prefer this assignment to their current assignment.

The motivation for this definition is to allow certain joint deviations to happen, but rule out more

complicated deviations involving larger groups. When a couple member is part of a blocking coalition

of doctors D′ and hospital h, our interpretation is that hospital h is the “initiating” blocker, and any

hospital h′ involved to satiate the other member of a couple is a passive blocker. The reason we consider

this definition is to stay close to pairwise stability, but still accommodate this particular type of blocking

pair is that we think that blocking coalitions of larger size are less likely to form due to coordination

issues among members. This definition also keeps the notation less burdensome, but our main existence

2When there is a couple (f,m) with {f,m} ⊆ µ(h), then we adopt a notational convention that Chh(µ(h) ∪D′) means
Chh(µ(h) ∪ (f,m) \ {f,m} ∪D′), that is, we let hospital h consider the existing couple as a whole when choosing the most
preferred subset of doctors. A similar convention will be used elsewhere when the choice involves a couple who are matched
as a whole at the given matching.
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result continues to hold when we allow larger sets of blocking coalitions to form or employ the core as

our solution concept.

Since the definition of strong stability allows for coalitions of doctors who are single or couple members

to be part of blocking pairs, a strongly stable matching is stable, but not vice versa. Moreover, if each

hospital has one position, strong stability is equivalent to unit-capacity stability.

Finally, strong stability is equivalent to the standard definition of (pairwise) stability when there is

no couple. To see this last point, first observe that condition (1) in the definition of strong stability is

irrelevant if there is no couple, as are conditions (2a) and (2d). The remaining conditions (2b) and (2c)

are equivalent to the nonexistence of a blocking pair under the assumption that hospital preferences are

responsive. Thus this, together with individual rationality, is equivalent to the standard pairwise stability

concept.3

A.3 Proof of Theorem 1

Let (H,S,C, (�h)h∈H , (Ri)i∈S∪C) be a matching market.

Step 1: Doctor-Proposing Deferred Acceptance Algorithm

Apply the doctor-proposing deferred acceptance algorithm to the sub-market without couples: (H,S, (�h
)h∈H , (Rs)s∈S).

Step 2: Sequential Couples Algorithm

Algorithm 1. Sequential Couples Algorithm

(1) Initialization:

Let matching µ be the output of the deferred acceptance algorithm in the sub-market without

couples.

(2) Iterate through couples: set C0 = C, i = 0 and B = ∅.

(a) If Ci is empty, then go to Step 3. Otherwise, pick some couple c = (f,m) ∈ Ci. Let

Ci+1 = Ci\c and increment i by one.

(b) Let couple c apply to their most preferred pair of hospitals (h, h′) ∈ H̃ × H̃ that has not

rejected them yet.

i. If such a hospital (pair) does not exist, modify matching µ such that couple c is unassigned

and then go to Step 2a.

3Ashlagi et al. (2011) consider another definition of stability, which neither implies our definition nor is implied by it.
However, our main existence theorem holds for their definition as well.
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ii. If such a hospital (pair) exists, then if either hospital h or hospital h′ has previously been

applied to by a member (or both members) of any couple different from c, then terminate

the algorithm.

iii. Otherwise,

A. If h = h′ 6= ∅ and {f,m} ⊆ Chh(µ(h)∪c), then modify matching µ by assigning (f,m)

to hospital h and having h reject

(µ(h) ∪ f ∪m) \ Chh(µ(h) ∪ c).

Add the rejected single doctors (if any) to B and go to Step 2a.

B. If h 6= h′, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh′(µ(h′) ∪m), then modify matching µ by

assigning f to h and m to h′, having hospital h reject

(µ(h) ∪ f) \ Chh(µ(h) ∪ f),

and having hospital h′ reject

(µ(h′) ∪m) \ Chh′(µ(h′) ∪m).

Add the rejected single doctors (if any) to B and go to Step 2a.

C. Otherwise, let hospital h and hospital h′ reject the application by couple c and go to

Step 2b.

(3) Iterate through rejected single doctors: set B1 = B and j = 1.

Round j:

(a) If Bj is empty, then terminate the algorithm.

(b) Otherwise, pick some single doctor s in Bj . Let Bj+1 = Bj\s and increment j by one.

Iterate through the rank order lists of single doctors:

i. If single doctor s has applied to every acceptable hospital, then modify matching µ such

that s is unassigned and go to Step 3a.

ii. If not, then let ĥ be the most preferred hospital ranked by single doctor s among those

which s has not yet applied to previously (either in the doctor-proposing deferred accep-

tance algorithm or within this algorithm.)

iii. If there is no couple member who has ever applied to hospital ĥ, then there are three

cases:

A. If hospital ĥ has a vacant position and s is acceptable to ĥ, then modify matching µ

such that single doctor s is assigned to ĥ and go to Step 3a.
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B. If either hospital ĥ prefers each of its current mates to single doctor s and there is no

vacant position or s is unacceptable to ĥ, then ĥ rejects s and go to Step 3(b)i.

C. If hospital ĥ prefers single doctor s to one of its current mates and there is no vacant

position, then modify matching µ such that s is assigned to ĥ. Hospital ĥ rejects the

least preferred doctor currently assigned there:

(µ(ĥ) ∪ s) \ Chĥ(µ(ĥ) ∪ s).

With abuse of notation, denote this rejected doctor s and go to Step 3(b)i.

iv. If there is a couple member who has ever applied to hospital ĥ previously within this

algorithm, then terminate the algorithm.

The sequential couples algorithm terminates at Step 2(b)ii (when a couple member proposes to a

hospital which has already been proposed to by another couple), Step 3a (when all couples and single

doctors are assigned), or Step 3(b)iv (when a single doctor proposes to a hospital which was previously

applied to by a couple member). We say that the algorithm succeeds if it terminates at Step 3a.

Lemma 1. If the sequential couples algorithm succeeds, then the resulting matching is stable.

The proof of this lemma is similar to the proof of the existence of a stable matching by Gale and

Shapley (1962) in the college admissions model. The main difference is that when the sequential couples

algorithm succeeds, we must verify that there are no blocking pairs including pairs which may involve

members of a couple.

Proof of Lemma 1. We prove that the matching that results when the sequential couples algorithm suc-

ceeds is strongly stable (defined in Section A.2). Establishing this fact implies that the matching is stable

since a strongly stable matching is a stable matching.4

Suppose that Algorithm 1 succeeds, producing matching µ. First, µ is individually rational since all

doctors who are single or couple members have applied only to acceptable hospitals (hospital pairs for

couples), and hospitals have accepted only acceptable doctors only up to their capacities in each step of

Algorithms ?? and 1.

Next, to show that there is no block of matching µ, fix a hospital h ∈ H.

(1) Suppose that there exists no couple (f,m) ∈ C such that {f,m} ⊆ µ(h).

(a) Assume, for contradiction, that there exists a set of doctors D′ ⊆ D such that hospital h and

D′ block µ, where there is no couple (f,m) ∈ C such that {f,m} ⊆ D′. Since doctor d is part

of a block,

dPh∅ for every d ∈ D′.
4Since the rest of the analysis builds on this lemma, this stronger result allows us to extend our main results when we

replace stability with strong stability as the solution concept.
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There are two cases to consider depending on whether D′ contains any single doctors.

i. Suppose that there is a single doctor in D′. Then each single doctor s ∈ D′∩S is rejected

by hospital h at some point of either Algorithm 1 or 2 since hPsµ(s). The tentative

assignment of hospital h at a step when single doctor s is rejected, denoted µ̃(h), satisfies

|µ̃(h)| = κh and dPhs for all d ∈ µ̃(h),

because sPh∅. Since, at each of later steps of both Algorithms, hospital h replaces a

tentatively matched doctor only when a more preferred doctor applies, it follows that

|µ(h)| = κh and dPhs for all d ∈ µ(h).

This contradicts the assumption that hospital h and D′ block matching µ.

ii. Suppose there are no single doctors in D′. Then there exists a member of some couple in

D′. Without loss of generality, assume that there is some f ∈ D′ where c = (f,m) ∈ C.

Since (h, h′)Pcµ(c) for some h′ ∈ H̃, couple c was rejected by the hospital pair (h, h′) at

some point of Algorithm 2. Let µ̃(h) and µ̃(h′) be the tentative assignments for hospital

h and hospital h′ at that step, respectively. Because couple c was rejected at this step, it

follows that either

|µ̃(h)| = κh and dPhf for all d ∈ µ̃(h),

or h′ 6= ∅ and we have that

|µ̃(h′)| = κh′ and dPh′m for all d ∈ µ̃(h′).

Since, at each of later steps, both hospital h and hospital h′ (if h′ 6= ∅) replace a tentatively

matched doctor only when a more preferred doctor applies, it follows that either

|µ(h)| = κh and dPhf for all d ∈ µ(h),

or h′ 6= ∅ and we have that

|µ(h′)| = κh′ and dPh′m for all d ∈ µ(h′).

This contradicts the assumption that f ∈ D′ and D′ block matching µ with hospital h.

(b) Consider a couple c = (f,m) such that (h, h)Pcµ(c). By definition of Algorithm 2, the couple

was rejected by the hospital pair (h, h) at some point in the Algorithm. Denote the matching

at that point by µ̃. It follows that

Chh(µ̃(h) ∪ c) = µ̃(h) and f,m /∈ µ̃(h).
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Since the sequential couples algorithm succeeds, no other doctor applies to hospital h after

the step where couple c is rejected by (h, h). As a result,

µ(h) = µ̃(h).

Therefore,

f,m /∈ µ(h) and µ(h) = Chh(µ(h) ∪ c),

which contradicts the assumption that couple c and hospital h block matching µ.

(2) Suppose that there exists a couple (f,m) ∈ C such that {f,m} ⊆ µ(h) and there is a block of

matching µ involving hospital h. The assumption that the sequential couples algorithm succeeds

implies that there is no couple c 6= (f,m) and h′ ∈ H̃ such that (h, h′)Pcµ(c) or (h′, h)Pcµ(c). This

is because the algorithm terminates in Step 3 if two or more distinct couple members apply to

the same hospital during the algorithm. Thus, the set of doctors D′ that blocks matching µ with

hospital h is composed solely of single doctors. This means that

sPh∅ for every s ∈ D′, (1)

hPsµ(s) for every s ∈ D′, (2)

for otherwise a single doctor s is not part of a block. Let µ̃ be the matching that is the result of

the doctor-proposing deferred acceptance algorithm in the sub-market excluding couples. Then

hRsµ̃(s) for every s ∈ D′, (3)

because otherwise, in light of (2), single doctor s will have applied to hospital h in Step 3 of the

sequential couples algorithm, causing the algorithm to fail. Moreover,

µ(h) �h µ̃(h), (4)

because otherwise hospital h would not have accepted new applicants in Step 2 of the sequential

couples algorithm, resulting in matching with µ(h). Furthermore,

dPhs for every d ∈ µ̃(h) ∩ µ(h) and s ∈ D′, (5)

because

(a) for any s ∈ D′∩ µ̃(h), single doctor s was rejected in Step 2 of the sequential couples algorithm

at the instance when the couple (f,m) applied to hospital h. We now show dPhs. Suppose, to

the contrary, that sRhd for some d ∈ µ̃(h) ∩ µ(h). Then sPhd because s 6= d and preferences
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are strict. This relation and responsiveness of �h imply

µ(h) ∪ s \ d �h µ(h).

Moreover,

µ(h) ∪ s \ d ∈ A(µ̃(h) ∪ (f,m)).

These facts contradict

µ(h) = Chh(µ̃(h) ∪ (f,m)),

which follows from the definition of the sequential couples algorithm. Hence,

dPhs for all d ∈ µ̃(h) ∩ µ(h).

(b) for any s ∈ D′\ µ̃(h), relation (3) implies hPsµ̃(s), so stability of matching µ̃ in the sub-market

without couples (which coincides with both our stability definition in Section ?? and strong

stability definition in Appendix A.2) implies

dPhs for all d ∈ µ̃(h).

Let µ′(h) be the assignment for hospital h when D′ and hospital h block matching µ. That is,

µ′(h) = Chh(µ(h) ∪D′). (6)

Relation (6) and the definition of Chh(·) imply

µ′(h) �h µ(h). (7)

Relations (1) and (2) imply that

|µ(h)| = κh.

Therefore, to block matching µ with D′, hospital h should reject some doctors in µ(h). If any

doctor d ∈ µ̃(h) ∩ µ(h) is rejected while some s ∈ D′ is accepted to produce µ′(h), then

µ′(h) ∪ d \ s �h µ′(h)

by responsiveness of �h and relation (5), but this contradicts (6). Hence, relation (5) implies that

it should be exactly couple (f,m) that is rejected by hospital h when hospital h and D′ block µ(h).

Since (f,m) is the only couple in µ(h) and it is not in µ′(h),

µ′(h) ⊆ µ̃(h) ∪D′ ⊆ S.
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Since hRsµ̃(s) for every single doctor s ∈ µ′(h) by relation (3) and µ′(h) ⊆ S, it follows that

µ̃(h) �h µ′(h), (8)

because otherwise matching µ̃ would be unstable in the sub-market without couples. Applying

relations (4), (8), and then (7), we obtain

µ(h) �h µ̃(h) �h µ′(h) �h µ(h),

a contradiction.

The rest of our argument uses Lemma 1 to compute how often Algorithm 1 succeeds when singles

and couples draw their preferences according to the processes described in Section ??.

In the next two steps of the proof, we define versions of the deferred acceptance algorithm and the

sequential couples algorithm in which single doctors draw their preferences iteratively within the steps

of the algorithms. This representation of the two algorithms proves useful for our analysis.

Step 3: Define Stochastic Deferred Acceptance Algorithm

Algorithm 2. Stochastic Doctor-Proposing Deferred Acceptance Algorithm

(1) Initialization: Let l = 1. For every s ∈ S, let As = ∅ and order the single doctors in an arbitrarily

fixed manner.

(2) Choosing the applicant:

(a) If l ≤ |S|, then let s be the lth single doctor and increment l by one.

(b) If not, then terminate the algorithm.

(3) Choosing the applied:

(a) If |As| ≥ k, then return to Step 2.

(b) If not, select hospital h randomly from distribution ps(·) until h /∈ As, and add h to As.

(4) Acceptance and/or rejection:

(a) If hospital h prefers each of its current mates to single doctor s and there is no vacant position,

then hospital h rejects single doctor s. Go to Step 3.

(b) If hospital h has a vacant position or it prefers single doctor s to one of its current mates,

then hospital h accepts single doctor s. Now if hospital h had no vacant position before

accepting single doctor s, then hospital h rejects the least preferred doctor among those who
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were matched to hospital h. Let this doctor be s and go to Step 3. If hospital h had a vacant

position, then go back to Step 2.

As records hospitals that single doctor s has already drawn from ps(·). When |As| = k is reached, As

is the set of hospitals acceptable to single doctor s.

Let µ be the matching that is produced when Algorithm 3 terminates. Under the doctor proposing

deferred acceptance algorithm, a single doctor’s application to her tth most preferred hospital is indepen-

dent of her preferences after (t+ 1)th choice on. Therefore matching µ is stable for the market consisting

of single doctors, any of their realized preference profiles which could follow from completing the draws

for random preferences, the hospitals and their (arbitrarily fixed) preferences.

Step 4: Define Stochastic Sequential Couples Algorithm

Suppose that at the conclusion of Algorithm 2, we obtain matching µ. The stochastic sequential

couples algorithm is a version of Algorithm 1 where single doctor preferences are drawn iteratively,

and is defined as follows:

Algorithm 3. Stochastic Sequential Couples Algorithm

(1) Initialization:

(a) Keep all preference lists generated in Algorithm 2. Also, for each single doctor s ∈ S, let As

be the set generated at the end of Algorithm 2. Let the matching µ be the initial matching of

the algorithm.

(b) For each couple c = (f,m) ∈ C, construct the couples’ preferences Pc according to the process

defined in Section ??.

(2) Iterate through couples, set C0 = C, i = 0, and B = ∅.

(a) If Ci is empty, then go to Step 3. Otherwise, pick some couple c = (f,m) ∈ Ci. Let

Ci+1 = Ci\c and increment i by one.

(b) Let couple c apply to their most preferred pair (h, h′) ∈ H̃ × H̃ that has not rejected them

yet.

i. If such a hospital (pair) does not exist, modify matching µ such that couple c is unassigned

and then go to Step 2a.

ii. If such a hospital (pair) exists, then if either hospital h or hospital h′ has previously been

applied to by a member (or both members) of any couple different from c, then terminate

the algorithm.

iii. Otherwise,
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A. If h = h′ 6= ∅ and {f,m} ⊆ Chh(µ(h)∪c), then modify matching µ by assigning (f,m)

to hospital h and having h reject

(µ(h) ∪ f ∪m) \ Chh(µ(h) ∪ c).

Add the rejected single doctors (if any) to B and go to Step 2a.

B. If h 6= h′, f ∈ Chh(µ(h) ∪ f), and m ∈ Chh′(µ(h′) ∪m), then modify matching µ by

assigning f to h and m to h′, having hospital h reject

(µ(h) ∪ f) \ Chh(µ(h) ∪ f),

and having hospital h′ reject

(µ(h′) ∪m) \ Chh′(µ(h′) ∪m).

Add the rejected single doctors (if any) to B and go to Step 2a.

C. Otherwise, let hospital h and hospital h′ reject the application by couple c and go to

Step 2b.

(3) Iterate through rejected single doctors, set B1 = B and j = 1.

Round j:

(a) If Bj is empty, then terminate the algorithm.

(b) Otherwise, pick some single doctor s in Bj . Set Bj+1 = Bj\s and increment j by one.

Iterate through the single doctor’s rank order list (call this iteration “Round j”)

i. If |As| ≥ k, then go to Step 3a.

ii. If not, select hospital ĥ randomly from distribution Pn until ĥ 6∈ As, and add ĥ to As.

iii. If there is no couple member who has ever applied to hospital ĥ, then there are three

cases:

A. If hospital ĥ has a vacant position, then modify matching µ such that single doctor s

is assigned to ĥ and go to Step 3a.

B. If either hospital ĥ prefers each of its current mates to single doctor s and there is no

vacant position or s is unacceptable to ĥ, then ĥ rejects s and go to Step 3(b)i.

C. If hospital ĥ prefers single doctor s to one of its current mates and there is no vacant

position, then modify matching µ such that s is assigned to ĥ. Hospital ĥ rejects the

least preferred doctor currently assigned there

(µ(ĥ) ∪ s) \ Chĥ(µ(ĥ) ∪ s).
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With abuse of notation, denote this rejected doctor s and iterate through her rank

order list by going to Step 3(b)i.

iv. If there is a couple member who has ever applied to hospital ĥ before, then terminate the

algorithm.

The algorithm above terminates at Step 2(b)ii or Step 3a or Step 3(b)iv. Similarly to Algorithm 1,

we say that Algorithm 3 succeeds if it terminates at Step 3a.

To establish Theorem 1, we investigate how often the algorithm succeeds, as every doctor d draws

hospitals from his or her distribution pd(·). First observe for any random market in a regular sequence,

Pr[Algorithm 1 succeeds] = Pr[Algorithm 3 succeeds].

That is, the probability of the algorithm’s success is identical whether random preferences are drawn

at once in the beginning or they are drawn one at a time during the execution of the algorithm.5 The latter

expression is useful since we can investigate the procedure step by step, utilizing conditional probabilities

and conditional expectations. Thus we focus on the behavior of Algorithm 3 as the market size grows in

the remainder of the proof.

Let Yn be a random variable which counts the number of hospitals that are listed on no single doctor’s

preference list at the end of Algorithm 2.6 The next step of the argument provides a lower bound on Yn

at the conclusion of Algorithm 2. For expositional simplicity, in the following we denote kn = k.

Step 5: A large number of hospitals have vacancies

Lemma 1. For any sufficiently large n,

E[Yn] ≥ n

2
e−rλk.

Proof. Condition (??) of Definition ?? implies that, for any n,

pd(h) ≤ rpd(h′) for all d ∈ Dn, h, h′ ∈ Hn.

Adding these inequalities across hospitals h′ ∈ Hn, we have

npd(h) ≤ r
∑
h′∈H

pd(h
′) = r for each h.

5This property is called the principle of deferred decisions. See Motwani and Raghavan (1996).
6We abuse notation and denote a random variable and its realization by the same letter when there is no confusion.
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As a result,

pd(h) ≤ r

n
. (9)

Fix a doctor d and denote her ith most preferred hospital by h(i), if it has been drawn at the conclusion

of Algorithm 2. For any i ≤ k, inequality (9) implies

i−1∑
j=1

pd(h(j)) ≤ k ×
r

n
.

Thus for any i ≤ k, the conditional probability that h is not the single doctor’s ith choice given the events

that her first (i− 1) choices are h(1), . . . , h(i−1), her ith choice is drawn, and h(j) 6= h for all j ≤ i− 1, is

bounded from below by

1− pd(h)

1−
∑i−1

j=1 pd(h(j))
≥ 1− r/n

1− rk/n
= 1− r

n− rk
. (10)

Let Eh be the event that h /∈ As for every s ∈ S at the end of Algorithm 2. Since at most λnk draws

are made in total by all single doctors from ps(·) in Algorithm 2, inequality (10) implies that

Pr(Eh) ≥
(

1− r

n− rk

)λnk
. (11)

We next note that for any h and any sufficiently large n,(
1− r

n− rk

)λnk
≥ 1

2
e−rλk,

which holds because

lim
n→∞

(
1− r

n−rk

)λnk
1
2e
−rλk = 2× lim

n−rk→∞

(
1− r

n−rk

)λk(n−rk)

e−rλk
× lim
n→∞

(
1− r

n− rk

)λrk2

= 2× 1×

(
lim

n−rk→∞

(
1− r

n− rk

)n−rk)limn→∞
λrk2

n−rk

= 2 > 1

(note that n − rk → ∞ and λrk2

n−rk → 0 as n → ∞ since k ≤ γ log(n)). Thus, together with inequality

(11), we conclude that

Pr(Eh) ≥ 1

2
e−rλk.
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Using this inequality, for any sufficiently large n, we have

E[Yn] =
∑
h∈Hn

Pr(Eh) ≥ n

2
e−rλk,

completing the proof.

Step 6: Algorithm 3 succeeds with high probability.

Let C̄ = bna denote the upper bound on the number of couples in the random market Γ̃n.

Lemma 2. For any sufficiently large n and any matching µ,

Pr

[
Algorithm 3 succeeds

∣∣∣∣ Yn > E[Yn]

2
and Algorithm 2 produces µ

]
≥
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

,

if the conditioning event has a strictly positive probability.

Proof. First, consider the event that Algorithm 3 does not terminate at Step 2(b)ii so that the algorithm

reaches Step 3. For that event to happen it is enough for the following event to happen: for any two

doctors d, d′ ∈ F ∪M with d 6= d′, there is no hospital h ∈ H that is listed by both d and d′ as an

acceptable hospital. This is sufficient because our assumption on ρ implies that at most one d ∈ F ∪M
will apply to h.

Suppose {d1, ..., d`−1} ∈ F ∪M are such that there exists no h ∈ H listed by any pair of doctors

in {d1, ..., d`−1} ∈ F ∪M . Furthermore, fix a doctor d` ∈ F ∪M \ {d1, ..., d`−1} and assume that her

first i − 1 choices {h(1), h(2), . . . , h(i−1)} have no intersection with hospitals listed by the set of doctors

{d1, ..., d`−1}. The conditional probability that her ith choice h(i) does not have an overlap with any of

the previously picked hospital is at least

1−
∑

h:h is listed by some doctor in {d1,...,d`−1}

pd(h) −
i−1∑
j=1

pd(h(j)). (12)

Recall that by Condition (??) of Definition ??, relation (9) holds:

pd(h) ≤ r

n
.

Since there are at most C̄ couples and each member of a couple lists at most k distinct hospitals, expression

(12) is bounded from below by

1− 2kC̄r

n
. (13)
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Recall that there are at most C̄ couples and each member of the couple lists at most k distinct

hospitals. Expression (13) implies that the probability that for any d, d′ ∈ F ∪M with d 6= d′, there is

no hospital h ∈ H that is listed by both d and d′ as one of their acceptable hospitals is at least

(
1− 2kC̄r

n

)2kC̄

, (14)

which is positive for n sufficiently large. Expression (14) provides a lower bound of the probability that

the algorithm does not terminate at Step 2(b)ii so that the algorithm reaches Step 3.

Next, we consider what happens in Step 3 assigning single doctors in the set B, conditional on the

same events assumed so far and in addition that all couples are tentatively matched without the algorithm

being terminated at Step 2(b)ii.

Condition (??) of Definition ?? implies that for any single s ∈ S,

ps(h
′) ≥ ps(h)/r for any h, h′ ∈ H.

Also observe that there are at most 2kC̄ hospitals that are listed by a couple member in F ∪M . Denote

this set of hospitals by H1 and note that∑
h∈H1

ps(h) ≤ 2kC̄r ·min
h∈H
{ps(h)}.

Moreover, there are at least Yn−2kC̄ hospitals (which is positive if n is sufficiently large and Yn >
E[Yn]

2 )

with vacant positions and not listed by any couple member at the beginning of Step 3 (since there are at

least Yn hospitals with vacant positions at the beginning of Step 2 and at most 2C̄ hospitals are listed

by couple members). Denote this set of hospitals by H2 and note that∑
h∈H2

ps(h) ≥ (Yn − 2kC̄) ·min
h∈H
{ps(h)}.

We are interested in computing the probability that Round 1 of Step 3 ends at 3(b)iiiA as a single

doctor applies to some hospital with vacant positions not listed by any couple member (rather than

applying to a hospital that is listed by a couple member). This probability is bounded below by:

1−
∑

h∈H1
ps(h)∑

h∈H1
ps(h) +

∑
h∈H2

ps(h)
≥ 1− 2kC̄

Yn−2kC̄
r + 2kC̄

> 1− 2kC̄
E[Yn]/2−2kC̄

r + 2kC̄
. (15)

Now assume that all Rounds 1, . . . , j − 1 end at Step 3(b)iiiA. Then there are still at least Yn −
2kC̄ − (j− 1) hospitals with a vacant position and not listed by any couple member at the end of Round

j − 1. This follows since at most j − 1 hospitals have had their positions filled at Rounds 1, . . . , j − 1

among those hospitals that are not listed on any single doctor’s preference list at the end of Algorithm 2.
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Following the steps analogous to those leading to inequality (15), we can compute that Round j, initiated

by some single doctor in Bj , ends at Step 3(b)iiiA with probability of at least

1− 2kC̄
Yn−2kC̄−(j−1)

r + 2kC̄
> 1− 2kC̄

E[Yn]/2−2kC̄−(j−1)
r + 2kC̄

.

There are at most 2C̄ rounds in Step 3 because at most 2C̄ single doctors can be displaced by couples

in Step 2, so |B| ≤ 2C̄. Hence Algorithm 3 succeeds with conditional probability of at least

2C̄∏
j=1

(
1− 2kC̄

E[Yn]/2−2kC̄−(j−1)
r + 2kC̄

)
≥

(
1− 2kC̄

E[Yn]/2−2kC̄−(2C̄−1)
r + 2kC̄

)2C̄

≥
(

1− 2kC̄

E[Yn]/4r

)2C̄

, (16)

where the first inequality follows from Lemma 1, the assumption that n is sufficiently large and each

j ≤ 2C̄, and the second inequality holds since E[Yn]/2− 4kC̄ ≥ E[Yn]/4 > 0, which follows from Lemma

1 and the assumption that n is sufficiently large.

As a result, relations (14) and (16) imply

Pr

[
Algorithm 3 succeeds

∣∣∣∣ Yn > E[Yn]

2
and Algorithm 2 produces µ

]
≥
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

.

We utilize the following mathematical result (see Lemma 4.4 of Immorlica and Mahdian (2005) for a

proof).

Lemma 3. Var[Yn] ≤ E[Yn] for every n ∈ N.

Step 7: Proof of Theorem 1

Proof of Theorem 1. We obtain that

Pr

[
Yn ≤

E[Yn]

2

]
≤ Pr

[
Yn ≤

E[Yn]

2

]
+ Pr

[
Yn ≥

3E[Yn]

2

]
= Pr

[
|Yn − E[Yn]| ≥ E[Yn]

2

]
≤ Var[Yn]

(E[Yn]/2)2
≤ 4

E[Yn]
, (17)

where the first inequality holds since any probability is nonnegative, the equality is an identity, the second

inequality results from Chebyshev inequality, and the last inequality follows from Lemma 3.
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By Lemma 2 we have

Pr

[
Algorithm 3 succeeds

∣∣∣∣ Yn > E[Yn]

2
and Algorithm 2 produces µ

]
≥
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

.

This inequality holds for any matching µ that is produced at the end of Algorithm 2. Therefore, we

have the same lower bound for the probability conditional on Yn > E[Yn]/2 but not on µ. That is,

Pr

[
Algorithm 3 succeeds

∣∣∣∣ Yn > E[Yn]

2

]
≥
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

. (18)

Thus we obtain

Pr [Algorithm 3 succeeds] ≥ Pr

[
Yn >

E[Yn]

2

]
·
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

≥
(

1− 4

E[Yn]

)
·
(

1− 2kC̄r

n

)2kC̄

·
(

1− 8rkC̄

E[Yn]

)2C̄

≥
(

1− 8erλk

n

)
·
(

1− 2kC̄r

n

)2kC̄

·
(

1− 16rkC̄erλk

n

)2C̄

, (19)

where the first inequality follows from the fact that probabilities are non-negative and (18), the second

inequality results from (17), and the last inequality is obtained by Lemma 1.

Consider the first term of the right-hand side of inequality (19),
(

1− 8erλk

n

)
. Since k ≤ γ log(n)

where γ < 1−2a
rλ ,

erλk

n
≤ e(1−2a) log(n)

n
=
n1−2a

n
= n−2a.

Since a > 0, the last expression converges to 0 as n approaches infinity. Thus we conclude

lim
n→∞

(
1− 8erλk

n

)
= 1,

that is, the first term of the right-hand side of inequality (19) converges to one as n approaches infinity.

Next, consider the second term of the right-hand side of inequality (19),
(

1− 2kC̄r
n

)2kC̄
. Recall that
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there exists b > 0 such that C̄ < bna for any n and k ≤ γ log(n). Thus, for any sufficiently large n,

(
1− 2kC̄r

n

)2kC̄

>

(
1− 2γ log(n)bnar

n

)2γ log(n)bna

=

(
1− 2γbr

n1−a/ log(n)

)2γ(log(n))2b(n1−a/ log(n))n2a−1

≥
(

1

2
e−2γbr

)2γbn2a−1(log(n))2

, (20)

where the last inequality follows because
(
1− α

x

)x ≥ 1
2e
−α for any α > 0 and any sufficiently large x,

and n1−a/ log(n)→∞ as n→∞. Since a < 1/2, the term n2a−1(log(n))2 → 0 as n→∞ and hence the

last expression of inequality (20) converges to one as n→∞.

Finally, consider the third term of the right-hand side of inequality (19),
(

1− 16rkC̄erλk

n

)2C̄
. For any

sufficiently large n, this term can be bounded as

(
1− 16rkC̄erλk

n

)2C̄

>

(
1− 16rγ log(n)bnaerλγ log(n)

n

)2bna

=

(
1− 16rγ log(n)bnanrλγ

n

)2bna

=

(
1− 16rγb

n1−a−rλγ/ log(n)

)2b(n1−a−rλγ/ log(n))n2a−1+rλγ log(n)

≥
(

1

2
e−16rγb

)2b(n2a−1+rλγ log(n))

. (21)

Because γ < 1−2a
rλ , it follows that 2a−1+rλγ < 2a−1+(1−2a) = 0. This implies that n2a−1+rλγ log(n)→

0 as n→∞ and hence the last expression of inequality (21) converges to one as n→∞, which completes

the proof.

A.3.1 Speed of convergence

We consider the speed of convergence. For the general model we consider, the result is as follows (whether

this rate of convergence is tight is an open question).

Proposition 1. Consider a regular sequence of random markets. The speed of convergence of the prob-

ability that there exists a stable matching is

O

(
kC̄2erλk

n

)
.

Proof. We invoke the following mathematical result.
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Result 1 (Bernoulli’s Inequality). (1+x)y ≥ 1+yx for any real number x ≥ −1 and nonnegative integer

y.

In any regular sequence of random markets, we have 2kC̄r/n ≤ 1 for any large n. Thus, by Bernoulli’s

inequality, (
1− 2kC̄r

n

)2kC̄

≥ 1− 2kC̄r

n
× 2kC̄ = 1− 4k2C̄2r

n
.

Similarly, for any large n we have

(
1− 16rkC̄erλk

n

)2C̄

≥ 1− 16rkC̄erλk

n
× 2C̄ = 1− 32rkC̄2erλk

n
.

These inequalities and inequality (19) imply that, for any sufficiently large n,

Pr [Algorithm 3 succeeds] ≥
(

1− 8erλk

n

)
·
(

1− 2kC̄r

n

)2kC̄

·
(

1− 16rkC̄erλk

n

)2C̄

≥
(

1− 8erλk

n

)
·
(

1− 4k2C̄2r

n

)
·
(

1− 32rkC̄2erλk

n

)
≥ 1− 8erλk

n
− 4k2C̄2r

n
− 32rkC̄2erλk

n
.

Thus the speed of convergence to one is

O

(
8erλk

n
+

4k2C̄2r

n
+

32rkC̄2erλk

n

)
.

Note that constants generally do not matter for the rate of convergence, so the above rate of convergence

can be rewritten as

O

(
erλk

n
+
k2C̄2

n
+
kC̄2erλk

n

)
.

Further note that erλk = O(kC̄2erλk), k2C̄2 = O(kC̄2erλk) as n → ∞ under our assumptions. This

implies that the overall speed of convergence is

O

(
kC̄2erλk

n

)
,

completing the proof.

As a special case of interest, suppose that the number of couples and the length of doctors’ preference

lists are bounded along the sequence of random markets (which is equivalent to assuming that C̄ and k

are bounded by a constant). In this case, by Proposition 1, the probability that there does not exist a

stable matching decreases with a rate of convergence of O(1/n) as n→∞.
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Number of vacancies Since the proof of Theorem 1 finds a bound of the probability by focusing on

the event in which Yn >
E[Yn]

2 ≥ n
4 e
−rλk ≥ n1−rλγ

4 , the next proposition follows from Lemma 1 and 3.

Proposition 2 (A large number of hospitals with vacancies). For any m,

(1) the probability that, in a sub-market without couples, the doctor-proposing deferred acceptance algo-

rithm produces a matching in which at least m hospitals have at least one vacant position converges

to one as n approaches infinity, and

(2) the probability that the sequential couples algorithm succeeds and at least m hospitals have at least

one vacant position in the resulting matching converges to one as n approaches infinity.

B Simulation and Computation Appendix

Figures 2 and 3 report simulations from markets with preferences drawn from a uniform distribution and

from a distribution calibrated from the APPIC dataset. In this appendix, we describe the steps in our

simulation and the algorithm we use to find a stable matching.

B.1 Simulating the Market’s Primitives for Figures 2 and 3

The simulations reported in Figures 2 and 3 are for a one-to-one matching except for couples, who will

match with pairs of positions. The number of single doctors and hospitals is denoted by n. Denote the

number of couples in the market by c (with slight abuse of notation) and let the parameter which governs

the length of doctors’ rank order lists be k = 10.

For the market based on the uniform distribution, we proceed as follows:

• Each of the n programs is independently assigned to one of five regions with equal probability.

For each program, draw the ordering of single doctors and couple members from the uniform

distribution. Each hospital finds all single doctors and couple members acceptable.

• For each of the n single doctors, draw k programs without replacement from the uniform distribu-

tion.

• For each of the 2c couple members, independently draw two lists of length k from the uniform

distribution, and append the null program (representing being unassigned) to the end of each

couple member’s list. To construct the couple’s joint rank order list, we proceed as follows:

– The first couple member, chosen arbitrarily, is the primary member.

– Compose the list of program pairs from the two independent lists from each couple member,

generating (k + 1)2 pairs of programs.

– If any program pair is from two distinct regions, then it is dropped from the set of program

pairs. (If a program is paired with one couple member being unassigned, it is not dropped.)
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– Next, for each remaining program pair, compute the sum of the couple members’ rankings

for each pair, and order the program pairs in descending order according to the sum of the

ranks. Pairs with the same sum of ranks are ordered in favor of the primary couple members’

ranking.

We simulate 100 markets for each value of n and c reported in Figure 2.

For markets based on APPIC, we follow similar steps, except preferences are drawn from a distribution

using information from the APPIC dataset. As mentioned in the text, the APPIC dataset only identifies

the region of each program. Program identifiers are anonymized each year, preventing us from linking

programs across years. These data limitations necessitate that we proxy for program and applicant

attributes using the capacity and submitted rank order lists. The dimensions of heterogeneity in the

APPIC data are:

(1) the region of the program, which is one of 10 regions based on the first digit of the program’s zip

code for U.S. regions plus Canada region;

(2) the size of the program (measured by the total number of applicants assigned to the program);

(3) the region of the applicant, which we proxy for using the region of the doctor’s first choice;

(4) the popularity of the program, which we proxy by the number of times the program is ranked

among the top 13 choices by applicants in that year;

(5) the desirability of an applicant, which we proxy by the number of times an applicant is ranked

among the top 25 choices of programs in that year.

The program popularity and applicant desirability measures are based on cutoffs. For programs, we

consider the top 13 choices because most applicants rank fewer than 13 choices. For example, in Table

1, at least 75 percent of single doctors and at least 75 percent of couple members rank fewer than 13

distinct programs. For applicants, we consider being ranked among the top 25 because more than 75

percent of programs rank fewer than 25 applicants as shown in Table 1. It is worth emphasizing that these

measures are constructed based on submitted rankings, rather than based on criteria measured before

preferences were submitted. As a result, our estimates should not be seen as revealing the underlying

taste parameters of market participants.

To fit models of both applicant and program preferences, we first relate program market share,

defined as the fraction of participants who rank a program as their first choice, to the variables we’ve

constructed from our dataset. Table B1 reports estimates from two specifications which use a program’s

first choice market share as the dependent variable. Column (1) reports estimates including proxies for

program quality, the number of programs in the same region in that year, the number of applicants in

the region in that year, year effects and program region fixed effects. Column (2) includes controls for

year-program region interactions together with program quality proxies. It is not surprising that we can
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explain a significant share of the aggregate first choice variation using our quality proxy given that it is

constructed based on submitted rankings.

The last column reports estimates for single doctors from a discrete-choice rank ordered logit model

estimated using STATAs rologit command, which estimates the rank-ordered logistic regression via max-

imum likelihood (using the standard normalization of the error term). The estimates here relate the

dimensions of the dataset (program quality, program region, applicant region) to applicant rank order

lists. We also experimented with models using program-specific fixed effects, but most estimates were

too imprecise to be useful. We use the point estimates in column (3) to simulate doctor’s ranking of

programs.

To calibrate preferences for hospitals, we relate applicant market share, defined as the fraction of

programs ranking an applicant as their top choice, to the variables in our dataset. Table B2 reports

estimates following Table B1, but for program demand for applicants. In addition to proxies for applicant

desirability, we also include an indicator for whether the applicant is a couple member. Column (1)

reports estimates with separate year and applicant region fixed effects, while the estimates in column (2)

include year-region interactions. Here, the R2 is smaller than in the program market share regressions

possibly because there are more unobserved applicant level characteristics than captured by our proxy

for applicant desirability. To estimate a program’s preference for applicants, we fit rank ordered logit

models for the program’s ranking of applicants in column (3). These point estimates form the basis of

the data generating process used to construct programs’ orderings of applicants.

For the calibrated market, it is necessary to replicate the attributes of our dataset as we vary the

market size n. To do so, we take n draws with replacement of programs in the APPIC dataset for all

years and endow each with the region and quality attribute of the program. Then we take our single

doctor preference estimates to construct predicted rank order lists for the set of programs drawn. The

couples preferences are constructed by taking two single doctors and forming a joint rank order list

following the procedure for the uniform case described above. To scale applicants, we take n draws with

replacement of applicants from the APPIC dataset and endow each with the region and desirability, and

couple member indicator attribute of the applicant. Finally, we take our program preference estimates

to construct predicted rank order lists for the set of applicants drawn. We simulate 100 markets for

each value of n and c reported in Figure 3. When we calculate the predicted rankings for programs and

applicants, we use the models reported in column (3) of Tables B1 and B2, respectively, plus an error

term that has Gumbel distribution with mode 0 and scale 1.

B.2 Finding a Stable Matching

The following procedure is used to find a stable matching in Figures 2 and 3 given the hospital and doctor

preferences and hospital capacities:

(1) Apply the doctor-proposing deferred acceptance algorithm in the market with only single doctors

and hospitals.
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(2) Place the couples into a stack and process them in an arbitrary order. The first couple proposes to

their top choice they have not proposed to yet and proceeds down their list (that is, applies to their

most preferred hospitals that have not yet rejected them) until one of the following possibilities:

• The couple is accepted at the hospitals they apply to and no other doctors are displaced.

Remove the assigned couple from the couples stack and proceed to the next couple in the

couples stack.

• A single doctor(s) are rejected due to the proposal of the couple, who is in turn accepted.

Remove the assigned couple from the couples stack, add the single doctor(s) to the stack of

single doctors, and proceed to the next couple in the couples stack.

• A couple member is rejected due to the proposal of the couple, who is in turn accepted. Remove

the assigned couple from the couples stack, and add the rejected couple member and the other

member of that couple to the couples stack. Proceed to the next couple in the couples stack.

• A single doctor and couple member are rejected due to the proposal of a couple, who is in

turn accepted. Remove the assigned couple from the couples stack. Add the rejected single

doctor to the stack of single doctors, and add the other member of that couple to the couples

stack. Proceed to the next couple in the couples stack.

• If the couple exhausts their list without displacing either a single doctor or another couple,

leave the couple unassigned and remove them from the couples stack. Proceed to the next

couple in the couples stack.

(3) Process the doctors in the single doctor stack one at a time in an arbitrary given order. The first

single doctor proposes to her top choice she has not proposed to yet and proceeds down her list

until one of following possibilities:

• A single doctor is accepted at the hospital they apply to and no other doctors are displaced.

Remove the assigned single doctor from the single doctor stack and proceed to the next single

doctor in the single doctor stack.

• A single doctor is rejected due to the proposal of the single doctor, who is in turn accepted.

Add the rejected single doctor to the single doctor stack.

• A couple member is rejected due to the proposal of the single doctor, who is in turn accepted.

Add the rejected couple member and the other member of that rejected couple to the couples

stack. Proceed to the next single doctor in the single doctor stack.

• If the single doctor exhausts their list without displacing either another single doctor or a

couple, leave the single doctor unassigned and remove her from the single doctor stack. Proceed

to the next single doctor in the single doctor stack.
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(4) Iterate by processing the couples stack and the singles stack as in the last two steps, alternating

between both stacks as long as they are not empty. Note that since doctors propose down their

list, this process must eventually terminate.

(5) Check that the resulting match is stable by verifying there are no blocking pairs for the given

assignment. If it is stable, output the matching and terminate the algorithm.

(6) If the match is not stable, there must be a blocking coalition.

• Place every couple in the market on the couples stack. Place every single doctor in the market

on the single doctor stack. At this step, no doctor withdraws from their current assigned

position.

• Start with the couples stack following step 2. Each couple in the stack starts by proposing

to their top choice (and not their top choice which has not rejected them yet). Next, move

to the single doctor stack following step 3. If proposing doctor(s) are more preferred than

existing match partners for the hospital, the proposing doctor(s) withdraws from their current

assignment. Iterate between steps 2 and 3 as above, except any time a doctor is displaced the

displaced doctor begin by proposing from their top choice down.

• If an applicant (either single doctor or couple) applies to the same alternative on their rank

order list 100 times, declare failure.

The APPIC dataset only includes a program’s ranking over individual doctors even though it is a many-to-

one market. We assume that when comparing applicants, a program prefers the higher ranked applicant.

When comparing two sets of couple members at the same program, the program always prefers the couple

pair based on the highest ranked couple member.
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Matching Applicant
Market type 1st 2nd 3rd 4th 5th+ Unassigned

without couples single 36.8% 16.9% 10.1% 6.1% 11.2% 18.9%

single 36.0% 16.6% 10.1% 6.2% 11.6% 19.5%
couple 18.0% 9.9% 8.2% 5.1% 53.7% 5.2%

Table A1. Comparison of Stable Matchings in Markets with and without Couples

Choice Received

with couples

Applicants

Notes: This table reports the choice received in the applicant‐optimal stable matching in a 
market with single applicants and without couples versus a stable matching in the market 
with couples in the Association of Psychology Postdoctoral and Internship Centers match, 
averaged over years 1999‐2007.  An applicant is counted as unassigned even if being 
unassigned is among her top five choices.



Year Number Percent Number Percent
1999 35 1.2% 45 4.2%
2000 78 2.7% 92 8.4%
2001 86 3.0% 95 8.6%
2002 54 1.9% 62 5.8%
2003 51 1.7% 62 5.7%
2004 65 2.2% 73 6.8%
2005 53 1.7% 63 5.7%
2006 80 2.5% 78 7.1%
2007 69 2.0% 71 6.3%

Single	
  Applicants	
  Receiving	
  Less	
  Preferred	
  
Assignment	
  in	
  Market	
  with	
  Couples

Table	
  A2.	
  Difference	
  between	
  Stable	
  Matchings	
  in	
  Markets	
  with	
  and	
  without	
  Couples

Programs	
  Receiving	
  More	
  Preferred	
  
Assignment	
  in	
  Market	
  with	
  Couples

Notes:	
  This	
  table	
  reports	
  differences	
  between	
  the	
  applicant-­‐optimal	
  in	
  the	
  market	
  without	
  
couples	
  and	
  a	
  stable	
  matching	
  in	
  the	
  market	
  with	
  couples	
  in	
  the	
  Association	
  of	
  Psychology	
  
Postdoctoral	
  and	
  Internship	
  Centers	
  match.	
  	
  A	
  program	
  receives	
  a	
  more	
  preferred	
  assignment	
  if	
  
there	
  is	
  any	
  responsive	
  representation	
  of	
  its	
  preferences	
  for	
  which	
  the	
  assignment	
  is	
  more	
  
preferred.	
  	
  There	
  are	
  no	
  single	
  applicants	
  who	
  receive	
  a	
  more	
  preferred	
  assignment	
  in	
  the	
  market	
  
with	
  couples	
  and	
  there	
  are	
  no	
  programs	
  that	
  receive	
  a	
  less	
  preferred	
  assignment	
  (for	
  any	
  
responsive	
  representation)	
  in	
  the	
  market	
  with	
  couples.



Year Number Percent Number Percent
1999 2 0.1% 2 0.2%
2000 7 0.2% 7 0.6%
2001 8 0.3% 8 0.7%
2002 2 0.1% 2 0.2%
2003 6 0.2% 6 0.6%
2004 7 0.2% 7 0.6%
2005 0 0.0% 0 0.0%
2006 6 0.2% 6 0.5%
2007 10 0.3% 10 0.9%

Single	
  Applicants	
  Receiving	
  More	
  
Preferred	
  Assignment	
  in	
  Applicant-­‐

Optimal	
  Stable	
  Matching

Programs	
  Receiving	
  Less	
  Preferred	
  
Assignment	
  in	
  Applicant-­‐Optimal	
  Stable	
  

Maching

Notes:	
  This	
  table	
  reports	
  differences	
  between	
  the	
  applicant-­‐optimal	
  and	
  program-­‐optimal	
  stable	
  
matching	
  in	
  the	
  Association	
  of	
  Psychology	
  Postdoctoral	
  and	
  Internship	
  Centers	
  matching	
  market	
  
without	
  couples.	
  	
  A	
  program	
  receives	
  a	
  less	
  preferred	
  assignment	
  if	
  there	
  is	
  any	
  responsive	
  
representation	
  of	
  its	
  preferences	
  for	
  which	
  the	
  assignment	
  is	
  less	
  preferred.

Table	
  A3.	
  Properties	
  of	
  the	
  Set	
  of	
  Stable	
  Matching	
  in	
  the	
  Market	
  without	
  Couples



Dependent	
  variable:

Program	
  characteristics
	
  	
  	
  quality/1000

	
  	
  	
  (quality/1000)²

Year	
  effects

Program	
  region	
  effects

Year	
  ×	
  Program	
  region	
  effects

log	
  likelihood
R²
Number	
  of	
  participants
Notes:	
  Table	
  reports	
  OLS	
  estimates	
  of	
  program	
  market	
  share	
  on	
  program	
  characteristics	
  in	
  columns	
  (1)	
  and	
  (2).	
  	
  
Program	
  market	
  share	
  is	
  defined	
  as	
  the	
  fraction	
  of	
  applicants	
  ranking	
  the	
  program	
  first.	
  	
  Column	
  (3)	
  presents	
  
estimates	
  from	
  rank	
  ordered	
  logit	
  using	
  applicant's	
  choices.	
  	
  Program's	
  quality	
  is	
  defined	
  as	
  number	
  of	
  times	
  the	
  
program	
  is	
  ranked	
  among	
  the	
  top	
  13	
  choices	
  by	
  applicants.	
  Program's	
  region	
  is	
  defined	
  as	
  the	
  first	
  digit	
  of	
  
program's	
  zip	
  code.	
  Applicant's	
  region	
  is	
  defined	
  as	
  the	
  region	
  of	
  the	
  applicant's	
  first-­‐choice	
  program.	
  Psuedo	
  R2	
  
reported	
  in	
  column	
  (3).

10,611 10,611 27,428

No Yes .

0.3797 0.3816 0.04016

Yes No .

Yes No Yes

. . -­‐377,944.23

applicant	
  is	
  in	
  the	
  same	
  
region	
  as	
  the	
  program

. . -1.1236***

. . (0.006922)

number	
  of	
  applicants
	
  in	
  program's	
  region

0.000001637*** . -0.0002778*
(3.269e-07) (0.0001386)

number	
  of	
  programs
	
  in	
  program's	
  region

-0.000003592** . 0.0007440
(0.000001146) (0.0004892)

(0.02421) (0.02433) (6.5114)

-6.8509***
(0.001438) (0.001445) (0.5350)

0.1379*** 0.1373*** 36.407***

0.03641*** 0.03660***

Table	
  B1.	
  Applicant	
  Demand	
  for	
  Programs

Program	
  Top	
  Choice	
  Market	
  Share
Applicant's	
  ranking	
  of	
  

program
(1) (2) (3)



Dependent	
  variable:

Applicant	
  characteristics
	
  	
  	
  quality/1000

	
  	
  	
  (quality/1000)²

	
  	
  	
  is	
  couple

Year	
  effects
Applicant	
  region	
  effects
Year	
  ×	
  Applicant	
  region	
  effects

log	
  likelihood
R²
Number	
  of	
  participants
Notes:	
  Table	
  reports	
  OLS	
  estimates	
  of	
  applicant	
  desirability	
  on	
  applicant	
  characteristics	
  in	
  columns	
  (1)	
  and	
  (2).	
  	
  
Applicant	
  desirability	
  is	
  defined	
  as	
  the	
  fraction	
  of	
  programs	
  ranking	
  an	
  applicant	
  first.	
  	
  Column	
  (3)	
  presents	
  
estimates	
  from	
  rank	
  ordered	
  logit	
  using	
  program	
  choices	
  over	
  applicants.	
  	
  Applicant's	
  quality	
  is	
  defined	
  as	
  
number	
  of	
  times	
  the	
  applicant	
  is	
  ranked	
  among	
  the	
  top	
  25	
  choices	
  by	
  programs.	
  Program's	
  region	
  is	
  defined	
  as	
  
the	
  first	
  digit	
  of	
  program's	
  zip	
  code.	
  Applicant's	
  region	
  is	
  defined	
  as	
  the	
  region	
  of	
  the	
  applicant's	
  first-­‐choice	
  
program.	
  	
  Psuedo	
  R2	
  reported	
  in	
  column	
  (3).

26,335 26,335 10,092

No Yes .

0.1484 0.1501 0.007942

Yes No .
Yes No Yes

.. -­‐355,645.65

applicant	
  is	
  in	
  the	
  same	
  region	
  as	
  
the	
  program

. . -0.1563***

. . (0.006049)

number	
  of	
  applicants
	
  in	
  region

-2.824e-08 . -0.0002839*
(1.516e-07) . (0.0001266)

(0.00003411) (0.00003422) (0.02122)
number	
  of	
  programs
	
  in	
  applicant's	
  region

9.419e-07 . -0.0002380
(5.545e-07) . (0.0004693)

(0.1916) (0.1920) (119.31)
-0.0001049** -0.0001063** 0.04469*

-111.46***
(0.002955) (0.002961) (2.3734)
1.3421*** 1.3432*** 3232.9***

0.04731*** 0.04736***

Table	
  B2.	
  Program	
  Demand	
  for	
  Applicants

Applicant	
  Desirability	
  (based	
  on	
  top-­‐ranking)
Program's	
  ranking	
  of	
  

applicant	
  
(1) (2) (3)
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