Public Debt as Private Liquidity: Optimal Policy

G.M. Angeletos*, F. Collard‡ and H. Dellas‡

10/8/2016

MIT* and University of Bern‡
• **Financial frictions** \implies public debt can be non-neutral

• **Public debt as collateral/buffer stock/outside liquidity** \implies alleviate frictions

• **Relevant policy implications** in the aftermath of the Great Recession

 • **Mitigate a financial crisis:** Level vs portfolio composition
 (QE: Curdia and Woodford, 2011, Gertler and Kiyotaki, 2011)
The Main Issue

- **Relevant policy implications** in the aftermath of the Great Recession
 - Mitigate a financial crisis: Level vs portfolio composition
 (QE: Curdia and Woodford, 2011, Gertler and Kiyotaki, 2011)
 - Relax the ZLB constraint on monetary policy
 (Eggertson and Krugman, 2011, Guerrieri and Lorenzoni, 2011)
The Main Issue

- **Relevant policy implications** in the aftermath of the Great Recession
 - Mitigate a financial crisis: Level vs portfolio composition
 (QE: Curdia and Woodford, 2011, Gertler and Kiyotaki, 2011)
 - Relax the ZLB constraint on monetary policy
 (Eggertson and Krugman, 2011, Guerrieri and Lorenzoni, 2011)

- **Similarities but also differences** with Friedman rule literature
 (Chari, Christiano and Kehoe, 1996, Correia and Teles, 1999)
Missing: Theoretical study of **optimal fiscal policy** is a Ramsey setting in which

- public debt is non-neutral, because it influences the virulence of financial frictions
- but does not generate a free lunch for the government, because taxation is distortionary

Contribution of this paper: Fill the gap, offer new lessons for

- optimal long-run quantity of public debt
- desirability of tax smoothing
- optimal policy response to shocks (including financial crises)
How do we do it?

We characterize optimal provision of debt in 3 steps:

We characterize optimal provision of debt in 3 steps:

2. Obtain a **convenient reduced-form representation** of the planners problem in terms of a standard optimal control problem over the rate of taxation and the level of debt.
We characterize optimal provision of debt in 3 steps:

2. Obtain a **convenient reduced-form representation** of the planners problem in terms of a standard optimal control problem over the rate of taxation and the level of debt.

3. Characterize **analytically** the solution to a class of reduced-form problems that nests the one obtained from our model.
Parenthesis: Absent Financial Frictions

- Without financial friction, the model reduces to a deterministic version of Barro and AMSS
- Optimal policy satisfies
 - **Tax smoothing**: the tax rate (the shadow value of tax revenue) is equated across periods;
 - **Steady-state indeterminacy**: any sustainable level of debt is consistent with steady state.
Main Findings: Deterministic

- When the friction is present, a **tension** emerges between
 1. Easing the friction so as to improve market efficiency/allocation of resources
 2. Exacerbating the friction so as to raise premia and reduce the government’s cost of borrowing
Main Findings: Deterministic

- When the friction is present, a tension emerges between
 (i) Easing the friction so as to improve market efficiency/allocation of resources
 (ii) Exacerbating the friction so as to raise premia and reduce the government’s cost of borrowing

- Departure from tax smoothing: Optimal path balances the social cost of this departure against the social value of regulating the financial distortion.
Main Findings: Deterministic

- When the friction is present, a **tension** emerges between

 (i) Easing the friction so as to improve market efficiency/allocation of resources

 (ii) Exacerbating the friction so as to raise premia and reduce the government’s cost of borrowing

- **Departure from tax smoothing:** Optimal path balances the social cost of this departure against the social value of regulating the financial distortion.

- **Steady-state determinacy:** A non-trivial theory of the long-run quantity of public debt

 - in a benchmark: essentially unique steady state

 - more generally: possibly multiple steady states, but each one is locally-determinate
Main Findings: Deterministic

- When the friction is present, a tension emerges between
 (i) Easing the friction so as to improve market efficiency/allocation of resources
 (ii) Exacerbating the friction so as to raise premia and reduce the government’s cost of borrowing

- **Departure from tax smoothing:** Optimal path balances the social cost of this departure against the social value of regulating the financial distortion.

- **Steady-state determinacy:** A non-trivial theory of the long-run quantity of public debt
 - in a benchmark: essentially unique steady state
 - more generally: possibly multiple steady states, but each one is locally-determinate

- Depending on primitives, **2 scenarios** can emerge
 1. Financial distortion vanishes as $t \to \infty \implies$ Friedman rule applies in LR but not SR
 2. Financial distortion preserved as $t \to \infty \implies$ **Friedman rule never applies**
Main Findings: Stochastic

- **Mean reversion**

- Optimal policy response to "wars": less persistent and less volatile

- Optimal policy response to "financial recessions":
 - aforementioned tension \Rightarrow ambiguous effect on planner’s incentives
 - response driven by fiscal considerations, not apparent desire to ease the aggravated friction
 - a financial crisis presents an opportunity for "cheap borrowing"
 - ultimately: **optimal deficit is larger** than in a comparable traditional recession.
The Baseline Model
Micro-Founded Model

 - Infinitely lived agents,
 - competitive markets and flexible prices,
 - Government issues debt and collect taxes by distorting labor supply decisions only.

 - Agents are hit by idiosyncratic shocks \(\implies\) reallocation of goods across agents.
 - The reallocation requires borrowing, borrowing requires collateral.
 - Private supply of collateral is limited as so is the pledgeable income of the private sector.

\[\implies\text{Public debt can serve as collateral and alleviate financial frictions.}\]
Micro-Founded Model

- Helps clarify
 - role of liquidity: risk sharing
 - why debt matters: lack of pledgeable income
- Gives a language to talk about collateral and buffer stock
- Can accommodate effects such as
 - fire sales externalities,
 - inside/outside money,
 - crowding out of capital

But Importantly: show that although each of these effects is relevant in its own right, none is key for our results.
Micro-Founded Model: Timing

- Endowment (e) + assets (a)
- Taste Shock (θ)
- Consumption (x) and IOU issuance (z)
- Decide labor supply (h)
- Receive labor income ($1 - \tau w$)
- Decide savings ($a + 1$) and consumption (c)
- IOU repayment
Micro-Founded Model: Timing

- Endowment (e) + assets (a_{it})
- Taste Shock (θ_{it})
- Decide consumption (x_{it}) and IOU issuance (z_{it})
Micro-Founded Model: Timing

- Endowment (e) + assets (a_{it})
- Taste Shock (θ_{it})
- Consumption (x_{it}) and IOU issuance (z_{it})

- Decide labor supply (h_{it})
- Receive labor income ($(1-\tau_t)w_t h_{it}$)
- Decide savings (a_{it+1}) and consumption (c_{it})
- IOU repayment
Micro-Founded Model

- Households:

$$\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t (c_{it} + \theta_{it} u(x_{it}) - \nu(h_{it})) \right]$$

s.t.
$$c_{it} + p_t x_{it} + q_t a_{it+1} = a_{it} + (1 - \tau_t) w_t h_{it} + p_t \bar{e}$$

$$p_t (x_{it} - \bar{e}) \leq \xi w_t h_{it}^{def} + a_{it}$$

$$- a_{it+1} \leq \xi w_{t+1} h_{it+1}^{def}$$
Micro-Founded Model

- Households:

\[
\begin{align*}
\max_{E} & \quad \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t (c_{it} + \theta_{it} u(x_{it}) - \nu(h_{it})) \right] \\
\text{s.t.} \quad & c_{it} + p_t x_{it} + q_t a_{it+1} = a_{it} + (1 - \tau_t) w_t h_{it} + p_t \bar{e} \\
& p_t (x_{it} - \bar{e}) \leq \xi w_t h_{it}^{def} + a_{it} \\
& - a_{it+1} \leq \xi w_{t+1} h_{it+1}^{def}
\end{align*}
\]

- Firms: \(y_t = A h_t \)
Micro-Founded Model

- **Households:**
 \[
 \max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t (c_{it} + \theta_{it} u(x_{it}) - \nu(h_{it})) \right]
 \]
 \[
 \text{s.t. } c_{it} + p_t x_{it} + q_t a_{it+1} = a_{it} + (1 - \tau_t) w_t h_{it} + p_t \bar{e}
 \]
 \[
 p_t (x_{it} - \bar{e}) \leq \xi w_t h_{it}^{\text{def}} + a_{it}
 \]
 \[
 - a_{it+1} \leq \xi w_{t+1} h_{it+1}^{\text{def}}
 \]

- **Firms:** \(y_t = A h_t \)

- **Government:** \(q_t b_{t+1} + \tau_t w_t h_t = b_t + g \)
Micro-Founded Model

- **Households:**

 \[
 \max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left(c_{it} + \theta_{it} u(x_{it}) - \nu(h_{it}) \right) \right] \\
 \text{s.t. } c_{it} + p_t x_{it} + q_t a_{it+1} = a_{it} + (1 - \tau_t) w_t h_{it} + p_t \bar{e} \\
 p_t (x_{it} - \bar{e}) \leq \xi w_t h_{it}^{def} + a_{it} \\
 - a_{it+1} \leq \xi w_{t+1} h_{it+1}^{def}
 \]

- **Firms:** \(y_t = Ah_t \)

- **Government:** \(q_t b_{t+1} + \tau_t w_t h_t = b_t + g \)

- **Market clearing:** \(y_t = c_t + g, \quad \int x_t(\theta)d\mu(\theta) = \bar{e}, \quad \int a_{t+1}(\theta)d\mu(\theta) = b_{t+1} \).
Proposition

The optimal policy path for the tax rate and the level of public debt solves:

$$\max_{\{s_t, b_{t+1}\}} \sum_{t=0}^{\infty} \beta^t [U(s_t) + V(b_t)] \quad \text{subject to} \quad Q(b_{t+1})b_{t+1} = b_t + g - s_t$$
Proposition

The optimal policy path for the tax rate and the level of public debt solves:

\[
\max_{\{s_t, b_{t+1}\}} \sum_{t=0}^{\infty} \beta^t [U(s_t) + V(b_t)] \quad \text{subject to} \quad Q(b_{t+1})b_{t+1} = b_t + g - s_t
\]

1. \(U(s)\): Captures the cost of taxation, \(s \equiv \tau \text{wh}(\tau)\) and \(U'(\cdot) < 0, \ U''(\cdot) < 0\)
Proposition

The optimal policy path for the tax rate and the level of public debt solves:

$$\max_{\{s_t, b_{t+1}\}} \sum_{t=0}^{\infty} \beta^t [U(s_t) + V(b_t)] \quad \text{subject to} \quad Q(b_{t+1})b_{t+1} = b_t + g - s_t$$

1. $U(s)$: Captures the cost of taxation, $s \equiv \tau \omega h(\tau)$ and $U'(\cdot) < 0, U''(\cdot) < 0$

2. $V(b)$: Value of cross-sectional allocation of asset holdings and morning-good consumption for a given level of public debt, b, with $V'(\cdot) > 0$.

\[\text{Program}\]
A Convenient Reduced-Form Ramsey Problem

Proposition

The optimal policy path for the tax rate and the level of public debt solves:

$$\max_{\{s_t, b_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t [U(s_t) + V(b_t)] \quad \text{subject to} \quad Q(b_{t+1})b_{t+1} = b_t + g - s_t$$

1. $U(s)$: Captures the cost of taxation, $s \equiv \tau wh(\tau)$ and $U'(\cdot) < 0, U''(\cdot) < 0$

2. $V(b)$: Value of cross-sectional allocation of asset holdings and morning-good consumption for a given level of public debt, b, with $V'(\cdot) > 0$.

3. $Q(b)$: Price of a bond that supports this allocation, $Q'(\cdot) < 0$.

 $(\pi(b) \equiv Q(b) - \beta$ is associated liquidity premium)
A Convenient Reduced-Form Ramsey Problem

Proposition

The optimal policy path for the tax rate and the level of public debt solves:

\[
\max_{\{s_t, b_{t+1}\}} \sum_{t=0}^{\infty} \beta^t \left[U(s_t) + V(b_t) \right] \quad \text{subject to} \quad Q(b_{t+1})b_{t+1} = b_t + g - s_t
\]

1. \(U(s)\): Captures the cost of taxation, \(s \equiv \tau \omega h(\tau)\) and \(U'(\cdot) < 0, U''(\cdot) < 0\)

2. \(V(b)\): Value of cross-sectional allocation of asset holdings and morning-good consumption for a given level of public debt, \(b\), with \(V'(\cdot) > 0\).

3. \(Q(b)\): Price of a bond that supports this allocation, \(Q'(\cdot) < 0\).
 \((\pi(b) \equiv Q(b) - \beta\) is associated liquidity premium\)

4. \(b_{\text{bliss}}\): There exists \(b_{\text{bliss}}\) s.t. \(\forall b \geq b_{\text{bliss}}, V'(b) = 0\) and \(Q(b) = \beta (\pi(b) = 0)\)
The planner chooses a path for \((s, b) \in (0, \bar{s}) \times [\underline{b}, \bar{b}]\) that solves

\[
\max \int_{0}^{+\infty} e^{-\rho t} [U(s) + V(b)] \, dt \\
\text{s.t. } \quad \dot{b} = R(b)b + g - s \\
\quad b(0) = b_0
\]

Dual role of public debt (as in Woodford, Aiyagari-McGrattan or Holmstrom-Tirole):

1. Can improve the allocation of resources (Captured by \(V\)).
2. Can be used to manipulate interest rates (Captured by \(R = \rho - \pi(b)\)).

Key Trade off

Non convex problem due to pecuniary externality.

Key: Dependence of \(V\) and \(R\) (id. \(\pi\)) on \(b\), not the exact reason of this dependence.
The planner chooses a path for \((s, b) \in (0, \bar{s}) \times [\underline{b}, \bar{b}]\) that solves
\[
\max \int_0^{+\infty} e^{-\rho t}[U(s) + V(b)] dt
\]
subject to
\[
\dot{b} = R(b)b + g - s
\]
and
\[
b(0) = b_0
\]

Dual role of public debt (as in Woodford, Aiyagari-McGrattan or Holmström-Tirole):

- \((i)\) can improve the allocation of resources (Captured by \(V\))
- \((i)\) can be used to manipulate interest rates (Captured by \(R = \rho - \pi(b)\)).

\(\text{Key Trade off}\)
An (even more) Convenient Reduced Form Representation

• The planner chooses a path for \((s, b) \in (0, \bar{s}) \times [\underline{b}, \bar{b}]\) that solves

\[
\max \int_0^{+\infty} e^{-\rho t} [U(s) + V(b)] dt
\]

s.t. \[
\dot{b} = R(b)b + g - s \\
b(0) = b_0
\]

• **Dual role of public debt** (as in Woodford, Aiyagari-McGrattan or Holmström-Tirole):

\((i)\) can improve the allocation of resources (Captured by \(V\))

\((i)\) can be used to manipulate interest rates (Captured by \(R = \rho - \pi(b)\)).

\} **Key Trade off**

• **Non convex problem** due to pecuniary externality.

• **Key:** Dependence of \(V\) and \(R\) (id. \(\pi\)) on \(b\), not the exact reason of this dependence.
Assumptions

Main Assumptions

We consider economies in which the following properties hold:

A1. U, V, and π are continuously differentiable.\(^1\)

A2. U is concave in s, with maximum attained at $s = 0$.

A3. There exists a threshold $b_{bliss} \in (0, \bar{b})$ such that $V'(b) > 0$ and $\pi(b) > 0$ for all $b < b_{bliss}$, and $V'(b) = 0$ and $\pi(b) = 0$ for all $b > b_{bliss}$.

A4. $\pi(b) \leq \rho$ for all b.

\(^1\)To be precise, we allow V and π to be non-differentiable at $b = b_{bliss}$.

Characterizing Optimal Debt Provision
Necessary Conditions for Optimality

- Set of necessary conditions

\[\begin{align*}
\dot{\lambda} &= V'(b) - \lambda \pi(b) (\sigma(b) - 1) \\
\dot{b} &= g + (\rho - \pi(b)) b - s(\lambda)
\end{align*}\]

+ transversality condition: \(\lim_{t \to \infty} e^{-\tau t} \lambda(t) b(t) = 0\).
Euler Equation: \[\dot{\lambda} = V'(b) - \lambda \pi(b) (\sigma(b) - 1) \]

- Think of a static problem: max social value + seigniorage revenue for a given \(\lambda \)

\[
\max_b \Omega(b, \lambda) \equiv V(b) + \lambda \pi(b) b
\]
Euler Equation: \[\dot{\lambda} = V'(b) - \lambda \pi(b)(\sigma(b) - 1) \]

- Think of a static problem: max social value + seigniorage revenue for a given \(\lambda \)
 \[\max_b \Omega(b, \lambda) \equiv V(b) + \lambda \pi(b)b \]

- FOC

\[V'(b) - \lambda \pi(b)(\sigma(b) - 1) = 0 \]

Marginal social gain from easing the financial friction (Allocation Efficiency)

Marginal cost in terms of seigniorage revenue (Interest Rate Manipulation)
Euler Equation: \[\dot{\lambda} = V'(b) - \lambda \pi(b) (\sigma(b) - 1) \]

- Think of a static problem: max social value + seigniorage revenue for a given \(\lambda \)

\[\max_b \Omega(b, \lambda) \equiv V(b) + \lambda \pi(b) b \]

- FOC

\[V'(b) - \lambda \pi(b) (\sigma(b) - 1) = 0 \]

Marginal social gain from easing the financial friction (Allocation Efficiency)

Marginal cost in terms of seigniorage revenue (Interest Rate Manipulation)

- **Tempting**: interpret the above condition as the optimal steady state debt provision decision \(\Rightarrow \text{Misleading!} \)

- Tax Smoothing acts as an adjustment cost.
Optimality Conditions

• Set of necessary conditions

\[
\begin{align*}
\dot{\lambda} &= V'(b) - \lambda \pi(b) (\sigma(b) - 1) \\
\dot{b} &= g + (\rho - \pi(b)) b - s(\lambda)
\end{align*}
\]

+ transversality condition: \(\lim_{t \to \infty} e^{-\tau t} \lambda(t) b(t) = 0. \)

• **Non-convex problem** \(\implies \) **not sufficient** \(\implies \) Skiba (1978), Brock-Dechert (1983)

• Study the global dynamics.
A Useful Benchmark

Benchmark

(i) the elasticity σ is monotone;

(ii) the ratio V'/π is constant.
A Useful Benchmark

Benchmark

(i) *the elasticity* σ *is monotone*;

(ii) *the ratio* V'/π *is constant*.

(i) Guarantees that $\pi(b)b$ is single-peaked (Laffer curve for seigniorage);

(ii) Any social gain following an increase in liquidity is exactly compensated by an increase in borrowing cost.
Result

Under the previous assumptions, there exists a unique pair (b^, λ^*), such that for any $b_0 \leq b_{\text{bliss}}$ the economy converges to (b^*, λ^*).**
Under the previous assumptions, there exists a unique pair \((b^*, \lambda^*)\), such that for any \(b_0 \leq b_{\text{bliss}}\) the economy converges to \((b^*, \lambda^*)\).

Result

There exists a threshold level, \(\hat{g}\), for government spending such that

- For any \(g \leq \hat{g}\), \(b^* = b_{\text{bliss}}\): An analogue to the Friedman rule holds in the long run;
- For any \(g > \hat{g}\), \(b^* < b_{\text{bliss}}\): it is optimal for the government to squeeze liquidity to increase seigniorage revenue to finance expenditures.
Phase Diagram: Benchmark I: $g \leq \hat{g}$.
Phase Diagram: Benchmark II: $g > \hat{g}$.

\[\dot{\lambda} = 0 \quad \gamma(b) \quad \dot{\lambda} = 0 \quad \dot{\lambda} = 0 \]

\[\lambda_{\text{skiba}} \quad \lambda^* \quad \psi(b) \quad b = 0 \]

Useful Lemma 22
• Relax monotonicity of σ and the invariance of $V'(b)/\pi(b)$ to b.

• Things get more intricate.

• Many situations can occur \implies Only illustrate a typical one
Beyond the Benchmark: A Typical Situation
Beyond the Benchmark: A Typical Situation

\[\dot{\lambda} = 0 \]

\[\dot{b} = 0 \]

\[\lambda = 0 \]

\[\tilde{b}, \tilde{b}, \tilde{b}, \tilde{b} \]

\[b_L^\#, b_M^\#, b_H^\# \]

\[b_{bliss}, b_{skiba}, \bar{b} \]
Theorem

Let $B^\# \equiv \{ b \in (b, b_{\text{bliss}}) : \gamma(b) = \psi(b) \text{ and } \gamma'(b) \leq \psi'(b) \}$ be the set of the points at which γ intersects ψ from above. In every economy, there exists a threshold $b_{\text{skiba}} \in [b, b]$ and a set $B^* \subseteq B^\#$ such that the following are true along the optimal policy:

(i) If either $b_0 \in B^*$ or $b_0 > \max\{b_{\text{bliss}}, b_{\text{skiba}}\}$, debt stays constant at b_0 for ever.

(ii) If $b_0 < b_{\text{skiba}}$ and $b_0 \notin B^*$, then debt converges monotonically to a point inside B^*.

(iii) If $b_{\text{skiba}} < b_{\text{bliss}}$ and $b_0 \in (b_{\text{skiba}}, b_{\text{bliss}})$, debt converges monotonically to b_{bliss}.
Optimal Policy
Optimal Policy

\[\psi(b) \]

\[\gamma(b) \]

\[\lambda^* \]

\[\lambda \]

\[b^* \]

\[b_{skiba} \]

\[b_{bliss} \]

\[b_0 \]

\[\bar{b} \]
Optimal Policy

\[\lambda \]

\[\psi(b) \]

\[\gamma(b) \]

\[b_0 \quad b^* \quad b_{skiba} \quad b_{bliss} \quad b_{skiba} \]

\[\lambda^* \]
Optimal Policy

- \(\psi(b) \)
- \(\gamma(b) \)
- \(\lambda^* \)
- \(b^* \)
- \(b_0 \)
- \(b_{\text{skiba}} \)
- \(b_{\text{bliss}} \)
- \(b_{\text{skiba}} \)
Optimal Policy

\[\psi(b) \]

\[\lambda \]

\[b_{skiba} \quad b_0 \quad b_{bliss} \quad \overline{b} \]

\[\lambda(b) \]
Theorem

Any economy belongs to one of the following three non-empty classes:

(i) **Economies in which** \(B^* = \emptyset \) **and** \(b_{skiba} = b \).

(ii) **Economies in which** \(B^* \neq \emptyset \) **and** \(b_{skiba} \in (b, b_{bliss}) \).

(iii) **Economies in which** \(B^* \neq \emptyset \) **and** \(b_{skiba} \geq b_{bliss} \).

Furthermore, \(\psi_{bliss} > \gamma_{bliss} \) is sufficient for an economy to belong to the last class.
Optimality of Steady State Public Debt

Proposition

Let $\Omega(b, \lambda) = V(b) + \lambda \pi(b)b$ be the liquidity plus seignorage. Consider an economy in which the set $B^* \neq \emptyset$, then take any $b^* \in B^*$ and let $\lambda^* = \psi(b^*)$.

- If $\gamma'(b^*) < 0$, b^* attains a local maximum of $\Omega(b, \lambda^*)$.
- If instead $\gamma'(b^*) > 0$, b^* attains a local minimum of $\Omega(b, \lambda^*)$.

Economies do not necessarily converge towards the optimal level of debt.

- There exist economies in which B^* is a singleton and, nevertheless, b^* attains a local minimum of $\Omega(b, \lambda^*)$.
Optimality of Public Debt

Local Maximum

Non-Optimal Debt

\[\psi(b) \quad \gamma(b) \]

\[\lambda^* \]

\[b^* \quad b_{bliss} \quad \bar{b} \]

\[\lambda \]

\[b \]
Additional Insights
• **Key difference from FR literature:** All government liabilities offer liquidity services.
On the Friedman Rule

- **Key difference from FR literature:** All government liabilities offer liquidity services.

- Assume the Government can issue money like assets (Bonds), m, and hold a position in non-money asset, $n \implies b = m + n$

$$\dot{m} + \dot{n} = [\rho - \pi(m)]m + \rho n + g - s \iff \dot{b} + s = \rho b - \pi(m)m + g$$

- For a given level of **total** liabilities ($\dot{m} + \dot{n} = 0$), the government can change liquidity (m) w/o affecting neither its fiscal position (b) nor the interest rate (ρ) just by varying the composition of liabilities (m/n).

Complete separation between liquidity provision and fiscal position
On the Friedman Rule

- Formally:

\[
\max \int_0^{+\infty} e^{-\rho t} [U(s) + V(m)]dt \quad \text{s.t.} \quad b_0 = \int_0^{+\infty} e^{-\rho t} [\pi(m)m + s - g]dt
\]

- \(s\) and \(m\) are constant over time \(\implies\) back to tax smoothing.
- \(m^*\) may or may not coincide with the Friedman rule
- If it does, unlike in our model, it does in each and every period.
On the Friedman Rule

- Formally:
 \[
 \max \int_{0}^{+\infty} e^{-\rho t} [U(s) + V(m)] dt \quad \text{s.t.} \quad b_0 = \int_{0}^{+\infty} e^{-\rho t} [\pi(m)m + s - g] dt
 \]

- s and m are constant over time \implies back to tax smoothing.
- m^* may or may not coincide with the Friedman rule
- If it does, unlike in our model, it does in each and every period.

- **Why?** The supply of liquidity is isolated from fiscal policy
- Assume instead that n has (even a tiny) role as liquidity then fiscal and liquidity considerations are intertwined and we are back to our trade-off,
Crowding Out Effect of Debt

- Aiyagari-McGrattan (1998): Public debt crowds out capital because debt is a substitute for capital as a buffer stock.
- Model la Holmstöm-Tirole (1998): firms have to borrow to finance their capital need.
- Agents can relax future financial constraints by saving in the form of capital and debt \Rightarrow Possible crowding out.
Crowding Out Effect of Debt

- Aiyagari-McGrattan (1998): Public debt crowds out capital because debt is a substitute for capital as a buffer stock.

- Model la Holmstöm-Tirole (1998): firms have to borrow to finance their capital need.

- Agents can relax future financial constraints by saving in the form of capital and debt → Possible crowding out.

- But another conflicting effect:
 - More debt that serves as collateral alleviate the financial friction.
 - Improves the allocation of capital and raises the ex-ante return to capital → Crowding in.

- Overall effect depends on micro details and calibration.
Borrowing Cheap?

- **Recent great recession**: low interest rates = signal that it is cheap for the government to borrow.
- Krugman and DeLong: US government should have run an expansionary fiscal policy
 - for Keynesian-stimulus reasons
 - **but also** because interest rates were extraordinarily low.
Borrowing Cheap?

- **Recent great recession**: low interest rates = signal that it is cheap for the government to borrow.
- Krugman and DeLong: US government should have run an expansionary fiscal policy
 - for Keynesian-stimulus reasons
 - **but also** because interest rates were extraordinarily low.

- **Misleading claim!**

- **Barro/AMSS**: Adding deterministic variations in the discount rate does not justify changes in the optimal fiscal mix!
- **Why?** The interest rate captures the cost of borrowing **but also** what a society desires (No wedge between the interest rate and the CP’s discount rate)
Borrowing Cheap?

- **Our framework**: More borrowing may be optimal during a crisis

- **But** not simply because of low interest rates!
Our framework: More borrowing may be optimal during a crisis

But not simply because of low interest rates!

Because low interest rate is a manifestation of
 • the aggravated financial friction
 • the associated increase in the liquidity premium the Govt can extract.

Optimal response to adverse financial shocks?
Effect of shocks

- War shocks: Model departs from standard tax smoothing (both across time and states) and exhibits mean reversion.

- Here look at a financial shock that causes
 - income to fall
 - tax basis to shrink
 - private and social value of liquidity to increase
Effect of shocks

- Both the $\dot{b} = 0$ and $\dot{\lambda} = 0$ shift.
- 3 effects drive movements in the debt:
 - Tax Smoothing (shock is temporary)
 - Increase in the marginal value of providing liquidity (Increase liquidity)
 - Increase in the opportunity cost of liquidity (Squeeze liquidity)
- Net effect is ambiguous and depends on the calibration and the micro details.
Effect of shocks

• Both the $\dot{b} = 0$ and $\dot{\lambda} = 0$ shift.

• 3 effects drive movements in the debt
 - Tax Smoothing (shock is temporary)
 - Increase in the marginal value of providing liquidity (Increase liquidity)
 - Increase in the opportunity cost of liquidity (Squeeze liquidity)

• Net effect is ambiguous and depends on the calibration and the micro details.

• Consider the case: $\frac{V'(b)}{\pi(b)}$ and $\sigma(b)$ remain constant $\implies \dot{\lambda} = 0$ locus does not shift
 \implies Response of b is dictated by fiscal considerations only (increase in tax burden)
Financial Shock: No change in $\dot{\lambda} = 0$
Financial Shock: No change in $\dot{\lambda} = 0$

$\Delta T | \Delta \pi(b) b = 0$
Financial Shock: No change in $\dot{\lambda} = 0$
Financial Shock: No change in $\dot{\lambda} = 0$

\[\Delta T \mid \Delta \pi(b) = 0 \]

\[\Delta \pi(b) b \]
Financial Shock: No change in $\dot{\lambda} = 0$
Effect of shocks

Case 1: No direct interest rate effect \implies traditional recession (raise debt and taxes)

Case 2: Change in interest rate compensates for decrease in tax \implies no change in b and τ. The drop in tax revenue is debt financed ($\dot{b} = 0$ and $\dot{\lambda} = 0$ unaffected)

IRF to a Financial Shock

- **Interest Rate**
- **Primary Deficit**
- **Public Debt**
- **Optimal Tax Rate**

$\Delta \pi(b)b = 0; \quad \Delta \pi(b)b = -\Delta T$
• **Question:** Is it always optimal to supply debt to alleviate financial frictions?

• **Not always!** The government may wish to exploit its collateral producing capacity in order to earn rents from the private sector and thus reduce its reliance on distortionary tax revenue sources.

• Provide a full characterization of
 ✓ long term properties and
 ✓ the global dynamics
 of optimal policy in a model where public debt can alleviate the financial frictions created by lack of sufficient collateral for asset trades.
2 Topical Insights

• Do low interest rates during recessions make it “cheap” for the Government to borrow?
 • Argument has no place in the standard Ramsey framework.
 • **Why?** no wedge between interest rate and discount rate of planner
 • May make sense in our framework (if the low interest rate reflects the financial friction.)
2 Topical Insights

• Do low interest rates during recessions make it “cheap” for the Government to borrow?
 • Argument has no place in the standard Ramsey framework.
 • **Why?** no wedge between interest rate and discount rate of planner
 • May make sense in our framework (if the low interest rate reflects the financial friction.)

• **Optimal policy response to a financial crisis**
 • crisis raises the marginal value of providing liquidity \implies Increase debt
 • but it also raises the opportunity cost of doing so \implies Squeezing liquidity
 Not clear!

 • In a benchmark (one where these 2 effects cancel each other), optimal policy response
 dictated by budgetary considerations (λ) rather than by the apparent increase in the social
 value of easing the friction
THANK YOU!
Social Value of Debt

- $V(b)$ is the value of the following problem:

$$
\max_{(p,q)\in \mathbb{R}_+^2 \& (x,a):[\theta,\bar{\theta}] \to \mathbb{R}_+ \times [\phi, +\infty)} \int \theta u(x(\theta))\varphi(\theta)d\theta
$$

subject to

\[
\int x(\theta)\varphi(\theta)d\theta = \bar{\theta}
\]

\[
\int a(\theta_-)\varphi(\theta_-)d\theta_- = b
\]

\[
\phi + a(\theta_-) - p(x(\theta) - \bar{\theta}) \geq 0 \quad \forall (\theta, \theta_-)
\]

\[
\theta u'(x(\theta)) \geq p \quad \forall \theta
\]

\[
[\theta u'(x(\theta)) - p] [\phi + a(\theta_-) - p(x(\theta) - \bar{\theta})] = 0 \quad \forall (\theta, \theta_-)
\]

\[
a(\theta_-) + \phi \geq 0 \quad \forall \theta_- \]

\[
\beta + \mathcal{U}_a(a(\theta_-), \theta_-, p) \leq q \quad \forall \theta_- \]

\[
[\mathcal{U}_a(a(\theta_-), \theta_-, p) - \pi] [a(\theta_-) + \phi] = 0 \quad \forall \theta_- \]
Define $\mathcal{H}(b, \lambda) = \max_s H(s, b, \lambda) \equiv U(s) + V(b) + \lambda(s - [\rho - \pi(b)]b - g)$, we have

Lemma (Skiba, 1978, Brock and Dechert, 1983)

*For any b_0 and any $\lambda_0 \in \Lambda(b_0)$, the path in $\mathcal{P}(b_0)$ that starts from initial point (b_0, λ_0) yields a value that is equal to $\mathcal{H}(b_0, \lambda_0)/\rho$.***

Lemma

$\mathcal{H}(b, \lambda)$ is convex in λ (upper envelop of linear functions of λ).
Aiyagari-McGrattan use a shortcut to avoid the computational challenge of studying optimal debt in incomplete market economies.

\[\Rightarrow \text{Restrict debt and taxes to be constant, abstract from transition and study Steady State welfare} \]

Using our notations, amounts to maximize \(U(s) + V(b) \) s.t. \(r(b)b = g - s \)

\[\Rightarrow b^{AMG} = \arg\max_b \left[V(b) - \lambda^{AMG}(\rho - \pi(b))b \right] = \arg\max_b \left[\Omega(b, \lambda^{AMG}) - \lambda^{AMG}\rho b \right] \]

FOC: \(\Omega_b = \lambda^{AMG}\rho > 0 \) while we get \(\Omega_b = 0 \Rightarrow b^{AMG} < b^\star \).
• Aiyagari-McGrattan’s exercise
 • underestimates the optimal long-run level of debt
 • results in a debt level below b_{bliss} even when long-run satiation would be optimal

• Why? Because this exercise treats the entire payments on debt, $r(b)b$, as a cost, while the social planner should view debt issuance as a profit generating exercise (seignorage) to the tune of $\pi(b)b$.

i.i.d. Case

Debt and Taxes in our Model; Debt and Taxes in AMSS; Government Spending.

Persistent Case

Public Debt

Optimal Tax Rate

Debt and Taxes in our Model; Debt and Taxes in AMSS; Government Spending.

Our Model; Lucas-Stokey; Government Spending Shock