Conflicts of Interest and Steering in Residential Brokerage∗

By Panle Jia Barwick, Parag A. Pathak, and Maisy Wong†

This paper documents uniformity in real estate commission rates offered to buyers’ agents using 653,475 residential listings in eastern Massachusetts from 1998-2011. Properties listed with lower commission rates experience less favorable transaction outcomes: they are 5% less likely to sell and take 12% longer to sell. These adverse outcomes reflect decreased willingness of buyers’ agents to intermediate low commission properties (steering), rather than heterogeneous seller preferences or reduced effort of listing agents. Offices with large market shares purchase a disproportionately small fraction of low commission properties. The negative outcomes for low commissions provide empirical support for regulatory concerns over steering.

JEL: D4, L1, L8, R2, R3
Keywords: Agency Problems, Incentives, Steering, Housing Markets

Buyers are routinely advised by salespeople or intermediaries who are compensated by sellers. In many settings, there are concerns that buyers are steered towards products that are not in their interest.1 We study this phenomenon for residential real estate, where intermediaries play an important role. In 2014, there were 4.94 million existing home sales valued in aggregate at $1.26 trillion dollars, and real estate agents assisted in 88% of sales (NAR, 2014a,b).2 Brokerage commissions constitute a major component of housing transactions costs.

Regulators have repeatedly expressed concerns that high and uniform commission rates in the residential brokerage industry point to collusive behavior. The central question is how this structure can be sustained despite low entry barriers and a seemingly competitive marketplace with many firms and agents. One often cited factor is steering. In the conventional compensation arrangement where sellers pay for the commissions of

∗ We thank Steven Berry and Peter Reiss for suggestions in the early stage of this project. We also thank Matthew Backus, Joe Gyourko, Robert Masson, Debi Prasad Mohapatra, Wenlan Qian, Todd Sinai, Nancy Wallace, participants at Cornell, the Department of Justice, NBER Summer Institute, WFA Real Estate Symposium, University of Washington, Wharton, and Yale for helpful comments. We thank the editor and referees for their comments. We are grateful for the excellent research assistance of Ying Chen, Xuequan Peng, and Jeremy Kirk, and to Paul Amos for assistance with GIS.
† We thank Steven Berry and Peter Reiss for suggestions in the early stage of this project. We also thank Matthew Backus, Joe Gyourko, Robert Masson, Debi Prasad Mohapatra, Wenlan Qian, Todd Sinai, Nancy Wallace, participants at Cornell, the Department of Justice, NBER Summer Institute, WFA Real Estate Symposium, University of Washington, Wharton, and Yale for helpful comments. We thank the editor and referees for their comments. We are grateful for the excellent research assistance of Ying Chen, Xuequan Peng, and Jeremy Kirk, and to Paul Amos for assistance with GIS.

2Throughout this paper, an ‘agent’ is an individual who assists buyers or sellers in housing transactions, an ‘office’ or a ‘firm’ is a broker that an agent works for, and an ‘agency’ refers to an agent and her broker.
their listing agents and potential buyers’ agents, the latter have an incentive to prioritize properties that offer higher commissions. According to a 1983 report by the Federal Trade Commission (FTC), “(s)teering ... may make price competition a potentially un-successful competitive strategy, and it is our belief that this is the most important factor explaining the general uniformity of commission rates” (FTC, 1983, p. 12). To date, the current commission structure remains an important subject of policy debate and regulatory concern (GAO, 2005; FTC, 2007).

We investigate the consequences of steering behavior on sales outcomes using a dataset that includes commission rates offered to buyers’ agents for 653,475 listed properties in eastern Massachusetts from 1998 to 2011. In addition, we observe detailed information on property attributes, agents, and brokerage offices that are involved in each transaction. Ninety percent of properties in our sample have a buying commission of 2.0 or 2.5 percent, corroborating the common perception that commission rates are uniform. In addition, even in periods with substantial turnover among real estate brokerage firms and agents, the average commission rate exhibits only modest fluctuation.

After documenting limited commission variation in our sample, we track the performance of offices with different commission rates. We find that offices charging lower commission rates are much less likely to become the top 25% firms in terms of commission revenue or the number of listings, relative to comparable offices that charge higher commissions. Standard competitive forces, whereby a firm competes with rivals using lower prices, do not seem effective under the current commission arrangement.

This finding motivates our core analysis that examines the sales outcomes of properties listed with different buying commission rates. Consistent with real estate agents steering buyers to properties with high commissions, we find that if a property has a buying commission rate less than 2.5 percent, it is 5% less likely to be sold and takes 12% longer to sell, compared to properties that offer buying agents 2.5 percent or more. There is little effect on the sale price. While it is possible that lower commission rates are associated with less desirable property attributes, our estimates are robust to specifications that include a rich set of property level measures that control for time-varying attributes and property fixed effects that control for time-invariant attributes.

We address two additional threats to our empirical analysis. First, the poor performance of low commission properties may reflect reduced listing agent effort, rather than an unwillingness of buyers’ agents to be involved in low commission properties. To investigate this possibility, we report specifications focusing on properties that are more homogenous and relatively easier to sell. Then we control for time-invariant agent attributes using listing agent fixed effects. Third, we construct ‘pairs’ of properties that are listed by the same agent in the same year with listing commission revenues within a $500 bin, but offer different commission rates to the buying agent. Since these properties have the same payoff for the listing agent, they should induce the same level of effort from the listing agent, but may attract different number of buyers given the difference in buying commission rates. In this demanding analysis that exploits variation within an agent, these correspond to a total commission of 4% or 5%, respectively, if commissions are equally split between listing agents and buying agents.
property type, year, and commission bin, we continue to find that listings offering lower commission rates are associated with lower sales probabilities. All three investigations suggest that unobserved listing agent effort is not driving our main results.

The second threat we examine is that the adverse sales outcomes do not simply reflect behavior of buying agents, but the preferences of sellers. Some sellers might be more patient and willing to trade off a low sale probability with a high sale price. If these sellers are more likely to work with firms charging low commissions, then our results would be confounded by seller heterogeneity. We tackle this issue in several steps. First, we control for seller urgency using list price as a proxy. Next, we construct a patience-index, which is the ratio of the observed listing price to the predicted price from a hedonic regression. More patient sellers have higher index values. Sellers are divided into ten or a hundred groups according to this index. We use these group dummies as controls for seller patience. Finally, we merge our data with property deeds that record seller and buyer names and estimate models using seller fixed effects. Our analysis continues to report negative sales outcomes associated with lower commission rates, even accounting for fixed and time-varying seller preference.

After ruling out these alternative explanations, we show that properties that are more susceptible to steering suffer worse outcomes. For example, the sale probability and days on market worsen monotonically when we compare three groups of listings that offer more than 2.5 percent, exactly 2.5 percent, and below 2.5 percent, respectively. This is consistent with the fact that properties offering higher commission rates provide stronger financial incentives. Similarly, we find worse outcomes for low commission listings in neighborhoods with a larger fraction of high commission listings, listings by entrants, and listings by offices that used lower commission rate policies in the past.

To understand why low commission listings have worse performances, we examine the transaction patterns of dominant offices that intermediate a large fraction of purchases. We find that firms with higher market shares buy a smaller fraction of low commission properties. While our core analysis at the property level demonstrates that all firms prefer properties with high commissions, these results illustrate lower propensity of dominant firms to intermediate low commission properties. If we assume that dominant firms’ diminished willingness to purchase low commission properties leads to a reduced number of potential buyers, this finding can explain about forty percent of the adverse sales outcomes reported above.

This paper makes several contributions. First, we construct a large dataset that documents individual buying commissions for about half a million properties and spans an entire housing business cycle. Second, to our best knowledge, we provide the first causal analysis of the consequence of buying agent commissions on economic outcomes. We use data from the traditional brokerage platform (the Multiple Listing Service) that accounts for the majority of real estate transactions and present evidence that supports regulators’ concerns over steering behavior. Third, our paper highlights distortions when incentive schemes serve a dual role of eliciting agent effort and matching buyers and sellers. The negative consequences of low commissions reported here arise from the fact that sellers have only one instrument for two distinct purposes: to incentivize effort and
to attract buyers’ agents.

Our paper contributes to several literatures. The first literature studies implications of the fixed percentage commissions in the real estate brokerage industry (such as, Hsieh and Moretti (2003), Levitt and Syverson (2008a), and Han and Hong (2011). See Han and Strange (2015) for a review). Our paper is most similar to Levitt and Syverson (2008b) that studies listings by flat-fee or limited service agencies and Hendel, Nevo and Ortalo-Magné (2009) that focuses on For-Sale-by-Owner (FSBO) transactions. Our results on steering behavior also resonate with other work documenting that consumers often receive advice from experts that is not in their interest. For example, Mullainathan, Nöth and Schoar (2012), Christoffersen, Evans and Musto (2013), and Guercio and Reuter (2015) study financial advisers and broker recommendations for mutual funds, Jiang, Stanford and Xie (2012) analyzes bond ratings, Schneider (2012), Anagol, Cole and Sarkar (2013), and Shapiro (2015) examine the auto repair, insurance, and health industries, respectively.

Another related literature examines whether incentive schemes have adverse consequences on agent performance. Oyer (1998) investigates the implications of non-linear incentive schemes on fiscal targets. Larkin (2014) uses data from an enterprise software vendor to demonstrate the gaming of the deal closure time by salespeople in response to the vendor’s accelerating commission schedule.

The rest of this paper is organized as follows. Section I discusses the institutional background. Section II describes the data and presents descriptive patterns of the housing market and commissions during our sample period. Section III analyzes property level sales outcomes for low commission properties. Section IV explores why low commission properties suffer worse outcomes. In Section V, we discuss the costs of a low commission rate strategy for home sellers. Section VI concludes. Appendix A explains market definition and how we construct regressors used in our analysis. Additional results are presented in Appendix B and C, with Figure B1 in Appendix B and Tables C1 to C9 in Appendix C.

I. Institutional background

Real estate agents are licensed intermediaries who provide services to buyers and sellers in real estate transactions. The licensing requirements for Massachusetts are modest (see Barwick and Pathak (2015) for more details). For home sellers, agents help to advertise the house, suggest listing prices, conduct open houses, and negotiate with buyers. For home buyers, agents search for houses that match their clients’ preferences, arrange visits to the listings, and negotiate with sellers. Agents can influence buyers’ decisions in several ways, including which properties to show, which property attributes to highlight, and how much effort to exert during the offer and negotiation stages. Therefore, steering, which is known as “sell to the commission” in the industry (Harney, May 20, 2015), can manifest along multiple dimensions.

4Other recent work on real estate agents includes Rutherford, Springer and Yavas (2005), Nadel (2007), Jia and Pathak (2010), and Bernheim and Meer (2012).
A contract between the seller and the listing agency usually includes the list price and the total commission the seller is obligated to pay to the listing agency in the event of a sale. Commissions are often quoted as a certain percentage of the sale price. In the greater Boston area, the norm for this rate is 5%. The National Association of Real Estate Exchanges (the predecessor to the National Association of Realtors (NAR)) institutionalized a commission rate norm when it adopted its first Code of Ethics in 1913. It stated that "(a)n agent should always exact the regular real estate commission prescribed by the board or exchange of which he is a member." In Boston, agents referred to the Schedule of Broker's Commissions published regularly by The Boston Real Estate Exchange. In the 1920s, the typical commission rate for the city of Boston was 2.5 percent (Benson and North, 1922). This rate increased to 5 percent in 1940 and has prevailed ever since as the most common rate for listings in the area (BREE, 1940).

This paper focuses on the common practice of bundling commissions where a seller pays one commission to her listing agency, who then shares the total commission with the agency who finds a buyer. In particular, the commission rate paid to the buying agency is specified in the listing agreement prior to the knowledge of buying agents. When buying agents are informed of properties, they observe the property attributes as well as the buying commission rate for each property (buyers do not observe the commission rate). This practice began in the early twentieth century to minimize the problem of buyers and sellers circumventing the payment of brokerage fees (Davies, 1958; Wachter, 1987).

In many cases, the commission fee is evenly split between the listing and buying agencies. The 1913 Code of Ethics, for example, specifies that the eighth duty of members is to "... always be ready and willing to divide the regular commission equally with any member of the Association who can produce a buyer for any client." More recent data suggest this pattern of equal splits persists until today. To investigate the commission split between listing and buying agencies, we collect a random sample of 70 HUD-I housing settlement statements from 39 brokerage offices in 37 of our sample markets. A HUD-I settlement statement itemizes all financial obligations of the borrower and seller in a real estate transaction, including commissions paid to and rebates from the buying and selling agencies. About 90% of transactions in this random sample have even splits of commissions. For the remaining transactions, half pays more to the listing agency, and half pays more to the buying agency.

The commission to an agency is further split between agents and their brokers. According to a 2007 survey conducted by the NAR, most agents are compensated under a revenue sharing arrangement, with the median agent keeping 60% of her commissions and submitting 40% to her firm (Bishop, Barlett and Lautz, 2007). Similar to salespeople working in other professions (Joseph and Kalwani, 1998), many brokerage firms also include built-in ‘accelerators’ that entails proportionately higher earnings with higher gross commission revenue (NAR, 2009). For example, a major franchise, Keller Williams, has a profit sharing arrangement with “an elaborate seven-step function” that shares more with more productive agents (Inman News, 2014). Such non-linear incentive

5 The fee was 2.5% up to $40,000 (or $460,000 in 2011 dollars) and 1% on the balance, with a minimum of $100.
6 Emphasis added by authors.
schemes that are based on revenue further enhance agents’ preferences towards listings with higher commission rates.

To illustrate how commissions are typically split between agents and brokers, suppose a property is worth $500,000 and the commission rate is 5%. The total commission is $25,000. The listing and buying agency is compensated $12,500 each, which is further split so that the agent gets 60% ($7500) and the broker receives 40% ($5000).

II. Data and descriptive patterns

A. Sample coverage

The data for this study come from the Multiple Listing Service (MLS) network for eastern Massachusetts, a centralized platform containing information on property listings and sales. This area has a number of virtues for our analysis: the market experienced a boom-bust cycle during our sample period, with house prices peaking in mid-2000s and falling thereafter. The market also includes high-priced suburban towns with single-family homes and more densely populated inner urban areas where condominiums make up the bulk of transactions.

We collect information on all listed non-rental residential properties. Our sample contains 653,475 listings between 1998 and 2011, covering 85 towns and cities surrounding Boston. We combine 12 small cities with their closest neighbor. Given the size of Boston, we split it into 15 markets using Zillow’s definition of neighborhoods and a variable in the MLS (area) that identifies neighborhoods within cities. This gives us a total of 87 markets. Appendix A provides more details on the sample construction and market definition.

For each listed property, we observe listing details (the listing date and price, the listing office and agent, the commission rate offered to the buyer’s agent, and so on), a rich set of property characteristics, and transaction details when a sale occurs (the sale price, date, the purchasing office and agent). The number of days on the market is measured by the difference between the listing date and the date the property is removed from the MLS database. We complement the MLS data with a deeds data set from a commercial vendor that records seller and buyer names for all properties that change ownership during 1998 to 2008. This allows us to track home buyers and sellers overtime. We also merge in data from the Home Mortgage Disclosure Act (HMDA) which includes information on the income of buyers.

Our sample comprises three property types: condominiums (35%), single family homes (52%), and multifamily properties (13%). The average listing in our sample has 1840 square feet, 3 bedrooms, 2 bathrooms, and is 62 years old. The median list price is $420,000 and the median sale price is $398,000 (both in 2011 dollars). The properties in our sample are comparable in size, but are older and more expensive than the average home purchased in the United States between 2013 and 2014 (NAR, 2014c), which has 1,870 square feet, 3 bedrooms, 2 bathrooms, is 20 years old with a median sale price of $235,000.
B. Commission fees

There is surprisingly little information on commissions at the property level. The only exceptions that we are aware of include Woodward (2008) and Schnare and Kulick (2009) that are prepared for the Department of Housing and Urban Development and for the NAR, respectively. They investigate variation in buying commissions across real estate markets but do not examine the consequences of buying commissions on sales outcomes.\footnote{Goolsby and Childs (1988) and Zietz and Newsome (2001) report on buying commissions for a few hundred transactions.} We are not aware of any study on U.S. markets that has information on listing commissions.

Critically, we observe the commission rate offered to buyers’ agents for each of our 653,475 listings. The histogram in Figure 1 establishes that a lion’s share of listings offer either a 2.5 percent or a 2 percent commission rate to the buyer’s agent, with the rest scattering between 2 and 3 percent. Specifically, the most commonly observed rates are 2.5 percent (59\% of listings), 2 percent (31\% of listings), 3 percent (5\% of listings), and 2.25 percent (3\% of listings). Throughout our analysis, we define a low commission rate listing as one with a buying commission rate strictly below 2.5 percent and a high commission rate listing one with a rate at or above 2.5 percent. The only exception is Section IV.A, where we separate listings that pay exactly 2.5 percent from listings that pay more than 2.5 percent for some robustness analyses.

Commission rates display some geographical variation (Figure B1). Markets that are characterized by high household income and high house prices tend to have higher commissions. In addition, the average commission rate displays a modest U-shape over time, varying from 2.49 percent in 1998 to a low of 2.27 percent in 2005 before reverting back to 2.39 percent in 2011. This modest variation masks a relatively large change in the fraction of listings at 2.5 percent: about 74\% in 1998, 49\% in 2005 (a period with a large influx of entering agents and offices as documented in Barwick and Pathak (2015)), and 62\% in 2011.

Most offices have commission rate policies or norms. There appears to be systematic differences in commission rates charged by different offices. Among the six dominant chains – Coldwell Banker, Century 21, Remax, Prudential, and GMAC – only Century 21 has a majority of listings at rates below 2.5 percent. Coldwell Banker, the largest chain that accounts for about 20\% of all listings in our sample, rarely lists properties at rates below 2.5 percent. In contrast, 48\% of independent offices and smaller chains have a majority of listings at rates below 2.5 percent. The firm level commission variation could reflect differences in costs, such as overhead, insurance charges, technology and marketing costs. It could also come from brand premium, prestige, and historical norms. Finally, there is evidence that firms set prices based on property types (condominiums usually list at high commission rates), demographics (such as average income of potential customers), and market conditions.

To investigate the sources of variation in commission rates, we present a set of regressions in Table 1 where the dependent variable is 1 if the commission rate for a listing is strictly below 2.5\% (RL25). Column 1 only controls for market conditions using market-
year and month fixed effects. Column 2 only includes property controls and property fixed effects. Column 3 only controls for office fixed effects. Column 4 includes 178,000 office-year-market-property type fixed effects. In addition to the R-squared, we also report how well we can predict RL_{25}. We first predict RL_{25} using the controls in each column. We then define \hat{RL}_{25} as one if the predicted value is at least 0.5 and zero otherwise. The share of listings where RL_{25} equals \hat{RL}_{25} is reported after the R-squared.

Across the columns, we are able to predict the low commission dummy with a high degree of accuracy, consistent with our discussion above that brokerage offices appear to be setting commission rates according to norms, market conditions, demographics, and property types. The high R-squared suggests that these are the primary determinants of commission rates. In particular, we can predict RL_{25} correctly for 91% of the listings using office-year-market-property type fixed effects (the R-squared is 0.72). Moreover, recent statistics show that many sellers do not shop for agents. Seventy percent of home sellers contact only one agent before selecting the one to assist with their home sale (NAR, 2014). Only 3% of sellers report that the commission is the most important factor in choosing a listing agent (NAR, 2013). The seemingly idiosyncratic manner in which sellers approach commission rates is consistent with the view that most sellers are inexperienced (Akerlof and Shiller, 2015).

C. Brokerage firms and agents

There are a total of 8,888 offices and 35,129 agents in our data set. The ability to observe agent and office identifiers as well as their past transactions allows us to construct detailed measures of office and agent quality, including experience, various sales performances (such as the fraction of listings that are sold each year, the average days on market), and property portfolio (the fraction of condominiums or single-family houses). For offices, we also observe the size and quality of their agents. We collect each office’s street address from a variety of data sources and use this information to construct distance between offices.

A large number of offices and agents have only a few listings throughout our sample period. Offices (agents) whose average annual listings are above five (two) are responsible for 95% (92%) of the listings.9

D. Growth paths of low commission firms

One interesting pattern is that entrants (brokerage firms established in 1999 or later) that offer low commissions are much less likely to reach the top tier of the market in terms of revenue than entrants with high commissions. In Figure 2, we classify entrants into a low commission rate group (solid line) and a high commission rate group (dashed line) based on their observed commission rates in the first three years. An entrant belongs

8We also experimented with defining RL_{25} as one when the predicted value is at least 0.3, 0.4, 0.6 and 0.7 instead of 0.5, or using probit instead of OLS. Results are similar.

9The average annual number of listings is the ratio of the total number of listings by an office or agent over the total number of years that office or agent spans our data (the last year minus the first year plus one).
to the low (high) commission rate group if its fraction of RL25 listings in the first three years is in the top (bottom) quartile among all entrants in the same market. We define ‘successful brokerage firms’ as those whose listing revenues is ranked top quartile among all offices in the same market. Figure 2 illustrates the likelihood for low commission entrants and high commission entrants to become successful overtime. Both groups start small with a similar probability of being in the top quartile (less than 3%), but the gap widens over time. By the end of our sample period, entrants with high initial commission rates are 17% more likely be in the top quartile than entrants whose initial commission rate is low. The pattern remains the same if we define the ‘top quartile’ status using the number of listings instead of commission revenues.

One possible explanation is that entrants are not identical. Firms that are able to recruit talented agents or with more connections might charge a high commission rate and do well at the same time. When we adjust for observable differences between high and low commission firms in Table C1, we continue to find that firms with low commissions are less successful. These findings seem puzzling: competitive behavior, where offices charge low prices for comparable services, does not lead to successful outcomes. Instead of growing, these offices are more likely to remain small.

III. Results

Motivated by the patterns discussed above, our core analysis tests whether a low commission rate offered to the buyer’s agent affects the sale performance of a listing. We first show that listings offering high versus low commission rates appear to be comparable, on average. We then present robust evidence that the effect of commission rates on sales outcomes survives a rich set of controls for market conditions, property characteristics, seller, agent and office attributes, as well as an instrumental variable strategy.

A. Effect of commission rate on transaction outcomes

Our main listing level regression is of the following form:

\[
y_{ipklmt} = \beta_1 RL25_{ipklmt} + PROP_{p} \beta_2 + AGT_{k} \beta_3 + OFFICE_{l} \beta_4 + \mu_{mt} + \tau_{month} + \pi_{p} + \epsilon_{ipklmt}
\]

where \(y_{ipklmt}\) is the sale outcome for the \(i\)'th listing of property \(p\), by agent \(k\) and office \(l\) in market \(m\) and year \(t\).

The key regressor is \(RL25\), a dummy that is 1 if a listing offers a commission rate that is strictly below 2.5 percent. One major empirical challenge is that listings offering low commission rates may have less desirable attributes that lead to adverse outcomes (\(\beta_1\) may be downward biased). There are many sources of confounders in our context because houses are differentiated along multiple dimensions and many parties are involved in a housing transaction. We include controls for property characteristics (\(PROP\)), attributes of listing agents (\(AGT\)) and listing offices (\(OFFICE\)), market by year fixed effects (\(\mu_{mt}\)) for time-varying market conditions, month fixed effects (\(\tau_{month}\)), and property fixed effects (\(\pi_{p}\)). To conserve space, we reserve a detailed description of all controls in
Appendix A. We examine three performance measures of a listing: the sale probability, as well as the days on market and the sale price if a listing is sold.

The parameter of interest is β_1. In an ideal setting where buying agents fully internalize interests of their clients, how much agents are compensated should not affect the sale outcome (β_1 should be 0, since buyers do not observe commissions). On the other hand, if buying agents steer their buyers towards high commission properties, a negative β_1 would reflect this conflict of interest. Our identification assumption is that RL_{25} is uncorrelated with the residual of sales outcomes, $\epsilon_{i|\text{regressors}}$, conditioning on our regressors. Section II.B presents evidence that firms set commission rates based on property types, demographics, and market conditions. In the analysis below, we report estimates of β_1 as we gradually add controls.

Table 2 demonstrates that observable differences between listings offering high versus low commission rates are modest. Each row reports an OLS regression at the listing level where the dependent variable is a property characteristic and the regressor is the RL_{25} dummy. These tests only have one regressor but the results are similar if we add market by year fixed effects and month fixed effects to control for market conditions. We choose a list of property characteristics that are commonly included in hedonic regressions in the housing literature. Columns 1 and 2 report the mean and standard deviation of each dependent variable. Columns 3 and 4 report the coefficient on RL_{25} and the p-value. On average, low commission rate listings are 10 square feet larger, have 0.1 acre smaller lotsizes, are 8% less likely to be condominiums, 1% less likely to be single-family homes, one year older, have 0.2 more bedrooms, 0.07 fewer bathrooms, and 0.07 more other types of rooms. The last row indicates that list prices are 11% lower for low commission listings, but this difference reduces to 1% after we condition on our full set of property controls and market by year fixed effects.

Table 3 presents estimates of β_1, the causal effect of offering a low commission rate on the probability of sale (Panel A). The dependent variable is a dummy that is one if the listing is sold within our sample period (the mean is 65%). Standard errors are clustered at the market by year level (columns 1 to 2) and at the property level (columns 3 to 7). Column 1 includes the full sample of 653,475 listings.

Across all specifications, low commission rate listings are significantly less likely to sell than high commission rate listings. We begin with a parsimonious specification in column 1 that controls for market conditions since commission rates tend to be correlated across markets and time, as discussed in Section II. Conditional on market by year and listing month fixed effects, low commission rate listings are 9 percentage points (p.p.) less likely to sell compared to high commission listings.

Next, we show that the lower sales probability survives controls of property attributes. We find a weaker effect in column 2 but the change is modest (- 7 p.p. compared to - 9 p.p. in column 1), after adding 148 property controls. The smaller coefficient suggests

\[10^\text{The MLS data reports whether a listing was sold, cancelled, expired, or withdrawn. We code a listing as sold if its status is sold and zero otherwise. Later, we show that our results are not driven by right-censoring issues for the sold dummy (listings close to the end of the sample period may sell after the sample ends).}

\[11^\text{These 148 property controls, together with market by year and month fixed effects, explain 85\% of the variation in ln(List price) and 95\% if we add property fixed effects.}\]
that some of the effect in column 1 is driven by observed property attributes that make low commission listings harder to sell. However, the change in the β_1 estimate is not large, which is expected given the modest differences in observed property attributes reported in Table 2.

Furthermore, the estimate remains similar when we add more than 133,000 property fixed effects in column 3 to control for time-invariant property characteristics. This restricts the sample to properties with multiple listings during our sample period. Here, the model is identified by comparing outcomes for the same properties that are listed at low versus high commission rates (36% of properties have within property variation in RL_{25}). Notably, the R-squared increases from 10% to 46% but the effect (- 9 p.p.) remains similar.

Property fixed effects do not address time-varying property attributes, such as unobserved upgrades. We therefore construct keywords related to maintenance and renovations from property descriptions and include them as part of the 148 property controls from column 2 onwards. Admittedly, regardless of how many controls are included in the regression, one can never completely eliminate the concern of unobserved attributes. However, as documented in Panel C, the same set of controls explains 97% to 99% of variation in sales prices. Hence, we conclude that unobserved housing attributes are unlikely to be a major concern here.

Lower sales probabilities for low commission listings might be driven by seller preferences. In particular, we are concerned that patient sellers who are more likely to trade off high sales probabilities against low sales probabilities are also more likely to list at low commission rates (to maximize their proceeds net of commission). In column 4, we proxy for seller patience using the idea that patient sellers will list their properties at higher prices, relative to prices predicted from observed attributes. This also builds on the notion that patient sellers tend to have higher reservation prices than sellers eager to sell. We first calculate the ratio of the observed list price to a predicted hedonic price, then construct decile dummies for this ratio. These decile dummies constitute our seller patience controls. The effect of low commission rate becomes less negative (- 6 p.p.) with these controls, but remain the same with other controls for seller patience and seller preferences that we investigate in Section III.B and Table 5.

We further probe the robustness of these results by adding measures of listing office and agent quality (columns 5 and 6). These additional controls alleviate concerns that lower quality offices or agents are more likely to list at low commission rates. For agents, we control for their experiences over time and also whether they are star agents (ranked in the top decile using agents’ average annual listings). For offices, we control for the composition of agents in the office, the performances of listings by the office in each

12 Restricting the sample to repeat listings might introduce a sample selection bias as properties that are listed multiple times might have lower quality. However, this issue appears inconsequential. When we repeat the specification in column 2 for the sample of repeat listings, the effect is -8.5 p.p.

13 We create dummies for common keywords such as “Renovated”, “Remodeled”, “Maintained”, “Needs updating”. These dummies are part of the 148 property controls. See Appendix A for the full list of keywords.

14 The hedonic regression uses our most saturated set of controls in column 6 (but drops RL_{25}) on the full sample of listings. We include property fixed effects and a separate effect for properties with only one listing. Results are similar whether we use listing prices or sale prices for the hedonic regression.
year (such as the fraction of listings that were sold, the average days on market for sold listings) and whether an office is the dominant office in a market in terms of average transaction volume. Higher quality offices and agents have higher sales probabilities through two channels. First, they are better at selecting properties that are easier to sell. Second, they are more knowledgable about local market conditions, have better social skills, and are better at selling.

Our most saturated OLS specification implies that low commission listings are 5 p.p. less likely to sell than observably identical high commission listings (column 6). Interestingly, the estimates are similar with or without office and agent controls. This could be because the first (selection) channel has been controlled for using property attributes and property fixed effects. While office and agent quality naturally affect the probability of sale, most of the variation seems to have been absorbed in our previous specifications. Additionally, our results survive more flexible controls for agent and office quality, including agent fixed effects (Table 4, column 2) and office fixed effects (Table C3, column 4).

While the stable estimates across different OLS specifications above are encouraging, we repeat the analysis exploiting an instrumental variable strategy (column 7). We begin with the observation that some chains appear to have different preferences for high versus low commission rates, based on our examination of the data and discussions with realtors. Among the three largest chains in our data, Coldwell Banker, Century 21, and ReMax, Coldwell Banker has the lowest fraction of low commission listings (9%) and Century 21 has the highest fraction (53%). ReMax is in the middle (36%). There is suggestive evidence that customers of Coldwell Banker are less price-sensitive than those of Century 21. For example, the median income amongst buyers who are represented by Coldwell Banker is $105,000, compared to $80,000 for buyers represented by Century 21.

Our instruments include the distances between the listing office and the nearest Coldwell Banker and Century 21 offices in each year, respectively. If prices are strategic complements, higher prices by rivals lead to higher prices by the listing office. Time series variation in our distance measures is driven by changes in the listing office and entry and exit of Coldwell Banker and Century 21 offices. We regress RL_{25} on the distance from listing office l to the nearest Coldwell Banker office in year t and the distance to the nearest Century 21 office in the same year, while maintaining the same set of controls as in column 6. Our first stage analysis confirms the hypothesis that distance between listing offices and the nearest Coldwell Banker (Century 21) in year t increases (decreases) the likelihood of low commission rates. The coefficients have the expected signs, with t-statistics of 34 (-11) for the distances to the nearest Coldwell Banker (Century 21) offices. The F statistic for the joint test of excluded instruments is 570.

The thought experiment behind the IV strategy is to examine the sale performance

15 Each of these three chains have more than 60,000 listings in our data. The next large chain (Hammond) has fewer than 20,000 listings.

16 We merged our sample with data from HMDA through 2008 and obtained buyer income for 25% of purchases. We observe buyer income for 15,470 purchases intermediated by Coldwell and 10,762 purchases intermediated by Century 21.
for the same property that is listed in year \(t \) by an office close to Coldwell Banker and also listed in year \(t' \) by an office close to Century 21. One concern is that distances to Coldwell Banker offices can have a direct effect on sales outcomes, perhaps because they tend to locate near desirable properties that are easier to sell. Since firm location choices were determined before the listing date, our time-varying market level controls help to mitigate this concern. In addition, we control for property attributes, office quality, and agent experience. Our assumption is that conditional on our set of extensive controls, distances to Coldwell Banker and Century 21 offices only affect sales outcomes through their impact on the pricing strategy of the listing office.

Reassuringly, the IV estimate continues to imply that low commission listings are less likely to sell. The estimate in column 7 is \(-8 \) p.p., slightly more negative but not statistically different from that in column 6. The stability of the estimates across columns 6 and 7 is encouraging as these estimation strategies (OLS versus IV) leverage different sources of variation in the key regressor and are presumably identified from different sets of properties. We find similar results when we repeat the IV estimation but drop listings by Coldwell Banker and Century 21 offices.

Panel B of Table 3 reports the results for the number of days on market for sold properties.\(^{17}\) The dependent variable is \(\ln(\text{Days on market}) \), where the number of days on market is censored above at 365 days. A total of 6,400 listings took a year or longer to sell. The average (median) time on market is 71 (44) days. The specifications across the columns are analogous to those for Panel A. Columns 1 and 2 include all sold listings. Column 3 onwards includes properties with repeat sales and controls for property fixed effects.

We find that low commission rate listings take 12% longer to sell, or 8 days for the average sold listing (column 6). The results are relatively stable between 11% and 14% across specifications. The IV estimate is larger (33%) but the standard errors are also large (12%). The test of whether the IV estimate in column 7 is different from the OLS estimate in column 6 has a p-value of 0.08.

Panel C provides results for our final transaction outcome, the sale price. The average (median) sale price is $479,000 ($398,000) in 2011 dollars. The dependent variable is \(\ln(\text{Sale price}) \). When we only control for market conditions (column 1), low commission listings sell at higher sales prices. Adding property controls and property fixed effects in columns 2 and 3 dampens the effect. If low commission rates are associated with lower property quality, adding property controls should mitigate the downward bias and increase the coefficient from column 1 to columns 2 and 3. The patterns reported here alleviate concerns over unobserved low property quality and echo our earlier discussion that patient sellers prefer high sales prices and low commission rates. Accordingly, controlling for seller patience (column 4 onwards) offsets this upward bias and reduces the effect of low commission on the sale price to be statistically insignificant.

Our results indicate that offering high versus low commission rates has no statistically

\(^{17}\)The number of days it takes to sell and sale price are only observed for sold properties. We use selection correction methods to address the selection bias (Heckman, 1979). Tables C7a and Tables C7b in Appendix C show that our conclusions remain the same when the selection bias is controlled for.
significant impact on the sale price, conditional on property attributes and seller patience. This is consistent with Hendel, Nevo and Ortalo-Magné (2009) and Levitt and Syverson (2008b) that also find no effect on the sale price. While it is possible that sellers can pass through part of the one p.p. difference in commission rate, we do not detect an effect on the sale price.

Next, we present analyses that address two remaining identification threats. We focus on the sale probability. Our results are similar for the other two outcomes (days on market and sale prices).

B. Potential threats

Unobserved effort by listing agents. — The findings above that listings offering low buying commission rates experience worse outcomes are consistent with buying agents steering buyers towards high commission listings. However, the worse outcomes can also reflect diminished effort from listing agents who receive less commission revenues from lower commission rates. To address this issue, we first examine properties where listing agent effort is less likely to be crucial and then proxy for listing agents’ effort directly. If the lack of listing agent effort drives the negative sales outcome, then we should expect a less negative estimate for these specifications.

We continue to find that properties that are relatively homogeneous and easy to sell suffer worse outcomes when they are listed at low commission rates, and the magnitude is remarkably similar to what we report above for the full sample. Sixty percent of properties in our data set was built before the 1960s and the median age is 63 years. Restricting our sample to new properties that are built within five years, listings with low commission rates are 5 p.p. less likely to sell (column 1 of Table 4). In addition, the coefficient is the same for condominiums, which are more homogeneous than other property types (column 3 of Table C2).

Our results also survive listing agent fixed effects that flexibly control for the time-invariant quality of listing agents (column 2 of Table 4). This is a demanding exercise with 284,000 observations and more than 142,000 controls. The effect of low commission rates on the sale probability is -3 p.p. and precisely estimated. The estimate is slightly weaker than our base case, which is likely driven by the attenuation bias exacerbated by the large number of fixed effects.

Our final strategy is to proxy for listing agents’ effort using potential listing commission revenues. Assuming the buying and listing commission rates are the same, the listing commission revenue is the product of the observed commission rate and the list price. An

18While high commission listings attract more search activity, prices may not be bid up, consistent with survey evidence that the median home seller only receives one offer (Coldwell Banker, 2015).
19We do not observe commissions to listing agents. However, the commission rates offered to listing and buying agencies are usually the same (see Section 1)
20We restrict our analysis to agents with average annual listings above 3. This drops 60,600 listings with the benefit of saving roughly 15,000 agent fixed effects. The 142,000 controls include agent fixed effects in addition to the full set of controls in column 6 of Table 3.
agent is likely to exert the same effort in selling two properties that offer the same listing commission, for example, a $500,000 property at 2% vs. a $400,000 property at 2.5%. On the other hand, these two properties offering different buying commission rates might attract different numbers of buying agents and hence have different sales outcomes.\(^{21}\)

To implement this idea, we create bins of listings that deliver similar commission revenues for a listing agent in a given year and property type. For example, one bin could be all condominiums that are listed by Mary Smith in 2000 that generate gross listing commission revenues that differ by at most $500. Given that an agent typically keeps 60% of the gross commission revenues, the actual difference in the net commission revenues across different properties in the same bin is even smaller than the bin size. We restrict each bin to the same property type to limit the extent of property heterogeneity. Column 3 of Table 4 illustrates our result when we restrict the commission difference to a maximum of $500. We have a total of 92,026 bins, accounting for 231,385 listings.\(^{22}\) These bin fixed effects represent agent by property-type by year by bin-size fixed effects. Our coefficient is identified from 15% of the bins with within-bin variation of RL25. We include the same set of controls as those in column 2, with the exceptions of agent fixed effects and agent-year controls (which are absorbed by the bin fixed effects) and property fixed effects (since few properties are listed and sold more than once by the same listing agent within a year).

We find a similar negative impact of low commission rates on the sale probability when comparing listings offering different buying commission rates within the same bin (- 5 p.p.). Columns 4 and 5 repeat the same analysis, with wider bins: the maximum difference in the gross listing commission revenues is $1000 and $1500, respectively. The coefficient of RL25 is stable across different bin sizes.

We do not control for property fixed effects in columns 3 to 5 but unobserved property heterogeneity within a commission bin is unlikely to be an issue (observed property attributes are included in these analyses). First, note that even though we do not include property fixed effects, the goodness of fit is comparable to those with property fixed effects: the R-squared is 0.57 in column 3, versus 0.51 in the main specification (column 6 in Table 3). The bin fixed effects, as well as the remaining set of controls, appear adequate to explain the variation of sale probability at the property level. Second, if our effect is driven by unobserved attributes that make some property harder to sell, then our results should also be sensitive to the set of property controls. Replacing the full set of property controls with a limited set of eight attributes as those reported in Table 2 delivers virtually identical estimates (-0.05 for all three commission bins).

Our calculation of the listing commission revenue relies on the assumption that the commission split between the listing and buying agencies is 50/50. However, the findings are robust to measurement errors in the commission revenue. If the listing and buying commission rates are positively correlated, our measure of the commission revenue will be positively correlated with the true commission revenue received by the listing agent.

\(^{21}\)For example, if a buyer is looking for a three-bedroom single-family that is worth $500,000, her buying agent has an incentive to steer her to comparable properties at around the same price range but offer high commission rates 2.5%.

\(^{22}\)Listings that cannot be grouped with others are excluded from this analysis. All bins have two or more listings.
and should still proxy for listing agent effort. If they are negatively correlated, then properties with low buying commission rates have high listing commission rates and should elicit more effort from the listing agent. The higher effort levels cannot explain the worse outcomes that we find. We conclude that our results are not driven by unobserved listing agent effort.23

\textbf{Seller preferences.} — Table 5 addresses the threat that differential sales outcomes could reflect heterogeneity in seller preferences. For example, the lower sale probabilities for low commission rates could be driven by downward biases from contrasting patient sellers (who choose to offer low commission rates and are less likely to sell) against impatient sellers.

First, we present evidence that our parameter estimates are stable across different proxies for seller types. Patient sellers are less urgent and are more likely to list at a high price and less likely to sell. For example, some sellers with no urgency to sell might “test” the market by listing at very high prices and withdrawing their listing if their reservation prices are not met. Our nine decile dummies in the main specification serve as fixed effects for different seller types. One concern is that the nine decile dummies are not adequate and there may be residual correlation between seller attributes and the low commission dummy. To assess this potential bias, we directly control for $\ln(\text{List price})$ in place of the decile dummies in column 1. The list price proxies for the reservation price of a seller (Genesove and Mayer, 2001) and has been shown to affect bargaining and search behavior (Han and Strange, 2014). Next, we replace the decile dummies with percentile dummies, which constitute a finer set of patience controls. Reassuringly, we find similar results when we control for list price directly (-6 p.p.) and when we control for the percentile dummies (-5 p.p.).

Third, we control for both time-varying seller attributes as well as seller fixed effects (columns 3 and 4). We obtain seller names by merging our MLS data with county records of housing transactions that include price, transaction date, address, and seller and buyer names. We restrict the analysis to 31,432 listings by sellers with multiple listings. There are 14,223 seller name fixed effects, and 29\% of listings have within seller variation in \textit{RL}.25 Standard errors are clustered at the seller level.

The specification with seller fixed effects and seller patience controls delivers a similar effect on the sale probability (-7 p.p.) compared to the -5 p.p. effect we find above. This model is identified by comparing listings by the same seller offering different commission rates, conditional on time-varying seller patience and other regressors in column 6 of Table 3 (except property fixed effects). Consistent with the discussion above that unobserved property attributes are unlikely to drive our results, repeating columns 3 and 4 with a limited set of property controls delivers similar results (the coefficient is -7 p.p. and -8 p.p., respectively). Finally, since some common names might represent different

23Kickbacks are not reported in our data. If agents intermediating high commission properties are more likely to give side payments, the difference in commission revenues between high and low commission listings will be lower than reported here, which works against us and makes the negative consequences we find even more striking.
sellers, we drop seller names that occur more than five times in column 4 and obtain a similar estimate.

Overall, our analyses provide compelling evidence that listings offering low commission rates experience adverse sales outcomes compared to high commission listings. We find that low commission rate listings are 5 p.p. less likely to sell, a sizable effect considering the sample average of 56% for repeat listings (and 65% for the full sample). In addition, conditional on a sale, low commission listings take 12% (8 days) longer to sell, but sell at comparable prices to those with high commission rates.

Compared to the existing literature, our analysis has several advantages. First, our sample is large with ample variation. Since the typical property only transacts every four years in our setting, a long panel has the benefit of having more properties and sellers with repeated listings and sales. We have 133,900 properties with 344,800 repeat listings and 62,800 properties with 137,100 repeat sales. Second, our controls have a high explanatory power: our preferred specification (column 6 in Table 3) has an R-squared of 51% for the probability of sale, 57% for days on market, and 99% for the sale price. Moreover, we control for all parties involved in listing a property: the listing office, listing agent, and seller. Third, about 35% of our listings offer low commission rates. Having a large sample of low commission listings also allows us to perform richer analyses of heterogeneous effects.

These patterns are remarkably consistent across a battery of robustness checks that are presented in Appendix C. We show that the estimates are stable across different samples (Table C2), different types of controls (Table C3), and are robust to a two-way clustering of standard errors (Table C4). We also address concerns of right censoring for the sold dummy (Table C5) and estimate the effect on probability of sale using probit instead of OLS (Table C6). We provide selection corrections for the effects on days on market (Table C7a) and the sales prices (Table C7b). Finally, we repeat the seller fixed effect regressions for an alternative sample with higher quality matches for seller names (Table C8).

IV. Why do low commission listings experience adverse outcomes?

So far, our results demonstrate that worse outcomes for listings offering low commission rates are not driven by common property, seller, listing office, and listing agent founders. Rather, they point to buying agents best responding to financial incentives in commission rates. Next, we provide further support to this argument by examining why listings offering low commission rates experience adverse outcomes. We first document heterogeneous effects on the probability of sale. Then, we provide direct evidence that dominant offices have a lower propensity to purchase low commission rate listings.
A. Outcomes for properties more susceptible to steering

We first present a more disaggregated analysis with three groups of listings offering commission rates that are below 2.5 percent, exactly 2.5 percent, and above 2.5 percent, respectively, in column 1 of Table 6. Consistent with steering incentives being stronger for higher commission rates, we find a monotonic pattern of sale outcomes when commission rates vary from high to low. Compared with listings that offer more than 2.5 percent (the bulk of them being 3 percent), listings at exactly 2.5 percent are 3 p.p. less likely to sell while listings at less than 2.5 percent (the bulk of them being 2 percent) are 8 p.p. less likely to sell. These differences are statistically significant from each other and from the omitted group. Results for days on market are similar: compared with the default group, listings offering 2.5 percent take 9% longer to sell while listings below 2.5 percent take 20% longer to sell. Both these estimates are statistically different from each other.

We next demonstrate that low commission listings offered by independent entrants (new firms that do not belong to top six chains) suffer worse outcomes. Entrants have little market power, possess few contacts, and are more dependent on cooperation from other agents and brokerage offices to sell properties. Hence, they are more vulnerable to steering. In column 2, we extend our main specification with two additional regressors: a dummy if the listing office is an entrant not affiliated with the six dominant chains and its interaction with the low commission dummy. The coefficient on the interaction term suggests that low commission listings by independent entrants are an extra 2 p.p. less likely to sell, in addition to the -5 p.p. direct effect of RL25 for all low commission listings. This effect is unlikely to be driven by the worse quality of entrants because the direct effect of entrants is small and insignificant (-0.003, s.e. 0.01) and we maintain the same set of office controls as in Table 3. Additionally, we find even more negative consequences for low commission listings by these entrants during their first three years (-3 p.p. for the interaction term), when they have even less market presence than in later years.

We next examine low commission listings in neighborhoods with a large fraction of high commission listings. All else equal, it is conceivable that buying agents are less likely to visit low commission listings that are surrounded by similar properties with high commission rates. The key variable of interest is the interaction between the low commission rate dummy for listing \(i\) and the fraction of high commission listings in the same census block group and same listing year. We demean this fraction so that the coefficient for the low commission dummy reflects the effect for the average census block group-year. We include block group-year fixed effects but exclude property fixed effects.

\[\beta_1 RL_{25} \times frcRH_{25} \]

\[\rho_1 RL_{25} \times frcRH_{25} \]

\[frcRH_{25} \]

We define entrants as offices that first appear in our dataset in 1999 or later (the results are similar if we use 2000 or 2001).

For example, an agent asks: “Why would I sell my buyer a home for half the commission when I can take them elsewhere?” (Svaldi, November 3, 2013).

We augment equation (1) by keeping the direct effect of the low commission dummy for listing \(i\) in block group \(g\) in year \(t\), \(\beta_i RL_{25g} \), and adding an heterogeneous effect, \(\rho_i RL_{25g} \times frcRH_{25g} \). Variable \(frcRH_{25g} \) is the fraction of
Our results confirm that low commission listings are harder to sell if they are surrounded by more high commission listings in the same year. The -0.03 coefficient of the interaction term in column 3 of Table 6 implies that a one standard deviation increase in the fraction of high commission listings nearby translates to a 1 p.p. decrease in the probability of sale (relative to the direct effect of - 5 p.p.). The estimate is stable whether we use a sparse or a full set of property controls, consistent with our discussion above that unobserved property attributes are unlikely to be a significant source of confounders. Column 4 shows that this effect is larger for condominiums, which are more homogeneous within a census block group. Thus, it is easier to steer buyers toward condominiums that pay higher commissions.

Our final heterogeneous analysis is motivated by accounts of traditional agents’ retaliatory behavior against those who deviate from the norm and charge low commissions (column 5 of Table 6). We implement this idea by investigating the dynamic consequences on offices that adopt a low commission pricing strategy in the past. In column 5, we add a proxy for an office’s past pricing strategy, which is a three-year cumulative fraction of low commission listings up to year \(t - 1 \) for each office. It measures an office’s propensity to list below 2.5 percent in the past three years. The -0.04 coefficient implies that a one standard deviation increase in the cumulative fraction in the past leads to a 2 p.p. decline in the sale likelihood today. The direct effect of \(RL_{25} \) remains similar, which is - 4 p.p. compared to - 5 p.p. in Table 3. This analysis includes small offices with few listings, whose past commission policy might be noisily measured. When we restrict the sample to listings by offices whose average annual listings is at least five, the result is almost identical.

Overall, these patterns consistently point towards worse outcomes for low commission listings that are more vulnerable to steering. Moreover, the findings in the last two columns echo our results above that low commission offices and entrants are less likely to grow (Figure 2 and Table C1).

B. Dominant offices less likely to purchase low commission listings

Having documented negative consequences of low commission rate policies, we now describe the purchasing patterns of different brokerage offices. As shown above, all offices and agents dislike low commission rate listings. In the analysis below, we ask whether dominant offices with greater market power are even less likely to purchase listings in block group \(g \) and year \(t \) that have high commission rates, properly demeaned. The direct effect of \(f_{RCRH25,g} \) is absorbed by the block group-year fixed effect. We drop all block group-years that have fewer than 5 listings to avoid imprecision in \(f_{RCRH25,g} \) due to small samples.

In a recent survey of agents, 50% of the 503 respondents agreed that some brokers do not compete on commissions because they fear retaliation (Inman News, 2014). Several lawsuits also allege different methods of retaliation against discount brokers charging low commissions, including “group boycotts” and “blacklisting” discount brokers, offering to pay discount brokers “punitive splits” instead of the standard 50/50 split (see Hawker (2006) for a discussion of court cases).

This test is similar in spirit to Christie and Schultz (1994) which provides evidence that market makers of active NASDAQ stocks appear to be colluding by avoiding odd-eighth price quotes. However, we lack the high frequency transactions they have since properties only transact every four years in our data.

We use the word ‘purchase’ to refer to properties that offices intermediate on behalf of their buyers.
listings offering low commission rates. We estimate the following equation:

\[(2) \quad \ln(FrcBL_{25m}^{l}) = \delta \ln(Share_{lm,t-1}) + X_{lm,t-1}\beta + \mu_{mt} + \varepsilon_{lmt},\]

where the dependent variable is log of the fraction of office l’s purchases that have low commission rates in market m and year t. The key regressor \(\ln(Share_{lm,t-1})\) is log of office l’s market share in market m and year \(t-1\), which we use as a proxy for market dominance. An office’s market share is its commission revenue from all of its sold listings in a market and year divided by the aggregate listing commission revenue in the same market and year. To mitigate potential confounding factors, we exclude buying commission revenues in the calculation of market share, since an office’s buying commissions in the previous year are likely correlated with the dependent variable. Office attributes \(X_{lm,t-1}\) are lagged one year and include office performance, agent composition, and age of the firm. All regressions control for market by year fixed effects \(\mu_{mt}\). To reduce measurement errors, we focus on active offices with an average annual number of listings above 5. As discussed in Section II.C, these offices account for 95% of listings. Standard errors are clustered at the office level.

Dominant offices are less likely to purchase low commission rate listings (Table 7). The first specification with market by year fixed effects (column 1) suggests that doubling an office’s market share reduces the fraction of low commission listings it purchases by 14%. This is almost a third of the sample average of 44%, a sizeable number considering the fact that the average market share for offices affiliated with top six dominant chains is 2.8 times larger than that for non top-chain offices.

In column 2, we show that the effect remains the same after adding controls for office quality. For example, it is possible that buyers of high commission listings prefer to work with high quality offices or high quality agents. We add office controls (lagged a year) to proxy for the past performance and agent composition of an office, including the fraction of listings that are sold, average days on market for sold listings, the fraction of agents who are the top ten percent highest performing agents, an entrant dummy and an interaction with the age of the firm, and a dummy for offices located in our cities.

Next, we address concerns that \(\delta\) may be biased downwards if dominant offices tend to represent wealthy buyers who prefer properties listed at high commission rates. First, note that the observable differences in property attributes between listings offering high versus low commission rates are modest, as documented in Table 2. Nonetheless, we construct several variables to capture differences in offices’ portfolios, including the average square footage, average number of bedrooms and bathrooms, average listing price, etc. (column 3). These averages are calculated using office l’s listings in market m and year \(t-1\).\(^{31}\) The coefficient remains the same at -0.14.

Moreover, some chains may prefer high commission listings independent of their size. In column 4, we add 171 chain fixed effects to capture brand preferences (chains are constructed as described in Appendix A). Given that more than 90% of listings by Cold-

\(^{31}\)We exclude office l’s purchases in calculating these attributes to mitigate endogeneity concerns, although including them leads to almost identical estimates.
well Banker and Hammond have high commission rates, it is not surprising that their coefficients are sizeable (-0.34 and -0.57, respectively), indicating a relatively strong preference for high commission listings. After controlling for fixed brand preferences, the estimate for \(\delta \) is slightly weaker at -0.10 but still significant.

In the last column, we address concerns that the negative effect might be driven by office level policies that are correlated with market shares and purchase patterns. After adding office fixed effects, the magnitude is smaller (-0.04) but still significant.

Market shares vary widely in our sample. The average market share for offices that are not affiliated with the top six chains is 6%, while that for offices affiliated with the top six chains is 17%. At our most conservative estimate of an elasticity of 4% (column 5), a threefold increase in an office’s market share would translate to a noticeable reduction in its fraction of purchases that go to low commission rate properties.

How does a dominant office’s diminished propensity to purchase low commission properties relate to our main findings above? Our back-of-the-envelope calculation (details in Appendix D) suggests that the reduced purchase propensity from the six dominant chains could lead to a 2 p.p. reduction in the sale probability. This accounts for 40% of the negative consequence of low commission policies. While these calculations suffer from various caveats, they suggest a potentially important channel through which dominant offices could sustain the current commission structure.

Table 8 presents evidence that our findings are robust across different samples, different market share metrics, and different dependent variables. Columns 1 and 2 correspond to the last two columns in Table 7. The first three rows repeat the analysis using all offices (row 1), active offices with average annual listings equal to or above seven (row 2), as well as offices outside Boston (row 3). Our results are robust across these samples.

Next, we consider different market share metrics to proxy for market dominance. One concern with using commission revenues as the key regressor is that commissions could be affected by the dependent variable. In row 4, we show that the results are similar if we proxy for market shares using the number of listings instead of commission revenues. Another concern is that annual listing commission revenues can be volatile for some offices that only have a few listings a year. Our third measure of market dominance uses a three-year average listing commission revenue, again lagged one year. Across these different specifications, we continue to find that dominant offices are less likely to buy low commission properties, all else equal.

Finally, we explore other related behavior that may contribute to the negative effect. Sometimes listings are purchased by buying agents in the same office as the listing agents or are intermediated by the same agent (dual-agency). We refer to both cases as in-house transactions (Han and Hong, 2016). If in-house transactions are more common in large offices with a big inventory of properties and more selections, and if large offices tend to charge higher commission rates, then the coefficient \(\delta \) will be biased downwards by this network effect. We repeat our analysis excluding in-house transactions and find similar effects. Additionally, the estimates are identical if we further drop transactions between two brokerage offices within the same chain. Overall, our finding that dominant offices are less likely to purchase low commission listings is robust across a variety of robustness
specifications.

V. Costs of low commissions

So far, our discussion has focused on the magnitude of the negative impacts of low commissions. Is it in a seller’s interest to use a low commission rate?

A third of the listings in our sample do not sell. When this occurs, some sellers relist their property and attempt to sell again. To examine the length of the entire selling process, we group different listing attempts for the same property together and define cumulative days on market as the difference between the first listing date and the sold date (details in Appendix A). This grouping affects 11% of the 137,100 sales in our estimation sample, or 14,700 properties that are sold in the second or third listing attempt.32 Since risk averse sellers care about the magnitude at the tails in addition to the mean, we report the effect of the commission rate on the entire distribution of cumulative days on market. We focus on the commission rate when a property is listed for sale the first time because only 3,900 properties change commission rates during the course of a sale.

As expected, properties that are initially listed at a low commission rate are more likely to stay on the market for an extended period of time until they sell. Figure 3 plots the percent of sold listings whose cumulative days on market are 0 to 30 days, ..., 120 to 150 days, and 180 days or more. The impact of commission rates is most pronounced at the lower and upper tails of the distribution. At the lower tail, 38% of high commission listings sell within 30 days compared to 32% of low commission listings. At the upper tail, 14% of high commission listings take 180 days or longer to sell compared to 17% of low commission listings. This difference is driven by the fact that not selling a property the first time is costly, since missing the peak-season and selling during the off-peak season (winter time and during the school year) could lead to a much longer time on the market.

What is the cost of a typical home staying on the market for six months? At the 5.3% annual user cost of owning a property (Himmelberg, Mayer and Sinai, 2005), the six-month carrying cost for a $479,000 property would amount to $12,700, or 20% of the median annual household income of Massachusetts residents in 2010. This is likely a conservative estimate, as it ignores potential cash constraints sellers face or psychological costs a lengthy selling process imposes on sellers.

Figure 3 does not control for property attributes. Using the same set of controls as in column 6 of Table 3, low commission properties are 4.8 p.p. less likely to have a quick sale (cumulative days on market less than 30 days), and are 5 p.p. more likely to stay on the market for six months or longer. On average, properties that list at low commission rates take 20 days longer to sell from their initial listing (Table C9).

Putting everything together, the negative consequences of paying a low commission rate include a 5 p.p. difference in the sale probability and, conditional on selling, a reduced likelihood of a quick sale, an increased probability of a lengthy selling process,

32For our core analysis in Table 3, a property that is taken off the MLS platform but listed again after 90 days is treated as a separate listing, following the rules of MLS. In this analysis, we group the same property’s different listings within a year as one listing. For example, this will include properties listed in the summer and re-listed in the following spring.
and 20 more cumulative days on market. The trade-off is a saving of $4790 in commission fees (which is 1% of the average sale price of $479,000). If sellers are cash constrained and prefer a faster sale (because they rely on the sales proceeds from their existing home for the down-payment of their next house, or if they are risk averse, our calculations could help to rationalize their reluctance to list at low commission rates.

Finally, our finding is in line with the inter-temporal substitution patterns of home sellers in the literature. Genesove and Mayer (1997) report that sellers whose loan-to-value ratios are below 100% forgo a 4% gain in sale price in exchange for selling 70 days earlier, which is equivalent to trading off 1% in sale price against 18 days. Similarly, Hendel, Nevo and Ortalo-Magné (2009) find that FSBO sellers save $1625 (about 0.8% of the sale price) and their properties take 16 days longer to sell.

VI. Conclusion

This paper demonstrates that listings offering buying agents low commission rates suffer worse sales outcomes, consistent with concerns that real estate agents face incentives to steer their buyers toward properties paying high commission rates. While on average all offices and agents prefer listings with higher commissions, firms with higher market shares buy a disproportionately smaller fraction of low commission listings. These negative consequences on sales outcome discourage sellers from listing their properties at low commissions. All of these considerations are likely to counteract competitive pricing pressures that are brought by technological innovation and entry of new firms and keep commission rates high. Our findings provide empirical support for regulators’ long-standing concern of steering behavior contributing to the lack of variation in commission rates (GAO, 2005; FTC, 1983, 2007).

Compared to other industrialized countries, commission fees in the United States are high. For example, commission rates average less than 2% in the United Kingdom and the Netherlands, compared to the typical rates of 5% and 6% in the United States (Delcoure and Miller, 2002). Given the sheer size of aggregate housing transaction values, even modest reductions in commission fees could lead to a non-trivial reduction in transactions costs. Moreover, lower commission fees will likely limit excessive entry into the residential brokerage industry, translating into additional efficiency gains (Hsieh and Moretti, 2003; Barwick and Pathak, 2015). Finally, reduced agency conflicts could also give rise to better matches of buyers to properties.

Our findings are relevant for on-going debates regarding state laws that ban rebates or impose minimum service requirements, and suggest that such regulations could foster anti-competitive forces in the real estate brokerage industry. New developments in the spirit of encouraging competition include firms that provide rebates to buyers, as well as recent efforts to lift rebate bans and relax the minimum service requirements in several states (DOJ, 2015). Important directions for future work include incorporating commission rates paid to both listing and buying agents and assessing the welfare implications of alternative commission structures.
REFERENCES

DOJ

FTC

GAO

NAR

NAR

NAR

NAR

Figures

Figure 1. Distribution of commission rates

Notes: Distribution of commission rates offered to buyers’ agents. The figure reports data for 99.3 percent of listings. The rest are scattered between 2 and 5 percent.
Notes: Entrants are firms that first appear in our sample in 1999 or later. We classify entrants into the high commission rate group and low commission rate group using their commission rates in the first three years. Entrant \(i \) is in the high commission rate group (or low commission rate group) if its fraction of high commission listings in the first three years is in the top 25% (bottom 25%) among all entrants in the same market. An entrant’s top-revenue-quartile status is defined using its listing commission revenue in a market and year against all offices in the same market-year.
Figure 3. Cumulative days on market for sold listings (initially high versus initially low commission rate)

Notes: The dark (light) grey bars correspond to properties that initially list at low (high) commission rates. Each bar represents the percent of listings sold within a 30-day bin, except the last pair of bars to the right that indicates the percent of listings sold in 180 days or more.
Tables

Table 1— Variation in low commission listings

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.32</td>
<td>0.63</td>
<td>0.44</td>
<td>0.72</td>
</tr>
<tr>
<td>Fraction of correct predictions</td>
<td>0.78</td>
<td>0.87</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td>N</td>
<td>653475</td>
<td>344832</td>
<td>653475</td>
<td>653475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market-year, month FE</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Property controls, property FE</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Office FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Office-year-market-property type FE</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Notes: This table reports results from listing-level OLS regressions where the dependent variable is 1 if the commission rate is strictly below 2.5%. Column 1 controls for 1228 market-year fixed effects and month fixed effects. Column 2 controls for 148 property controls and 133,902 property fixed effects. Column 3 controls for 7055 listing office fixed effects. Column 4 includes 178,291 office-year-market-property type fixed effects. The sample includes all listings, except for column 2 which has property fixed effects and is restricted to the sample of repeat listings only. To calculate the fraction of correct predictions, we first predict the dependent variable after estimating the OLS regression in each column. We then define \hat{R}_{25} to be one if the predicted value is at least 0.5 and zero otherwise. Finally, we calculate the fraction of listings where \hat{R}_{25} is equal to the observed low commission dummy.
Table 2: Observable differences between high and low commission listings

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Mean (1)</th>
<th>SD (2)</th>
<th>Coefficient (3)</th>
<th>p-value (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square footage (’000s)</td>
<td>1.84</td>
<td>1.14</td>
<td>0.01***</td>
<td>[0.004]</td>
</tr>
<tr>
<td>Lot size (acres)</td>
<td>0.33</td>
<td>0.98</td>
<td>-0.10***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>(property is condominium)</td>
<td>0.35</td>
<td>0.48</td>
<td>-0.08***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>(property is single family)</td>
<td>0.52</td>
<td>0.50</td>
<td>-0.01***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Age of the property (years)</td>
<td>61.73</td>
<td>41.59</td>
<td>1.10***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of bedrooms</td>
<td>3.07</td>
<td>1.52</td>
<td>0.21***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of bathrooms</td>
<td>1.86</td>
<td>0.95</td>
<td>-0.07***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of other types of rooms</td>
<td>3.67</td>
<td>1.81</td>
<td>0.07***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Ln(List price)</td>
<td>5.20</td>
<td>3.88</td>
<td>-0.11***</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Number of listings</td>
<td>653,475</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01

Notes: This table reports results from OLS regressions testing whether high versus low commission rate listings have similar attributes. Each row reports results from a regression where the dependent variable is a property attribute and the regressor is a dummy for the commission rate below 2.5%. Columns 1 to 2 report the mean and standard deviation, respectively. Column 3 reports the coefficient on the low commission rate dummy. Column 4 reports the p-value. The full sample includes 653,475 listings.
Table 3: Effect of a low commission rate

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Probability of sale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low commission listings</td>
<td>-0.09***</td>
<td>-0.07***</td>
<td>-0.09***</td>
<td>-0.06***</td>
<td>-0.05***</td>
<td>-0.05***</td>
<td>-0.08**</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>N</td>
<td>653475</td>
<td>653475</td>
<td>344832</td>
<td>344832</td>
<td>344832</td>
<td>344832</td>
<td>344832</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.08</td>
<td>0.10</td>
<td>0.46</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Panel B: Ln(Days on market)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low commission listings</td>
<td>0.13***</td>
<td>0.11***</td>
<td>0.14***</td>
<td>0.12***</td>
<td>0.12***</td>
<td>0.12***</td>
<td>0.33***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>N</td>
<td>419116</td>
<td>419116</td>
<td>136624</td>
<td>136624</td>
<td>136624</td>
<td>136624</td>
<td>136624</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.11</td>
<td>0.14</td>
<td>0.56</td>
<td>0.56</td>
<td>0.57</td>
<td>0.57</td>
<td>0.56</td>
</tr>
<tr>
<td>Panel C: Ln(Sale price)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low commission listings</td>
<td>0.06***</td>
<td>0.01***</td>
<td>0.03***</td>
<td>-0.0006</td>
<td>0.0003</td>
<td>0.0003</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>N</td>
<td>421329</td>
<td>421329</td>
<td>137085</td>
<td>137085</td>
<td>137085</td>
<td>137085</td>
<td>137085</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.45</td>
<td>0.86</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Estimation | OLS | OLS | OLS | OLS | OLS | OLS | IV |
Market-year FE, month FE | Y | Y | Y | Y | Y | Y | Y |
Property controls | N | N | Y | N | N | N | N |
Property FE | N | N | Y | Y | Y | Y | Y |
Seller patience | N | N | N | Y | Y | Y | Y |
Office controls | N | N | N | N | Y | Y | Y |
Agent controls | N | N | N | N | N | N | Y |

Notes: Columns 1 to 6 of Panel A report OLS regressions at the listing level for the effect of low commission rate (a dummy that is 1 for commission rate below 2.5%) on the probability of sale (a dummy that is 1 if the listing is sold). The full estimation sample for columns 1 and 2 includes 653,475 listings. Column 1 has 1228 market by year and month fixed effects. Column 2 adds 148 property controls (see Appendix A for a full list of controls). Column 3 adds 133,902 property fixed effects and restricts the sample to properties with repeat listings only. For seller patience (column 4), we first estimate a hedonic regression of \(\ln(\text{List price}) \) on the full set of controls in column 6 (except the low commission rate dummy). We index sellers by the ratio of their observed list price to the predicted list price and create dummies for each decile of this ratio. These dummies constitute our seller patience controls. Columns 5 and 6 add controls for office and agent quality. Column 7 includes the same set of controls as in column 6, but uses an instrumental variable strategy. The instruments are the distances between the listing office and the nearest Century 21 and Coldwell Banker office in that year. Standard errors are clustered by market by year (columns 1-2) and by property (columns 3 to 7). Panel B repeats the analysis for log of days on market and restricts the estimation sample to sold properties (columns 1-2) and properties with repeat sales (columns 3 to 7, where we include 62,841 property fixed effects). We lose 2,207 sales with 0 days on market and 6 with negative days on market after taking logs. Panel C estimates the effect on sales prices.
Table 4—: Robustness check, controlling for listing agent effort

<table>
<thead>
<tr>
<th>Specification</th>
<th>Probability of sale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>New Properties</td>
</tr>
<tr>
<td>Low commission listings</td>
<td>-0.05*** (0.02)</td>
</tr>
<tr>
<td>N</td>
<td>30036</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Market-year FE, month FE
Property, office, seller controls | Y | Y | Y | Y | Y | Y
Property FE | Y | Y | N | N | N | N
Agent controls | Y | Y | N | N | N | N
Agent FE | N | Y | N | N | N | N
Bin FE | N | N | Y | Y | Y | Y

* p<0.1, ** p<0.05, *** p<0.01
Notes: OLS regressions at the listing level for the effect of low commission rates on the probability of sale, with different specifications to control for listing agent effort. Column 1 repeats the most saturated OLS specification in Panel A of Table 3 (column 6), but restricts the sample to new properties (built within 5 years). Column 2 repeats the same specification, but adds 8829 listing agent fixed effects and drops 60,583 listings by agents with average annual number of listings below 3. Column 3 groups listings that have the same listing agent, year, and property type, and offer commission fees within a $500 bin. Commission fee is calculated as the commission rate multiplied by the list price. This column excludes bins that have only 1 listing. Columns 4 and 5 are similar to column 3, but use $1000 and $1500 bins, respectively. We include 92026, 109414, 115550 bin fixed effects in columns 3 to 5, respectively (agent fixed effects and agent-year controls are absorbed by these bin fixed effects). Standard errors are clustered by property (columns 1-2) and bins (column 3 onwards).
Table 5—: Robustness check, controlling for seller preferences

<table>
<thead>
<tr>
<th>Specification</th>
<th>Probability of sale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>Low commission listings</td>
<td>-0.06*</td>
</tr>
<tr>
<td></td>
<td>-0.05*</td>
</tr>
<tr>
<td></td>
<td>-0.07*</td>
</tr>
<tr>
<td></td>
<td>-0.07*</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
</tr>
<tr>
<td>N</td>
<td>344832</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Market-year FE, month FE

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property, agent, office controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Property FE</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Ln(List price)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Seller patience</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Seller FE</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01

Notes: OLS regressions at the listing level for the effect of low commission rate on the probability of sale, with different specifications to control for seller preferences. Columns 1 and 2 are similar to the most saturated OLS specification in Panel A of Table 3 (column 6). Column 1 controls for $\ln(List\ price)$ instead of seller patience deciles. Column 2 controls for seller patience using percentile dummies. Column 3 includes 14,223 seller fixed effects (defined using seller names). This specification restricts the sample to sellers with multiple listings and seller names that could be identified using the county records. Column 4 is similar to column 3, but drops common names (names that occur more than 5 times in our data).
Table 6—: Effect of a low commission rate on properties more susceptible to steering

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Probability of sale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Listings offering less than 2.5 percent (RL25)</td>
<td>-0.08***</td>
</tr>
<tr>
<td>Lists</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Listings offering 2.5 percent</td>
<td>-0.03***</td>
</tr>
<tr>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>RL25 × Independent entrant</td>
<td></td>
</tr>
<tr>
<td>Independent entrant</td>
<td></td>
</tr>
<tr>
<td>RL25 × (Fraction of high comm. listings in a block group-year)</td>
<td></td>
</tr>
<tr>
<td>Lagged three-year cumulative fraction of low comm. listings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N 344832 344832 612210 213372 313421
R-squared 0.51 0.51 0.20 0.27 0.54

Month FE, property, seller, agent, and office controls Y Y Y Y Y
Market-year FE Y Y N N Y
Property FE Y Y N N Y
Block group-year FE N N Y Y N

* p<0.1, ** p<0.05, *** p<0.01

Notes: Similar to Panel A of Table 3, but examines heterogeneous effects on the probability of sale. Column 1 adds a dummy for listings offering exactly 2.5%, in addition to keeping the dummy for listings offering below 2.5% (the omitted group includes listings offering more than 2.5%). Column 2 adds a regressor that is 1 for independent entrants (offices that entered in 1999 or later and are not affiliated with the six dominant chains) and its interaction with RL25. Column 3 includes an interaction between the low commission rate dummy RL25 and the fraction of listings in the same year and the same census block group that have high commission rates (de-meaned by the average of this fraction, so that the main estimate of RL25 reflects the effect of low commission rates on the sale probability for the average block group-year). This specification includes 29,687 census block group by year fixed effects and drops property fixed effects and market by year fixed effects. We drop block group-years with fewer than 5 listings. Column 4 restricts the sample to condominiums only. Column 5 repeats column 6 of Panel A in Table 3, but adds the three-year cumulative fraction of low commission rate listings for the listing office, up to time t−1. We lose 31,411 listings when we include this lagged variable.
Table 7—: Propensity of dominant offices to purchase low commission listings

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Ln(Fraction of purchases with low commission rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>ln(Shares), lagged 1 year</td>
<td>-0.14***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
</tr>
<tr>
<td>N</td>
<td>10352</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.65</td>
</tr>
<tr>
<td>Market-year FE</td>
<td>Y</td>
</tr>
<tr>
<td>Office controls</td>
<td>N</td>
</tr>
<tr>
<td>Portfolio controls</td>
<td>N</td>
</tr>
<tr>
<td>Chain FE</td>
<td>N</td>
</tr>
<tr>
<td>Office FE</td>
<td>N</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01
Notes: This table reports OLS regressions at the office-year level for the relationship between an office’s lagged market share and the fraction of its purchases that are low commission rate listings. The dependent variable is ln(Fraction of purchases in an office-year that have low commission rates). The main regressor is the log of the one-year lagged market share of an office, defined using its listing commission revenues in a year. Each office is assigned to one primary market in each year. The sample includes all offices with five or more average annual number of listings. Office controls (lagged a year) include the fraction of listings that are sold, average days on market for sold listings, fraction of agents who are the top ten percent highest performing agents, an entrant dummy (1 if the office appears in 1999 or later), age of the firm interacted with the entrant dummy, and 1 if the office location is in our list of cities. Portfolio controls (lagged a year) include the fraction of listings that are condominiums, the fraction that are single family, average square footage, number of bedrooms, number of bathrooms, listing price, age of the property, averaged among an office’s listings in a year. There are 171 chain fixed effects. The last column controls for 1852 office fixed effects. Standard errors are clustered at the office level.
Table 8—: Robustness check, propensity to purchase low commission listings

<table>
<thead>
<tr>
<th>1. Sample: All offices</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.12***</td>
<td>-0.03***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Sample: If average annual listings ≥ 7</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.09***</td>
<td>-0.04***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Sample: Not in Boston</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.11***</td>
<td>-0.03**</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Market share: ln(Shares of listings)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.09***</td>
<td>-0.05***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Market share: ln(Shares of three-year cumulative listing revenue)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.10***</td>
<td>-0.03**</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Dependent variable: ln(Fraction of purchases, no in-House)</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.09***</td>
<td>-0.03***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>

* p<0.1, ** p<0.05, *** p<0.01

Notes: This table reports robustness checks for Table 7. Columns 1 and 2 report robustness checks corresponding to the last two columns in Table 7, with chain fixed effects (column 1) and office fixed effects (column 2). The first three rows repeat the dominant office regressions using different samples of offices: all offices (row 1), offices with average annual listings equal or greater than 7 (row 2), and offices that are not in Boston (row 3). The next two rows keep the same set of offices (average annual listings equal or greater than 5) as in Table 7, but use different market share metrics. In row 4, we calculate market shares using the number of listings instead of the commission revenue from listings. In row 5, we calculate market shares using the three-year cumulative listing commission revenue. The last row drops all purchases that are in-house transactions. In-house transactions refer to those whose listing and buying agents work in the same office (they could be the same individual).