Abstract

We construct a simple model in which politicians can choose to spend resources on themselves, on their home area, or on other geographic areas. The model implies that if politicians are sufficiently inclined to favor their home areas, centralization will reduce social welfare relative to decentralization. Moreover, other approaches to controlling the effects of favoritism, such as constitutional equal treatment spending clauses that constrain politicians from focusing resources on their home areas, will increase corruption relative to decentralization. An incentive-compatible choice experiment in which 179 elected county councilors in rural Kenya chose among alternative water infrastructure projects reveals substantial favoritism. We estimate that politicians value each person served in their home village more than twice as much as each person served outside their home village. Consistent with the model, politicians are more likely to value controlling the discretionary funding associated with the project when they do not control the location of the project.

JEL Classification Numbers: C93, D73.
Keywords: local public goods, elected officials, targeting, decentralization, experiment
1 Introduction

From the late 1980s onward, decentralization has been a popular area of reform for policymakers interested in improving governance in developing countries. By 1998, over 60 developing and transition countries have implemented reforms that relinquish some combination of political, administrative, and fiscal powers to lower levels of government (?), and the pace of global decentralization reforms continued throughout the early 2000s. Examples of recent decentralization reforms include Indonesia, Ethiopia, and Kenya, which adopted a new constitution in 2010 creating elected county governments and transferring a considerable proportion of spending to county control.

While advocates for decentralization see this set of reforms as a way to improve the availability of local public goods (Ahmad, Devarajan, Khemani, and Shah 2005), other stakeholders have started to express concerns that decentralization can exacerbate problems of elite capture and corruption. In Kenya, the widespread enthusiasm for decentralization that accompanied the new constitution has given way to a much more critical discourse that views local elected representatives as primarily concerned with personal enrichment rather than public service (?). This disenchantment with decentralization has led some policymakers and citizens to argue in favor of reducing the number of local representatives, effectively recentralizing political representation (?). The growing backlash against decentralization is echoed in a theoretical literature that models decentralization as involving a tradeoff between better local information and risk of corruption and capture by local elites. (See, for example Bardhan (2002). This type of model treats national-level politicians as the principals and local bodies as the agents. It implicitly treats the national government as representing the national interest and as not subject to bias or corruption.

In this paper, we seek to shed light on the debate over decentralization using a complementary model, which treats local and central government politicians symmetrically. We consider a citizen-candidate model (as in (Besley and Coate 1997)) in which candidates cannot credibly commit and politicians therefore make policy decisions that reflect their own preferences. There is considerable evidence that the identity of a candidate affects that candidates policy choices (Chattopadhyay and Duflo 2004, Washington 2008). In many situations, including the Kenyan context we examine, ethnic and regional identity are politically salient. In line with these considerations, we assume
politicians particularly value the welfare of residents of their home region. We assume further that politicians at all levels derive some utility from their own consumption of resources allocated for public use. They face stochastic penalties for corruption depending on the context, so in some situations they may be likely to be corrupt whereas in others they may not.

We compare social welfare and corruption under alternative constitutional structures. Under a centralized structure, one politician is responsible for all public good decisions, while under a decentralized structure, politicians in each of two areas are given funds only for their own area. Our model suggests that a key parameter is the extent of politicians favoritism: how much more do they value the welfare of those in their home area relative to those outside their home area. The model suggests that if favoritism is small enough, decentralization will reduce welfare relative to centralization by imposing unnecessary constraints on spending. On the other hand, if favoritism is sufficiently large, decentralization will increase welfare by eliminating the suboptimal targeting of resources to politicians home areas when other sites, outside the home area, would deliver greater total welfare.

One might imagine other constitutional approaches to reducing harmful effects of favoritism, such as combining a centralized constitution with rules requiring a geographical spread of spending or delegating authority over selection of project sites to disinterested civil servants. However, assuming that the distribution of penalties politicians perceive for corruption has wide enough support, the model also suggests that politicians will be more likely to be corrupt when they cannot control the location of spending, so corruption may prevent these approaches from serving as an effective substitute for decentralization.

To assess the extent of favoritism and test the hypothesis that politicians are more likely to be corrupt when they cannot control project location, we conduct an incentive-compatible discrete choice experiment with 179 elected county councilors in rural Kenya.

We partnered with an organization installing a low-cost water treatment technology (dispensers for water treatment solution) at shared water sources. Politicians who participated in the study were entered into a public lottery through which 40 county council wards were chosen to receive a free dispenser and two years of free water treatment solution. In order to be entered into the lottery, councilors completed a discrete choice experiment in which they made choices about the
types of dispenser packages that they would like to receive for the electoral wards they represented. First, each councilor made a series of choices between pairs of dispenser packages that varied in terms of who would choose where to install the dispenser (the councilor himself, the non-profit organization installing the dispensers, or a centrally-appointed health official) and who would manage the funds allocated to cover the cost of refilling the dispenser with water treatment solution (the councilor or the non-profit installing the dispensers). Second, councilors chose which water sources in their ward should receive a dispenser if the ward was chosen to receive one and the councilor chose the locations. Because there was a positive probability that any of their choices would be implemented, councilors had an incentive to make decisions that were consistent with their preferences regarding the implementation of public goods projects in their ward.

We find that when local officials have control over geographic targeting, they tend to both choose sites that will yield greater welfare - e.g. by choosing areas with more potential users and with dirtier water - and sites in their home area. Councilors show strong favoritism, preferring project sites within their village over external sites with more than twice as many users. This implies that welfare gains from additional decentralization could be substantial. This finding also provides a potential explanation for the widespread finding of strong ethnic/regional voting in many contexts (Wantchekon 2003). In a citizen-candidate model, citizens might rationally vote for candidates from their identity group or home area if they expect some candidates to favor them over other members of other groups or residents of other areas.

Consistent with the model, we also find that councilors are more likely to seek control over discretionary funding when they cannot engage in geographic targeting. Assuming wide enough support for the perceived penalty of corruption, the model results imply that decentralization will decrease corruption relative to either unconstrained centralization or systems that seek to constrain the decisions of central politicians so as to limit the adverse effects of home bias.

This paper is related to several strands of the existing literature.

A number of papers find favoritism in the provision of public goods, including Barkan and

1 Throughout the paper, we use male pronouns to describe county councilors and other Kenyan government officials; this decision reflects the incredibly low percentage of women holding public office in Kenya. 93 percent of the county councilors in our sample are male.

Chege (1989), Burgess, Jedwab, and Miguel (2015), and Harris and Posner (2015), see also (cf. Besley, Pande, Rahman, and Rao 2004, Cleary 2007, Arvate 2013, Díaz-Cayeros, Magaloni, and Ruiz-Euler 2014). This study goes further in estimating the welfare loss that politicians are willing to accept to target local public goods to their home area. A number of recent studies have examined politicians’ decisions directly using laboratory-style experiments (cf. Bech 2003, Barr, Lindelow, and Serneels 2009, Alatas, Cameron, Chaudhuri, Erkal, and Gangadharan 2009, Butler and Broockman 2011, Spada and de Sá Guimarães 2013, Butler and Kousser 2015), but these have been focused on decisions likely to have minimal direct impact on constituents (for example, choices in a public goods game in the lab). These studies provide direct evidence on elected officials’ decision processes, but not on their valuation of the attributes of local public goods.

To our knowledge, this paper is the first to report the results of a choice experiment in which sitting politicians make decisions that are linked to actual public goods allocations in their constituencies. The research design allows us to contribute to three bodies of research: the literature on decentralization, on the political economy of local public goods provision, and the newer literature examining decision-making by sitting public officials. This paper is also related to other work on decentralization, including (Keefer and Khemani 2009, Golden and Min 2013, Kramon and Posner 2013) and to the view that local politicians may seek opportunities for personal enrichment and that this may cause them to choose inefficient projects (Bicchieri and Duffy 1997, Lambsdorff 2002, Shi and Svensson 2003, Kunicová and Rose-Ackerman 2005, Hernandez-Trillo and Jarillo-Rabling 2008).

Our results also contribute to the literature on whether politicians target public goods to core supporters or swing voters Cox and McCubbins (1986), Lindbeck and Weibull (1987), and Dixit and Londregan (1996).

The paper proceeds as follows. Section Two presents background on Kenyan politics and the adoption of a new decentralized constitution. Section Three presents a model of how favoritism and the possibility of corruption affect the welfare implications of constitutional provisions regarding centralization and decentralization. Section Four discusses our experimental design. Section Five quantifies the extent of favoritism and presents evidence on the models prediction that councilors will be more inclined to seek control over funding when they cannot control project location. Section Six concludes.
2 Background on Kenyan Politics

In the pre-colonial period, the territory of present-day Kenya was populated by many different ethnic groups. The Kikuyu are the largest of these groups, with approximately 20 percent of Kenya’s current population. Within these large scale groupings, there are many more sub-ethnic groupings, for example at the level of the subtribe, clan, and village. The social structure arguably facilitates claims of reciprocity within all of these identity groups.

Colonial authorities set administrative boundaries based in part on perceived ethnicity. This influenced the location of province, district, location, sub-location, and village boundaries.

British colonial settlers also influenced the course of post-colonial ethnic politics and debates over the constitution by taking land in Rift Valley areas used by Kalenjin pastoralist ethnic groups, and hiring agricultural laborers from outside the region, many of them Kikuyu. After independence, many of these farms were purchased by the Kenyan elite, including many Kikuyu. This contributed to continuing ethnic tension over land.

The run up to independence saw a vigorous debate over the Kenyan constitution (Anderson, 2005). A unitary structure was supported by the Kenya African National Union (KANU), which was led by Jomo Kenyatta and had strong support from the Kikuyu as well as the Luo and other groups. In contrast, a federal structure was favored by the Kenya Africa Democratic Union (KADU, which was led by Daniel arap Moi and enjoyed strong Kalenjin support. Under one strain of thinking (majimboism), federalism would allow indigenous groups to reclaim land in areas that saw in-migration in the colonial period.

KANU prevailed. Kenyatta became Kenya’s first president, and KADU was gradually marginalized, culminating in the creation of a one party state. A unitary constitution was adopted, with no elected body at the provincial or district level, and only a very limited role for elected local government at the councilor level. Councilors controlled very little funding, and were widely considered highly corrupt and ineffective.

Despite the adoption of a one-party state, there were typically attempts to maintain multi-ethnic coalitions. Thus, for example, Moi became Vice President under Kenyatta, and politicians from different parts of the country were typically put in charge of different Ministries and allowed
the opportunity to channel resources toward their home areas, to distribute patronage to their supporters, and to extract resources for personal and political needs.

There was also considerable political competition within the party. With no political space to challenge the President or debate ideology, candidates competed in large part on the ability to deliver local public goods. Ministers were in a position to deliver these goods using national resources.

A key component of politics was the Harambee system. Under the Harambee system, local people contributed to the establishment of local public goods, such as schools. Prominent local people, including politicians, were expected to contribute generously and to lead these efforts. Political candidates competed in part based on the magnitude of their contributions. Contributions were often much greater than could be expected based on politicians salaries. Firms doing business with a particular Ministry could expect to receive requests to contribute to harambees in the Ministers constituency.

There is widespread evidence that public investment is directed towards politicians’ home areas. See, for example Barkan and Chege (1989), Burgess, Jedwab, and Miguel (2015), and Harris and Posner (2015).

Kenya scores highly in international surveys of corruption perceptions. [MK: Add a cite]

Kenyan politics was largely organized on ethnic lines and local politics would often reflect sub-ethnic divisions, for example at the level of clans. (Note, however, that there is evidence that ethnicity plays a much smaller role outside of politics (Eifert, Miguel, and Posner, 2010)

With the death of Kenyatta in 1978, power passed to Moi. The end of the cold war led to international pressure for multiparty elections and term limits on the presidency in 1992. Moi won the 1992 and 1997 elections, but faced term limits in 2002. In the 2002 election, the opposition politician Kibaki was elected, ending KANU rule. The 2007 election pitted Kibaki versus Odinga. It was characterized by ethnic voting, by plausible claims that the election was rigged, and by severe post-election violence that ended only with a power-sharing agreement.

Work on a new constitution was resumed as part of the settlement following the disputed 2007 election, and the severe post-election violence that threatened the country with civil war. The new constitution, designed to avoid winner-take-all politics, devolves substantial authority to 47
counties, which have elected governors and county assemblies, and which are supposed to receive a share of funding.

The model we present below is not intended to capture all issues around the creation of the new constitution, which range from its impact on the chances for political order to issues of local government capacity, but rather to illustrate one potential factor that we believe has not been brought out clearly in existing work.

Since the study was conducted with county councilors, it is worth providing a bit more information on their role. Prior to the implementation of Kenya’s new constitution in 2013, county councilors were low-level elected officials who represented rural electoral wards in Kenya’s system of local government. The median electoral ward in our sample has just under 8,000 registered voters.

3 Model

In this model, we examine the behavior of politicians with respect to providing public goods under various governmental structures. We focus initially on a basic centralized structure and a basic decentralized structure. In the decentralized structure, politicians from each of two areas are provided enough funds to complete one project in their home areas. Politicians choose to complete a project at one of two available sites, or to divert the project funds to themselves at some cost. In the centralized structure (which we will refer to as "unconstrained centralization" to contrast it with the constrained centralized structures that we consider next), one politician is provided enough funds to complete two projects total, which may be from his home area or the other area. The politician may choose to complete projects at two of the four available sites, or complete one project and divert half of the funds to personal use, or divert all of the funds to personal use. We then consider two forms of constrained centralization: equal-treatment rules specifying geographic distribution of government spending, and a civil-service system, under which a disinterested bureaucrat with no preferences favoring a given home area decides where to allocate funds.
3.1 Assumptions

We assume that in each area (area i and area j), there are two possible project sites. The value that residents of an area would derive from a project completed at a given site varies randomly from site to site. The quality of site nk (the nth site in area k) is represented by the random variable y_{nk}, where y’s are independent and identically distributed, drawn from a distribution with continuous probability density function f. The support of each y is the interval $(0, \bar{y})$ for some $\bar{y} > 0$.

For each project’s worth of funding, the politicians may choose either to complete a project or to divert the whole project’s funds to themselves. The politicians incur some stochastic cost for diverting the funds to themselves. For every unit of funds that politicians divert from a project, they receive γ units of funds. We can think of γ as representing the political penalty for corruption or some degree of inefficiency in diverting the funds. We assume γ is drawn from a distribution with continuous probability density function g, and has support $(\underline{\gamma}, \bar{\gamma})$, with $\underline{\gamma} \leq 0$. The politicians’ objective functions put some weight on their own consumption, some weight on the welfare of residents of their home area, and some weight on the welfare of residents of other areas. Their own consumption and the welfare of residents of their home area are given a weight of one and the welfare of residents of other areas are weighted by $0 < \alpha \leq 1$.\footnote{This weighting of preferences need not necessarily imply that one unit of the politicians’ own consumption provides utility equal to that of one unit of their home residents’ welfare. We could think of politicians weighting their own consumption above that of home-area welfare, but having a distribution of gamma that is normalized to account for this.} We can think of α as representing both politician preferences (including personal benefits from projects) and constraints (electoral incentives, local monitoring etc.). Politicians are from either area i (in which case i is their home area and j is their non-home area), or from area j (in which case j is their home area and i is their non-home area).

3.2 Definitions

Each politician’s utility U is thus given by

$$ U = \gamma C + (y_{1D}Q_{1D} + y_{2D}Q_{2D}) + \alpha(y_{1F}Q_{1F} + y_{2F}Q_{2F}), \quad (1) $$

This weighting of preferences need not necessarily imply that one unit of the politicians’ own consumption provides utility equal to that of one unit of their home residents’ welfare. We could think of politicians weighting their own consumption above that of home-area welfare, but having a distribution of gamma that is normalized to account for this.
where y_{1D} is the value of a project at the first site in the politician’s home area, y_{2D} the value of a project at the second site in the politician’s home area, and both are random variables drawn from a distribution with PDF f as described above. y_{1F} and y_{2F} are analogous variables (drawn from the same distribution as y_{1D} and y_{2D}) representing the value of projects at the first non-home site and the second non-home site, respectively. $Q_{1D}, Q_{2D}, Q_{1F}, Q_{2F} \in \{0,1\}$ indicate whether the politician has chosen to allocate funds to complete a project in the corresponding location. $C \in \{0,1,2\}$, indicates whether the politician has chosen to divert no project funds to him- or herself, to divert one project’s worth of funds, or to divert two project’s worth of funds. As stated above, α represents the weight politicians put on residents of their non-home area. $y_{1D}, y_{2D}, y_{1F}, y_{2F}$, and γ are independent from each other. The values of $y_{1D}, y_{2D}, y_{1F}, y_{2F}$, and γ are independent of constitutional structure, are determined before politicians choose where to allocate resources, and are known to politicians at the time of their decisions.

We define total social welfare ω to be the total value that residents of both areas receive from completed projects, so

$$\omega = (y_{1i} Q_{1i} + y_{2i} Q_{2i}) + (y_{1j} Q_{1j} + y_{2j} Q_{2j}),$$

(2)

where y_{1i} is the value of a project at the first site in area i, y_{2i} the value of a project at the second site in area i, and both are random variables drawn from a distribution with PDF f as described above. y_{1j} and y_{2j} are analogous variables (drawn from the same distribution) representing the value of projects at the first and second site in area j, respectively. $Q_{1i}, Q_{2i}, Q_{1j}, Q_{2j} \in \{0,1\}$, indicate whether a politician has chosen to allocate funds in the corresponding location. $y_{1i}, y_{1j}, y_{2i},$ and y_{2j}, are independent from each other and from γ.

We also define total corruption C by

$$C = \sum_n C_n$$

(3)

where C_n is the amount of funds diverted by politician n to him- or herself. We assume it has wide
support because there are presumably some situations in which the cost of stealing is low but on
the other hand some politicians are presumably honest, and have disutility from stealing.

3.3 Decentralized Structure

Under a decentralized government structure, two politicians, i and j, from areas i and j respectively,
each control enough funds to complete one project. Politicians are responsible for only their home
area, and thus will never allocate funds to their non-home area. We thus have that each politician’s
utility U is given by

$$ U = \gamma C + (Q_1 y_1 + Q_2 y_2). $$

(4)

As the politicians only have enough funds to each complete one project, they face the budget
constraint

$$ 1 = C + Q_1 y_1 + Q_2 y_2. $$

(5)

$Q_1, Q_2, y_1, y_2, \gamma$ are identical to the corresponding variables in the general case. $C \in$
{0, 1} indicates whether the politician chooses to complete a project or divert the funds to himself.

3.4 Unconstrained Centralized Structure

Under an unconstrained centralized government structure, a single politician has enough funds to
complete two projects total, which can be completed at any of the two project sites in his home
area and two project sites in his non-home area. He may choose to complete 2 of the four available
projects, or complete one project and divert half of the funds to himself, or divert all of the funds.

$$ U = \gamma C + (y_1 Q_1 + y_2 Q_2) + \alpha (y_1 F Q_1 + y_2 F Q_2). $$

(6)

The politician faces the budget constraint

$$ 2 = C + Q_1 + Q_2 + Q_1 F + Q_2 F. $$

(7)

All variables are identical to the corresponding variables in the general case.
3.5 Results

Proposition 1. There exists some $\alpha^* \in (0, 1)$ such that for $\alpha > \alpha^*$, expected welfare is higher under a centralized structure than under a decentralized structure, for $\alpha < \alpha^*$ expected welfare is higher under a decentralized structure than under a centralized structure, and for $\alpha = \alpha^*$ expected welfare is identical under both structures.

There are two effects from unconstrained centralization relative to decentralization. Broadening the politician’s choice set increases expected welfare, while introducing home bias lowers expected social welfare by leading to the selection of suboptimal projects. For α large, the first effect dominates, while for α small the second effect dominates.

In proving Proposition 1, we first calculate expected welfare under both constitutional structures, and use this calculation to prove several necessary lemmas.

Under a decentralized structure, expected welfare in area i given by

$$E \left(\max \{y_{1i}, y_{2i} \} \mid \max \{y_{1i}, y_{2i} \} > \gamma \right) P \left(\max \{y_{1i}, y_{2i} \} > \gamma \right)$$

Noting that the PDF of $\max \{y_{1i}, y_{2i} \}$ is given by $2f \cdot F$, where F is the CDF $F(x)=\int_0^x f(x)dx$, we have that this is equal to

$$P(\max \{y_{1i}, y_{2i} \} > \gamma) \int_0^\gamma x \frac{P \left(\left(\max \{y_{1i}, y_{2i} \} > \gamma \mid \max \{y_{1i}, y_{2i} \} = x \right) 2f(x)F(x)}{P \left(\{\max \{y_{1i}, y_{2i} \} > \gamma \} \right) \, dx} = 2 \int_0^\gamma xG(x)F(x)f(x) \, dx. \quad (8)$$

Thus total expected welfare (summing expected welfare across both areas) is

$$E(\omega_{\text{decentralized}}) = 4 \int_0^\gamma xG(x)F(x)f(x) \, dx. \quad (9)$$

To calculate expected welfare under a centralized structure, we first calculate the expected welfare provided by the first project site in the politician’s home area, $E(Q_{1D}y_{1D})$. The politician will com-
plete a project at site \(1D \) iff his utility from completing this project will be higher than his utility from completing a project in either of at least two other sites or from diverting the funds. Formally, \(Q_{1D}y_{1D} \neq 0 \) if and only if \(y_{1D} \) is the first- or second-largest element of \(\{ y_{1D}, y_{2D}, \alpha y_{1F}, \alpha y_{2F} \} \) and \(y_{1D} > \gamma \).

This condition can be partitioned into four mutually exclusive events.

- **Event 1**: \(y_{1D} > y_{2D}, \ y_{1D} > \alpha y_{1F}, \ y_{1D} > \alpha y_{2F} \) and \(y_{1D} > \gamma \)
- **Event 2**: \(y_{1D} < y_{2D}, \ y_{1D} > \alpha y_{1F}, \ y_{1D} > \alpha y_{2F} \) and \(y_{1D} > \gamma \)
- **Event 3**: \(y_{1D} > y_{2D}, \ y_{1D} < \alpha y_{1F}, \ y_{1D} > \alpha y_{2F} \) and \(y_{1D} > \gamma \)
- **Event 4**: \(y_{1D} > y_{2D}, \ y_{1D} < \alpha y_{1F}, \ y_{1D} < \alpha y_{2F} \) and \(y_{1D} > \gamma \)

Expected welfare provided by the first project site in the politician’s home area is given by

\[
\mathbb{E}(\omega_{\text{centralized}}) = \sum_{n=1}^{4} P(\text{Event } n) \int_{0}^{\gamma} x P(\text{Event } n | y_{1D} = x) f(x) dx
\]

\[= \sum_{n=1}^{4} \int_{0}^{\gamma} x P(\text{Event } n | y_{1D} = x) f(x) dx \]

\[= \int_{0}^{\gamma} x G(x) F(x) F \left(\frac{x}{\alpha} \right)^2 f(x) dx + \int_{0}^{\gamma} x G(x) \left[1 - F\left(\frac{x}{\alpha} \right) \right] f(x) dx \]

\[+ 2 \int_{0}^{\gamma} x G(x) F(x) F \left(\frac{x}{\alpha} \right) \left[1 - F\left(\frac{x}{\alpha} \right) \right] f(x) dx. \]

Omitting similar steps for calculating the expected welfare provided by the other three project sites, we have that expected welfare under centralization is

\[
\mathbb{E}(\omega_{\text{centralized}}) = 2 \int_{0}^{\gamma} x G(x) F(x) F \left(\frac{x}{\alpha} \right)^2 f(x) dx + 2 \int_{0}^{\gamma} x G(x) F \left(\frac{x}{\alpha} \right)^2 \left[1 - F(x) \right] f(x) dx
\]

\[+ 4 \int_{0}^{\gamma} x G(x) F(x) F \left(\frac{x}{\alpha} \right) \left[1 - F\left(\frac{x}{\alpha} \right) \right] f(x) dx
\]

\[+ 2 \int_{0}^{\gamma} x G(\alpha x) F(\alpha x) f(x) dx + 2 \int_{0}^{\gamma} x G(\alpha x) F(\alpha x)^2 \left[1 - F(x) \right] f(x) dx
\]

\[+ 4 \int_{0}^{\gamma} x G(\alpha x) F(\alpha x) \left[1 - F(\alpha x) \right] dx. \]
which can be simplified to

\[
2 \int_0^\gamma xG(x)F\left(\frac{x}{\alpha}\right)^2 f(x)dx + 4 \int_0^\gamma xG(x)F\left(\frac{x}{\alpha}\right) f(x)dx \\
- 4 \int_0^\gamma xG(x)F(x)F\left(\frac{x}{\alpha}\right)^2 f(x)dx \\
+ 2 \int_0^\gamma xG(\alpha x)F(\alpha x)^2 f(x)dx + 4 \int_0^\gamma xG(\alpha x)F(x)F(\alpha x)f(x)dx \\
- 4 \int_0^\gamma xG(\alpha x)F(x)F(\alpha x)^2 f(x)dx.
\]

Lemma 1.1. If \(\alpha = 1 \), then expected welfare is higher under a centralized structure than under a decentralized structure.

Proof: see appendix. When \(\alpha = 1 \), there is no home-bias effect, so the broader choice set effect leads to higher expected welfare.

Lemma 1.2. If \(\alpha = 0 \), then expected welfare is higher under a decentralized structure than under a centralized structure.

Proof: see appendix. When \(\alpha = 0 \), the politician’s choice set is effectively the same under unconstrained centralization as under decentralization: he will only build projects in his home area. But under unconstrained centralization the politician must complete two projects (or divert funds), so he moves lower on his marginal benefit curve than would either politician under decentralization.

Lemma 1.3. Expected welfare under centralization is strictly increasing in \(\alpha \) for \(0 < \alpha < 1 \).

Proof: see appendix. As \(\alpha \) increases, the home-bias effect becomes weaker.

Lemma 1.4. Expected welfare under centralization is continuous in \(\alpha \) on the interval \([0,1]\).

Proof: see appendix. We are now equipped to prove proposition 1.

Proof. By lemma 1.1, when \(\alpha = 1 \),

\[
E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) > 0.
\]
By lemma 1.2, when \(\alpha = 0 \),

\[
E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) < 0.
\]

By lemma 4 and the intermediate value theorem, there is then some \(\alpha^* \in (0, 1) \) for which

\[
E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) = 0,
\]

and thus expected welfare is equal under both structures. By lemma 3 and the fact that \(\frac{d}{d\alpha} E(\omega_{\text{decentralized}}) = 0 \),

\[
\frac{d}{d\alpha} \left(E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) \right) > 0
\]

for \(\alpha \in (0, 1) \). Thus by the mean value theorem, \(E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) \) is positive for \(1 \geq \alpha > \alpha^* \) and negative for \(0 \leq \alpha < \alpha^* \).

Proposition 2. For \(\bar{\gamma} > 0 \), there is some \(\hat{\alpha} \in (0, 1) \) such that for \(\alpha > \hat{\alpha} \), expected total corruption is lower under centralization than under decentralization, for \(\alpha < \hat{\alpha} \), expected total corruption is lower under decentralization than under centralization, and for \(\alpha = \hat{\alpha} \), expected total corruption is identical under both constitutional structures. If \(\bar{\gamma} \leq 0 \), expected total corruption is 0 under all constitutional structures and for any value of \(\alpha \).

That \(\bar{\gamma} \leq 0 \) implies that expected total corruption is 0 follows directly from the fact that payoffs from all projects are almost always positive. Assume for the rest of the proof that \(\bar{\gamma} > 0 \).

We first calculate expected total corruption under decentralization. In the decentralized case, each politician will divert one project’s worth of resources if and only if the payoff for corruption is higher than the payoff for either project in their home area. That is, politician \(k \) will divert one project’s worth of resources if \(\gamma > \max\{x_{1k}, x_{2k}\} \), and will divert no resources otherwise. Thus expected total corruption (summing expected corruption across both areas) is

\[
E(C_{\text{decentralized}}) = 2 \int_{\frac{1}{2}}^{\bar{\gamma}} F(x)^2 g(x) dx. \tag{14}
\]
To calculate expected total corruption under centralization we note that the politician will divert two projects’ worth of resources if γ is greater than his payoff from completing any projects, will divert one project’s worth of resources if there is exactly one project that will provide him higher payoff than corruption, and will divert no resources otherwise. Omitting steps that are directly analogous to equations 10-13 from the proof of proposition one, we derive that expected total corruption under centralization is given by

$$E(C_{\text{centralized}}) = 2 \int_{\frac{1}{2}}^{T} F(x)^2 F \left(\frac{x}{\alpha} \right)^2 g(x) dx + 2 \int_{\frac{1}{2}}^{T} [1 - F(x)] F(x) F \left(\frac{x}{\alpha} \right)^2 g(x) dx + 2 \int_{\frac{1}{2}}^{T} \left[1 - F \left(\frac{x}{\alpha} \right) \right] F \left(\frac{x}{\alpha} \right) F(x)^2 g(x) dx. \quad (15)$$

This expression simplifies to

$$2 \int_{\frac{1}{2}}^{T} F(x) F \left(\frac{x}{\alpha} \right) \left[F \left(\frac{x}{\alpha} \right) + F(x) - F \left(\frac{x}{\alpha} \right) F(x) \right] g(x) dx. \quad (16)$$

The intuition for proposition two is very similar to that of proposition one. The broader choice-set effect decreases expected total corruption (when faced with more choices, the politician is more likely to find projects that he prefers to corruption). The home bias effect increases expected total corruption (non-home projects are less likely to be preferred to corruption than home projects are).

Lemma 2.1. When $\alpha = 1$ expected total corruption is lower under centralization than under decentralization.

Proof: see appendix.

Lemma 2.2. When $\alpha = 0$, expected total corruption is higher under centralization than under decentralization.

Proof: see appendix.

Lemma 2.3. Expected total corruption under centralization is decreasing in α for $\alpha \in (0, 1)$.

Proof: see appendix.

Lemma 2.4. Expected total corruption under centralization is continuous in α for $\alpha \in [0, 1]$.

16
Proof: see appendix.

We are now equipped to prove proposition 2.

Proof. By lemma 2.1, when $\alpha = 1$,

$$E(C_{centralized}) - E(C_{decentralized}) < 0.$$

By lemma 2.2, when $\alpha = 0$,

$$E(C_{centralized}) - E(C_{decentralized}) > 0.$$

By lemma 4 and the intermediate value theorem, there is then some $\hat{\alpha} \in (0, 1)$ for which

$$E(C_{centralized}) - E(C_{decentralized}) = 0,$$

and thus expected total corruption is equal under both structures. By lemma 3 and the fact that $\frac{d}{d\alpha} E(\omega_{decentralized}) = 0$,

$$\frac{d}{d\alpha} \left(E(C_{centralized}) - E(C_{decentralized}) \right) < 0$$

for $\alpha \in (0, 1)$. Thus by the mean value theorem, $E(C_{centralized}) - E(C_{decentralized})$ is negative for $1 \geq \alpha > \hat{\alpha}$ and positive for $0 \leq \alpha < \hat{\alpha}$.

\[\square \]

3.6 Constrained Centralization

The decentralization discussed above is one of a number of approaches to combatting favoritism towards home areas. We will consider two additional approaches: a centralized structure with a constitutional equal treatment clause, and a civil servant model of centralization. As we will demonstrate, both of these approaches perform well in the absence of corruption, but can lead to lower welfare and higher corruption than decentralization when corruption is present.
3.6.1 Centralization with Equal Treatment Clause

We consider a centralized structure with an equal treatment clause, in which the politician can complete at most one project in each area.

Under such a constitutional structure, the politician maximizes

\[\gamma C_D + (Q_{1D} y_1D + Q_{2D} y_2D). \] (17)

and

\[\gamma C_F + \alpha (Q_{1F} y_1F + Q_{2F} y_2F) \] (18)

subject to budget constraints

\[1 = C_D + Q_{1D} + Q_{2D}. \] (19)

and

\[1 = C_F + Q_{1F} + Q_{2F}. \] (20)

We note that under an equal treatment clause we have

\[E(\omega) = 2 \int_0^{\gamma} xG(x)F(x)f(x)dx + 2 \int_0^{\gamma} xG(\alpha x)F(x)f(x)dx \] (21)

\[E(C) = \int_2^{\gamma} F(x)^2 g(x)dx + \int_2^\gamma F \left(\frac{x}{\alpha} \right)^2 g(x)dx. \] (22)

Proposition 3. In the absence of corruption (\(\gamma \leq 0 \)), a centralized constitution with an equal treatment clause is equivalent to a decentralized constitution.

Proof. Suppose \(\gamma \leq 0 \), then for all \(x \in [0, \gamma] \), \(G(x) = G(\alpha x) = 1 \). So

\[E(\omega) = 2 \int_0^{\gamma} xF(x)f(x)dx + 2 \int_0^{\gamma} xF(x)f(x)dx \] (23)

under both decentralization and centralization with an equal treatment clause. Furthermore, for \(x > \gamma \), \(F(x) = F \left(\frac{x}{\alpha} \right) = 0 \). Thus expected total corruption is zero under both decentralization and centralization with an equal treatment clause. \(\square \)
Proposition 4. When corruption and favoritism are present ($\gamma > 0$ and $\alpha < 1$) a centralized constitution with equal treatment clause generates lower expected social welfare and greater expected corruption than a decentralized constitution.

Proof. We claim
\[
\int_0^\gamma xG(\alpha x)F(x)f(x)\,dx < \int_0^\gamma xG(x)F(x)f(x)\,dx.
\] (24)
To see this, note that $G(\alpha x) < G(x)$ for $0 < x < \frac{\gamma}{\alpha}$ and $G(\alpha x) = G(x)$ for $x > \frac{\gamma}{\alpha}$.

We claim further that
\[
\int_{\frac{\gamma}{\alpha}}^\gamma F\left(\frac{x}{\alpha}\right)^2 g(x)\,dx > \int_{\frac{\gamma}{\alpha}}^\gamma F(x)^2 g(x)\,dx.
\] (25)
To see this, note that $F\left(\frac{x}{\alpha}\right) > F(x)$ for $x \in (0, \frac{\gamma}{\alpha})$ and $F\left(\frac{x}{\alpha}\right) = F(x)$ for all x outside of this interval.

3.6.2 Civil Servant Model

So far we have been considering constitutional structures in which decision makers either make decisions for their home area (decentralization) or for their home area and for other areas (centralization). However, there is another logical possibility. One could imagine a system in which decision makers do not have authority over their home area but only over areas that are not their homes. While this may sound far-fetched, it is actually not far away from something that is an important part of overall governance. We will call this the civil servant model.

In this arrangement, decisions about where to site new schools in a district would be made by a district educational officer who is a career civil servant. In at least some systems civil servants are assigned to areas away from their home and are frequently rotated because of concerns that they might be subject to conflict of interest.

Under a civil servant model, the politician maximizes
\[
U = \gamma C + \alpha (y_{1i}Q_{1i} + y_{2i}Q_{2i} + y_{1j}Q_{1j} + y_{2j}Q_{2j})
\] (26)
subject to

\[2 = C + Q_{1i} + Q_{2i} + Q_{1j} + Q_{2j}. \]

(27)

We note that under a civil servant model we have

\[
E(\omega) = 12 \int_0^\gamma xG(\alpha x)F(x)^2 f(x) dx - 8 \int_0^\gamma xG(\alpha x)F(x)^3 f(x) dx \\
E(C) = 4 \int_\gamma^{\gamma'} F\left(\frac{x}{\alpha}\right)^3 g(x) dx - 2 \int_\gamma^{\gamma'} F\left(\frac{x}{\alpha}\right)^4 g(x) dx
\]

Proposition 5. In the absence of corruption, welfare and corruption outcomes under the civil servant model are equivalent to those under an unconstrained centralization model in which \(\alpha = 1 \). Thus the civil servant model maximizes expected social welfare relative to other government structures when corruption is not present.

Proof. Noting that \(G(x) = G(\alpha x) = 1 \) for \(x > \gamma \), observe that \(\gamma \leq 0 \) implies that expected social welfare is equivalent to the unconstrained centralization case with \(\alpha = 1 \) and expected corruption is zero under all structures.

Proposition 6. Given any \(f \) and \(\alpha \), there exists some \(g \) such that the civil servant model provides minimal expected social welfare relative to other government structures.

Proof: see appendix. The intuition for this proposition is that \(g \) can be constructed such that the probability that a politician will divert resources from projects outside his home area is arbitrarily close to one, while the probability that he diverts from a high-quality home project (one with payoff above \(\alpha \gamma \)) is arbitrarily close to zero.

4 Study Design and Context

4.1 County Councilors’ Role in Local Government in Kenya

We conducted an incentive-compatible discrete choice experiment with elected councilors from nine Kenyan county councils in 2012\(^4\). County councilors were the elected representatives for

\(^4\)The study location was determined by the organization installing the dispensers, Innovations for Poverty Action. The location was chosen to avoid areas where other dispenser-related research projects were ongoing, areas that had
rural electoral wards in the system of local government that existed from independence until the implementation of the country’s new constitution in 2013. Prior to the adoption of the new constitution, public goods provision in Kenya was highly centralized. However, county councilors had certain responsibilities for local-level taxation and spending: they set property tax rates and other fees, allocated funding for managing rural market centers and trust land, and determined levels of local cost-sharing for central government infrastructure efforts in the water, transportation, education, and health sectors (Southall and Wood 1996).

Public perception of county councilors in Kenya has historically been poor. In a 2011 Transparency International report, county councils were rated as one of the most corrupt institutions in the country (Transparency International 2011). The Kenyan media frequently describe local politicians as driven primarily by a desire to use public funds to benefit themselves (Gichana 2011, Onyango 2012, Standard Digital Counties Team 2014). Data from the most recent Afrobarometer Survey indicates that the overwhelming majority of Kenya’s citizens perceive local councilors as being corrupt: 50 percent indicated that either most or all local government councilors were corrupt, and an additional 42 percent reported that some councilors were corrupt (Afrobarometer Data 2015). However, corruption at the local level tends to operate on a relatively small scale, in contrast to the high profile cases of central government corruption involving the theft or misallocation of millions of dollars (Transparency International 2011).

4.2 Experimental Design and Procedures

Our experimental design built on a scale-up initiative spearheaded by the international organization Innovations for Poverty Action (IPA). As part of that initiative, IPA allocated funding to install and maintain approximately 40 chlorine dispensers in county council wards in our study area. The dispenser is a device which releases a measured dose of diluted chlorine solution that can be easily recently experienced political violence or terrorism (for example, during Kenya’s post-election crisis in 2008), and areas that did not have ecological conditions suitable for dispensers (for example, regions that were too arid and did not have reliable shared water sources).

One of the key elements of the new constitution was the devolution of (some) authority to county-level governments. Specifically, the new constitution states that the central government must transfer 15 percent of its revenue to the counties; it also devolved to the counties responsibility for services including the provision of primary health care and the management of internal transportation issues (Kramon and Posner 2011).

Although IPA is primarily a research organization it was involved in scaling up dispensers at the time; this part of its operations was later spun off to Evidence Action.
added to a container of water immediately after it is collected; Kremer, Miguel, Mullainathan, Null, and Zwane (2011) find that the installation of dispensers at shared water sources leads to a dramatic increase in the fraction of households with detectable chlorine in their water, even years after the dispenser is installed. The allocation of free dispensers through the program was determined through a public lottery, which was conducted in May of 2012. We built on this program by eliciting the preferences of county councilors through a discrete choice experiment. Within the experiment, councilors chose among dispenser packages that varied in terms of the system for selecting the dispenser location and for managing chlorine refills. Councilors also selected an eligible water source within their district to receive a dispenser. Before a councilor made any decisions, the enumerator explained that IPA did not have enough funding to install water treatment dispensers in all of the participating wards, and that a public lottery would be used to decide which 40 wards would receive dispensers.

4.2.1 Choosing a Dispenser Package

The discrete choice experiment consisted of two parts. In the first part of the experiment, councilors made a series of 20 choices between two alternative water treatment dispenser packages. In each of the 20 decisions, councilors were asked to choose which of two dispenser packages they would prefer to receive for their ward. Figure presents an example of a decision problem from the experiment. Complete instructions, including a listing of all the decision problems, are included in the Online Appendix.

Two attributes were varied across dispenser packages: the party choosing where the dispenser would be installed, and the party that would receive the money to manage the chlorine refills. Dispenser location could be determined in one of three ways: the councilor himself could decide where to put the dispenser, a centrally-appointed public health bureaucrat (the District Public Health Officer) could decide, or the staff of the international organization installing the dispensers (IPA) could decide. If the councilor or the District Public Health Officer was in charge of selecting

7 For more information, see “Chlorine dispensers for Safe Water,” available online at http://www.poverty-action.org/work/projects/safewater.

8 Participating councilors were invited to either attend this lottery or to send a representative, and were also informed that, after the fact, they would be able to watch a video recording of the lottery on the internet.
a location for the dispenser, he was allowed to choose any public water source in the ward that served at least 10 households.

Refilling the dispenser was either the responsibility of the implementing organization’s program staff or the councilor himself. If the councilor selected a package that put him in charge of refilling the chlorine, the implementing organization provided him with a sum of 650 Kenyan shillings (7.77 USD at the time) each month to cover the cost of either transporting or hiring someone to transport the chlorine from the market town to the dispenser site. Since some people regularly travel to these locations, this is not very burdensome. Moreover, dilute chlorine lasts a year or longer from the date of manufacturing if unopened. While this is a modest amount of money relative to many narratives about large-scale elite capture and corruption, small, high-frequency transactions typify the sorts of situations in which petty corruption tends to occur; the amount of discretionary funding available through our experiment is also comparable to what Kenyan county councilors encounter in the course of their engagement with decentralized funds and NGO projects (Asaka, Aila, Odera, and Abongo 2011, National Taxpayers Association 2016).^f

Our experiment included 6 different dispenser packages (i.e. all the possible combinations of attributes described above). In each of the 20 decision problems that the councilors faced, they were asked to indicate which of two dispenser packages they preferred. They were also allowed to indicate that they were indifferent between the two packages or that they preferred not to receive either of the packages offered. Since the set of dispenser packages under consideration had only six elements, we were able to offer each councilor every possible combination of choices between two dispenser packages. Our sequence of 20 choice problems included all 15 possible pairs of (two of the six) dispenser packages, presented in a random order, plus an additional 5 questions that were chosen at random from the menu of 15 and presented with the order of the two packages swapped.

Councilors were informed that each of their 20 dispenser package selections had a 5 percent (1 in 20) chance of being implemented if their ward was chosen to receive a dispenser through the public lottery. After the selection of the 40 wards that would receive a dispenser, an additional lottery was conducted to determine which of the 20 dispenser package questions would decide which dispenser

^fOver the course of the full two-year project, the total value of the chlorine contract is 16,500 shillings (approximately 197 USD), which is substantially larger than the typical bribe paid to a member of a county councils (Transparency International 2011).
the wards would receive. If the councilor chose not to select either of the two dispenser packages offered in that choice set, then no dispenser would be installed in his ward. If the councilor indicated that he was indifferent between the two packages offered in that choice problem, the package to be implemented would be selected through a third lottery with a 50 percent chance of each package being chosen.

4.2.2 Choosing a Dispenser Location

After making this series of dispenser package choices, councilors were asked to choose the water source in their ward where they would like to have a water treatment dispenser installed. In the event that the councilor’s ward was randomly chosen to receive a dispenser and the dispenser package that the councilor chose allowed the councilor to choose the dispenser location, a water treatment dispenser would be installed at the water source identified by the councilor. To assist the councilors in selecting a water source, we provided each respondent with a booklet containing information on each of the water sources in his ward, using data from a water source survey (which we describe in more detail below).

4.3 Data Sources

We complement the data from our discrete choice experiment with two additional data sources. The first is a census of shared water sources in the county council wards included in our sample. We enumerated the set of possible locations for dispenser installation by conducting a survey of village elders in 2011, the aim of which was to create a listing of all the shared water sources in the county council wards in our sample. For each of 7,618 shared water sources in 3,164 villages, the survey recorded the name and local nicknames of each water source as well as other basic information – the type of source (e.g. a river or stream, a public standpipe, a borehole or shallow well, etc.), the number of months that each source is dry, the approximate number of households using the source, whether the source is privately owned, whether users have to pay for water from the source, and the ethnicities and wealth levels of the households using the source. Data from

10 At the time of the survey, chiefs and assistant chiefs were the centrally-appointed administrators of the two smallest administrative units – locations and sub-locations. Sub-locations were also informally divided into villages. Chiefs and assistant chiefs appointed a village elder to serve as their representative in each village.
the water source survey was provided to councilors when they were asked to choose which source should receive a dispenser.

We measure the political characteristics of the wards in our sample using the official results of the 2007 election that were compiled by the Electoral Commission of Kenya (ECK). For every local electoral ward in the country, the ECK reports the total number of registered voters, the total number of votes cast, the party affiliation of each candidate, and total number of votes that each candidate received.

4.4 Subject Pool: Councilors and Wards in the Sample

Table 1 presents descriptive statistics characterizing the 179 councilors and wards in our sample. The vast majority – 93 percent – of councilors in our sample are male, reflecting the low proportion of women holding elected office in Kenya. 90 percent have completed secondary school and 25 percent have some post-secondary education. In addition to holding elected office, approximately half of the sample are also farmers, while a third are business owners. Only 35 percent reported that their salary from being a councilor accounted for more than half of their household income. 61 percent of the councilors in our sample were in their first term in office, and the median number of years of experience in politics is 5. 73 percent were affiliated with one of the three main political parties in the 2007 election (PNU, ODM, and ODM-K). We observe substantial variation in the political characteristics of the wards in our sample. The number of registered voters varies from 682 voters in the smallest ward to over 16,000 in the largest, and voter turnout in the 2007 election ranges from 35 percent in the smallest ward to over 97 percent.

Table 2 reports summary statistics on the water sources in the wards in our sample. The water source booklets indicated the name of each water source, the village and sublocation in which it was located, the type of source (e.g., protected spring), the approximate number of families using the source, the number of the months that the source runs dry, and whether or not the source is clear.

11The water source booklets indicated the name of each water source, the village and sublocation in which it was located, the type of source (e.g., protected spring), the approximate number of families using the source, the number of the months that the source runs dry, and whether or not the source is clear.
12We were given the electoral returns by James Long and Jeremy Horowitz, who obtained them from the ECK. The copy of the returns that we used was printed on March 17, 2008.
13The limited variation in individual characteristics observed in our sample precludes the analysis of the associations between individual characteristics and preferences for public goods.
14At the time of the experiment, Kenya’s three main political parties were the Party of National Unity (PNU), which was the party of President Mwai Kibaki; the Orange Democratic Movement (ODM); and the Orange Democratic Movement-Kenya (ODM-K).
15In our analysis of dispenser location decisions, we omit 22 wards where the councilor’s first choice for where to locate a dispenser was not a source listed in the water source booklet.
number of water sources within a ward ranges from 3 to 209; the median is 40 sources; while the average number of households using each source within a ward ranges from 23 to 740. Across all wards in the sample, the most common shared water sources are streams and rivers, accounting for an average of 37 percent of sources per ward. As discussed above, rivers are typically not ideal places to install water treatment dispensers because users can collect water from many different access points (only one of which could receive a dispenser through the program). On average, 33 percent of sources in each ward are improved sources such as public standpipes and taps, borehole wells, and protected springs. Improved sources have better water quality on average than unimproved sources, so installing water treatment dispensers at these is expected to have relatively lower benefits than installation at unimproved sources. However, cloudy water is also not ideal because it requires more chlorine to achieve a given level of water quality.

5 Analysis and Results

In this section, we first describe our approach to the analysis. We then quantify favoritism by comparing the weight councilors place on providing a dispenser to households within their home area versus elsewhere, and test the impact of having control over geographic targeting on councilors preferences for control over discretionary funds associated with dispenser management. Finally, we explore the extent to which councilor and ward characteristics explain both councilors geographic targeting of the public good and their preferences regarding control over targeting and over funds provided for management.

5.0.1 Framework for Analysis

We analyze councilors decisions of where to install water treatment dispensers, and their valuation of water treatment dispenser attributes in an additive random utility framework. Without loss of generality, we assume that the level of utility councilor \(n \) derives from installing dispenser package

17 See Train (2003) for a detailed discussion of additive random utility models.
j in location k is given by:

\[U_{n,j} = V_{n,j,k} + \epsilon_{n,j,k}. \]

(28)

\(V_{n,j,k} \) is the explicitly-modeled representative utility associated with the attributes of dispenser package \(j \) when installed at location \(k \) and \(\epsilon_{v,j,k} \) is an unobserved stochastic component. As is standard in additive random utility models, \(\epsilon_{v,j,k} \) is assumed to be distributed EV1. The probability that dispenser package \(j \in J \) is chosen by councilor \(n \) and installed at location \(k \in K \) is then given by

\[P_{n,j} = \frac{e^{V_{n,j}}}{\sum_{l \in J} \sum_{m \in K} e^{V_{n,l,m}}} \]

(29)

which is strictly positive. Thus, packages that are associated with higher representative utility are more likely to be chosen, but all packages are chosen with positive probability.

In the first part of the empirical analysis we use this framework to estimate the utility to councilors associated with installing a water treatment dispenser at a source with particular attributes, in particular sources within versus outside of the councilors home area. We then describe councilors preferences for control over geographic targeting and access to discretionary funding by analyzing their choices between alternative dispenser packages.

5.1 Quantifying Favoritism

We begin our analysis by examining councilors geographic targeting choices in order to test for and quantify the extent of favoritism towards home areas. Councilors decisions about where to install dispensers allow us to analyze the factors underlying their targeting choices in a conditional logit framework. Here, the choice set is the listing of a wards shared water sources enumerated in the water source survey, and we allow the probability that a water source was chosen to receive a dispenser to depend on source attributes.\[18\] This analysis is descriptive: because we do not control the choice set facing each councilor or the correlations among attributes, we cannot estimate the causal impact of any individual characteristic on the likelihood that a water source is chosen to

\[18\] We also include controls for the page on which a source appeared in the Water Source Booklet, since sources listed early in the booklet may have been particularly salient to councilors. The median number of water sources in a ward is 40, but 7.6 percent of wards had more than 100 water sources. The booklet listed between 3 and 5 water sources per page. Sources were sorted alphabetically by sublocation and village.
receive a dispenser. Nonetheless, our results provide unique descriptive evidence on councilors’ decision-making regarding the allocation of local public goods.

Results (reported in Table 3) show that councilors exhibit high levels of favoritism towards their home area in targeting the public good. As seen in Columns 1 and 2, each household using a source within the councilors home village is more than twice as influential in the targeting decision as each household outside this area. Dividing the coefficient on the number of potential users within the councilors home village by the number residing outside the village gives an estimate of favoritism (α/β in the model). Using the values reported in Column 1 (0.045 and 0.0187 respectively), this calculation suggests that providing the amenity to a constituent in the councilors own village is 2.43 times as important to the councilor as providing it to a constituent elsewhere in the ward. Results shown in Columns 3 and 4 indicate that favoritism is specific to the councilors village itself, rather than the larger administrative unit of the sub-location. Controlling for the number of source users, sources in councilors’ villages are significantly more likely to be chosen to receive a dispenser (p-values 0.030 and 0.028 in Columns 5 and 6 respectively), whereas the influence of home sub-location is not statistically significant (p-values 0.764 and 0.760).

Across specifications, we can consistently reject the hypothesis that users inside and outside councilors’ home area carry equal weight at the 95 percent confidence level. Thus, our results area consistent with the hypothesis that councilors seek to target core supporters in their home areas (Dixit and Londregan 1996, Golden and Min 2013), even within small and ethnically homogeneous electoral wards, and help to explain the tendency to vote for coethnics and candidates from one’s home area observed in many African contexts (Wantchekon 2003).

We also see evidence in this table that on other dimensions, councilors targeting decisions are aligned with maximizing the social benefit of the dispenser. Favoritism aside, the number of households using a source is an important factor in explaining councilors’ targeting decisions regardless of the sources location: coefficients on this variable and its interactions with source location are significant at the 99
5.2 Decentralization and the Preference for Control over Funds

In order to test the models prediction that politicians will be more likely to be corrupt if they do not control the geographic targeting of the public good, we use the random utility framework to estimate the change in utility that results from varying the attributes of the dispenser package, relative to a benchmark package where the implementing organization chooses the dispenser location and handles the restocking of chlorine. Specifically, we estimate the change in utility associated with devolving the decision about where to locate the dispenser to either (i) the councilor or (ii) the District Public Health Officer; the impact on utility of allowing the councilor manage the funds allocated for chlorine provision; and the utility value of combining these two modifications to the basic dispenser package.\footnote{So, for example, councilor \(n \)’s utility from a dispenser package which allows him to manage chlorine provision and choose the dispenser’s location is:}

\[U_{n,j} = \phi_n + \alpha_{councilor} + \beta_{councilor} + \gamma_{councilor \times councilor} + \epsilon_{n,j} \]

\footnote{First, they are more likely to choose water sources with higher numbers of users, sources that are}

We estimate a mixed logit model that allows preference parameters to vary across councilors. We assume that all preference parameters are normally distributed, and we estimate the mean and the standard deviation of each parameter via simulated maximum likelihood. This approach allows us to test the extent to which there is meaningful variation in preferences over dispenser attributes across councilors in our sample. Table 4 reports the mean and standard deviation of the estimated distribution of preference parameters, along with the associated standard errors. In the last column of Table 4, we use the estimated mean and variance of the parameter distribution to calculate the fraction of councilors in our sample who derive positive utility from each dispenser attribute we consider.

Councilors use the ability to choose the location of chlorine dispensers in a variety of ways. First, they are more likely to choose water sources with higher numbers of users, sources that are
publicly owned, and sources with only one access point (guaranteeing all users will have easy access to the dispenser). These patterns suggest that local councilors in rural Kenya are interested in using local public goods projects to enhance social welfare.

The results show substantial heterogeneity in councilors’ preferences over public goods: the standard deviations on all parameters are significantly different from zero. Coefficient estimates indicate that 81 percent of councilors value the opportunity to have a dispenser installed in their ward, and that 84.2 percent prefer dispenser packages that allow them to choose the where to install the dispenser. When the implementing NGO decides the dispenser’s location, approximately equal numbers of councilors derive positive and negative utility from the opportunity to manage the chlorine funds. (To see this note that the mean of the distribution of the utility associated with allowing the councilor to manage the funds allocated for chlorine refills is not significantly different from zero.) However, the interactions between dispenser attributes indicate that the responsibility for managing funds allocated for restocking chlorine is less attractive for the overwhelming majority (87.3 percent) of councilors when the councilor himself decides the dispenser location (or when the DPHO does). This result suggests that, in accordance with the model, when councilors are responsible for determining the dispenser location, they are less likely to prefer a management arrangement that allows them to control (and potentially divert) public funds. Rather, they are more likely to select an option in which an NGO is tasked with managing these funds. If a politician is more likely to divert funds when he cannot control the project location, then decentralized control over resource allocation will increase welfare and reduce corruption relative to a centralized governance structure, with or without a constitutional equal treatment clause.

This specification also includes a variable that controls for any additional (dis)utility from lotteries between dispensers. We find evidence that on average, councilors derive less utility from the lottery between dispenser packages than from the packages themselves.

Footnotes:

20 Installing chlorine dispensers at water sources with a single access point, for example, wells or springs, means that everyone drawing water from the source will have ready access to chlorine. Sources such as rivers and lakes can be accessed in many locations; thus, though such sources may serve more users overall, installing dispensers at such sources (at a single access point) may mean that fewer users can easily access the chlorine.

21 One interpretation of the result on the significance of the interaction between DPHO targeting and councilor control over funds is that a subset of councilors expect that the local DPHO would honor the councilors request concerning where to target the dispenser, given that the councilor was the one to bring this amenity to the district by agreeing to participate in the research.

22 This is not consistent with expected utility maximization (since the expected utility of the lottery is the weighted
Next, in Table 5, we explore the association between outcomes that are related to the distributive implications of politicians controlling targeting and the political characteristics of councilors and their wards. We find evidence that greater political participation (as proxied by higher voter turnout) is associated with an increased likelihood of choosing a water source in the top quartile in terms of the number of users within that ward. Further, councilors from one of the three main political parties in the 2007 election are also more likely to choose water sources accessed by larger numbers of users. We interpret this as evidence that political competition – both within wards and among political parties – does tend to discipline politicians and push them toward more socially desirable public goods outcomes. Interestingly, we find little evidence that the political characteristics of wards and councilors explain the tendency to target the public good to one’s own sublocation or village.

Finally, we explore the extent to which political characteristics explain the observed preference heterogeneity by allowing the utility of each attribute to depend on the observable characteristics of a councilor or his ward. Specifically, we allow the utility associated with particular dispenser package attributes to be a linear function of the political characteristics (ward size, voter turnout, the councilor’s party affiliation, and his term in office). Results are reported in the Online Appendix.

Overall, we find that our measures of the political characteristics of wards and councilors explain very little of the observed preference heterogeneity, though the evidence suggests that candidates from the major political parties place a relatively higher value of opportunities for targeting, while those in their first-term in office are more averse to allowing the District Public Health Officer to decide where to install the dispenser.

23 Because the two ward-level political measures we consider have different magnitudes and distributions, we include the quartiles for each variable rather than levels. In Columns 1 and 2, we include absolute quartiles of registered voters and voter turnout; in Columns 3 and 4 we control for county council-level differences in political characteristics by constructing within-county quartiles. All specifications also include controls for alternatives that are lotteries. These results should be viewed as suggestive, both because of the large number of hypotheses being tested and because political characteristics are not exogenous.
6 Conclusion

Much of the existing theoretical literature on decentralization considers the tradeoff between better local information and risks of local elite capture and associated corruption. In this paper, we propose that taking into account politicians favoritism toward those in their home area may have important implications for how decentralization affects graft. We develop a theoretical model of politician behavior that demonstrates that when politicians favor their home areas, decentralization can increase social welfare relative to centralization. The model implies that alternatives to decentralization which seek to control the effects of favoritism by limiting politicians discretion over where public goods are situated, will increase corruption.

We then present results from an incentive-compatible discrete choice experiment with 179 Kenyan county councilors, low-level elected representatives in Kenya’s system of local government. By incentivizing our experiment with local public goods (water treatment solution dispensers that would be installed in councilors’ electoral wards), our design allows us to quantify the relative weights placed on benefits to core supporters versus other constituents, demonstrating favoritism. When given the opportunity to select a location for a water treatment dispenser, councilors make location decisions that clearly reflect a concern for social welfare, allocating dispensers to unimproved water sources that serve large numbers of users. We estimate that they value benefits to users in their home areas more than twice as much as benefits to users in other parts of their constituencies.

Consistent with the model, counselors are more likely to value the opportunity to control part of the funds associated with the public good when they do not have control over the location of the public good.

Together, these empirical findings support the models conclusion that, at least in the context of ward-level councilors in the part of Kenya studied, devolving control over allocative decisions to the local level can reduce corruption and increase social welfare. While the extent to which these results generalize to higher levels of politics is highly uncertain, they do suggest an important potential additional benefit of decentralization.
References

Appendix A: Proofs

Lemma 1.1: If \(\alpha = 1 \), then expected welfare is higher under a centralized structure than under a decentralized structure.

Proof. When \(\alpha = 1 \), we have that
\[
E(\omega_{\text{centralized}}) = 12 \int_0^\gamma xG(x)F(x)^2 f(x)dx - 8 \int_0^\gamma xG(x)F(x)^3 f(x)dx. \tag{31}
\]

\(E(\omega_{\text{centralized}}) - E(\omega_{\text{decentralized}}) \) is thus equal to
\[
12 \int_0^\gamma xG(x)F(x)^2 f(x)dx - 8 \int_0^\gamma xG(x)F(x)^3 f(x)dx - 4 \int_0^\gamma xG(x)F(x)f(x)dx. \tag{32}
\]

which we rewrite as
\[
\int_0^\gamma xG(x) \left(12F(x)^2 - 8F(x)^3 - 4F(x)\right) f(x)dx. \tag{33}
\]

For notational convenience, we define \(H(x) = 12x^2 - 8x^3 - 4x \). We can rewrite the above expression as
\[
\int_{F^{-1}(\frac{1}{2})}^{F^{-1}(\frac{3}{2})} xG(x)H(F(x))f(x)dx + \int_{F^{-1}(\frac{1}{2})}^{\gamma} xG(x)H(F(x))f(x)dx. \tag{34}
\]

Define the function \(\theta \) by \(\theta(x) = F^{-1}(1 - F(x)) \). Then
\[
\int_{F^{-1}(\frac{1}{2})}^{F^{-1}(\frac{3}{2})} xG(x)H(F(x))f(x)dx = \int_{\theta(F^{-1}(\frac{1}{2}))}^{\theta(0)} xG(\theta(x))H(F(\theta(x)))f(\theta(x))d\theta \tag{35}
\]
\[
= -\int_{\theta(0)}^{\theta(F^{-1}(\frac{1}{2}))} xG(x)H(F(x))f(x)dx \tag{36}
\]
\[
= -\int_{0}^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))H(F(\theta(x)))f(\theta(x)) \frac{d\theta}{dx} dx. \tag{37}
\]

We note that for any \(x \), \(H(1 - x) = -H(x) \), so for all \(x \in [0, \gamma] \),
\[
H(F(\theta(x))) = H(1 - F(x)) = -H(F(x)).
\]
Furthermore we have that, for $x \in (0, \bar{y})$, $\frac{d\theta}{dx} = \frac{-f(x)}{f'(\theta(x))}$. So

$$- \int_0^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))H(F(\theta(x)))f(\theta(x)) \frac{d\theta}{dx} \, dx$$

$$= - \int_0^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))H(F(x))f(x) \, dx \quad (35)$$

and

$$E(\omega_{centralized}) - E(\omega_{decentralized}) = \int_0^{F^{-1}(\frac{1}{2})} [xG(x)H(F(x))f(x)] - [\theta(x)G(\theta(x))H(F(x))f(x)] \, dx. \quad (36)$$

For $x \in (0, F^{-1}(\frac{1}{2}))$, $\theta(x) > x$. It follows that $G(\theta(x)) \geq G(x) > 0$.

$H(x)$ is negative for $x \in (0, \frac{1}{2})$. [NOTE: This is another claim that I'm not sure about the convention on. I'm including a formal proof that $H(x)$ is signed as described above, but it seems like maybe it’s an unnecessary detour].

To see this, we note that H has zeroes at 0, $\frac{1}{2}$, and 1. We have $H'(x) = 24x - 24x^2 - 4$ so $H'(x) < 0$ at $x = 0$. By continuity of $H'(x)$, $H'(x) < 0$ on the interval $[0, a)$ for some $a > 0$. Thus by the mean value theorem, $H(x) < 0$ on $(0, a)$. Since H is a 3-degree polynomial, the roots $0, \frac{1}{2}$, and 1 are unique, so there are no zeroes on $(0, \frac{1}{2})$. Thus by the intermediate value theorem H is negative on this interval.

Thus for $x \in (0, F^{-1}(\frac{1}{2}))$,

$$\theta(x)G(\theta(x))H(F(x))f(x) < xG(x)H(F(x))f(x) < 0$$

so

$$[xG(x)H(F(x))f(x)] - [\theta(x)G(\theta(x))H(F(x))f(x)] > 0.$$

Thus

$$\int_0^{F^{-1}(\frac{1}{2})} [xG(x)H(F(x))f(x)] - [\theta(x)G(\theta(x))H(F(x))f(x)] \, dx > 0 \quad (37)$$

and expected welfare is higher under centralization than under decentralization. \qed

Lemma 1.2: If $\alpha = 0$, then expected welfare is higher under a decentralized structure than under a centralized structure.

Proof. Under a centralized structure, when $\alpha = 0$, the politician will never build projects outside his home area. At each site in his home area, he will complete a project iff the value of that project is greater than γ. Thus expected welfare is given by

$$2 \int_0^\pi xG(x)f(x) \, dx. \quad (38)$$

So

$$E(\omega_{centralized}) - E(\omega_{decentralized}) = 2 \int_0^\pi xG(x)f(x) \left[1 - 2F(x)\right] \, dx. \quad (39)$$
Defining the function J by $J(x) = 1 - 2x$ and θ as in the proof of lemma 1.1, we have

$$2 \int_0^\theta xG(x)f(x) \left[1 - 2F(x) \right] dx = 2 \int_0^{F^{-1}(\frac{1}{2})} xG(x)f(x)J(F(x)) dx$$

$$+ 2 \int_{\theta(F^{-1}(\frac{1}{2}))}^{\theta(0)} xG(x)f(x)J(F(x)) dx.$$

Furthermore,

$$\int_{\theta(F^{-1}(\frac{1}{2}))}^{\theta(0)} xG(x)f(x)J(F(x)) dx = - \int_{\theta(0)}^{\theta(F^{-1}(\frac{1}{2}))} xG(x)f(x)J(F(x)) dx$$

$$= - \int_{0}^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))f(\theta(x))J(F(\theta(x))) \frac{d\theta}{dx} dx.$$

Applying the fact that $J(1 - x) = -J(x)$ for all x, and that $\frac{d\theta}{dx} = \frac{-f(x)}{f(\theta(x))}$ for all $x \in (0, \theta)$ gives that

$$\int_{0}^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))f(\theta(x))J(F(\theta(x))) \frac{d\theta}{dx} dx$$

$$= \int_{0}^{F^{-1}(\frac{1}{2})} \theta(x)G(\theta(x))f(x)J(F(x)) dx. \quad (40)$$

We still have $xG(x)f(x) < \theta(x)G(\theta(x))f(x)$ for $x \in (0, F^{-1}(\frac{1}{2}))$. Furthermore $J(x)$ is positive for $x \in (0, \frac{1}{2})$, so for $x \in (0, F^{-1}(\frac{1}{2}))$,

$$[xG(x)f(x)J(F(x))] - [\theta(x)G(\theta(x))f(x)J(F(x))] < 0. \quad (41)$$

Thus

$$2 \int_{0}^{F^{-1}(\frac{1}{2})} [xG(x)f(x)J(F(x))] - [\theta(x)G(\theta(x))f(x)J(F(x))] dx < 0 \quad (42)$$

and expected welfare is higher under decentralization than under centralization.

\[\square \]

Lemma 1.3: Expected welfare under centralization is strictly increasing in α for $0 < \alpha \leq 1$.

Proof. For $\alpha \neq 0$, leibniz’ rule gives that expected welfare under centralization is differentiable with respect to alpha, with derivative:

$$- 4 \int_0^{\theta} x^2 \alpha^{-2} G(x)F \left(\frac{x}{\alpha} \right) f \left(\frac{x}{\alpha} \right) f(x) dx - 4 \int_0^{\theta} x^2 \alpha^{-2} G(x)F(\alpha) F \left(\frac{x}{\alpha} \right) f \left(\frac{x}{\alpha} \right) f(x) dx$$

$$+ 8 \int_0^{\theta} x^2 \alpha^{-2} G(x)F(x) F \left(\frac{x}{\alpha} \right) f \left(\frac{x}{\alpha} \right) f(x) dx$$

$$+ 4 \int_0^{\theta} x^2 G(\alpha x)F(\alpha x) f(\alpha x) f(x) dx + 4 \int_0^{\theta} x^2 G(\alpha x)F(x) f(\alpha x) f(x) dx$$

$$- 8 \int_0^{\theta} x^2 G(\alpha x)F(x) f(\alpha x) f(x) dx$$

$$+ 2 \int_0^{\theta} x^2 g(\alpha x)F(\alpha x)^2 f(\alpha x) dx + 4 \int_0^{\theta} x^2 g(\alpha x)F(\alpha x) F(x) f(x) dx$$

$$- 4 \int_0^{\theta} x^2 g(\alpha x)F(\alpha x)^2 F(x) f(x) dx.$$

37
To sign this expression, we regroup as follows

\[4 \left(\int_0^\gamma x^2 G(\alpha x) f(\alpha x) f(x) [F(\alpha x) + F(x) - 2F(x)F(\alpha x)] \, dx \right) \\
- \int_0^\gamma x^2 \alpha^{-2} G(x) f \left(\frac{x}{\alpha} \right) f(x) \left[F \left(\frac{x}{\alpha} \right) + F(x) - 2F(x)F \left(\frac{x}{\alpha} \right) \right] \, dx \\
+ 4 \int_0^\gamma x^2 g(\alpha x) F(\alpha x) F(x) [1 - F(\alpha x)] f(x) \, dx + 2 \int_0^\gamma x^2 g(\alpha x) F(\alpha x)^2 f(x) \, dx. \]

To sign the first two lines of this expression, we note that for any \(x > \alpha \gamma \), \(f \left(\frac{x}{\alpha} \right) = 0 \). So

\[\int_0^\gamma x^2 \alpha^{-2} G(x) f \left(\frac{x}{\alpha} \right) f(x) \left[F \left(\frac{x}{\alpha} \right) + F(x) - 2F(x)F \left(\frac{x}{\alpha} \right) \right] \, dx = \int_0^\gamma x^2 \alpha^{-2} G(x) f \left(\frac{x}{\alpha} \right) f(x) \left[F \left(\frac{x}{\alpha} \right) + F(x) - 2F(x)F \left(\frac{x}{\alpha} \right) \right] \, dx. \]

(43)

Making a change of variables from \(x \) to \(\alpha x \) gives

\[\int_0^{\alpha \gamma} x^2 \alpha^{-2} G(x) f \left(\frac{x}{\alpha} \right) f(x) \left[F \left(\frac{x}{\alpha} \right) + F(x) - 2F(x)F \left(\frac{x}{\alpha} \right) \right] \, dx \\
= \int_0^\gamma (\alpha x)^2 \alpha^{-2} G(\alpha x) f \left(\frac{\alpha x}{\alpha} \right) f(\alpha x) \left[F \left(\frac{\alpha x}{\alpha} \right) + F(\alpha x) - 2F(\alpha x)F \left(\frac{\alpha x}{\alpha} \right) \right] \frac{d(\alpha x)}{dx} \, dx \\
= \alpha \int_0^\gamma x^2 G(\alpha x) f(\alpha x) f(x) [F(x) + F(\alpha x) - 2F(\alpha x)F(x)] \, dx. \]

Thus the derivative of expected welfare under centralization with respect to \(\alpha \) is equal to

\[4(1 - \alpha) \int_0^\gamma x^2 G(\alpha x) f(\alpha x) f(x) [F(\alpha x) + F(x) - 2F(x)F(\alpha x)] \, dx \\
+ 4 \int_0^\gamma x^2 g(\alpha x) F(\alpha x) F(x) [1 - F(\alpha x)] f(x) \, dx + 2 \int_0^\gamma x^2 g(\alpha x) F(\alpha x)^2 f(x) \, dx. \]

The last line of this expression is trivially non-negative. Since \(F(x) < 1 \) for all \(x < \gamma \), \(F(\alpha x) + F(x) > F(\alpha x)F(x) + F(x)F(\alpha x) \) for \(x \in (0, \gamma) \). Thus the first line of this expression is positive for \(\alpha < 1 \), so the whole expression is positive. Thus expected welfare under centralization is strictly increasing in \(\alpha \) for all \(0 < \alpha < 1 \).

\[\square \]

Lemma 1.4: Expected welfare under centralization is continuous in \(\alpha \) on the interval \([0, 1]\).

Proof. Differentiability of expected welfare under centralization with respect to \(\alpha \) on \((0, 1]\) (see proof of lemma 1.3) implies continuity. As shown in the proof of lemma 1.2, expected welfare under centralization for \(\alpha = 0 \) is given by

\[2 \int_0^\gamma xG(x)f(x) \, dx. \]
\[
\lim_{\alpha \to 0} E(\omega_{\text{centralized}}) \text{ is equal to }
\]
\[
2 \lim_{\alpha \to 0} \left(\int_{\alpha}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right) f(x) \right) dx
\]
\[
+ 2 \int_{0}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right) f(x) dx - 2 \int_{0}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right) f(x) dx
\]
\[
+ \lim_{\alpha \to 0} \left(2 \int_{0}^{\overline{\gamma}} xG(x) F(\alpha x)^2 f(x) dx + 4 \int_{0}^{\overline{\gamma}} xG(x) F(\alpha x) F(x) f(x) dx \right)
\]
\[
- 4 \int_{0}^{\overline{\gamma}} xG(x) F(x) F(\alpha x)^2 f(x) dx.
\]

The second parenthetical term is continuous with respect to \(\alpha \) at 0 by differentiability, which follows from Leibniz’ rule, and thus approaches zero as \(\alpha \) approaches zero. Thus
\[
\lim_{\alpha \to 0} E(\omega_{\text{centralized}}) = 2 \lim_{\alpha \to 0} \left(\int_{\alpha}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right)^2 f(x) dx \right)
\]
\[
= 2 \lim_{\alpha \to 0} \left(\int_{0}^{\overline{\gamma}} xG(x) \left[F \left(\frac{x}{\alpha} \right)^2 + 2F(x) F \left(\frac{x}{\alpha} \right) - 2F(x) F \left(\frac{x}{\alpha} \right)^2 \right] f(x) dx \right) \quad (45)
\]

We claim that this expression is equal to \(2 \int_{0}^{\overline{\gamma}} xG(x) f(x) dx \).

We have
\[
\int_{0}^{\overline{\gamma}} xG(x) \left[F \left(\frac{x}{\alpha} \right)^2 + 2F(x) F \left(\frac{x}{\alpha} \right) - 2F(x) F \left(\frac{x}{\alpha} \right)^2 \right] f(x) dx \quad (46)
\]
\[
= \int_{0}^{\overline{\gamma}} xG(x) \left[F \left(\frac{x}{\alpha} \right)^2 + 2F(x) F \left(\frac{x}{\alpha} \right) - 2F(x) F \left(\frac{x}{\alpha} \right)^2 \right] f(x) dx \quad (47)
\]
\[
+ \int_{\alpha}^{\overline{\gamma}} xG(x) f(x) dx \quad (48)
\]
\[
= \int_{0}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right)^2 f(x) dx + 2 \int_{0}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right) F(x) f(x) dx \quad (49)
\]
\[
- 2 \int_{0}^{\overline{\gamma}} xG(x) F \left(\frac{x}{\alpha} \right)^2 F(x) f(x) dx + \int_{\alpha}^{\overline{\gamma}} xG(x) f(x) dx. \quad (50)
\]

The first three integrals in this expression are all bounded above by \(\alpha \overline{\gamma} F(\alpha \overline{\gamma}) \) and below by 0. Thus they all approach zero as \(\alpha \) approaches zero. So
\[
\lim_{\alpha \to 0} E(\omega_{\text{centralized}}) = \lim_{\alpha \to 0} \int_{\alpha}^{\overline{\gamma}} xG(x) f(x) dx \quad (51)
\]

By the fundamental theorem of calculus, there is some continuous \(\phi \) such that for all \(z \), \(\int_{z}^{\overline{\gamma}} xG(x) f(x) dx = \phi(\overline{\gamma}) - \phi(z) \). Thus
\[
\lim_{\alpha \to 0} E(\omega_{\text{centralized}}) = \lim_{\alpha \to 0} \left(\phi(\overline{\gamma}) - \phi(\alpha \overline{\gamma}) \right) \quad (52)
\]
\[
= \phi(\overline{\gamma}) - \phi(0) \quad (53)
\]
\[
= \int_{0}^{\overline{\gamma}} xG(x) f(x) dx. \quad (54)
\]

Thus \(\lim_{\alpha \to 0} E(\omega_{\text{centralized}}) = 2 \int_{0}^{\overline{\gamma}} xG(x) f(x) dx \), And expected welfare under centralization is continuous.
at $\alpha = 0$. \hfill \Box

Lemma 2.1 When $\alpha = 1$, expected total corruption is lower under centralization than under decentralization.

Proof. We have that

$$E(C_{centralized}) = 4 \int_{\gamma}^{\bar{\gamma}} F(x)^3 g(x) dx - 2 \int_{\gamma}^{\bar{\gamma}} F(x)^4 g(x) dx. \quad (55)$$

Thus

$$E(C_{centralized}) - E(C_{decentralized}) = \int_{\gamma}^{\bar{\gamma}} [4F(x)^3 - 2F(x)^4 - 2F(x)^2] g(x) dx. \quad (56)$$

Defining $K(x) = 4x^3 - 2x^4 - 2x^2$ and noting that $F(x) = 0$ for $x < 0$, this expression is equal to

$$\int_{0}^{\gamma} K(F(x)) g(x) dx. \quad (57)$$

We claim that $K(x) < 0$ for $x \in (0, 1)$. To see this, note that $K'(x) = H(x)$, where $H(x)$ is as defined in the proof of lemma 1.1. As shown in the proof of lemma 1.1, $H(x)$ is negative for $x \in (0, \frac{1}{2})$ and positive for $x \in (\frac{1}{2}, 1)$. Furthermore $K(0) = K(1) = 0$. Thus by the mean value theorem, $K(x) < 0$ for $x \in (0, 1)$. Thus the integrand is negative for $x \in (0, \min\{\gamma, \bar{\gamma}\})$ and zero outside of this interval. Thus

$$E(C_{centralized}) - E(C_{decentralized}) < 0. \quad (60)$$

Lemma 2.2 When $\alpha = 0$, expected total corruption is higher under centralization than under decentralization.

Proof. When $\alpha = 0$, a politician under a centralized structure will divert one project’s worth of resources for each home project that provides payoff lower than γ. Thus expected total corruption under centralization is

$$E(C_{centralized}) = 2 \int_{\gamma}^{\bar{\gamma}} F(x) g(x) dx \quad (58)$$

and

$$E(C_{centralized}) - E(C_{decentralized}) = 2 \int_{\gamma}^{\bar{\gamma}} |F(x) - F(x)| g(x) dx. \quad (59)$$

Since $F(x) > F(x)^2$ for $x \in (0, \gamma)$ and $F(x) = F(x)^2$ for all other x, the integrand is positive for $x \in (0, \min\{\gamma, \bar{\gamma}\})$ and zero for x outside of this interval. Thus

$$E(C_{centralized}) - E(C_{decentralized}) > 0. \quad (60)$$

Lemma 2.3: Expected total corruption under centralization is decreasing in α for $\alpha \in (0, 1)$.

Proof. For $\alpha \neq 0$, leibniz’ rule gives that expected welfare under centralization is differentiable with respect to α with derivative

$$-\frac{4}{\alpha^2} \int_{\gamma}^{\bar{\gamma}} xF(x)F\left(\frac{x}{\alpha}\right) f\left(\frac{x}{\alpha}\right) g(x) dx - \frac{2}{\alpha^2} \int_{\gamma}^{\bar{\gamma}} xF(x)^2 f\left(\frac{x}{\alpha}\right) g(x) dx + \frac{4}{\alpha^2} \int_{\gamma}^{\bar{\gamma}} xF(x)^2 F\left(\frac{x}{\alpha}\right) f\left(\frac{x}{\alpha}\right) g(x) dx. \quad (61)$$
Since \(xF(x)F\left(\frac{\gamma}{x}\right) f\left(\frac{\gamma}{x}\right) g(x) \geq xF(x)^2 F\left(\frac{\gamma}{x}\right) f\left(\frac{\gamma}{x}\right) g(x) \) for all \(x \), the sum of the first and third integrals in this expression is non-positive. Thus the whole expression is negative. \(\square \)

Lemma 2.4: Expected total corruption under centralization is continuous in \(\alpha \) for \(\alpha \in [0, 1] \).

Proof. Continuity for \(0 < \alpha \leq 1 \) follows from differentiability. To show continuity at \(\alpha = 0 \), consider the collection of functions \(f_n \) for \(n \in \mathbb{N} \) given by

\[
f_n = F(x)F\left(\frac{x}{n}\right) \left[F\left(\frac{x}{n}\right) + F(x) - F\left(\frac{x}{n}\right) F(x)\right] g(x).
\]

We note that for any \(x > 0 \), there exists \(M \in \mathbb{N} \) such that for all \(n > M \), \(\frac{x}{n} > \frac{\gamma}{M} \) and thus \(F\left(\frac{x}{n}\right) = 1 \). Thus \(f_n \) converges pointwise to \(F(x)g(x) \). We note further that this sequence is dominated by \(F(x)g(x) + F(x)^2 g(x) \). Thus it follows by the dominated convergence theorem that

\[
\lim_{n \to \infty} \int_\frac{\gamma}{2}^{\gamma} F(x)F\left(\frac{x}{n}\right) \left[F\left(\frac{x}{n}\right) + F(x) - F\left(\frac{x}{n}\right) F(x)\right] g(x)dx
= \int_\frac{\gamma}{2}^{\gamma} F(x)g(x)dx.
\]

It follows that

\[
\lim_{\alpha \to 0} \mathbb{E}(C_{centralized}) = \lim_{\alpha \to 0} 2 \int_\frac{\gamma}{2}^{\gamma} F(x)F\left(\frac{x}{\alpha}\right) \left[F\left(\frac{x}{\alpha}\right) + F(x) - F\left(\frac{x}{\alpha}\right) F(x)\right] g(x)
= 2 \int_\frac{\gamma}{2}^{\gamma} F(x)g(x)dx.
\]

Thus \(\mathbb{E}(C_{centralized}) \) is continuous in \(\alpha \) for \(\alpha = 0 \), and thus for all \(\alpha \in [0, 1] \). \(\square \)

Proposition 6: Given any \(f \) and \(\alpha \), there exists some \(g \) such that the civil servant model provides minimal expected social welfare relative to other government structures.

The proof consists of constructing one example of a continuous \(g \) such that the expected payoff from one home project site is higher than the expected payoff from four away project sites. A construction like this one could be used to generate \(G(\alpha \gamma) \) arbitrarily close to zero and \(G(\alpha \gamma + \epsilon) = 1 \) for \(\epsilon \) arbitrarily small.

Proof. Let

\[
\beta = \int_{\alpha \gamma}^{\gamma} x f(x)dx.
\]

Note that \(\beta > 0 \) by the continuity of \(f \). Let \(\gamma = \frac{\alpha + 1}{2} \) and \(\gamma = 0 \). Consider \(g(x) \) linear on the intervals \([0, \alpha \gamma], [\alpha \gamma, \frac{\alpha + 3}{4} \gamma], \) and \([\frac{\alpha + 3}{4} \gamma, \frac{\alpha + 1}{2} \gamma], \). Define

\[
g(\alpha \gamma) = \frac{\beta}{4 \alpha \gamma^2}
\]

\[
g\left(\frac{1 + 3\alpha}{4} \gamma\right) = \frac{32 \alpha \gamma^2 - 4 \beta \alpha \gamma + \beta - \alpha \beta}{(8 \alpha \gamma^2) (1 - \alpha)}
\]

Note that \(\int_{-\infty}^{\infty} g(x)dx = 1 \) and \(g \) is continuous. We have \(G(\alpha \gamma) = \frac{\alpha}{\gamma} \). Thus the expected social welfare from
a project outside the politician’s home area is

\[\int_0^\infty xG(\alpha x)f(x)dx < \infty G(\alpha \infty) \]
\[< \frac{\beta}{5}. \]

Moreover, expected welfare under a civil servant model is

\[\int_0^\infty xG(\alpha x)[12F(x)^2 - 8F(x)^3]f(x)dx. \]

12F(x)^2 - 8F(x)^3 \leq 1 for all x, so

\[\int_0^\infty xG(\alpha x)[12F(x)^2 - 8F(x)^3]f(x)dx \leq 4 \int_0^\infty xG(\alpha x)f(x)dx \]
\[< \frac{\beta}{2}. \]

Expected social welfare from one home project is

\[\int_0^\infty xG(x)f(x)dx = \int_0^{\alpha + 1} xG(x)f(x)dx + \int_0^{\alpha} xG(x)f(x)dx \]
\[= \int_0^{\alpha + 1} xG(x)f(x)dx + \beta \]
\[> \beta. \]

Thus any constitutional structure in which at least one politician is responsible for at least one site from his home area (this describes all of the constitutional structures discussed above) provides higher expected social welfare given g than the civil servant model.
Table 1: Summary Statistics — Councilors and Wards

<table>
<thead>
<tr>
<th>VARIABLE:</th>
<th>MEAN</th>
<th>S.D.</th>
<th>MEDIAN</th>
<th>MIN.</th>
<th>MAX.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.07</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Age</td>
<td>46.88</td>
<td>9.99</td>
<td>46</td>
<td>28</td>
<td>73</td>
<td>179</td>
</tr>
<tr>
<td>Married</td>
<td>0.91</td>
<td>0.29</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Kikuyu</td>
<td>0.68</td>
<td>0.47</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Christian</td>
<td>0.96</td>
<td>0.21</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Completed secondary school</td>
<td>0.90</td>
<td>0.30</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>Some post-secondary education</td>
<td>0.25</td>
<td>0.43</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>176</td>
</tr>
<tr>
<td>Farmer</td>
<td>0.53</td>
<td>0.50</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>Business owner</td>
<td>0.34</td>
<td>0.48</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>More than half of HH income from being councilor</td>
<td>0.35</td>
<td>0.48</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>175</td>
</tr>
<tr>
<td>Years in politics</td>
<td>8.34</td>
<td>5.49</td>
<td>5</td>
<td>1</td>
<td>30</td>
<td>178</td>
</tr>
<tr>
<td>Member of major political party</td>
<td>0.73</td>
<td>0.45</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Member of PNU party</td>
<td>0.58</td>
<td>0.49</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Member of ODM party</td>
<td>0.03</td>
<td>0.17</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Member of ODM-K party</td>
<td>0.12</td>
<td>0.32</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>179</td>
</tr>
<tr>
<td>Heard about chlorine dispensers</td>
<td>0.10</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>177</td>
</tr>
<tr>
<td>Number of registers voters in ward</td>
<td>8065.66</td>
<td>3138.85</td>
<td>7874</td>
<td>682</td>
<td>16359</td>
<td>179</td>
</tr>
<tr>
<td>Voter turnout</td>
<td>79.12</td>
<td>8.64</td>
<td>81.64</td>
<td>34.72</td>
<td>97.26</td>
<td>176</td>
</tr>
</tbody>
</table>

The Kikuyu ethnic group is Kenya’s largest, accounting for approximately 22 percent of Kenya’s population. They are the dominant ethnic group in the study region. At the time of the experiment, Kenya’s three main political parties were the Party of National Unity (PNU), the party of President Mwai Kibabi; the Orange Democratic Movement (ODM); and the Orange Democratic Movement-Kenya (ODM-K).
Table 2: Summary Statistics of Wards & Water Sources — Source Selection Sample

<table>
<thead>
<tr>
<th>VARIABLE:</th>
<th>MEAN</th>
<th>S.D.</th>
<th>MEDIAN</th>
<th>MIN.</th>
<th>MAX.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of water sources in ward</td>
<td>48.52</td>
<td>34.28</td>
<td>40</td>
<td>3</td>
<td>209</td>
<td>157</td>
</tr>
<tr>
<td>Proportion streams and rivers</td>
<td>0.37</td>
<td>0.21</td>
<td>0.38</td>
<td>0</td>
<td>0.92</td>
<td>157</td>
</tr>
<tr>
<td>Proportion shallow wells</td>
<td>0.12</td>
<td>0.14</td>
<td>0.08</td>
<td>0</td>
<td>0.68</td>
<td>157</td>
</tr>
<tr>
<td>Proportion borehole wells</td>
<td>0.08</td>
<td>0.12</td>
<td>0.03</td>
<td>0</td>
<td>0.82</td>
<td>157</td>
</tr>
<tr>
<td>Proportion standpipes or taps</td>
<td>0.15</td>
<td>0.19</td>
<td>0.07</td>
<td>0</td>
<td>0.97</td>
<td>157</td>
</tr>
<tr>
<td>Proportion protected springs</td>
<td>0.07</td>
<td>0.12</td>
<td>0.02</td>
<td>0</td>
<td>0.88</td>
<td>157</td>
</tr>
<tr>
<td>Proportion unprotected springs</td>
<td>0.02</td>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0.56</td>
<td>157</td>
</tr>
<tr>
<td>Proportion of water sources protected</td>
<td>0.33</td>
<td>0.21</td>
<td>0.31</td>
<td>0</td>
<td>1</td>
<td>156</td>
</tr>
<tr>
<td>Proportion of private water sources</td>
<td>0.13</td>
<td>0.14</td>
<td>0.09</td>
<td>0</td>
<td>0.63</td>
<td>157</td>
</tr>
<tr>
<td>Proportion of free (no charge) water sources</td>
<td>0.81</td>
<td>0.19</td>
<td>0.86</td>
<td>0.07</td>
<td>1</td>
<td>157</td>
</tr>
<tr>
<td>Has year-round source</td>
<td>0.99</td>
<td>0.08</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>157</td>
</tr>
<tr>
<td>Average number of dry months (among sources in ward)</td>
<td>0.63</td>
<td>0.55</td>
<td>0.50</td>
<td>0</td>
<td>2.83</td>
<td>157</td>
</tr>
<tr>
<td>Average number of users (HHs) per source in ward</td>
<td>138.27</td>
<td>120.28</td>
<td>102.7</td>
<td>25.52</td>
<td>739.13</td>
<td>157</td>
</tr>
<tr>
<td>Maximum number of users at any source in ward</td>
<td>564.85</td>
<td>398.91</td>
<td>470</td>
<td>40</td>
<td>1200</td>
<td>157</td>
</tr>
<tr>
<td>Minimum number of users at any source in ward</td>
<td>23.78</td>
<td>22.19</td>
<td>20</td>
<td>10</td>
<td>150</td>
<td>157</td>
</tr>
</tbody>
</table>

The Source Selection Sample excludes 22 councilors who wished to install the dispenser at a water source that identified in our census of shared water sources. If one of those councilors was chosen to receive a dispenser for his ward, staff at the organization installing the dispensers ascertained whether the preferred sources was listed in our roster under another name, or whether it was not in fact an eligible shared (i.e. publicly accessible) water source.
Table 3: Conditional Logit Model of Water Source Selection

<table>
<thead>
<tr>
<th>Specification</th>
<th>LOGIT (1)</th>
<th>LOGIT (2)</th>
<th>LOGIT (3)</th>
<th>LOGIT (4)</th>
<th>LOGIT (5)</th>
<th>LOGIT (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users in councilor’s village</td>
<td>0.045***</td>
<td>.</td>
<td>0.039***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td></td>
<td>(0.012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Users outside councilor’s village</td>
<td>0.019***</td>
<td>.</td>
<td>0.019***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of users (tens of HHs)</td>
<td>.</td>
<td>0.02***</td>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In councilor’s village</td>
<td>.</td>
<td>0.877***</td>
<td>0.415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.405)</td>
<td>(0.515)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In councilor’s sublocation</td>
<td>.</td>
<td>0.095</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.316)</td>
<td>(0.318)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Point (but not improved) source</td>
<td>0.67****</td>
<td>0.651***</td>
<td>0.668***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.246)</td>
<td>(0.245)</td>
<td>(0.246)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved source</td>
<td>0.399</td>
<td>0.412</td>
<td>0.401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(0.269)</td>
<td>(0.27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privately owned</td>
<td>-1.176***</td>
<td>-1.177***</td>
<td>-1.182***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.382)</td>
<td>(0.382)</td>
<td>(0.382)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Users must pay to use source</td>
<td>0.265</td>
<td>0.248</td>
<td>0.268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(0.297)</td>
<td>(0.299)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water from source is clear</td>
<td>-0.005</td>
<td>-0.013</td>
<td>-0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.223)</td>
<td>(0.223)</td>
<td>(0.224)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source does not dry up</td>
<td>0.28</td>
<td>0.267</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.244)</td>
<td>(0.243)</td>
<td>(0.244)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>7438</td>
<td>7438</td>
<td>7438</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses. All specifications also include controls for the page on which a source appeared in the Water Source Booklets presented to councilors.
Table 4: Mixed Logit Model of Water treatment dispenser Package Choices

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>S.D.</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward receives a dispenser</td>
<td>3.382***</td>
<td>3.854***</td>
<td>0.810</td>
</tr>
<tr>
<td></td>
<td>(0.236)</td>
<td>(0.238)</td>
<td></td>
</tr>
<tr>
<td>Councilor decides location</td>
<td>1.923***</td>
<td>1.916***</td>
<td>0.842</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.120)</td>
<td></td>
</tr>
<tr>
<td>District Public Health Officer (DPHO) decides location</td>
<td>-0.039</td>
<td>2.282***</td>
<td>0.493</td>
</tr>
<tr>
<td></td>
<td>(0.152)</td>
<td>(0.141)</td>
<td></td>
</tr>
<tr>
<td>Councilor manages chlorine funds</td>
<td>0.019</td>
<td>2.773***</td>
<td>0.503</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.148)</td>
<td></td>
</tr>
<tr>
<td>Councilor decides location × councilor manages funds</td>
<td>-1.016***</td>
<td>0.892***</td>
<td>0.127</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.308)</td>
<td></td>
</tr>
<tr>
<td>DPHO decides location × councilor manages chlorine funds</td>
<td>-0.437***</td>
<td>0.364**</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.177)</td>
<td></td>
</tr>
<tr>
<td>Lottery</td>
<td>-2.871***</td>
<td>2.007***</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>(0.198)</td>
<td>(0.149)</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
Table 5: Regressions of Targeting Outcomes on Characteristics of Councilors and Wards

<table>
<thead>
<tr>
<th>Specification</th>
<th>Registered voters in ward (in thousands)</th>
<th>Voter turnout</th>
<th>First term in office</th>
<th>Member of major political party</th>
<th>Constant</th>
<th>County Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.035</td>
<td>0.042***</td>
<td>0.263</td>
<td>0.552*</td>
<td>-4.787***</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.014)</td>
<td>(0.212)</td>
<td>(0.299)</td>
<td>(1.049)</td>
<td>No</td>
</tr>
<tr>
<td>Probit (1)</td>
<td>0.014</td>
<td>0.009***</td>
<td>0.063</td>
<td>0.191**</td>
<td>-0.709***</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.003)</td>
<td>(0.075)</td>
<td>(0.085)</td>
<td>(0.218)</td>
<td>Yes</td>
</tr>
<tr>
<td>OLS (2)</td>
<td>-0.005</td>
<td>-0.01</td>
<td>0.176</td>
<td>0.049</td>
<td>-0.085</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.017)</td>
<td>(0.26)</td>
<td>(0.125)</td>
<td>(1.250)</td>
<td>No</td>
</tr>
<tr>
<td>Probit (3)</td>
<td>-0.002</td>
<td>0.004</td>
<td>0.056</td>
<td>0.049</td>
<td>-2.803</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.005)</td>
<td>(0.057)</td>
<td>(0.047)</td>
<td>(0.471)</td>
<td>Yes</td>
</tr>
<tr>
<td>OLS (4)</td>
<td>-0.038</td>
<td>0.018</td>
<td>0.22</td>
<td>0.22</td>
<td>-2.62</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.024)</td>
<td>(0.298)</td>
<td>(0.365)</td>
<td>(1.866)</td>
<td>Yes</td>
</tr>
<tr>
<td>Probit (5)</td>
<td>-0.009</td>
<td>0.005</td>
<td>0.024</td>
<td>0.049</td>
<td>-0.262</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.003)</td>
<td>(0.029)</td>
<td>(0.051)</td>
<td>(0.277)</td>
<td>Yes</td>
</tr>
<tr>
<td>OLS (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the county level. With MANY Users indicates that the councilor chose a water source in the top quartile of users for his ward. Even-numbered columns include county-level fixed effects.
Additional Tables and Figures

Table 6: Conditional Logit Model of Heterogeneity in Dispenser Package Choices

<table>
<thead>
<tr>
<th>Specification:</th>
<th>Logit (1)</th>
<th>Logit (2)</th>
<th>Logit (3)</th>
<th>Logit (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ward receives a dispenser</td>
<td>1.682***</td>
<td>1.713***</td>
<td>2.233***</td>
<td>2.317***</td>
</tr>
<tr>
<td>...× registered voters (quartile)</td>
<td>-0.175**</td>
<td>-0.204***</td>
<td>-0.345***</td>
<td>-0.371***</td>
</tr>
<tr>
<td>...× voter turnout (quartile)</td>
<td>0.003</td>
<td>0.013</td>
<td>-0.002</td>
<td>-0.015</td>
</tr>
<tr>
<td>...× first term in office</td>
<td>0.8***</td>
<td>0.735***</td>
<td>0.729***</td>
<td>0.66***</td>
</tr>
<tr>
<td>...× major party candidate</td>
<td>0.012</td>
<td>-0.072</td>
<td>-0.026</td>
<td>-0.118</td>
</tr>
<tr>
<td>Councilor decides location</td>
<td>0.884***</td>
<td>0.876***</td>
<td>0.546**</td>
<td>0.474</td>
</tr>
<tr>
<td>...× registered voters (quartile)</td>
<td>0.045</td>
<td>0.096</td>
<td>0.047</td>
<td>0.091</td>
</tr>
<tr>
<td>...× voter turnout (quartile)</td>
<td>-0.107**</td>
<td>-0.111</td>
<td>0.016</td>
<td>0.04</td>
</tr>
<tr>
<td>...× first term in office</td>
<td>-0.353***</td>
<td>-0.197</td>
<td>-0.337***</td>
<td>-0.173</td>
</tr>
<tr>
<td>...× major party candidate</td>
<td>0.227*</td>
<td>0.397**</td>
<td>0.259*</td>
<td>0.439**</td>
</tr>
<tr>
<td>Public health official decides location</td>
<td>-0.26</td>
<td>-0.389</td>
<td>-0.343</td>
<td>-0.586</td>
</tr>
<tr>
<td>...× registered voters (quartile)</td>
<td>0.032</td>
<td>0.088</td>
<td>-0.019</td>
<td>0.027</td>
</tr>
<tr>
<td>...× voter turnout (quartile)</td>
<td>0.103**</td>
<td>0.066</td>
<td>0.195***</td>
<td>0.211***</td>
</tr>
<tr>
<td>...× first term in office</td>
<td>-0.529***</td>
<td>-0.421**</td>
<td>-0.558***</td>
<td>-0.44**</td>
</tr>
<tr>
<td>...× major party candidate</td>
<td>0.218*</td>
<td>0.38*</td>
<td>0.227*</td>
<td>0.404**</td>
</tr>
<tr>
<td>Councilor manages chlorine funds</td>
<td>0.37*</td>
<td>0.3</td>
<td>0.358*</td>
<td>0.186</td>
</tr>
<tr>
<td>Specification:</td>
<td>Logit (1)</td>
<td>Logit (2)</td>
<td>Logit (3)</td>
<td>Logit (4)</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>- \times \text{registered voters (quartile)}</td>
<td>-0.098**</td>
<td>-0.034</td>
<td>-0.1**</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.068)</td>
<td>(0.045)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>- \times \text{voter turnout (quartile)}</td>
<td>0.054</td>
<td>0.036</td>
<td>0.072</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.068)</td>
<td>(0.045)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>- \times \text{first term in office}</td>
<td>-0.304***</td>
<td>-0.147</td>
<td>-0.341***</td>
<td>-0.173</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.157)</td>
<td>(0.104)</td>
<td>(0.159)</td>
</tr>
<tr>
<td>- \times \text{major party candidate}</td>
<td>-0.418***</td>
<td>-0.224</td>
<td>-0.426***</td>
<td>-0.217</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.172)</td>
<td>(0.114)</td>
<td>(0.172)</td>
</tr>
<tr>
<td>Councilor decides location \times \text{councilor manages chlorine funds}</td>
<td>.</td>
<td>0.023</td>
<td>.</td>
<td>0.143</td>
</tr>
<tr>
<td></td>
<td>(0.448)</td>
<td>(0.481)</td>
<td>(0.481)</td>
<td>(0.481)</td>
</tr>
<tr>
<td>- \times \text{registered voters (quartile)}</td>
<td>.</td>
<td>-0.105</td>
<td>.</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.103)</td>
<td>(0.103)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>- \times \text{voter turnout (quartile)}</td>
<td>.</td>
<td>0.002</td>
<td>.</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.101)</td>
<td>(0.101)</td>
<td>(0.101)</td>
</tr>
<tr>
<td>- \times \text{first term in office}</td>
<td>.</td>
<td>-0.334</td>
<td>.</td>
<td>-0.349</td>
</tr>
<tr>
<td></td>
<td>(0.235)</td>
<td>(0.237)</td>
<td>(0.237)</td>
<td>(0.237)</td>
</tr>
<tr>
<td>- \times \text{major party candidate}</td>
<td>.</td>
<td>-0.354</td>
<td>.</td>
<td>-0.373</td>
</tr>
<tr>
<td></td>
<td>(0.257)</td>
<td>(0.257)</td>
<td>(0.257)</td>
<td>(0.257)</td>
</tr>
<tr>
<td>Public health official decides location \times \text{councilor manages chlorine fund}</td>
<td>.</td>
<td>0.219</td>
<td>.</td>
<td>0.424</td>
</tr>
<tr>
<td></td>
<td>(0.458)</td>
<td>(0.491)</td>
<td>(0.491)</td>
<td>(0.491)</td>
</tr>
<tr>
<td>- \times \text{registered voters (quartile)}</td>
<td>.</td>
<td>-0.107</td>
<td>.</td>
<td>-0.091</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.105)</td>
<td>(0.105)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>- \times \text{voter turnout (quartile)}</td>
<td>.</td>
<td>0.061</td>
<td>.</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.103)</td>
<td>(0.103)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>- \times \text{first term in office}</td>
<td>.</td>
<td>-0.233</td>
<td>.</td>
<td>-0.254</td>
</tr>
<tr>
<td></td>
<td>(0.238)</td>
<td>(0.241)</td>
<td>(0.241)</td>
<td>(0.241)</td>
</tr>
<tr>
<td>- \times \text{major party candidate}</td>
<td>.</td>
<td>-0.318</td>
<td>.</td>
<td>-0.346</td>
</tr>
<tr>
<td></td>
<td>(0.264)</td>
<td>(0.264)</td>
<td>(0.264)</td>
<td>(0.264)</td>
</tr>
</tbody>
</table>

Control for lotteries: Yes, Yes, Yes, Yes
Attribute Interactions: No, Yes, No, Yes
Observations: 13824, 13824, 13824, 13824

Standard errors in parentheses. Columns 1 and 2 (3 and 4) include quartiles (within-county quartiles) of continuous characteristics, interacted with dispensers package attributes. Columns 2 and 4 also include interactions between dispenser package attributes (who chooses the location and who manages chlorine refills) and councilor and ward characteristics.
Figure 1: Sample Decision Problem from Experiment

<table>
<thead>
<tr>
<th>Plan A</th>
<th>Plan B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed where?</td>
<td>Installed where?</td>
</tr>
<tr>
<td>DCE chooses location</td>
<td>You choose location</td>
</tr>
<tr>
<td>Chlorine delivered how?</td>
<td>You receive 650 Ksh. per month to arrange for delivery of chlorine to dispenser</td>
</tr>
<tr>
<td>DCE is in charge of chlorine delivery to dispenser</td>
<td></td>
</tr>
</tbody>
</table>

DCE stands for “Dispenser Choice Evaluation.” This acronym was used to refer to the project in interactions with county councilors.