(1) Dampening GE: from Micro to Macro

(2) Forward Guidance without Common Knowledge

George-Marios Angeletos* Chen Lian**

Chicago Booth: April 10, 2017

*MIT and NBER, **MIT
Motivation

- **GE effects key to macroeconomics** (and elsewhere)
 - limit usefulness of PE intuitions
 - limit usefulness of micro-based estimates a la Mian-Sufi
 - drive interpretations of business cycles
 - drive policy predictions (and some puzzles)

But:
- how potent/fast is GE adjustment?
 - standard practice assumes “perfect” and “instantaneous”
 - hardwired in solution concept + info assumptions
Motivation

- **GE effects key to macroeconomics** (and elsewhere)
 - limit usefulness of PE intuitions
 - limit usefulness of micro-based estimates a la Mian-Sufi
 - drive interpretations of business cycles
 - drive policy predictions (and some puzzles)

- **But**: how potent/fast is GE adjustment?
 - standard practice assumes “perfect” and “instantaneous”
 - hardwired in solution concept + info assumptions
This talk, part 1: Dampening GE

- **Goals/contribution:**
 - formalize notion “GE Adjustment is Weak / Takes Times”
 - reduce gap between micro and macro elasticities

- **Context:** simple, abstract, Walrasian economy (Econ101)

- **Two alternative methods:**
 1. depart from REE concept
 2. relax Common Knowledge

- Clarify similarities/differences of two methods
This talk, part 2: Forward Guidance

- Topical Context: NK economy at ZLB
- Identify and attenuate GE effects
- Disentangle
 - PM's ability to manage expectations of policy
 - PM’s ability to manage expectations of inflation, income, etc
- Lessen FG puzzle – and paradox of flexibility, too
- Justify “front-loading” in monetary and fiscal policy
Dampening GE: from Micro to Macro
Contribution

- Goals:
 - formalize notion “GE Adjustment is Weak / Takes Times”
 - reduce gap between micro and macro elasticities

- How?
 - Define and characterize an appropriate “frictionless benchmark”
 - assumes REE+CK, replicates Arrow-Debreu
 - Depart from this benchmark in two possible ways
 - replace REE with cognitive/behavioral concepts
 - maintain REE but remove CK
• Elementary Walrasian economy
 - with decentralized and sequential trading

• Two periods: “morning” and “afternoon”
 - proxy for “present” vs “future”
 - \(t \) and \(t + 1 \) in multi-period extension

• Three goods = numeraire + morning good + afternoon good
 - numeraire can be land, capital, money, or leisure as in Lagos-Wright, Guerrieri-Lorenzoni, etc
Framework

• A continuum “marketplaces” $m \in [0, 1]$
 - can, but do not have to, be correlated with geographic regions

• Every agent trades in a single marketplace in each period
 - $t = 1$: morning good against numeraire
 - $t = 2$: afternoon good against numeraire

• But: agents may “relocate” as time passes
 - GE interdependence across markets
Framework
Demand, Supply, and Fundamentals

- in the paper: details of micro-foundations
 - preferences, endowments, technology

- here: work with (log-linearized) demand and supply functions
 - morning markets: \(c_m = D(\cdot) \quad q_m = S(\cdot) \)
 - afternoon markets: \(c_m^* = D^*(\cdot) \quad q_m^* = D^*(\cdot) \)

- “fundamentals” = exogenous shifter to demand and supply
 - \(\theta_m \) = average fundamental of agents originally in marketplace \(m \)
 - \(\bar{\theta} \) = economy-wide average fundamental
Elementary assumptions: for every m,

1. (a) individual rationality and market clearing
2. (b) knowledge of (θ_m, p_m) in own marketplace
3. (c) same subjective beliefs *within* each marketplace
4. (d) knowledge that (1.a)–(1.c) hold in own marketplace

Standard practice: the above plus

1. (2) Common Knowledge (CK) of entire f_m; p_m; g_m \([0;1]\)
2. (3) Rational Expectations Equilibrium (REE) CK of individual rationality and of market clearing subjective beliefs = objective expectations

Our paper: maintain (1) but relax (2) and/or (3)

preserve PE but modify GE
Elementary assumptions: for every m,

1. (a) individual rationality and market clearing
2. (b) knowledge of (θ_m, p_m) in own marketplace
3. (c) same subjective beliefs within each marketplace
4. (d) knowledge that (1.a)–(1.c) hold in own marketplace

Standard practice: the above plus

2. Common Knowledge (CK) of entire $\{\theta_m, p_m\}_{m \in [0,1]}$
3. Rational Expectations Equilibrium (REE)

\[\Rightarrow \cdot \text{CK of individual rationality and of market clearing} \\
\Rightarrow \cdot \text{subjective beliefs = objective expectations} \\
\Rightarrow \cdot \text{identical beliefs both within and across marketplaces} \]
Standard Practice vs This Paper

- **Elementary assumptions:** for every m,
 - (1.a) individual rationality and market clearing
 - (1.b) knowledge of (θ_m, p_m) in own marketplace
 - (1.c) same subjective beliefs *within* each marketplace
 - (1.d) knowledge that (1.a)–(1.c) hold in own marketplace

- **Standard practice:** the above plus
 - (2) Common Knowledge (CK) of entire $\{\theta_m, p_m\}_{m \in [0,1]}$
 - (3) Rational Expectations Equilibrium (REE)
 - \Rightarrow CK of individual rationality and of market clearing
 - subjective beliefs = objective expectations
 - identical beliefs both within and across marketplaces

- **Our paper:** maintain (1) but relax (2) and/or (3)
 - \Rightarrow preserve PE but modify GE
Shocks and Outcomes

- **Aggregate shock**
 \[\bar{\theta}_{old} \rightarrow \bar{\theta}_{new} = \bar{\theta}_{old} + \Delta \bar{\theta} \]

- **Allow for differential exposure and local shocks**
 \[\Delta \theta_m = (1 + \delta_m)\Delta \bar{\theta} + z_m \]

- **Question:** how do morning quantities/prices respond to \(\Delta \bar{\theta} \)?

- **Answer:** depends on how shock affects, for every \(m \),
 - demand and supply in *own* marketplace, for given beliefs
 - beliefs of outcomes in *other* marketplaces, for given fundamentals

- **Preliminary step:** market clearing with arbitrary subjective beliefs
Lemma. For every m, the morning outcomes satisfy

$$
\begin{pmatrix}
q_m \\
p_m
\end{pmatrix} = F\left(\hat{E}_m[\bar{p}^*], \theta_m \right)
$$

where $\hat{E}_m[\cdot]$ denotes the subjective belief in marketplace m and \bar{p}^* denotes the average afternoon price.
Lemma. For every m, the morning outcomes satisfy

\[
\begin{pmatrix}
q_m \\
p_m
\end{pmatrix}
= F\left(\hat{E}_m[\bar{p}^*], \theta_m \right)
\]

where $\hat{E}_m[\cdot]$ denotes the subjective belief in marketplace m and \bar{p}^* denotes the average afternoon price.

Lemma. For every m, the afternoon outcomes satisfy

\[
\begin{pmatrix}
q_m^* \\
p_m^*
\end{pmatrix}
= F^* \left(\rho q_m + (1 - \rho)\bar{q}, \rho \theta_m + (1 - \rho)\bar{\theta} \right)
\]

where ρ is mass of native agents, $1 - \rho$ is mass of agents relocating from other marketplaces, \bar{x} denotes economy-wide aggregates.
Two-Way Feedback

- Two-way feedback:
 afternoon outcomes = function(realized morning outcomes)
 morning outcomes = function(beliefs of afternoon prices)

- What’s next? How beliefs are formed and adjust to $\Delta \bar{\theta}$
Benchmark and Variants

- Frictionless Benchmark: \textit{REE + CK}
 - replicates Arrow-Debreu despite sequential and decentralized trading

- Type-1 Variants: replace \textit{REE} with solution concepts that capture
 - Tatonnement dynamics [main example]
 - Cobweb dynamics
 - Level-k Thinking
 - Reflective Equilibrium as in Garcia-Schmidt and Woodford (2015)
 - Discounting as in Gabaix (2016)

- Type-2 Variant: maintain \textit{REE} but drop \textit{CK}
 - in line with literature on HOB reviewed in our handbook chapter
Assumption. Rational expectations plus commonly-shared information

Lemma. There exists a function \mathcal{T} such that REE satisfies

$$\bar{p}^* = \mathcal{T}(E[\bar{p}^*], \bar{\theta})$$

Also, $\alpha \equiv \frac{\partial \mathcal{T}}{\partial \bar{p}} \in (0, 1)$, which means that \mathcal{T} is a contraction mapping.

Corollary. The equilibrium exists and is unique. Furthermore,

$$E[\bar{p}^*] = \bar{p}^* = \mathcal{P}(\bar{\theta}).$$
Proposition

There exists scalars ϵ_{micro} and ϵ_{Macro} such that

$$\Delta \tilde{q} = \epsilon_{\text{Macro}} \Delta \tilde{\theta}$$

$$\Delta q_m = \Delta \tilde{q} + \epsilon_{\text{micro}} (\delta_m \Delta \tilde{\theta} + z_m)$$

- **PE vs GE**

 $$\epsilon_{\text{micro}} = \text{PE} \quad \epsilon_{\text{Macro}} = \text{PE} + \text{GE}$$

 - PE effect = holding beliefs of \tilde{p}^* fixed = as if idiosyncratic shock
 - GE effect = adjustment in beliefs of \tilde{p}^*
Proposition

There exists scalars ϵ^{micro} and ϵ^{Macro} such that

$$\Delta \bar{q} = \epsilon^{\text{Macro}} \Delta \bar{q}$$

$$\Delta q_m = \Delta \bar{q} + \epsilon^{\text{micro}} (\delta_m \Delta \bar{q} + z_m)$$

PE vs GE

- **PE vs GE**
 - $\epsilon^{\text{micro}} = \text{PE}$
 - $\epsilon^{\text{Macro}} = \text{PE} + \text{GE}$

 - PE effect = holding beliefs of \bar{p}^* fixed = as if idiosyncratic shock
 - GE effect = adjustment in beliefs of \bar{p}^*

- **Two scenarios:**
 - GE amplifies PE $\iff \epsilon^{\text{Macro}} > \epsilon^{\text{micro}}$ (e.g., AD multipliers)
 - GE offsets PE $\iff \epsilon^{\text{Macro}} < \epsilon^{\text{micro}}$ (e.g., competing for resources)
PE effect

\[S(\cdot, p^\ast_0) \]

\[D(\cdot, p^\ast_0, \xi_0) \]

\[D(\cdot, p^\ast_0, \xi_1) \]

PE effect
GE offsets PE

\[
S(\cdot, p^*_0) \quad D(\cdot, p^*_0, \xi^*_{0})
\]

\[
D(\cdot, p^*_1, \xi^*_{1}) \quad S(\cdot, p^*_1)
\]

\[
Y \quad Z
\]

PE effect \quad GE effect
GE attenuates PE
Connection to Empirical Work

- Recent empirical macro:
 - exploit cross-sectional variation in δ_m, exposure to aggregate shocks
 - avoid contamination of aggregate time series by other shocks
 - e.g., Mian-Sufi, Nakamura-Steinsson, Beraja-Hurst-Ospina, etc

- Mind the gap!
 - what is of interest: ϵ^{Macro}
 - what is estimated: ϵ^{micro}

- Problem: time fixed effect removes, not only the contaminating shocks, but also the GE effect of the shock of interest

- Our contribution (in the sequel): lessen the gap by dampening GE
Method 1: Beyond REE

- Allow for *irrational* conjectures of how $\Delta \bar{\theta}$ affects
 - relevant future prices and/or
 - current activity in other marketplaces

- Conjectures, however, are not entirely arbitrary

- They are generated by cognitive processes that
 - capture Tatonnement, Level-k, or other plausible algorithms
 - can be indexed by “depth of reasoning”
 - converge to REE as depth of reasoning becomes infinite
Assumption. Fix a $T \in (0, \infty)$. For all m,

$$\hat{E}_m[\bar{p}^*] = \hat{p}^* = \hat{P}^*(T)$$

where \hat{P}^* is obtained by solving the following ODE:

$$\frac{d\hat{P}^*(t)}{dt} = N\left(\hat{P}^*(t), \tilde{\theta}_{new}\right) \quad \forall t \geq 0$$

where N measures excess aggregate demand for afternoon goods

- Description of an instantaneous mental process
- t indexes iterations, not calendar time
- T defines depth of reasoning
Lemma. Price conjectures satisfy

\[\hat{p}^* = \bar{p}_{old}^* + w(T) \cdot (\bar{p}_{new}^* - \bar{p}_{old}^*) \]

where \(w \) is continuous and increasing, with \(w(0) = 0 \) and \(w(\infty) = 1 \), and \(\bar{p}_{old}^* \) and \(\bar{p}_{new}^* \) are the pre- and post-shock REE prices.

- By varying cognitive depth \(T \), vary extent of GE adjustment.
Tatonnement: Spanning the Micro-Macro Gap

Proposition

Macro response given by

\[\Delta \tilde{q} = \epsilon^{Tat} \cdot \Delta \tilde{\theta} \]

where

\[\epsilon^{Tat} = \epsilon^{\text{micro}} + w(T) \cdot (\epsilon^{\text{Macro}} - \epsilon^{\text{micro}}) \]

- By varying \(T \), span gap between \(\epsilon^{\text{micro}} \) and \(\epsilon^{\text{Macro}} \)
 - lower depth of reasoning \(\Rightarrow \) \(\epsilon^{Tat} \) closer to \(\epsilon^{\text{micro}} \)
Method 2: Lack of Common Knowledge

- Key insight: lack of CK arrests adjustment in beliefs
 - recasts previous result from “off equilibrium” to “on equilibrium”
 - accommodates GE attenuation along REE

- Key applied lesson: Once again, span gap between ϵ^{micro} and ϵ^{Macro}
Method 2: Lack of CK

Assumption. Agents form Rational Expectations, but do not have CK of either the aggregate shock or the resulting outcomes in other marketplaces. Instead, info in market \(m \) modelled as a local signal

\[
s_m = \Delta \bar{\theta} + \nu_m
\]

where \(\nu_m \) is i.i.d., Normal, mean 0, variance \(\sigma_v^2 > 0 \)

- HOB satisfy \(\bar{E}^h[\bar{\theta}] = \bar{\theta}_{old} + \lambda^h \Delta \bar{\theta} \) where \(\lambda = \frac{1}{1+(\sigma_v^2/\sigma^2)} \in (0,1) \)
- \(\lambda \) parametrizes degree of CK
- Note: HOB are anchored!

\(\bar{E}^h[\bar{\theta}] \rightarrow \bar{\theta}_{old} \) as \(h \rightarrow \infty \) regardless of how close \(\lambda \) is to 1
Equilibrium Characterization

Lemma. REE now satisfies

\[
\bar{p}^* = T \left(\bar{E} [\bar{p}^*], \bar{\theta} \right)
\]

where \(T \) same contraction mapping as before

- Iterating \(\Rightarrow \) equilibrium beliefs of prices = HOB of fundamentals

\[
\bar{E} [\bar{p}^*] = \gamma (1 - \alpha) \sum_{h=1}^{\infty} \alpha^{h-1} \bar{E}^h [\theta]
\]

- Key implication (1): anchored HOB \(\Rightarrow \) anchored price expectations

- Key implication (2): higher \(|\alpha| \) implies
 - stronger GE under CK
 - but also more weight on anchored HOB without CK
Lack of CK as GE attenuation

Lemma. REE satisfies

\[\bar{E} [\bar{p}^*] = \bar{p}_{old}^* + \pi(\lambda) (\bar{p}_{new}^* - \bar{p}_{old}^*) \]

where \(\pi \) is continuous and strictly increasing, \(\pi(0) = 0 \), and \(\pi(1) = 1 \).

- By varying degree of CK \(\lambda \), vary extent of GE adjustment
Proposition

There exists a scalar ϵ^{inco} such that

$$\Delta \bar{q} = \epsilon^{inco} \cdot \Delta \bar{\theta}$$

Furthermore,

$$\epsilon^{inco} = \epsilon^{micro} + \pi(\lambda) \cdot (\epsilon^{Macro} - \epsilon^{micro})$$

where π is continuous and strictly increasing, $\pi(0) = 0$, and $\pi(1) = 1$.

- By varying λ, span gap between ϵ^{micro} and ϵ^{Macro}
 - less CK \Rightarrow ϵ^{inco} closer to ϵ^{micro}
Corollary. \(\forall T \) in Tatonnement, \(\exists \lambda \) in incomplete-info variant s.t.

- rational expectations in latter = ad hoc conjectures in former
- same observables
- equal GE attenuation

The converse is also true.

- In this respect, removing CK is a substitute to relaxing REE
- Does this lesson extend to other relaxations of REE?
Cobweb and Level-k Thinking

- Recast Walrasian economy as a Beauty-Contest Game
 \[\bar{p}^* = \mathcal{T}(\hat{E}[\bar{p}^*], \bar{\theta}) \iff \bar{q} = \mathcal{BR}(\hat{E}[ar{q}], \bar{\theta}) \]

- Cobweb dynamics = iterating on \(\mathcal{T} \)

- Level-k Thinking = iterating on \(\mathcal{BR} \)
Cobweb and Level-k Thinking

- Recast Walrasian economy as a Beauty-Contest Game

\[\bar{p}^* = T \left(\hat{E}[\bar{p}^*], \hat{\theta} \right) \leftrightarrow \bar{q} = BR \left(\hat{E}[\bar{q}], \hat{\theta} \right) \]

- Cobweb dynamics = iterating on \(T \)

- Level-k Thinking = iterating on \(BR \)

Corollary

Cobweb dynamics = Level-k Thinking

but, in general, ≠ GE attenuation

- Reason: conjectures can “overshoot” when \(\epsilon^{Macro} < \epsilon^{micro} \)
 - when GE offsets PE, GE effect can be amplified
Scenario 1: GE amplifies PE, or Strategic Complementarity

\[\bar{q} = \bar{q} \]

\[\bar{q}_{\text{new}} \]

\[\bar{q}_{\text{old}} \]

\[\bar{q}_0 \]

\[\bar{q}_1 \]

\[\bar{q}_2 \]

\[\bar{q}_\text{PE effect} \]

\[\bar{q}_\text{GE effect} \]

\[\bar{q}_0 \]

\[\bar{q}_1 \]

\[\bar{q}_2 \]

\[\bar{q}_3 \]

\[\bar{q}_{\text{new}} \]

\[\bar{q}_{\text{old}} \]

\[\bar{q} = \bar{q} \]

\[\bar{q}_{\text{new}} \]

\[\bar{q}_{\text{old}} \]

\[\bar{q}_0 \]

\[\bar{q}_1 \]

\[\bar{q}_2 \]

\[\bar{q}_3 \]

\[\bar{q}_{\text{PE effect}} \]

\[\bar{q}_{\text{GE effect}} \]
Scenario 2: GE offsets PE, or Strategic Substitutability

\[
\bar{q} = \hat{q}
\]
Reflective Equilibrium as in Garcia-Schmidt and Woodford (2015)

- Similar to Level-k Thinking
- But, instead of iterating on BR, let conjecture solve ODE

\[d[\text{conjecture}] = f(\text{gap between conjecture and BR to it}) \]

- Perhaps unintentional: it cures “overshooting pathology”!

Corollary

Reflective Equilibrium = Lack of CK = GE attenuation
Discounting as in Gabaix (2016)

Assumption.

\[(\text{perceived change in } \bar{p}^* \text{ or } \bar{q}) = \chi \cdot (\text{true change})\]

for some \(\chi \in (0, 1)\)

- Implication: GE is attenuated
- But note: one is free to assume \(\chi > 1\), in which case GE is amplified
 - a priori, why is it more plausible/desirable to assume that behavioral agents expect the others to under-react than to over-react?
- Same caveat with \(\epsilon\)-equilibrium or Akerlof-Yellen
 - “near rationality” can either reduce or increase the micro-to-macro gap
- By contrast: with lack of CK, GE is *necessarily* attenuated
GE Takes Time

- Sought-after notion: **GE takes time**
 - GE effect is weak on impact, but gets stronger with time
 - gap between micro and macro elasticity is small only in SR

- Framework: example with trading over large number of periods

- **Method 1: replace REE concept**
 - requires additional assumption
 - that agents become “deeper thinkers” as time passes

- **Method 2: relax CK assumption**
 - follows naturally from endogenous learning
 - as agents observe past outcomes
GE Takes Time

- ϵ_{macro}
- ϵ_{micro}

- k_t

- Frictionless benchmark
- Tatònnement or Lack of CK

t

Graphs showing the behavior of k_t over time with ϵ_{macro} and ϵ_{micro} as parameters.
Take-Home Lessons

- GE attenuation = robust prediction of relaxing either REE or CK

- In this regard, lack of CK = substitute of relaxing REE

- But, some differences:
 1. immune to Lucas critique
 2. ties degree of attenuation to informational proximity
 3. no ad hoc “default” point
 4. naturally implies that attenuation decays with time
 5. easier to adapt to stationary settings with recurring shocks

- In our view, this tilts the balance in favor of lack of CK
Applications (in companion papers)

- Forward guidance [next]
- Ricardian Equivalence and Fiscal Policy
- AD and Keynesian Multipliers without Nominal Rigidity
- ...

Forward Guidance without Common Knowledge
A NK Economy at the ZLB

Forward Guidance
- promise to keep low rates in the future (after exiting ZLB)

The Puzzle
- quantitative large effect
- effect increases with horizon

It’s all about GE
- PE effect decreases with horizon
Main Findings

- Removing CK ⇒
 - attenuates GE effects
 - anchors $E[y]$ and $E[\pi]$ for given $E[R]$

- In simple words:
 - “Hard for PM to shift expectations of inflation and income even if she can manage expectations of policy”

- Also: attenuation increases with horizon
 - lessens forward-guidance puzzle
 - justifies front loading of either MP or fiscal stimuli

- Additional results
 - paradox of flexibility, discounted Euler/NKPC...
1. Framework
2. Review the Puzzle
3. Remove CK
 - recast IS and NKPC as Beauty Contests
 - unearth HOB
4. Revisit Forward Guidance
5. Robustness and Additional Results
• Continuum of households/consumers

• Preferences

\[U_i = \sum_{t=0}^{+\infty} \beta^t \left(\log c_{it} - \frac{1}{1+\epsilon} n_{it}^{1+\epsilon} \right), \]

• Budget constraint

\[c_{it} + s_{i,t} = a_{it} + w_{it} n_{it} + e_{it} \]

\[a_{i,t} = (1 + r_t) s_{i,t-1} = \frac{1 + R_{t-1}}{1 + \pi_t} s_{i,t-1} \]

• incomplete markets in the sense of no risk-sharing

• but no liquidity constraints (only for simplicity)
- Final goods produced by a competitive sector

\[y_t = \left(\int_0^1 \left(y^j_t \right)^{\frac{\varsigma-1}{\varsigma}} dj \right)^{\frac{\varsigma}{\varsigma-1}} \]

- Each variety \(j \) produced by a monopolist

\[y^j_t = l^j_t \]

- Nominal rigidity a la Calvo
 - fraction \(1 - \theta \) changes price each period
Shocks

- **Shocks to markups**
 - μ^j_t at the firm level
 - μ_t at the aggregate level

- **Shocks to wages**
 - $w^j_t = w_t u^j_t$ at the firm level
 - $w_{it} = w_t \xi_{it}$ at the household level

- Modeling role of shocks: limit aggregation of information

- Note: henceforth work with log-linearized model
Let T index length of liquidity trap and horizon of FG

- $t < T - 1$: ZLB binds and $R_t = 0$ for all
- $t \geq T + \Delta$: “natural level” and $y_t = \pi_t = 0$
- let $\Delta = 1$ for simplicity

Forward guidance

- policy announcement at $t = 0$ of likely R_T
- modeled as $z = R_T + \text{noise}$

Standard model: common knowledge of z
The Standard NK Model

- Nest standard NK model by imposing CK

\[y_t = - \{ R_t + E_t[\pi_{t+1}] \} + E_t[y_{t+1}] \]
\[\pi_t = \kappa y_t + \beta E_t[\pi_{t+1}] + \mu_t \]

- **Question**: How does \(y_0 \) vary with \(E_0[R_T] \)?

\[47/65 \]
The Standard NK Model

- Nest standard NK model by imposing CK

\[
y_t = - \{ R_t + E_t [\pi_{t+1}] \} + E_t [y_{t+1}]
\]
\[
\pi_t = \kappa y_t + \beta E_t [\pi_{t+1}] + \mu_t
\]

- **Question**: How does \(y_0 \) vary with \(E_0[R_T] \)?

- **Answer**: There exists a function \(\phi^* \) such that

\[
y_0 = -\phi^*(T) \cdot E_0[R_T]
\]

- \(\phi^* \) measures power of FG under CK
- note: \(\phi^* \) invariant to precision of \(z \) (credibility etc)
The Puzzle

- ϕ^* increases without bound as we increase T
 - the further into the future FG operates, the stronger its effect!

- ϕ^* quantitatively large even for $T=$ few years

- Why? GE feedback between spending and inflation
 - as we iterate IS and NKPC backwards, effects keep piling up!
What’s Next

- Recast NK model as a multi-layer Beauty Contest
 - clarify GE mechanisms
 - recast them as dynamic strategic complementaries
 - unearth role of HOB

- Relax CK = anchor expectations = attenuate GE effects
Removing Common Knowledge
The IS Curve *with* Common Knowledge

\[y_t = -E_t [r_{t+1}] + E_t [y_{t+1}] \]
The IS Curve WITHOUT Common Knowledge

\[y_t = -\left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[r_{t+k-1}] \right\} + (1 - \beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[y_{t+k}] \right\} \]
\[y_t = - \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[r_{t+k-1}] \right\} + (1 - \beta) \left\{ \sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_t[y_{t+k}] \right\} \]

- **dynamic beauty contest** among consumers
 - follows from PIH and \(y = c \)
 - modern version of Keynesian income multiplier
 - optimal \(c \) depends on \(E \) of future real rates and income
 \(\Rightarrow \) equilibrium \(y \) depends on HOB of future \(R \) and \(\pi \)
\[\pi_t = \kappa y_t + \beta E_t [\pi_{t+1}] + \mu_t \]
\[\pi_t = \kappa y_t + \kappa \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \mathbb{E}_t[y_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \mathbb{E}_t[\pi_{t+k}] \right\} + \mu_t \]
The NK Philips Curve \textit{WITHOUT} Common Knowledge

\[\pi_t = \kappa y_t + \kappa \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \mathbb{E}_t^f[y_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} (\beta \theta)^k \mathbb{E}_t^f[\pi_{t+k}] \right\} + \mu_t \]

- \textit{dynamic beauty contest} among firms
 - follows from optimal pricing with Calvo
 - optimal reset prices depend on expectations of future MC
 \[\Rightarrow \text{equilibrium } \pi \text{ depends on HOB of future } y \text{ and } \pi \]
The NK Model without Common Knowledge

- IS = beauty contest within group of consumers
 - y as a function of HOB of R and π

- NKPC = beauty contest within group of firms
 - π as a function of HOB of y

- Overall equil = upper-layer beauty contest between two groups
 - feedback between y and π
Summary

- three GE effects
 - one “hidden” behind Euler/IS
 - another “hidden” behind NKPC
 - and third across the two

- standard practice: impose $CK = \text{maximize all GE effects}$

- our paper: relax $CK = \text{attenuate all GE effects}$
Revisiting Forward Guidance
Baseline Scenario

- **Information structure**
 - initial private signal
 \[x_i = z + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2_{\epsilon}) \]
 - \(\epsilon_i \) can be interpreted as the product of rational inattention
 - limit with no learning (large shocks)

- **Degree of CK indexed by** \(\lambda \in (0, 1] \)
 - HOB satisfy \(\mathbb{E}^h[R_T] = \lambda \mathbb{E}^{h-1}[R_T] \quad \forall h \geq 2 \)
 - consumers vs firms: \(\lambda_c \) vs \(\lambda_f \)
 - benchmark nested with \(\lambda_c = \lambda_f = 1 \)
Question: How does y_0 vary with $\bar{E}_0[R_T]$?

Answer: There exists a function ϕ such that

$$y_0 = -\phi(\lambda_c, \lambda_f, T) \cdot \bar{E}_0[R_T]$$

- note: answer orthogonal to how much $\bar{E}_0[R_T]$ itself varies
- comparison: ϕ vs ϕ^*
1. Attenuation for any horizon

- $\phi < \phi^*$
- lower λ_c or $\lambda_f \Rightarrow$ lower ϕ
Main Results

1. Attenuation for any horizon
 - $\phi < \phi^*$
 - lower λ_c or $\lambda_f \Rightarrow$ lower ϕ

2. Attenuation effect increases with horizon
 - ratio ϕ/ϕ^* decreases in T
 - why? longer horizons \Rightarrow beliefs of higher order
 - iterating on the equations of the model \Rightarrow iterating on HOB
 - underscores sensitivity of related predictions

58/65
Main Results

1. Attenuation for any horizon
 - $\phi < \phi^*$
 - lower λ_c or $\lambda_f \Rightarrow$ lower ϕ

2. Attenuation effect increases with horizon
 - ratio ϕ/ϕ^* decreases in T
 - why? longer horizons = beliefs of higher order
 - iterating on the equations of the model = iterating on HOB
 - underscores sensitivity of related predictions

3. Attenuation effect grows without limit as $T \to \infty$
 - $\phi/\phi^* \to 0$ as $T \to \infty$, even if $\lambda \approx 1$
 - small friction can have large consequences
 - for λ_c small enough, $\phi \to 0$ in absolute, not only relative to ϕ^*
A Numerical Illustration

- Modest friction: $\lambda_c = \lambda_f = 0.75$
 - 25% prob that others have failed to hear announcement
 - all other parameters standard, as in McKay et al (2015)
A Decomposition

- Anchoring $E[y]$ vs $E[\pi]$: which one matters most?
 - consumers: most action comes from anchoring $E[\pi]$ (i.e., $E[r]$)
 - firms: anchoring $E[y]$ (i.e, $E[\text{realMC}]$) relatively more important

- dashed line: $E[\pi]$ forced to be as in frictionless benchmark
Robustness

- **Generalization** to almost arbitrary information structures
 - learning through current and past outcomes
 - anticipation of future policy announcements

- Formalization of notion “longer horizons = beliefs of higher order”
 - corollary: argument for front-loading policy
Fiscal Stimuli: Back- vs Front-Loading

- **Standard NK prediction:**
 - fiscal stimuli work because they trigger inflation
 - better to **back-load** so as to “pile up” inflation effects

- **Our twist:**
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - better to **front-load** so as to minimize coordination friction
Paradox of Flexibility

- In standard NK model, ϕ^* increases with $1 - \theta$
 - **paradox**: price flexibility makes MP more powerful
 - related: price flex exacerbates ZLB constraint/deflationary spiral

- Our twist: ϕ/ϕ^* decreases with $1 - \theta$
 - **price flexibility increases attenuation effect**
 - lack of CK lessens paradox of flexibility

- Intuition: same causes (GE effects), same resolution
Discounted Euler and Discounted NKPC

- As if representative agent discounts more heavily the future

\[y_t = \Lambda_t E_t [y_{t+1}] - \{ R_t - \lambda_t E_t [\pi_{t+1}] \} \]
\[\pi_t = M_t \beta E_t [\pi_{t+1}] + m_t \kappa y_t \]

where \(\Lambda_t, M_t, m_t \in (0, 1) \).

- Reminiscent of McKay et al. (2015) and Gabaix (2016), but:
 - preserve micro-foundations and Euler at individual level
 - preserve Rational Expectations
 - learning \(\Rightarrow \) discounting is “transitory”

- Discounting = manifestation of anchored but rational beliefs
Conclusion
Conclusion

- Relaxing Common Knowledge
 - structured (superior?) substitute to certain non-REE approaches
 - attenuates or slows down GE mechanisms
 - increases relevance of empirical work a la Mian-Sufi
 - lessens NK puzzles
 - favors front-loading

- Related ongoing work
 - revisit Ricardian equivalence and effects of G, deficits
 - a theory of Keynesian multipliers without nominal rigidity
 - ...