# Wages and the Value of Nonemployment

Simon Jäger MIT Benjamin Schoefer UC Berkeley

Samuel Young MIT Josef Zweimüller
U Zurich

• Prominent view of wage setting: bargaining, e.g. Nash:

$$\mathsf{Wage} = \phi \cdot [\mathsf{Inside \ Value \ of \ Job}] + (1 - \phi) \cdot [\mathsf{Value \ of \ Outside \ Option}]$$

Common specification: workers' outside option is (brief) nonemployment

- $\Rightarrow$  Nonemployment outside option is a key determinant of wages
  - Theory: e.g., canonical DMP model & Nash bargaining

    Pissarides (2000); Shimer (2005); Hagedorn & Manovskii (2008); Ljungqvist and Sargent (2017); Christiano, Eichenbaum & Trabandt (2017),...
  - Policy: wage pressure channel of UI

Krusell, Mukoyama & Sahin (2010); Hagedorn, Karahan, Manovskii and Mitman (2015); Chodorow-Reich, Coglianese and Karabarbounis (2017)

Evidence: wages comove with aggregate LM conditions

Pissarides (2009); Phillips curve; Beaudry & DiNardo (1991), Blanchflower Oswald (1994); Hagedorn & Manovoskii (2013); Chodorow-Reich & Karabarbounis (2015),...

## The Paper: Estimate Wage Sensitivity to NE Value

**Variation** is quasi-experimental shifts in UI benefit levels  $b_i$ .

$$\frac{dw_{\mathbf{i}}}{db_{\mathbf{i}}} = \widehat{\sigma}_{w,b}$$

### **Empirical Strategy**

Four UIB reforms in Austria from 1976 to 2001

Sharp, large and quasi-experimental variation in benefit levels

Treatment groups db > 0 and control groups db = 0

Treatment  $\frac{db}{w}$  often multiple percentage points

Main focus: existing employment relationships and wages

⇒ Isolate bargaining channel

Rather than McCall channel and search behavior of unemployed Schmieder, von Wachter and Bender (2016), Nekoei and Weber (2017),...

Extension: we also study wages in new jobs

### **Example: 1989 Reform of Benefit Levels**



# **The Paper**: Estimate Wage Sensitivity to NE Value

**Variation** is quasi-experimental shifts in UI benefit levels  $b_i$ .

$$\frac{dw_{\mathbf{i}}}{db_{\mathbf{i}}} = \widehat{\sigma}_{w,b}$$

**Derive theoretical benchmark** from calibrated Nash bargain model:

$$\sigma_{w,b}^{\mathsf{Nash}} \!\! pprox 0.48$$

Our estimate reveals empirical insensitivity of wages to UIBs:

$$0.00 \le \widehat{\sigma}_{w,b} \le 0.03$$

Little heterogeneity, e.g. local unemp. rate, time on UI... Small effect extends to new hires

- ⇒ Micro evidence for models insulating wages from NE value
  - Alternating offer bargaining (Hall and Milgrom 2008)
  - Employer competition models (e.g. Cahuc et al. 2006)
  - Non-bargaining models of wage determination

#### Outline

- 1. Theoretical Prediction for Wage-UI Benefit Sensitivity from Calibrated Bargaining Model
- 2. Institutional Setting and Data
- 3. Empirical Estimate of Wage-UI Benefit Sensitivity
- 4. Discussion & Alternative Interpretations

# Nash Bargaining: Background

$$w = \phi \cdot p + (1 - \phi) \cdot \Omega$$

p: Inside value (e.g. productivity, amenities,...)

 $\Omega$ : Worker outside option (e.g. retirement, another job,...)

 $\phi$ : Worker bargaining power

Wage-inside value sensitivity:

$$\Rightarrow dw = \phi \cdot dp$$

Wage-outside option sensitivity:

$$\Rightarrow dw = (1 - \phi) \cdot d\Omega$$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{d\Omega}{db}$$

## Model: Roadmap

Nash wage:

$$w = \phi \cdot p + (1 - \phi) \cdot \Omega$$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{d\Omega}{db}$$

#### Roadmap:

- 1 Calibrate  $\phi$
- 2 Specify  $\Omega$  and derive  $\frac{d\Omega}{db}$
- 3 Derive theoretical benchmark for  $\frac{dw}{db}$
- 4 Show robustness to market adjustment and micro reoptimization

# Model: Roadmap

Nash wage:

$$w = \phi \cdot p + (1 - \phi) \cdot \Omega$$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{d\Omega}{db}$$

#### Roadmap:

1 Calibrate  $\phi$ 

$$dw = \phi \cdot dp$$

- 2 Define  $\Omega$  and  $\frac{d\Omega}{dh}$
- 3 Derive theoretical benchmark for  $\frac{dw}{dh}$
- 4 Show robustness to market adjustment and micro reoptimization

### φ: **Macro Calib's & Micro Evidence** (Rent Sharing)



## Model: Roadmap

Nash wage:

$$w = \phi \cdot p + (1 - \phi) \cdot \Omega$$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{d\Omega}{db}$$

#### Roadmap:

- 1 Calibrate  $\phi$
- **2** Define  $\Omega$  and  $\frac{d\Omega}{db}$
- 3 Derive theoretical benchmark for  $\frac{dw}{db}$
- 4 Show robustness to market adjustment and micro reoptimization

$$\Omega$$
 and  $b$ 

Outside option:

$$\Omega \equiv \rho N = b + f \cdot (E(w') - N)$$

Re-employment value

$$\rho E(w') = w' + \delta(N - E(w'))$$

Solved for outside option:

$$\Rightarrow \rho N = \underbrace{\frac{\rho + \delta}{\rho + f + \delta}}_{\substack{\equiv \tau}} \quad b + \underbrace{\frac{f}{\rho + f + \delta}}_{\substack{\equiv 1 - \tau}} \quad w'$$

$$\stackrel{\text{Post-Separation Time}}{\text{in Nonemployment}} \quad \underset{\text{in Re-Employment}}{\text{Post-Separation Time}}$$

$$= \tau \cdot b + (1 - \tau) \cdot w'$$

### The Sensitivity of w to b

Nash wage:

$$w = \phi \cdot p + (1 - \phi) \cdot \underbrace{\left(\tau \cdot b + (1 - \tau) \cdot w'\right)}_{\text{"Direct effect"}} + \underbrace{\left(1 - \tau\right) \frac{dw'}{db}}_{\text{"Feedback"}}$$

Nash bargaining in next job implies that  $\frac{dw}{db} = \frac{dw'}{db}$ , and thus:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{\tau}{1 - (1 - \phi)(1 - \tau)} = (1 - \phi) \cdot \frac{1}{1 + \phi(\tau^{-1} - 1)} \approx 0.48$$

- $\phi = .10$  rent sharing estimates
- $\tau = .10$  post-separation time in on UI when  $\rho = 0$  (conservative)

 $\frac{dw}{db}$  as Function of  $\tau$  given  $\phi$ 



# The Sensitivity of $\boldsymbol{w}$ to $\boldsymbol{b}$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{1}{1 + \phi \left(\tau^{-1} - 1\right)}$$

 $\Leftrightarrow$  Worker bargaining power implied by given estimate of dw/db:

$$\Leftrightarrow \phi = \frac{1 - \frac{dw}{db}}{1 + \frac{dw}{db} \cdot (\tau^{-1} - 1)}$$

### The Sensitivity of w to b as Function of $\phi$ given $\tau$



### φ: **Macro Calib's & Micro Evidence** (Rent Sharing)



# Model: Roadmap

Nash wage:

$$w = \phi \cdot p + (1 - \phi) \cdot \Omega$$

Wage-inside value sensitivity:

$$\Rightarrow dw = \phi \cdot dp$$

Wage-outside option sensitivity:

$$\Rightarrow dw = (1 - \phi) \cdot d\Omega$$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{d\Omega}{db}$$

### Roadmap:

- 1 Calibrate  $\phi$
- 2 Define  $\Omega$  and  $\frac{d\Omega}{db}$
- 3 Derive theoretical benchmark for  $\frac{dw}{db}$ 
  - 4 Robustness: market adjustment and micro reoptimization

#### **Robustness**

$$\rho N = [b + f [E(w') - N]]$$

$$\Rightarrow \frac{\cdot dN}{db} = \underbrace{ \begin{array}{c} \text{Benchmark calibration "holding $\tau$ fixed"} \\ \frac{\partial N}{\partial b} + \underbrace{ \begin{array}{c} \partial N}{\partial w'} \frac{dw'}{db} \\ \text{Mechanical effect} \end{array} }_{\text{Feedback of wage response}}$$

### Richer Instantaneous Payoff from Nonemployment

$$\rho N = [z(b, ., .) + f \quad [E(w') - N]]$$

$$\Rightarrow \frac{\cdot dN}{db} = \underbrace{\frac{\partial N}{\partial b}}_{\text{Mechanical effect}} + \underbrace{\frac{\partial N}{\partial w'} \frac{dw'}{db}}_{\text{Feedback of wage response}}$$

z(b): inst. payoff while nonemployed z = b + [other]

### Richer Instantaneous Payoff from Nonemployment

$$z(b, \mathbf{c}^*, \mathbf{x}) = \mathbf{b}_i + \frac{v_i(h > 0) - v_i(h = 0)}{\lambda_i} - c(e) - \gamma_i + y_i + \dots$$

#### b<sub>i</sub>: Unemployment benefits

v(h): Disutility of labor

 $\lambda_i$ : Budget constraint Lagrange multiplier

c(e): Job search effort costs

 $\gamma_i$ : Stigma from unemployment

 $y_i$ : Other nonemployment-conditional income sources or transfers

Strategy:

Directly quantifiable variation in the level of UIBs  $b_i$ .

Derive and estimate in levels: dollar-for-dollar sensitivity  $\frac{dw}{db}$ 

 $\Rightarrow$  No need to know *share* of b among other components

### Micro Choice Variables c

$$\rho N(\mathbf{c}) = [z(b, \mathbf{c},) + f(\mathbf{c})[E(w', \mathbf{c}) - N(\mathbf{c})]]$$

$$\Rightarrow \frac{dN}{db} = \underbrace{\frac{\partial N}{\partial b}}_{\text{Mechanical effect}} + \underbrace{\frac{\partial N}{\partial w'} \frac{dw'}{db}}_{\text{Mechanical effect}}$$

$$z(b)$$
: inst. payoff while nonemployed  $z=b+[{\sf other}]$ 

### Envelope Theorem

$$\begin{split} \rho N(\mathbf{c} \quad) = & \underset{\mathbf{c}}{\max}[z(b,\mathbf{c} \quad) + f(\mathbf{c} \quad)[E(w',\mathbf{c} \quad) - N(\mathbf{c} \quad)]] \\ \Rightarrow & \nabla_{\mathbf{c}} N(\mathbf{c}^* \quad) = & \mathbf{0} \\ \Rightarrow & \underbrace{\frac{\cdot dN}{db}}_{\text{Mechanical effect}} \quad + \underbrace{\frac{\partial N}{\partial w'} \frac{dw'}{db}}_{\text{Mechanical effect}} \\ & \text{Feedback of wage response} \end{split}$$

$$z(b)$$
: inst. payoff while nonemployed  $z = b + [other]$ 

### Micro-Reoptimization ⇒ Envelope Theorem

$$\begin{split} \rho N(\mathbf{c} \quad) = & \underset{\mathbf{c}}{\max}[z(b,\mathbf{c} \quad) + f(\mathbf{c} \quad)[E(w',\mathbf{c} \quad) - N(\mathbf{c} \quad)]] \\ \Rightarrow & \nabla_{\mathbf{c}} N(\mathbf{c}^* \quad) = & \mathbf{0} \\ \Rightarrow & \underbrace{\frac{\cdot dN}{db}}_{\text{Mechanical effect}} \quad + \underbrace{\frac{\partial N}{\partial w'} \frac{dw'}{db}}_{\text{Mechanical effect}} \end{split}$$

$$+ \underbrace{\nabla_{\mathbf{c}} N(b, \mathbf{c}^*, \mathbf{x}) \cdot \nabla_b \mathbf{c}^*}_{\text{Micro re-optimization}}$$

z(b): inst. payoff while nonemployed z = b + [other]

### Net Out Market-Level Effects w/ Control Group

$$\rho N(\mathbf{c},\mathbf{x})) = \max_{\mathbf{c}} [z(b,\mathbf{c},\mathbf{x}) + f(\mathbf{c},\mathbf{x})[E(w',\mathbf{c},\mathbf{x}) - N(\mathbf{c},\mathbf{x})]]$$
 
$$\Rightarrow \nabla_{\mathbf{c}} N(\mathbf{c}^*,\mathbf{x}) = \mathbf{0}$$
 Benchmark calibration "holding  $\tau$  fixed" 
$$\Rightarrow \frac{\partial N}{\partial b} + \frac{\partial N}{\partial w'} \frac{dw'}{db}$$
 Mechanical effect Feedback of wage response

$$+ \underbrace{\nabla_{\mathbf{x}} N \cdot \nabla_{b} \mathbf{x}}_{\text{Market Adjustment}} + \underbrace{\nabla_{\mathbf{c}} N(b, \mathbf{c}^{*}, \mathbf{x}) \cdot \nabla_{b} \mathbf{c}}_{\text{Micro re-optimization}}$$

z(b): inst. payoff while nonemployed z = b + [other]

### **Theoretical Robustness** — In Paper

- Multiple components of nonemployment payoff z (ex. value of leisure, stigma, job search effort cost,...)
  - No need to take stand on share  $\frac{b}{z}$
- Equilibrium market-level adjustment
  - Net out with control group in same market
  - Provide calibrated equilibrium model for segmented markets (DMP)
- Micro re-optimization (search effort, spousal labor supply, endogenous UI take-up, ...)
  Envelope theorem
- Myopia/liquidity constraints
- my opia, inquiency comocianis
- Finite benefit duration
- Incomplete take-up/eligibility
- Multi-worker firms,...

#### Outline

- 1. Theoretical Prediction for Wage-UI Benefit Sensitivity from Calibrated Bargaining Model
- 2. Institutional Setting and Data
- 3. Empirical Estimate of Wage-UI Benefit Sensitivity
- 4. Discussion & Alternative Interpretations

### Features of Austrian UI For Mapping into Model

- A No experience rating
  - Funded through fixed linear payroll tax
- B Voluntary quitters eligible for UI
  - US, Portugal: Quitters entirely ineligible
  - Germany, Sweden: longer wait periods
  - Austria: 28-day wait period for quitters
- C Substantial and clean variation in UIB schedules, multiple reforms
  - Vs. more common potential benefit duration variation (constant benefits)
- D High take-up
  - Fraction w/ UIB receipt conditional on E–N transition >70%
- E Post-UI benefits ("Notstandshilfe") are indexed to worker's UIBs

#### Data

- 1. Austrian Social Security Register (ASSD)
  - Matched employer-employee data
  - Universe of dependently employed, private-sector workers and firms (1972 onwards)
  - Detailed information on (annual) earnings, employment status, industry, and occupation (blue/white collar)
- Sample Restrictions:
  - Age 25-54
  - Full-year employment in pre-reform year t
  - Robustness: stayers/movers; longer-tenured workers;...
- 2. Austrian Unemployment Register (AMS)
  - Universe of unemployment spells (1987 onwards)

#### Outline

- 1. Theoretical Prediction for Wage-UI Benefit Sensitivity from Calibrated Bargaining Model
- 2. Institutional Setting and Data
- 3. Empirical Estimate of Wage-UI Benefit Sensitivity
- 4. Discussion & Alternative Interpretations

## Roadmap: Difference-in-Differences Analyses

We estimate  $\sigma$ : dollar-for-dollar sensitivity of wages to UI:

$$dw_{i,t} = \sigma \cdot db_{i,t}$$

$$\Leftrightarrow \frac{dw_{i,t}}{w_{i,t-1}} = \sigma \cdot \frac{db_{i,t}}{w_{i,t-1}}$$

Our theoretical benchmark:

$$\sigma^{\mathsf{Nash},\phi=0.1} = .48$$

- A Visualize evidence in raw data
- B Regression approach with controls & placebo checks
- C Theory-driven heterogeneity cuts

### Variation: Reform-Induced UI Benefit Changes

Benefit schedule:

$$b_t(w_{i,t-1})$$
: for worker with pre-determined (pre-separation) wage  $w_{i,t-1}$ 

We isolate reform-induced benefit changes:

$$db_{i,t} = b_t(w_{i,t-1}) - b_{t-1}(w_{i,t-1})$$

 $\Rightarrow$  Difference: benefits in regime t minus counterfactual benefits absent the reform (i.e. t-1) holding fixed reference wage

Example 2001 reform:  $\tilde{w}_{i,2001} = w_{i,2000}$ :

$$db_{i,2001} = b_{2001}(w_{i,2000}) - b_{2000}(w_{i,2000})$$

### 2001 Reform: Benefit Schedules



### 2001 Reform: Benefit Changes



- Replacement Rate Change
- -- Realized RR Change

### The Reforms Across the Earnings Distribution •





- Benefit Change (db/w)
- Predicted Wage Effects
- One-Year Effects (dw/w)
- Two-Year Effects (dw/w)

### The Reforms Across the Earnings Distribution •









## Wage vs. Benefit Changes: One-Year Effects •



Estimated Wage Sensitivity  $\sigma$ : -.01 (SE: .0083) Predicted Semi-Elasticity: .483

## Wage vs. Benefit Changes: Two-Year Effects



Estimated Wage Sensitivity  $\sigma$ : .026 (SE: .0181) Predicted Semi-Elasticity: .483

# Roadmap: Difference-in-Differences Analyses

We estimate  $\sigma$ : dollar-for-dollar sensitivity of wages to UI:

$$dw_{i,t} = \sigma \cdot db_{i,t}$$

$$\Leftrightarrow \frac{dw_{i,t}}{w_{i,t-1}} = \sigma \cdot \frac{db_{i,t}}{w_{i,t-1}}$$

Our theoretical benchmark:

$$\sigma^{\mathsf{Nash},\phi=0.1} = .48$$

A Visualize evidence in raw data

B Regression approach with controls & placebo checks

C Theory-driven heterogeneity cuts

### **Regression Model**

$$\frac{dw_{i,r,t}}{w_{i,r,t-1}} = \boxed{\sigma_0 \times \mathbb{1}_{(t=r)} \times \frac{db_{i,r,t}(w_{i,r,t-1})}{w_{i,r,t-1}}}$$

$$+ \sum_{e=-L}^{-1} \widetilde{\sigma_e} \times \mathbb{1}_{(t-r=e)} \times \left( \frac{db_{i,r,t}(w_{i,r,t-1})}{w_{i,r,t-1}} \right)_{\mathsf{Plac}} + \tau_{r,P_t} + \theta_{r,t} + f_t(w_{i,r,t-1}) + X'_{i,r,t}\phi_{r,t} + \epsilon_{i,r,t}$$

$$\sigma_0$$
: treatment effect

 $\sigma_e$ : placebo treatment effect  $\Rightarrow$  test for parallel pretrends

 $\phi_{r,t}$ : controls with year-specific slopes

 $f_t(.)$ : parametric earnings control (e.g.  $\ln w$ )

## Wage Sensitivity: Regression Outcomes



# Wage Sensitivity: t-3 Placebos



#### **Robustness Checks**

Selection concerns: No effect on separation rates or J2J mobility.

**Efficiency wage concerns:** No effect on sick leave (shirking proxy)

#### **Specification choices**

- Level of SE clustering.
- Parametric earnings controls.
- Winsorization.

Potential benefit duration vs. UIB level: No wage effect from 1989 PBD reform.

## The Sensitivity of w to b as Function of $\tau$ given $\phi$



### Heterogeneity by $\tau$ : Predicted Time on UI



### Wage Sensitivity by Transition Type



### **EUE Movers**

Earnings Effects



#### **EE Movers**



### **Heterogeneity Analyses**



## **Sensitivity Estimates with Firm-Level Treatment**



#### Outline

- 1. Theoretical Prediction for Wage-UI Benefit Sensitivity from Calibrated Bargaining Model
- 2. Institutional Setting and Data
- 3. Empirical Estimate of Wage-UI Benefit Sensitivity
- 4. Discussion & Alternative Interpretations

### The Sensitivity of w to b as Function of $\phi$ given $\tau$



# The Sensitivity of $\boldsymbol{w}$ to $\boldsymbol{b}$

Wage-benefit sensitivity:

$$\frac{dw}{db} = (1 - \phi) \cdot \frac{1}{1 + \phi \left(\tau^{-1} - 1\right)}$$

 $\Leftrightarrow$  Worker bargaining power implied by given estimate of dw/db:

$$\Leftrightarrow \phi = \frac{1 - \frac{dw}{db}}{1 + \frac{dw}{db} \cdot (\tau^{-1} - 1)}$$

### Possible Interpretation: $\phi \approx 1$ ?



### The Insensitivity of Wages to the Nonemployment Value

⇒ Micro-evidence for insensitivity of wages to nonemployment value (here: UI)

Hard to square with in Nash framework w/ NE as outside option for plausible  $\phi$  values

Promising alternative models that insulate wages from NE value:

- Credible bargaining (Hall and Milgrom (2008))
- Employer competition (e.g. Cahuc, Postel-Vinay and Robin (2006))
- Non-bargaining models of wage determination

Aggregate empirical comovement between wages and labor market conditions – e.g. wage Phillips curve; wage procyclicality – perhaps not driven by outside option channel in bargaining.

### **APPENDIX SLIDES**

### **Treatment and Control Groups**

Diff-in-diff value:

$$\frac{d(\rho N^T)}{db^T} - \frac{d(\rho N^C)}{db^T} = \frac{\partial(\rho N)}{\partial b} + \frac{\partial(\rho N)}{\partial w'} \cdot \left[ \frac{dw'^T}{db^T} - \frac{dw'^C}{db^T} \right]$$
$$= \tau + (1 - \tau) \cdot \left[ \frac{dw'^T}{db^T} - \frac{dw'^C}{db^T} \right]$$

Diff-in-diff Nash wage:

$$\frac{dw^T}{db^T} - \frac{dw^C}{db^T} = (1 - \phi) \left[ \frac{d(\rho N^T)}{db^T} - \frac{d(\rho N^C)}{db^T} \right]$$
$$= (1 - \phi) \left( \tau + (1 - \tau) \left[ \frac{dw'^T}{db^T} - \frac{dw'^C}{db^T} \right] \right)$$

Using Nash bargaining of reemployment wage:

$$\Rightarrow \boxed{\frac{dw^T}{db^T} - \frac{dw^C}{db^T} = (1 - \phi)\frac{\tau}{1 - (1 - \phi)(1 - \tau)}}$$

### Heterogeneity Analyses: Strategy

- 1 Split up the worker sample into subgroups g (gender, firm size,...)
- 2 Allow for group-specific wage sensitivities

$$\frac{dw_{i,r,t}}{w_{i,r,t-1}} = \sum_{g \in G} \sigma_0^g \times \mathbb{1}_{(i \in g)} \times \mathbb{1}_{(t=r)} \times \frac{db_{i,r,t}(w_{i,r,t-1})}{w_{i,r,t-1}}$$

$$+ \sum_{g \in G} \sum_{e = -L}^{-1} \widetilde{\sigma_e^g} \times \mathbb{1}_{(i \in g)} \times \mathbb{1}_{(t-r=e)} \times \left( \frac{db_{i,r,t}(w_{i,r,t-1})}{w_{i,r,t-1}} \right)_{\mathsf{Placebo}}$$

$$+\tau_{r,P_t} + \theta_{r,t} + f_t(w_{i,r,t-1}) + X'_{i,r,t}\phi_{r,t} + \epsilon_{i,r,t}$$

# Wage Sensitivity: t-3 Placebos



## Features of Austrian UI For Mapping into Model

- A No experience rating
  - Funded through fixed linear payroll tax
- B Voluntary quitters eligible for UI
  - US, Portugal: Quitters entirely ineligible
  - Germany, Sweden: longer wait periods
  - Austria: 28-day wait period for quitters
- C Substantial and clean variation in UIB schedules, multiple reforms
  - Vs. more common potential benefit duration variation (constant benefits)
- D High take-up
  - Fraction w/ UIB receipt conditional on E–N transition >70%
- E Post-UI benefits ("Notstandshilfe") are indexed to worker's UIBs
- F Population-level matched employer-employee data

## DMP Equilibrium Adjustment

$$dw^{\mathsf{DMP}} = (1 - \phi)db + \phi k d\theta \tag{1}$$

Next we solve the free entry condition  $\frac{k}{q(\theta)}=J=\frac{p-w'}{\rho+\delta}$  for  $kd\theta=-dw'\cdot\frac{1}{\eta}\frac{f(\theta)}{\rho+\delta}$  to move into the wage equation:

n:
$$dw^{\mathsf{DMP}} = (1 - \phi)db + \phi \left[ -dw'^{\mathsf{DMP}} \cdot \frac{1}{n} \frac{f(\theta)}{\rho + \delta} \right] \tag{2}$$

$$\Leftrightarrow \frac{dw^{\mathsf{DMP}}}{db} = \frac{1 - \phi}{1 + \phi \frac{1}{\eta} \frac{f(\theta)}{\rho + \delta}} \tag{3}$$

$$\approx \frac{1 - \phi}{1 + \phi \cdot \frac{1}{\eta} \cdot (u^{-1} - 1)} \approx_{(?)} \frac{1 - \phi}{1 + \phi \cdot (\tau^{-1} - 1)} \tag{4}$$

since 
$$\frac{f}{\rho + \delta} \approx \frac{f}{\delta} \approx \frac{1 - u}{u} = u^{-1} - 1$$

## Wage Setting in the Austrian Labor Market

- High degree of flexibility even in presence of central bargaining Hofer et al. (2001)
- 95% of workers covered by central bargaining agreements (CBAs)
  - Negotiated by unions and employer associations, primarily at industry level
  - Regulate working conditions, hours, and wage floors
- Substantial scope for wage negotiations at firm and worker level
  - Traxler (1994): "in practice local works councils often negotiate supplementary wage increases"
  - Opening clauses allow for paying below-CBA wages
  - Actually paid wages, on average, 34% higher than wage floors Leoni and Pollan (2011)
  - Lower wage rigidity than Germany or United States Dickens et al. (2007)
  - Borovickova and Shimer (2017) find large wage dispersion between firms even within industry

### Wage Setting in the Austrian Labor Market

- In our data: substantial wage and wage growth dispersion among full-time workers
  - Average deviation from industry×occupation×experience cell average: 18.5%
  - Standard deviation of within-firm, within-worker earnings growth: 4.4%

# Standard Deviation of Within-Firm Earnings Growth



### Rent-Sharing in Austria



Rent-sharing coefficients Level-on-level specification: 0.046 (se 0.009) Log-log specification: 0.36 (se 0.017)

Note: Own calculations based on BvD data. Specifications include firm, year, and industry-by-year effects. Standard errors clustered at the firm level.

### Rent-Sharing in Austria in Comparison



## Salience and Knowledge of UIBs: 2006 Survey



## Non-Wage Outcomes: Mobility, UE Duration, Sickness



# The Reforms Across the Earnings Distribution











#### 1989 PBD Increase for workers 40-49



# One-Year Earnings Growth: Age Gradients



## Two-Year Earnings Growth: Age Gradients



→ Wage Growth '86-'88

→ Wage Growth '88-'90

- O - Difference

# 1976: Reform-Induced vs. Actual Benefit Changes



# 1985: Reform-Induced vs. Actual Benefit Changes



- Replacement Rate Change
- -- Realized RR Change

# 1989: Reform-Induced vs. Actual Benefit Changes



- Replacement Rate Change
- -- Realized RR Change

#### Variation: UI Benefit Levels and Replacement Rates

- Replacement rate  $= \frac{\mathsf{Benefit}(\mathsf{Previous}\;\mathsf{Earnings})}{\mathsf{Previous}\;\mathsf{Earnings}}$
- Earnings base for "previous earnings":
  - Until 1987: last month's earnings
  - 1987 1996: average of last six months' earnings
  - 1996 1999: average earnings in previous calendar year (or year before)
    - 2000 today: no RR reforms
- Series of reforms shifting replacement rates and maximum benefits
  - We identify all reforms to the RR schedule from 1972 to 1999

# Validation: Actual Benefit Receipts vs. Predicted Receipts from Measured Lagged Average Earnings



**Note**:  $\beta$ =0.974 (se=0.003), R<sup>2</sup>=0.451.