Rules and Commitment in Communication

Guillaume Fréchette Alessandro Lizzeri Jacopo Perego
New York University New York University Yale University

October 23, 2017

Preliminary and Incomplete.

Abstract

We investigate models of cheap talk, disclosure of verifiable information, and Bayesian persuasion, in a unified experimental framework. We examine how commitment affects the informativeness of communication and how this depends on the verifiability of information. We show that both senders and receivers react to commitment. Results move in the direction predicted by the model, but there are some revealing ways in which they do not correspond to the exact theoretical predictions. In particular, there is considerable heterogeneity among senders and although, on average the sender’s behavior is closer to the theory’s prediction under unverifiable information; a higher fraction of subjects send equilibrium type messages under verifiable information. Nonetheless, under verifiable information many senders have difficulty using commitment to reduce informativeness to their advantage, but instead they introduce noise that does not benefit them. On the receiver side, rules have an important effect and their behavior is closer to optimal under verifiable information than under unverifiable information.

We thank Andreas Blume, Santiago Oliveros and Salvatore Nunnari for useful comments.
1 Introduction

The goal of this paper is to study how rules and commitment affect the amount of information that can be transmitted between a Sender and a Receiver who have conflicting interests. The structure of our experimental design allows us to jointly analyze models that share an underlying structure regarding preferences and information, but that are distinguished either by the rules governing communication, i.e., whether the Sender can lie about the content of her information, or by the extent to which the Sender can commit to her communication plan. These models generate different predictions regarding both the communication strategies that are used and the amount of information that is revealed in equilibrium. With minimal differences between treatments, our common structure ranges from models of cheap talk (Crawford and Sobel (1982)), to models of disclosure (Grossman (1981), Jovanovic (1982), Okuno-Fujiwara et al. (1990)), to models of Bayesian persuasion (Kamenica and Gentzkow (2011)), as well as intermediate cases between these extremes. Hence, we span a considerable portion of the models of strategic information revelation that have been discussed in the literature in the last decades, and we experimentally study novel dimensions of the Sender-Receiver interaction.

Regarding the rules governing communication, we consider two cases that highlight the following contrast. In the first scenario, Senders’ messages are unverifiable, i.e. Senders can freely misreport their private information. In the second scenario, instead, information is verifiable, i.e. while information can be hidden, it cannot be misreported. The first scenario corresponds to models of cheap talk (e.g., Crawford and Sobel (1982)), while the latter corresponds to models of disclosure with verifiable information (e.g., Grossman (1981), Milgrom (1981), Okuno-Fujiwara et al. (1990)). We interact these two scenarios with treatments in which we vary the degree of commitment available to the Sender. The way we model commitment, is as follows. Before learning the true state, the Sender publicly selects an information structure. After observing the state, with probability \((1 - \rho)\) the Sender is then given the opportunity to secretly revise her plan of action. The higher is \(\rho\), the higher the probability that the Sender will not be able to revise her strategy, hence the higher the extent to which she is committed to her initial plan of actions. In the limit case in which \(\rho = 1\), both scenarios, i.e. with or without verifiable communication, converge to a Bayesian persuasion model (Kamenica and Gentzkow (2011)), and the rules governing communication

1The Sender misreports her private information when she sends messages that are false. A message is false if none of the statements it contains is true. E.g., provided that the ball is blue, message “the ball is red or black” is false. We will formalize this in Section 2.
become irrelevant.2

Novel comparative statics arise from this set up. We focus our attention on the effect that the degree of commitment has on the amount of information that is revealed in equilibrium and how this depend on the verifiability of messages. While in any specific environment and application it is hard to know (and measure) the exact extent of commitment available to an agent, it is natural to think that this can vary and may depend on observable correlates such as the protocols and the frequency of communication. Thus, it seems important to study how communication varies with the extent of commitment.

When messages are unverifiable, the Sender seeks commitment because it allows her to credibly tell the truth, at least some of the time. That is, commitment increases the amount of information that is revealed in equilibrium. In contrast, in verifiable environments, i.e. when any informative message needs to correspond to the state, the Sender still seeks commitment, but for the opposite reason: to credibly hide information, at least some of the time. That is, commitment decreases the amount of information that is revealed in equilibrium. We also show that, when senders have full commitment, verifiability has no impact on the amount of information that is communicated. That is, equilibrium informativeness is exactly the same regardless of the verifiability of messages. However, the senders implement this outcome with very different strategies. Thus, the model generates a rich set of predictions that we then bring to the laboratory.

We depart from the previous experimental literature on information transmission in several ways. First, we innovate by conducting an analysis across a variety of models. Of course, when performing such an exercise, it is crucial to make sure that all sources of variations coming from seemingly unimportant details of the design are reduced to a minimum, so that differences in outcomes in the data can be imputed to differences in the treatments. In order to do this, we take advantage of our theoretical framework, thanks to which we are able to design an experiment that allows us to move from one model to another by simply changing one of the two parameters, namely the degree of commitment on the Sender’s part and the verifiability of messages. An additional advantage of considering all these treatments under the same umbrella is that it provides discipline on the explanations that can be used to

2The (un)verifiability of communications could be modeled in more detail. For instance, verifiable messages could be the equilibrium result of the Sender’s aversion to lying: when lying is cheap, communication is unverifiable; when the cost of lying is sufficiently high, communication becomes verifiable. Alternatively, verifiability could be modeled as access, with some probability, to an authority that verifies the truthfulness of the report. When that probability is zero, communication is unverifiable, and when it is one, communication is verifiable.
rationalize potential deviations from theoretical predictions.

A second way in which we depart from the previous experimental literature on cheap talk is that do not investigate the relationship between the informativeness of communication and the degree of preference alignment between the Sender and the Receiver. Rather than preference alignment, we focus on the effect of commitment on the amount of information that is revealed in equilibrium.\(^3\)

A third element of novelty in our design is the treatment under full commitment. As discussed above, this treatment coincides with a model of Bayesian persuasion as introduced in Kamenica and Gentzkow (2011). This model has become influential in the recent theoretical literature, e.g. Gentzkow and Kamenica (2014), Alonso and Camara (2016), Gentzkow and Kamenica (2016), etc. Evaluating how the degree of commitment affects outcomes is one way to experimentally evaluate the model of Bayesian persuasion.

Our main results are the following. We first show that subjects understand the power of commitment: senders figure out how to exploit commitment and receivers how to react to it. We show that senders understand commitment by contrasting their behavior in the commitment stage to their behavior in the revision stage in a treatment with partial commitment. The theory predicts that in the case of unverifiable information the sender should reveal more information in the commitment stage than in the revision stage, and that this ranking should be reversed when information is verifiable. The data supports this prediction of the theory. The receiver should understand that information conveyed in the commitment stage is more meaningful when the level of commitment is higher, and this is what we find in the data: receivers are more responsive to information in higher commitment treatments. Second, we investigate whether the senders use commitment in a way that is consistent with Bayesian persuasion. We do this by considering treatments in which we vary the receivers’ payoffs so as to change what we call the persuasion threshold, i.e., the minimal amount of information required to persuade the receivers to choose the action desired by the sender. The theory predicts that the sender conveys more information when the persuasion threshold is higher, and this is what we find in the data. We then consider how commitment affects overall equilibrium informativeness by comparing different levels of commitment. We find that subject behave in ways that are consistent with theory, that is, informativeness decreases with commitment in the verifiable treatments and increases with commitment in the unverifiable treatments. However, quantitatively there are significant departures from the

\(^3\)In doing this, we are also addressing recent theoretical contributions on persuasion under partial commitment, such as Min (2017).
theory: informativeness does not rise enough in the unverifiable treatments and it does not drop enough in the verifiable treatments. Furthermore, commitment seems to work better for the Sender when communication is unverifiable. In the limiting case of full commitment, $\rho = 1$, a lot more information is revealed when communication is verifiable than when it is not, despite the fact that, in theory, the equilibrium amount of communication is the same in the two treatments. It appears that this is partly due to the fact that Senders find it harder to understand how to strategically hide good news than to lie about bad ones. We also find that, in the unverifiable treatments with a substantial amount of commitment, receivers are excessively skeptical. This is partly in contrast with prior literature on cheap talk, e.g. Cai and Wang (2006). From a policy perspective, this is a novel justification for making it harder for Senders to misreport their information.

Models with unverifiable communication have been used to study a variety of phenomena, including lobbying Austen-Smith (1993), Battaglini (2002); the relation between legislative committees and a legislature, as in e.g., Gilligan and Krehbiel (1989), Gilligan and Krehbiel (1987); the production of evidence to a jury (Kamenica and Gentzkow (2011), Alonso and Camara (2016). Models of disclosure of verifiable information have been used to study the disclosure of quality by a privately informed seller, for instance, via warranties,\footnote{E.g., Grossman (1981).} of the contents of financial statements by a firm,\footnote{See for instance, Verrecchia (1983), Dye (1985) and Galor (1985).} and in many other contexts. Dranove and Jin (2010) survey the literature on product quality and the disclosure of information.

There are a number of experimental papers on cheap talk. Blume et al. (2017) provides a survey of the experimental literature on communication. Dickhaut et al. (1995) is the first experimental paper to test the central prediction of Crawford and Sobel that more preference alignment between the sender and the receiver should result in more information transmission. Their main result is consistent with this prediction. Forsythe et al. (1999) add a cheap talk communication stage to an adverse selection environment with the feature that the theory predicts no trade and that communication does not help. In the experiment, in contrast, communication leads to additional trade, partly because receivers are too credulous. Blume et al. (1998) study a richer environment and compare behavior when messages have preassigned meanings with behavior when meaning needs to emerge. Among other findings, they confirm that, as in Forsythe et al. (1999) receivers are gullible. Cai and Wang (2006) find that Senders are overly truthful and they also find that receivers are overly trusting, relative to the predictions of the cheap talk model. They also study information revelation
as players’ preferences become more aligned: consistently with the theory, they find that the amount of information transmission increases with the degree of preference alignment. They then discuss how to reconcile the departures from the predictions of the cheap talk model via a model of cognitive hierarchy and via quantal response equilibrium.\(^6\)

Conversely, experiments on the disclosure of verifiable information typically find that there is under-revelation of information when compared with the theoretical predictions. For instance, Jin et al. (2016) find that receivers are insufficiently skeptical when Senders do not provide any information. This in turn leads Senders to underprovide information, thereby undermining the unraveling argument.\(^7\) There are also some papers that studying information unraveling with field data. In particular, Mathios (2000) studies the impact of a law requiring nutrition labels for salad dressings. He shows that, prior to mandatory disclosure, low-fat salad dressings posted labels, while a range of high-fat salad dressings chose not to disclose. Mandatory disclosure was followed by reductions in sales for the highest fat dressings. These results are in conflict with the predictions of the unraveling result from the literature on verifiable communication. Jin and Leslie (2003) study the consequences of mandatory hygiene grade cards in restaurants. They show that hygiene cards lead to increases in hygiene scores, demand being more responsive to hygiene, and lower food borne illness hospitalizations. These results are also in contrast with what would be expected from the unraveling literature.

\section{Theory}

In the next Section we describe the experimental design and the equilibrium outcomes that obtain in our specific parametrization. In the present Section we describe the framework we consider and the theoretical predictions of the model. In the Appendix we show that the predictions extend to a more general environment.

The state space Θ is binary: $\Theta = \{\theta_L, \theta_H\}$. There is a common prior μ_0 that denotes the probability that the state is θ_H. There are two players: a Sender and a Receiver. The Sender has information, the Receiver has the ability to act. Communication takes place with the Sender sending messages in an attempt to influence the action chosen by the Receiver. The game has three stages: the Sender is active in the first two, while the Receiver is active

\(^6\)See also Sánchez-Pagés and Vorsatz (2007); Wang et al. (2010).

\(^7\)See also Forsythe et al. (1989); King and Wallin (1991); Dickhaut et al. (2003); Forsythe et al. (1999); Benndorf et al. (2015); Hagenbach et al. (2014);
in the third. The Receiver chooses actions in a binary set $A = \{a_L, a_H\}$. The receiver’s preferences are given by the following utility function:

$$
\begin{align*}
 u(a_L, \theta_L) &= u(a_H, \theta_H) = 0, \\
 u(a_L, \theta_H) &= -(1-q), \\
 u(a_H, \theta_L) &= -q.
\end{align*}
$$

Thus, the Receiver wishes to match the actions to the state, and the relative cost of the mistakes in the two states is parametrized by q. Given these parameters, a Bayesian Receiver would choose action a_H whenever her posterior that the state is θ_H is larger than q. Thus, we call q the persuasion threshold.

We assume that the prior μ that the state is high is such that $\mu < q$ so that, absent any information, the Receiver would choose a_L. Without this assumption the Sender would have no reason to attempt to communicate with the Receiver.

The Sender’s preferences are given by $v(a) := \mathbb{1}(a = a_H)$, i.e., the sender receives a positive payoff only if the Receiver chooses a_H. Thus, the Sender would like the Receiver to choose the high action.

The Sender sends messages to the Receiver from a subset of $M = \{\theta_L, \theta_H, n\}$. The interpretation of these possible messages is that two of the messages represent statements about the states, while the last one is a “noise” message that has no relation to the state. In the experiment we call n “no message.” Allowing for this message is important in the case of verifiable information. Let $M^\theta \subseteq M$ be the set of messages that the Sender can use in state θ. We say that information is unverifiable if $M^\theta = M$ for all θ. We say that information is verifiable if $M^\theta = \{\theta, n\}$ for all θ. Thus, when information is unverifiable, the Sender is allowed to send any message, including any lie about the content of her information. When information is verifiable, the Sender cannot lie about her type but can choose not to report the type by choosing the noise message n.

Messages are generated by the sender in two possible stages, a commitment stage in which she publicly chooses an information structure before observing the state, and a revision stage in which, after observing the state, she can secretly revise her strategy. The revision stage only occurs with probability $1 - \rho$. Thus, ρ is a measure of the sender’s commitment.

1. **Commitment Stage.** In this stage, the Sender chooses an information structure, which is given by a commitment strategy: $\pi_C : \Theta \rightarrow \Delta(M^\theta)$ that defines the probability that the Sender will send a specific message for any given realization of her information.

2. **Revision Stage.** The Sender learns the state $\theta \in \Theta$. She now has the chance to revise her initial strategy π_C, by specifying a new probability distribution $\pi_R : \Theta \rightarrow \Delta(M^\theta)$. 7
3. **Guessing Stage.** The Receiver chooses \(a : M \times \Pi_c \to A \). In words, the receiver observes the commitment strategy \(\pi_C \) but does not observe the revision strategy \(\pi_R \). The receiver also observes a message \(m \) which is generated with probability \(\rho \) from \(\pi_C \) and \((1 - \rho) \) from \(\pi_R \). The receiver makes her best guess about \(\theta \), given each possible message \(m \in M \) she might receive.

One possible interpretation of the game is that the revision game is always available but the Sender has a type that determines whether she will take advantage of the opportunity to revise the strategy. The parameter \(\rho \) is then the probability that the Sender is not this opportunistic type.

This game includes interesting classic models as special extreme cases. When \(\rho = 0 \) and information is unverifiable, this is a cheap talk model. In the binary model, in this case, the unique equilibrium outcome involves no information transmission. When \(\rho = 0 \) and information is verifiable, this is a model of disclosure. The unique equilibrium in this case involves full information transmission. When \(\rho = 1 \) and information is unverifiable, this is a model of Bayesian persuasion. The unique equilibrium outcome involves partial information transmission.

A key variable in our analysis is the amount of information that is transmitted from the Sender to the Receiver. We measure the amount of informativeness of communication in two ways: the correlation between the state and the action, and the dispersion of posteriors by state. In our discussion of the data these two measures are both useful and highlight different aspects of the phenomena of interest. However, our main theoretical result is independent of the specific measure of informativeness. To be concrete, we now offer more detail on how we compute the statistical correlation between the state of nature \(\theta \) and the equilibrium action \(a \) taken by the Receiver. Given the Receiver’s objective function, his action represents the best guess of the state of nature \(\theta \). Therefore, the correlation between the state and the guess is a valid measure of informativeness. This correlation can in principle range from zero, when no information is communicated, and therefore the Render chooses the same action in every state, to one in which the Sender perfectly reveals the state, and hence the Receiver’s actions match the state with probability one. Fix \(\rho \) and an information structure \(\pi_C, \pi_R \) for both commitment and revision stages, and a strategy \(\sigma \) for the Receiver. Consider an equilibrium \((\pi_C, \pi_R, \sigma, \mu)\). We denote,

\[
\gamma^*(a|\theta) := \sum_m \left(\rho \pi_C(m|\theta) + (1 - \rho) \pi_R(m|\theta) \right) \sigma(a|\mu_{\pi_C, \pi_R}(m))
\]
the equilibrium probability that the Receiver chooses \(a \) conditional on state \(\theta \) being realized. Similarly, let \(\gamma^*(a) := \sum_{\theta} \mu_0(\theta) \gamma(a|\theta) \) the unconditional probability. The absolute value of the correlation between \(\theta \sim \mu_0 \) and \(a \sim \gamma^* \), \(I(\rho) = |C_{\mu_0,\gamma^*}(\theta,a)| \), is our measure of equilibrium informativeness.

Our first result considers a given level of commitment \(\rho \) and compares the informativeness of communication between the commitment and the revision stage.

Proposition 1 (i) There is a \(\hat{\rho} \) such that, if \(\rho > \hat{\rho} \), there is a positive amount of information communicated in equilibrium in the unverifiable treatment and less than full information is communicated in the verifiable treatment. (ii) Consider \(\rho \) such that \(\hat{\rho} < \rho < 1 \). Commitment has opposite effects on the amount of information transmission in verifiable versus unverifiable scenarios: under verifiable information, more information is transmitted at the revision stage than in the commitment stage; under unverifiable information less information is transmitted at the revision stage than in the commitment stage.

This result highlights the tension between the commitment and the revision stage, and how this tension manifests itself differently under verifiable and unverifiable information. In order to understand this result it is useful to consider the extreme scenarios: when \(\rho = 0 \), full disclosure takes place under verifiable information and no information is communicated under unverifiable information. When \(\rho = 1 \), it turns out that both scenarios lead to the same outcome of Bayesian persuasion and partial information revelation (see Proposition below).

The intuition for this result is the following. Under both the verifiable and unverifiable information, the Sender would like to commit to persuade the Receiver to choose the high action as often as possible, and this requires partial information revelation. However, at the revision stage, the Sender is unable to resist the temptation to use her opportunity to “cheat” and manipulate information in her favor. Under verifiable information this opportunity implies full information disclosure in the revision stage; under unverifiable information, it implies always stating the same favorable signal regardless of the state. When \(\rho \) is high, some commitment is possible because the revision stage cannot completely undo the positive effect of the commitment stage, explaining part (i) of the result. However, the revision stage partially undoes the information communicated in the commitment stage, and this undoing goes in opposite direction in verifiable relative to unverifiable information, explaining part (ii) of this result.
Our next result describes how equilibrium informativeness changes with the degree of commitment, and how this depends on the verifiability of messages.

Proposition 2
(i) When messages are unverifiable, increasing commitment increases informativeness. (ii) When messages are verifiable, increasing commitment decreases informativeness. (iii) When $\rho = 1$, the equilibrium outcome is independent of the mode of communication: under full commitment verifiability does not matter.

Thus, increasing commitment affects equilibrium informativeness in opposite ways depending on whether communication is verifiable or not, but the verifiability of messages has no effect on the amount of information transmitted in equilibrium when the sender has full commitment.

We now consider another interesting comparative statics result that can be tested in our environment. This keeps fixed the degree of commitment and discusses how the equilibrium changes as we vary the persuasion threshold parameter q that measures the required posterior to induce the sender to choose a_H.

Proposition 3
For any $\rho > 0$, for both cases of verifiable and unverifiable messages, as the persuasion threshold q increases, the strategy of the Sender becomes more informative.

As the persuasion threshold increases, the Sender must reveal more information in order to induce the receiver to choose the high action. Of course, for low values of ρ, in the unverifiable scenario, no information can be credibly transmitted in equilibrium for any value of q because the revision stage is too dominant in the game, and the revision stage is never informative in unverifiable scenarios. However, for ρ high enough, increasing q will strictly increase the amount of information transmitted.

3 Design

3.1 Basic structure

We now describe the specific parametrization in our experimental design.

An urn contains three balls, two blue (B) and one red (R). The color of the ball represents the state of nature, i.e. $\theta \in \Theta := \{R, B\}$. One ball is drawn at random from the urn and, therefore, the prior probability that the ball is red is given by $\mu_0(\theta = R) = \frac{1}{3}$. Since
the state space is binary, we denote the posterior beliefs by $\mu \in [0,1]$ as the probability that the receiver attributes to the ball being red. The set of messages in the unverifiable case is $M = \{r, b, n\}$: red, blue and no message. Thus, r, and b are the type-messages and n is the noise-message. In verifiable treatments $M^r = \{r, n\}, M^b = \{b, n\}$: under verifiable information it is not possible to send $m = r$ when $\theta = B$ or $m = b$ when $\theta = R$. No restriction is imposed on the probability of $m = n$. The two players, Sender and Receiver, are assumed to have preferences over money that are analogous to those introduced in the previous section, up to a normalization. The Receiver wins 2 if she correctly guesses the state, and wins nothing otherwise. The Sender wins 2 if the Receiver guesses $a = R$ and nothing otherwise. Payoffs are summarized in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>$\theta = R$</th>
<th>$\theta = B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = R$</td>
<td>Receiver 2</td>
<td>Sender 2</td>
</tr>
<tr>
<td></td>
<td>Receiver 0</td>
<td>Sender 2</td>
</tr>
<tr>
<td>$a = B$</td>
<td>Receiver 0</td>
<td>Sender 0</td>
</tr>
</tbody>
</table>

Table 1: Payoffs

At the beginning of each session, subjects are randomly assigned into a role: Sender or Receiver. These roles are kept constant throughout the session. Pairs of subjects are re-matched randomly every round, for 25 rounds. Each round is divided into three stages, following the structure of the game introduced in Section 2: Commitment Stage, Revision Stage, and Guessing Stage. The Sender is active in the first two stages, while the Receiver is active only in the last stage.

It is common knowledge that the actual message sent to the Receiver will be generated from the choice made in the Commitment Stage with probability ρ, and from the choice made in the Revision Stage with probability $(1 - \rho)$. In treatments with $\rho = 1$, the Revision Stage is not relevant, and therefore is not included in the game description.

Figure 1 contains a screen shot of the Commitment Stage. This highlights the fact that, in our design, implementing the choice of an information structure is straightforward and

8See Appendix D for more details about the language used in the Lab.
easy to visualize: Senders simply move two sliders on the screen. Moving the slider changes the color of each bar in a way that reflects the chosen probabilities of each message. The implied probabilities of their current choice are updated in real-time in the upper part of their screen. Screens for other stages are provided in Appendix C. Each round is concluded by a feedback screen in which all the relevant information, with the exception of the choice of π_2 from the revision stage, become common knowledge. In particular, subjects are told the state, the message, the guess, the realized payoffs, the stage (Commitment or Revision) from which the message was generated, the Sender’s Commitment strategy, and the Receiver’s Guessing strategy.

Our initial set of treatments constitute a 2×3 factorial between-subjects design. In treatments with verifiable communication, the interface prevents Senders from assigning positive probability to a red message when the ball is blue or a blue message when the ball is red. The interfaces are identical in all other respects. For both verifiable and unverifiable treatments, we conduct three variations generating a total of six treatments: V_{20}, verifiable communication with $\rho = 0.2$; V_{80}, verifiable communication with $\rho = 0.8$; V_{100}, verifiable communication with $\rho = 1$; U_{20}, unverifiable communication with $\rho = 0.2$; U_{80}, unverifiable communication with $\rho = 0.8$; and U_{100}, unverifiable communication with $\rho = 1$. Bayesian
persuasion as in Kamenica and Gentzkow (2011) is implemented in treatment U_{100}. The treatment V_{100} also implements the outcome of Bayesian persuasion. Cheap talk and disclosure of verifiable information would correspond to treatments U_0 and V_0, respectively. Treatments with $\rho = 0.2$ and $\rho = 0.8$ still provide us with predictions in the spirit of cheap talk and disclosure, but allow us to vary the commitment parameter ρ while maintaining a cohesive experimental design. Treatments with $\rho = 1$ are included to explore the extreme case where the predictions of verifiable and unverifiable exactly coincide, allowing for a tight test of the implications of verifiable communication. We chose not to perform a treatment for the cases of $\rho = 0$ for two reasons. First, these cases have been studied in previous experiments. Second, in our environment the key predictions of the cases of $\rho = 0.2$ in terms of information transmission are the same as in the case of $\rho = 0$. Furthermore, as will be shown later, behavior in treatments with $\rho = 0.2$ is in line with prior experimental evidence on cheap talk and disclosure games. Figure 2 and Table 2 summarize the theoretical predictions for our specific design.

We also run a treatment exploring a different dimension of comparative statics. This treatment involves full commitment ($\rho = 1$) and unverifiable information. We call this treatment U_{100H}. In this treatment we only change payoffs so that Receivers require more persuasion in order to choose the Senders’ favorite action. Payoffs are as follows. As in all other treatments the Receiver obtains zero payoff if he makes the wrong guess. In contrast with the treatments above, the Receiver wins different amounts if he correctly guesses the color of the ball: 2 if ball is Blue, $\frac{2}{3}$ if ball is Red. The Sender wins 3 if Receiver guesses Red. With this new treatment, the persuasion threshold changes from 0.5 to 0.75. Thus, in equilibrium, the Sender should provide more information. The strategy of the Sender involves sending r with probability one if the ball is Red, sending r with probability $1/6$ and b with probability $5/6$ if the ball is blue.

3.2 Design implementation

The experiment involved 25 rounds of the game described above, played for money in fixed roles with random re-matching between rounds, preceded by two practice rounds. Before the practice rounds, instructions were read aloud (see the Appendix D for an example).

We conducted four sessions per treatment for a total of 24 session. Each session included 12 to 24 subjects (16 on average per session) for a total of 384 subjects. In addition to their earnings from the experiment, subjects received a $10 show-up fee. Average earnings,
excluding the show-up fee, were $16.55 (ranging from $11.28 to $21.66) per session. On average sessions last approximately 1 hour and 40 minutes.

3.3 Equilibrium behavior in theory

Table 2 summarizes the theoretical equilibrium predictions for all treatments in our specific design.

It is worth discussing two main features of the equilibria in the different scenarios.

(i) Consider first the extreme cases of U100 and V100. The U100 scenario is the classic example of Bayesian persuasion: given the prior of $\frac{1}{3}$ on the red ball, an optimal strategy for the Sender is to commit to always send message r when the state is R (i.e., to always disclose the “good news”), and to randomize 50-50 between r and b when the state is B. This strategy induces a posterior of zero on R when the message is b, and of 0.5 on R when the message is r. This is the lowest possible value of the posterior on the red state that still induces the Receiver to choose the red action. Therefore, this information structure maximizes the ex-ante probability that the Receiver chooses the red action. Now consider the case of V100. Because messages are verifiable, the Sender can no longer send the red message if the state is blue. Therefore, the equilibrium strategy described for the case of U100 is no longer feasible. However, the Sender can use “no message” to achieve the same outcome: she should always send n when the state is R and randomize 50-50 between b and n if the state is B. This strategy effectively...
Table 2: Equilibrium Predictions

<table>
<thead>
<tr>
<th>Treat.</th>
<th>Commitment</th>
<th>Revision</th>
<th>Guessing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sender</td>
<td>Receiver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ball Message</td>
<td>Ball Message</td>
<td>Mes. Guess</td>
</tr>
<tr>
<td></td>
<td>red blue no</td>
<td>red blue no</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>red blue no</td>
<td>red blue no</td>
<td>red blue no</td>
</tr>
<tr>
<td>V20</td>
<td>R 1 x 1 - x</td>
<td>R 1 x 1 - x</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B 0 1/4 1/4</td>
<td>B 1 0 1</td>
<td>red blue no</td>
</tr>
<tr>
<td>V80</td>
<td>R 0 1/2 1/2</td>
<td>R 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B 3/4 3/4 1/4</td>
<td>B 0 1</td>
<td>red blue no</td>
</tr>
<tr>
<td>V100</td>
<td>R 0 1/2 1/2</td>
<td>R 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B 1/2 1/2 1/2</td>
<td>B 0 1</td>
<td>red blue no</td>
</tr>
<tr>
<td>U20</td>
<td>R x y 1 - x - y</td>
<td>R 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B x y 1 - x - y</td>
<td>B 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td>U80</td>
<td>R 1 0 0</td>
<td>R 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B 3/5 3/5 0</td>
<td>B 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td>U100</td>
<td>R 1 0 0</td>
<td>R 1 0 0</td>
<td>red blue no</td>
</tr>
<tr>
<td></td>
<td>B 1/2 1/2 0</td>
<td>B 0 1</td>
<td>red blue no</td>
</tr>
</tbody>
</table>

replaces the red message with “no message” and induces the same posteriors for the Receiver as in the case of U100, and therefore it is optimal.

(ii) Consider now cases in which the probability of commitment is lower, so that there is a non trivial revision stage. It is easy to see that the equilibrium strategy in the revision stage is the same as if the Sender had no commitment at all. Thus, in the verifiable treatments the Sender always reveals all information, while in the non verifiable treatments the Sender never reveals any information. Anticipating this behavior in the revision stage, at the commitment stage the Sender attempts to compensate by committing to reveal more than under full commitment in the unverifiable treatment, and less than under full commitment in the verifiable treatment. In the case of $\rho = 0.8$, for instance, this turns out to balance perfectly in the unverifiable treatment, thereby generating the same outcome as under full commitment, but to balance only partially in the verifiable treatment, thereby generating more information than under
full commitment.\footnote{In the V80 treatment there is another equilibrium in which the Sender’s payoffs are the same as in V100. However, this requires the sender to always use send no message in the revision stage, which is weakly dominated. Indeed, if the ball is red, sending the red message dominates sending the empty message; this behavior is also consistent with what we see in the data in the revision stage.} However, when $\rho = 0.2$, in neither treatment is the Sender able to use the commitment stage to undo the behavior in the revision stage, and the outcome is the same as if the Sender had no commitment at all. Because of this, in the $\rho = 0.2$ case, there is a degree of indeterminacy in the commitment stage in both verifiable and unverifiable scenarios. However, this indeterminacy is immaterial for the equilibrium outcome. Note that the case of $\rho = 0.8$ displays the behavior described in Proposition 1: Under V80 more information is transmitted in the revision stage than in the commitment stage, while the opposite is true under U80.

3.4 Data Analysis Preliminaries

The behavior by Senders and Receivers jointly determines the degree to which decision making is based on good information. For instance, even if a sender is perfectly truthful so that the Receiver is in principle able to perfectly infer the state from the Sender’s messages, the correlation between the state and the decision would be zero if the Receiver did not act upon this information. To measure informativeness, we will report the correlation between the state and the decision; we denote this ϕ.

However, in much of the analysis, it will be more informative to construct an alternative measure that isolates the informativeness of the sender’s strategies. To do this, we compute the correlation that would result under the assumption that all receivers are Bayesian, in the sense that they form the “correct” posteriors given the information conveyed by the Senders, and then act optimally given this information.\footnote{We discuss below how the “correct” posteriors are obtained.} That measure of correlation will be denoted ϕ^B.

Using the average correlation to describe the subjects’ behavior gives an initial impression of the patterns in the data but hides important details. For instance, if Senders manage to induce posteriors that are “almost” correct, but come up just short of what is needed for a Receiver to choose the action desired by the Sender, then the correlation (whether or not we use actual choices or Bayesian Receivers) will be 0. We also provide a different way to capture the amount of informativeness conveyed by senders that does not suffer from this shortcoming. Consider the posterior that is generated for each state. The dispersion of these posteriors is a measure of the informativeness of the Sender’s strategies. The further apart are
the posteriors in the two states, the more information is conveyed by the Sender. Of course, the posteriors must be linked to the prior consistently with Bayes’ rule. The theory predicts that, as commitment increases, the posterior dispersion should decrease under verifiable information and increase under unverifiable information.

Recall that a state induces a message, via $\hat{\pi}$, and a message induces a posterior, via Bayes’ Rule, that is:

$$\theta \rightarrow m \rightarrow \mu(R|m) := \frac{\mu_0(R)\hat{\pi}(m|R)}{\mu_0(R)\hat{\pi}(m|R) + \mu_0(B)\hat{\pi}(m|B)} \in [0, 1],$$

where $\hat{\pi}$ can be computed from the data as follows:

$$\hat{\pi}(m|\theta) := \rho\pi_C(m|\theta) + (1 - \rho)\hat{\pi}_U(m|\theta).$$

The priors $\mu_0(R)$ and $\mu_0(B)$ as well as the parameter ρ are treatment parameters. The likelihoods from the commitment stage $\pi_C(m|\theta)$ are observable directly from the data. However, when $\rho < 1$, in order to obtain the overall posterior, we need to incorporate the role of the information conveyed in the revision stage. Since the revision strategy is only specified conditional on the realized state: the likelihoods at the revision stage, $\hat{\pi}_U(m|\theta)$ are not directly observable. To circumvent this, for treatments with commitment 20% and 80%, we use the average behavior of Senders in the session, therefore, we approximate $\hat{\pi}_U(m|\theta)$ with the average population behavior in the revision stage of the relevant session. This seems to be a natural approach, and, on average this is what receivers ought to learn to expect. We note, also, that the results for the $\rho = 0.8$ treatments (where we perform such an approximation) are similar to those with $\rho = 1$ (where we do not need to use this approximation); suggesting that the approximation is not likely to be inaccurate.

4 Results

We now proceed to an analysis of the data. The first subsection explores the simplest and most direct evidence to determine whether senders and receivers react to commitment. In line with Proposition 1, we compare the behavior of the senders in the commitment stage with their behavior in the revision stage. We then evaluate how the receivers’ reaction to the information contained in the commitment stage depends on the degree of commitment, i.e., we compare the receivers’ behavior across different commitment levels. The subsequent subsection uses the predictions from Proposition 3 and to understand how senders react to
the persuasion threshold q: this compares treatments U100H and U100. This is followed by an overall comparison of the impact of ρ under each set of rules. Finally V100 and U100 are compared more specifically: i.e. comparing the impact of rules holding commitment constant. The last results subsection documents aspects of behavior such as heterogeneity and the extent to which subjects best respond to each other.

4.1 Response to Commitment

The power of commitment is that it allows senders to persuade receivers to choose the desirable action. In the standard Bayesian persuasion model, this commitment power is expressed as a comparison with the outcome of a cheap talk model: e.g., as in comparing a treatment of $U0$ with a treatment $U100$. Some of our later discussion will perform similar comparisons. However, our framework allows us to evaluate the power of commitment within a particular treatment, by comparing Senders’ behavior in the commitment stage with their behavior in the revision stage. The clearest manifestation of this for senders can be seen when $\rho = 0.80$, in which case the commitment strategies and revision strategies display particularly stark differences. As shown in Proposition 1, when information is unverifiable, senders should reveal more information in the commitment stage than in the revision stage; while when information is verifiable senders should reveal more in the revision stage. In other words, commitment allows senders to tell the truth only some of the time when they have bad news if information is unverifiable. On the other hand, it allows them to hide the truth when they have good news and information is verifiable.

Figure 3: Sender’s Strategy: Commitment vs. Revision, $\rho = 0.8$
These changes in strategies are presented in Figure 3. Looking at the U80 treatment, it is clear that there are important differences in the strategies when the state is B.11 Indeed, in that case, senders change their revision strategy to send a red message much more often than originally stated in their commitment strategy. Although there are statistically significant changes in the same direction when the state is R, those are of small magnitude. In line with these changes in strategy, the correlation between state and decision that these commitment and revision strategies would respectively generate if the receiver were Bayesian drop from $\phi_B^B = 0.43$ to $\phi_B^B = 0.00$ ($p < 0.01$).

As predicted by the theory, in the case of the V80 treatment, the changes are in the opposite direction, with $\phi_B^B = 0.83$ in the commitment stage, increasing to $\phi_B^B = 0.98$ in the revision stage.12 The strategies underlying this change imply replacing “no message” with red message when going from commitment to revision if the state is R. In addition, but to a slightly lesser extent, senders replace blue with “no message” when the state is B.

In the case of the V80 treatment, the changes are in the opposite direction, with $\phi_B^B = 0.83$ in the commitment stage, increasing to $\phi_B^B = 0.98$ in the revision stage. The increase in ϕ_B^B is statistically significant ($p < 0.01$) and the changes in strategies are statistically significant as well ($p < 0.01$ for both state R and state B). The strategies underlying this change imply replacing “no message” with red message when going from commitment to revision if the state is R. In addition, but to a slightly lesser extent, senders replace blue with “no message” when the state is B.

Hence, in both U80 and V80, there is clear evidence that senders adjust their behavior between the commitment and revision stages. Those adjustments are in line with the forces highlighted in Proposition 1, namely commitment allows senders to hide good information under verifiable information and to misrepresent good information under unverifiable information.

We now wish to evaluate whether the receivers understand the difference in the information content of the commitment and the revision stage. This is a way to assess whether the receivers react to commitment in a way that is consistent with the theory. In order to do so, we must compare receiver behavior across treatments. First, note that under unverifiable information, the key message, which we will refer to as the persuasive message, is the red message. Red is the message the sender uses to attempt to convince the receiver to choose

11The changes in strategy are jointly statistically different from zero both when the state is R ($p < 0.1$) and when it is B ($p < 0.05$).

12The increase in ϕ_B^B is statistically significant ($p < 0.01$) and the differences in strategies are statistically significant as well ($p < 0.01$ for both state R and state B).
Even when the state is B. Under verifiable information however, the critical message, or persuasive message is “no message.” That is the message the sender uses to hide good information and convince the receiver to guess red even if sometimes the state is B. We now compare how receivers respond to these persuasive messages depending on the level of commitment available to the sender.

Figure 4: Receiver’s Response to Persuasive Messages: $\rho = 0.2$ vs. $\rho = 1$

Figure 4 displays the probability that receivers guess red as a function of the posterior induced by the strategy of the sender in the commitment stage and the message they received, in this case the persuasive message. The data is separated by rules, but also depending on whether the sender had low commitment or full commitment. Since the message is unlikely to come from the commitment stage when $\rho = 0.2$, the posterior should not affect receivers. On the other hand, when $\rho = 1$, receivers should guess red for high enough posteriors. Indeed, the figures show this to be the case for both unverifiable and verifiable implementations, although the difference is more pronounced in the case of verifiable information.13

13For posteriors below 0.5, the probability of guessing red is not statistically different when $\rho = 0.2$ versus $\rho = 0.2$: neither for verifiable nor unverifiable information. For posteriors of 0.5 and above, there is a statistically significant difference in both cases ($p < 0.05$ when messages are unverifiable and $p < 0.01$ in the verifiable case).
4.2 Does Commitment Have the Predicted Effect?

The previous section establishes that both sender’s and receivers react to the power of commitment. This section further explores the extent to which the reaction they display is in the direction suggested by equilibrium forces. One of the more direct implication of commitment, which is stated in Proposition 3, is that increasing q should lead to more informative communication from senders. Consequently, in treatment U100H where it is more valuable for the receiver to match the state when the state is B, senders should convey more information.

![Figure 5: CDF of ϕ^B for treatments U100 and U100H](image)

Figure 5 shows that the distribution of ϕ^B for the U100H treatment is to the right of that for the U100 treatment. The median subject goes from inducing a correlation of 0.25 in U100 to one of 0.52 in U100H. This shift, however, is not statistically significant; which is not overly surprising considering that we have only two sessions of U100H treatment so far.

We now turn to considering the effect of commitment while keeping rules fixed, that is what happens to information transmission as ρ increases. Up to this point, we have reported only ϕ^B, but now we will also consider ϕ, which is jointly determined by the behavior of senders and receivers. This approach allows us to partly disentangle where potential losses in information come from.

Table 3 reports aggregate correlations between state and decision. The top left panel displays the theoretical predictions; the top right panel indicates the correlation in the data; the bottom left panel reports the correlation that would result if one replaced the Receivers in the data with Bayesian Receivers. The symbols between the numbers indicate their
“statistical relations” at the 10% level, i.e. \(\approx \) means that the p-value of the equality of the two is larger than 0.1.

Table 3: Correlation Between Ball and Guess

<table>
<thead>
<tr>
<th></th>
<th>Commitment ((\rho))</th>
<th></th>
<th>Commitment ((\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
<td>80%</td>
<td>100%</td>
</tr>
<tr>
<td>Verifiable</td>
<td>1</td>
<td>0.57</td>
<td>0.50</td>
</tr>
<tr>
<td>Unverifiable</td>
<td>0</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Sender Data with Bayesian Receiver

<table>
<thead>
<tr>
<th></th>
<th>Commitment ((\rho))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Verifiable</td>
<td>0.89</td>
</tr>
<tr>
<td>Unverifiable</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Looking at the top-right panel, we see that subjects react to commitment in the expected direction; both for verifiable and unverifiable cases. However, the effects are more muted than in the predictions of the theory. In the case of verifiable treatments, the change from the treatment with \(\rho = 0.2\) to the treatment with \(\rho = 1\) is, in theory, predicted to reduce the correlation from 1 to 0.5; but the difference in the data is 0.13; or 26% of the predicted change. For the unverifiable cases, the changes are also in the expected directions, and of the same magnitude. Comparing this to the bottom left panel suggests that some, but not all, of the “missing effect” comes from Receiver behavior. The correlations assuming a Bayesian Receiver reveals larger effects of commitment for the unverifiable treatments and smaller effects for the verifiable treatments: 68% in the case of the unverifiable treatments and 22% of the predicted change for verifiable treatments.

These correlations can be investigated further by looking at the CDF of \(\phi^B\) for each treatment. Figure 6 shows two interesting patterns. First, the distribution for U80 and
U100 are very similar, as predicted, and to the right of U20. Second, the distributions for the verifiable treatments are, loosely speaking, ordered as predicted by theory. However, it is also clear, especially for the unverifiable treatments, that many sender’s have correlations that are positive, but low enough to suggest that some of their strategies must not move the posteriors enough. To understand this better we now turn to posteriors.

Figure 7 displays the kernel density estimates of the posteriors conditional on the state. The vertical dashed lines indicate the theoretical predictions; the solid lines present the data under the different treatments. The solid red line is at .5, because in equilibrium, the posterior following the red state is .5. The solid blue line is at .25 because in equilibrium, in the blue state the posterior is .5 with 50% probability (when the sender sends the red message) and 0 with 50% probability (when the sender sends the blue message).

In all cases there is a sizable response to the treatment. In the unverifiable treatments the posteriors follow the theoretical predictions quite closely. In the verifiable treatments the picture is more ambiguous. Moving from V20 to V100, the posteriors move closer, as predicted by theory. However, there are some important discrepancies: While in the case of V20 the posteriors are inside the lines describing the theoretical predictions, in the other two verifiability treatments, most of the mass of the posteriors lies outside of the relevant (theory-consistent) lines. In other words, Senders are not informative enough under V20, and too informative in the other cases.

Table 4 reports the difference between the mean posteriors when the ball is red relative to the case in which the ball is blue. The table makes it clear that the data moves in the
Figure 7: Posterior on R as a Function of the Ball

Table 4: Difference Between the Mean Conditional Posteriors (theoretical values in parentheses)

<table>
<thead>
<tr>
<th>Commitment (ρ)</th>
<th>20%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>0.86 (1.00)</td>
<td>0.78 (0.40)</td>
<td>0.69 (0.25)</td>
</tr>
<tr>
<td>80%</td>
<td>0.05 0.91</td>
<td>0.07 0.85</td>
<td>0.10 0.80</td>
</tr>
<tr>
<td>100%</td>
<td>0.30 0.40</td>
<td>0.26 0.49</td>
<td>0.23 0.53</td>
</tr>
</tbody>
</table>

Posters on the ball being RED. The color of the line indicates the state. Vertical lines indicate the equilibrium predictions.
right direction for both verifiable and unverifiable treatments, but that the data is closer to the theoretical predictions in the case of the unverifiable treatments than in the case of verifiable treatments.

In order to understand the violations from the theory, we now zoom in on the U100 and V100 treatments.

In the V100 treatment, subjects commit to approximately 50-50 randomization with the empty message following both states. This undermines the logic of using the empty message to substitute the red one in constructing the optimal Bayesian persuasion strategy. In V100, Senders ought to strategically hide “good news” in order to make it possible to sometimes hide the bad news. Most of our experimental subjects seem to be incapable of pursuing this approach effectively. In contrast, in U100, Senders have to strategically lie about “bad news,” something that most Senders seem to accomplish better. Another way to understand the difference in outcomes between U100 and V100 is through the lens of local experimentation / naive learning. If we think of the baseline cases as the outcomes that would prevail in U0 or V0, respectively, then it is easier to learn to move toward the equilibrium in the U100 case than in the V100 case. Local changes toward the equilibrium lead to improvements in the U treatment, whereas they lead to worse outcomes in the V treatments.

4.3 Behavior in More Detail

[This section is incomplete. For the moment it reports on various aspects of heterogeneity and other aspects of behavior that we will develop in the final

Table 5: Theoretical Predictions and Data: V100 and U100

<table>
<thead>
<tr>
<th></th>
<th>U100 Messages</th>
<th>V100 Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>100% 0 0</td>
<td>R 0 0 100%</td>
</tr>
<tr>
<td>B</td>
<td>50% 50% 0</td>
<td>B 0 50% 50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
<td></td>
</tr>
<tr>
<td>States</td>
<td>R 74% 12% 14%</td>
<td>R 51% 0 49%</td>
</tr>
<tr>
<td>B</td>
<td>44% 39% 17%</td>
<td>B 0 58% 42%</td>
</tr>
</tbody>
</table>

[This section is incomplete. For the moment it reports on various aspects of heterogeneity and other aspects of behavior that we will develop in the final]
version of the paper. We also plan on adding a QRE analysis that we have completed but that needs to be written up.]

We now take a more detailed look at individual Senders’ behavior. Figure 8 depicts one key feature of this behavior. On the horizontal axis, we report for each subject the mean correlation (over the last ten rounds) between the state and the guess, assuming Bayesian Receivers. On the vertical axis, we report the standard error of this mean. So, for instance, a subject with a mean of 0.5 and a standard error of 0 would correspond to equilibrium behavior in the U100 treatment. However, a subject with a mean of 0.5, but a high standard error, is sometimes producing low correlations and others high correlations. In particular, variation on the horizontal dimension represents cross-subject heterogeneity, whereas variation on the vertical dimension represents within-subject heterogeneity.

Some features of this Figure stand out. First, there is a marked difference across treatments; this difference is qualitatively in line with the theory. Second, there is a lot of heterogeneity among subjects, except in the U20 and V20 treatments where the correlation is very close to equilibrium for most subjects. For instance, in U80 and U100 treatments, roughly a third of the subjects generate a very low correlation between state and decision (below .25), while some subjects generate much higher correlations. Third, there seems to be more “noise,” both at the individual, and at the aggregate level, in the unverifiable treatments. Subjects are more clustered toward high correlations and with relatively little individual level noise in the treatments with verifiable information.

Figure 9 presents a sender level analysis of the difference across states in the posteriors induced by senders and how this varies across treatments. The horizontal axis is the mean difference in posteriors, while the vertical axis is the standard deviation of this mean. As in the case of the sender level correlations discussed above, these figures show a remarkable amount of sender heterogeneity, and some amount of within sender variation, except in the U20 and V20 treatments where values are clustered right around equilibrium predictions. In the V80 and V100 treatments, most senders display too large a difference in means; i.e., they convey too much information. In contrast, in the U80 and U100 treatments, senders are widely dispersed, with many conveying little to no information, and a significant number conveying too much information relative to equilibrium predictions.

The clustering of behavior in U20 and V20 treatments around the equilibrium predictions is of interest because it suggests that it is not likely to be the complicated structure of the game that generates departures from equilibrium in the other treatments: the structure with two rounds of communication, including a commitment round is the same in U20, V20, U80
and V80 treatments. However, the senders seem to behave in a manner that is consistent with the equilibrium in U20 and V20. Notably, these cases have opposite predictions regarding the amount of information that is transmitted, so this conformity with equilibrium predictions is not a matter of following the same default convention: in U20 subjects are uninformative, whereas in V20 subjects are very informative.

4.3.1 Receiver behavior

We now discuss Receivers’ behavior. We first consider how Receivers react to the posteriors induced by the Senders. This is directly of interest and will allow some interesting comparison with the literature on cheap talk experiments. It is also important, because characterizing messages in terms of their posterior (as we have done above for the senders) is a useful way to describe the data only if receivers react to posteriors in a sensible (and predictable) manner. We first discuss aggregate data and we then look at individual subject behavior. Figure 10 shows, for each treatment, the probability that receivers guessed red as a function of the posterior induced by the message of the Sender. It also shows via grey bars the frequency
Figure 9: Mean Difference across States in the Posteriors Induced by Senders.

of each posterior.

The first finding is that the probability with which Receivers guess red increases with the posterior.14 This indicates that at least they react in a reasonable way to theoretically more convincing messages. The figure also reveals that messages that generate the same posterior generate different behavior by the Receiver depending on whether we are in a verifiable or unverifiable treatments. That is, conditional on a high posterior, Receivers are more likely to choose a red action following a red message if Senders are not allowed to lie about the state, then when they are. [PLACE HERE MARGINAL EFFECTS REGRESSION? THAT’S ALSO ON THE AGGREGATE DATA]

However, the probability of guessing red is not a step function, which is what we would observe for a population of Bayesian receivers. This can be due to two reasons. The first possibility is that, at the individual level, reaction functions are step functions, but because different subjects use different cutoffs, aggregation produces a smooth increasing line. The second possibility is that individual subjects react probabilistically (or inconsistently) to a given posterior. This could in turn be due to the fact that they have an imperfect (or approximate) understanding of posteriors (or how to compute them) or to the fact that our

14Note that points for which there are no posteriors are interpolated.
Figure 10: Guess of red as a Function of the Posterior on R and Frequency of Posterior

computation of the posterior does not appropriately account for how subjects consider the
revision stage. Note, however, that this last possibility cannot account for the pattern in
V100 and U100 since in those two treatments there is no revision stage.

We now consider whether subjects actually do behave according to threshold strategies.
Figure 11 shows the best fitting threshold for each subject. Under the assumption that
the subject uses a threshold strategy, the best fitting threshold is defined to be one that is
consistent with the highest fraction of choices by the Receiver. The precision of the threshold
indicates the fraction of observations that are consistent with the threshold. A precision of
one, means all choices can be rationalized by a threshold strategy on the posteriors, and that
this is true for all messages (remember that we elicit the Receiver’s choice for all possible
message). For many subjects, multiple thresholds have the same precision, in those cases
the figure reports the mid-point. Figure B13 in the Appendix displays the entire threshold
range. A point on the top horizontal line labeled Blue means that, assuming that these
subjects always chose blue regardless of the posterior fits the data better than any threshold
≤ 1.

The figure reveals that a relatively high fraction of subjects displays behavior mostly
consistent with the use of a threshold strategy. Specifically, at least 51% and up to 91% of
subjects per treatment make choices consistent with a threshold strategy 90% or more of
the time. If instead we consider a precision of 80% or more, threshold strategies can account
for 93% or more of subjects in each of the verifiable treatments; and 80% or more of the subjects in the unverifiable treatments.

In addition to suggesting that most subject's behavior is in line with the use of a threshold strategy, Figure 11 also clearly suggests a fair degree of heterogeneity in behavior. However, this is only suggestive as the figure does not easily allow to separate heterogeneity in Receiver behavior from variability in the posteriors that the receivers were exposed too.

We now turn to a comparison between the receivers behavior in the data with the behavior that would be displayed by Bayesian receivers. Specifically, we wish to understand whether our subjects are more or less skeptical than a Bayesian Receiver. The answer to this question can be evaluated in Figure 12. In this figure we restricting attention to subjects whose behavior is relatively well described by a threshold strategy (i.e. their precision is at least 0.8).15 The figure compares the estimated thresholds to those of a Bayesian Receiver who faces the same data, i.e., we assume that the data is generated by Bayesian receivers but

\15For other subjects, thresholds are not a meaningful way to describe their strategies, hence a comparison with Bayesian threshold is not informative.
we use the same procedure for calculating a best-fitting threshold as we did for the receivers in our data. Hence, we recover our estimated threshold for hypothetical Bayesian Receivers who would have been presented with the data generated by the Senders in our experiment. In order to understand why Bayesian receivers are represented by a distribution of thresholds, note that there are posteriors that the Receivers are never exposed to, therefore the estimated thresholds may be different from 0.5 (the theoretical value in equilibrium). The figure plots the estimated thresholds (the mid-points) of our actual subjects against those that we would recover from simulated Bayesian Receivers. If the point lies on the 45 degree line, then we cannot distinguish the behavior of such a Receiver from that displayed by a Bayesian Receiver. The markers are color-coded so that, considering all thresholds consistent with a subject’s choice (from the lowest to the highest), if they are higher than those of the Bayesian Receiver, they are marked with black symbols; in contrast, if they are lower than those of a Bayesian Receiver they are marked with grey symbols. The hollow markers indicate a subject whose behavior cannot be unambiguously ranked relative to a Bayesian Receiver.

\[16\] Namely, there are multiple best fitting thresholds and the midpoint may well be different from 0.5.
because her lowest possible threshold and highest possible threshold are not both higher (or lower) than those of the Bayesian Receiver.

The figure shows that many subjects are consistent with the behavior of a Bayesian Receiver (they lie on the 45 degrees line). In some treatments, subjects whose behavior is not in line with Bayesian behavior need less convincing evidence to guess red, such as in the V20 and U20 treatments. In line with prior literature, we call these subjects credulous. In other treatments we have coexistence of subjects who are easier to convince and others who are more difficult to convince. For instance, in the V100 and U100 more subjects need stronger evidence to guess red than the Bayesian benchmark (we call these subjects skeptical), than there are credulous subjects. Furthermore, the skeptical subjects are further away on average from the Bayesian benchmark than those who are easier to convince.

To summarize, Receivers react to posteriors in the expected direction. Many Receivers display behavior that is highly consistent with the use of a threshold strategy. The thresholds are heterogeneous. Some use thresholds consistent with those of a Bayesian Receiver, but others do not. In low commitment treatments Receivers tend to be more credulous than Bayesians, while in high commitment treatments, Receivers appear to be more skeptical than Bayesian. This last finding is particularly interesting in light of prior experimental literature on communication that studies games without commitment and commonly finds that subjects are relatively gullible or trusting.\footnote{As mentioned in the introduction these are findings are reported for instance in Blume et al. (1998), Forsythe et al. (1999), and Cai and Wang (2006).} This prior literature only studies treatments with no commitment.

A natural question arises next: to what extent do deviations from theory result from the specific message (ball color) that the Sender’s strategy produces? Table 6 reports random effects (subject level) probit estimates of the impact of the posterior and the color of the message on guesses for all three unverifiable treatments.\footnote{The V treatments are not included as interpreting the estimates is less clear for those. For instance, in the V20 treatment, the color of the message is in theory enough to determine what to guess.} In theory, only the posterior should matter for how Receivers guess, so, for a Bayesian Receiver the effect of the posterior going from zero to one should be 1, and the effect of the colors of the ball should be zero. In contrast, while our subjects do react strongly to the posterior, the reaction is about half what it would be for Bayesian receivers. Furthermore, in contrast with Bayesian receivers, there is also a significant effect on the choice made by the Receiver of the color of the ball chosen by the Sender.
Table 6: Random Effects Probit of Determinants of Guess in U Treatments

<table>
<thead>
<tr>
<th></th>
<th>U20</th>
<th></th>
<th>U80</th>
<th></th>
<th>U100</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>2.055**</td>
<td>0.484**</td>
<td>1.623***</td>
<td>0.411***</td>
<td>2.297***</td>
<td>0.532***</td>
</tr>
<tr>
<td></td>
<td>(0.855)</td>
<td>(0.213)</td>
<td>(0.412)</td>
<td>(0.104)</td>
<td>(0.379)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>Blue Message</td>
<td>-0.541**</td>
<td>-0.127**</td>
<td>-0.718***</td>
<td>-0.182***</td>
<td>-0.495*</td>
<td>-0.115</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.061)</td>
<td>(0.210)</td>
<td>(0.042)</td>
<td>(0.292)</td>
<td>(0.070)</td>
</tr>
<tr>
<td>No Message</td>
<td>-0.148</td>
<td>-0.035</td>
<td>-0.619***</td>
<td>-0.157***</td>
<td>-0.068</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.202)</td>
<td>(0.047)</td>
<td>(0.184)</td>
<td>(0.035)</td>
<td>(0.147)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>Observations</td>
<td>963</td>
<td>963</td>
<td>990</td>
<td>990</td>
<td>828</td>
<td>828</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue = No M.</td>
<td>0.03</td>
<td>0.22</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered (at the session level) in parentheses. *** 1%, ** 5%, * 10% significance.

5 Conclusion

[To Be Done.]
Appendix

A Proofs (Incomplete)

A.1 Proof of Proposition 1

To show that, in the unverifiable scenario, there is a threshold ρ such that for higher values of ρ it is possible to obtain effective communication, it is enough to consider for what ρ would the Receiver be persuaded to choose a_H with positive probability. For this purpose it is enough to consider the case in which the Sender chooses full revelation in the commitment stage, by for example choosing an information structure of θ_H with probability one if the state is θ_H and θ_L with probability one if the state is θ_L, and subsequently chooses θ_H for both states in the revision stage. As we show below, in equilibrium no information can be transmitted in the revision stage. Therefore, this contrast between the commitment and revision stages are the relevant strategies for understanding when positive information transmission is feasible. It is clear that the threshold ρ exists because, given this strategy for the Sender, for high ρ the posterior following θ_H is close to one. However, for low ρ the posterior is close to the prior, and, because $\mu < q$, this leads to a choice of a_L.

Consider now the verifiable scenario. In this case, as we will see below, we must consider strategies that involve full information transmission at the revision stage. In this scenario, the tension is given by the fact that the Sender cannot lie in either stage. If the state is θ_H she can either send θ_H or n but cannot send θ_L. Analogously, if the state is θ_L, the Sender cannot send θ_H. Thus, in order to attempt to maximally persuade the Receiver, the commitment stage must involve using the n message when the state is θ_H and randomizing between θ_L and n when the state is θ_L. The problem is that, if this strategy is successful in inducing the Receiver to choose a_H, then this gives an incentive to the Receiver to always choose n at the revision stage when the state is θ_L. But, if ρ is low, then this overwhelms the information conveyed by n in the commitment stage. This leads the Receiver to choose a_L following both messages, n and θ_L. As a result, this strategy involves lower payoffs for the Sender than the outcome of full information if the receiver associated with choosing θ_H with probability one in the commitment stage. However, for sufficiently high ρ, assume that the Sender at the commitment stage chooses n with probability one if the state is θ_H, and θ_L with probability one when the state is θ_L, then the choice of n in the revision stage when the state is θ_L is not enough to overwhelm the information contained in n from the
commitment stage. Thus, following message n, the Receiver chooses a_H. In fact, because the Receiver now chooses a_H with positive probability even when the state is θ_L, the overall payoff of this specific commitment strategy for the Sender is higher than the one obtained under full disclosure, proving that, for high enough ρ, it is beneficial for the Sender to reduce the amount of information transmission.

We now prove part (ii). Consider first the revision stage. Under verifiable messages, any weakly dominant strategy in the revision stage involves disclosing the high state. All these strategies in the revision stage imply full information revelation at this stage. Consider now the case of unverifiable information. In this case, any equilibrium must involve no information communication in the revision stage. Suppose that a message is more likely to generate a high action from the Receiver. Then the Sender will always choose that message in the revision stage, no matter what the state is. Thus, either the Receiver chooses the same action no matter what message is sent by the Sender, or the Sender chooses the same message no matter the state. Because $\mu < q$, in equilibrium it cannot be the case that the Receiver always chooses a_H, so, if the Receiver chooses the same action for all messages, then it must be a_L. But, because $\rho > \hat{\rho}$, if the Sender chose at the commitment stage to fully reveal the state, there would be positive probability that the Receiver would choose a_H with positive probability. Thus, in the revision stage the Sender always chooses the same message, so that the revision stage is uninformative. □

A.2 Proof of Proposition 2

We first argue that, when $\rho = 1$, the equilibrium outcome is independent of verifiability. In both scenarios, the Sender wishes to maximize the probability that the Receiver chooses a_H, subject to the Bayes’ constraint that the average posterior must equal the prior. The optimal strategy therefore must involve the selection of a persuasive message that leads the Receiver to choose a_H while being indifferent between a_H and a_L. Thus, the posterior of the Receiver upon receiving the persuasive message must be equal to the prior, whereas the posterior following any other message must be equal to zero. The following strategy implements this optimum in the unverifiable scenario: if state is θ_H send message θ_H with probability one; if state is θ_L randomize between θ_H and θ_L in such a way that the posterior following a message of θ_H is equal to q. In the verifiable case, this strategy is not feasible, but the following alternative strategy by the Sender implements the same beliefs and actions for the Receiver: if state is θ_H send message n with probability one; if state is θ_L randomize
between n and θ_L in such a way that the posterior following a message of θ_H is equal to q.

A.3 Proof of Proposition 3

When ρ decreases, the revision stage imposes constraints on what the Sender can achieve with the commitment strategy. As shown in the proof of Proposition 2, the strategy in the revision stage is independent of ρ for both verifiable and unverifiable scenarios, with no information transmitted in the unverifiable scenario and full information transmission in the verifiable scenario. Thus, if the strategy at the commitment stage is left unchanged, the revision stage leads to overall less information communicated for lower ρ with unverifiable information and more information with verifiable information. The Sender will change the commitment strategy to attempt to minimize the effect of the revision stage. The as ρ decreases, the Sender will reduce the amount of information transmission in the verifiable case and increase it in the unverifiable case. However, the smaller ρ, the less the Sender is able to do this. Since this constraint is monotonically becoming tighter as ρ decreases, the amount of information that is communicated overall between the commitment and revision stages also changes monotonically.

\[\square \]

B Additional Material

Figure B14 presents an analysis of individual sender’s mean payoffs across treatments, and the standard deviation of this mean. This payoffs are computed by paring the actual behavior of a Sender with the optimal behavior of a Bayesian receiver.

C Design.

Figure C15 complements Figure 1 showing the other three relevant screenshots from our experiment. The top panel of Figure C15 shows what Sender could see during Stage 2, conditional on the ball begin Red. A similar screen (omitted) was shown in case of a Blue ball. The middle panel shows the tasks of the Receiver in Stage 3. On the left, we reported to the Receiver the Communication Plan chosen by the Sender and reminded the Receiver of the basic rule of the game. On the right, the Receiver was supposed to express her best
guess for every possible message she could receive. Finally, the bottom panel of Figure C15 shows the Feedback screen. All relevant information were reported to both players, with the exception of the Sender’s decision in the Revision stage.

D Instructions for V80.

In this section, we reproduce instruction for one of our treatment, V80. These instruction were read out aloud so that everybody could hear. A copy of these instructions was handout to the subject and available at any point during the experiment. Finally, while reading Section D.2.1, screenshots similar to those in Appendix C, were shown to subjects, to ease the exposition and the understanding of the tasks.

D.1 Welcome:

You are about to participate in a session on decision-making, and you will be paid for your participation with cash vouchers (privately) at the end of the session. What you earn depends partly on your decisions, partly on the decisions of others, and partly on chance. On top of what you will earn during the session, you will receive an additional $10 as show-up fee.
Figure B14: Senders' Payoffs Distribution when paired with Bayesian Receiver.

Please turn off phones and tablets now. The entire session will take place through computers. All interaction among you will take place through computers. Please do not talk or in any way try to communicate with other participants during the session. We will start with a brief instruction period. During the instruction period you will be given a description of the main features of the session. If you have any questions during this period, raise your hand and your question will be answered privately.

D.2 Instructions:

You will play for 25 matches in either of two roles: \textbf{Sender} or \textbf{Receiver}. At the beginning of every Match one ball is drawn at random from an urn with three balls. Two balls are \textbf{Blue} and one is \textbf{Red}. The Receiver earns $2 if she guesses the right color of the ball. The Sender’s payoff only depends on the Receiver’s guess. She earns $2 only if the Receiver guesses \textbf{Red}. Specifically, payoffs are determined illustrated in Table D7.

The Sender learns the color of the ball. The Receiver does not. The Sender can send a message to the Receiver. The messages that the Sender can choose among are reported in Table D8.
Figure C15: Screenshots from the experiment, Treatment U80.
If Ball is Red | If Ball is Blue

<table>
<thead>
<tr>
<th>If Receiver guesses Red</th>
<th>Receiver</th>
<th>Sender</th>
<th>Receiver</th>
<th>Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2</td>
<td>$2</td>
<td>$0</td>
<td>$2</td>
<td>$0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If Receiver guesses Blue</th>
<th>Receiver</th>
<th>Sender</th>
<th>Receiver</th>
<th>Sender</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>$0</td>
<td>$2</td>
<td>$0</td>
<td>$2</td>
</tr>
</tbody>
</table>

Table D7: Payoffs

If Ball is Red:
- Message: “The Ball is Red.”
- No Message.

If Ball is Blue:
- Message: “The Ball is Blue.”
- No Message.

Table D8: Messages

Each Match is divided in three stages: Communication, Update and Guessing.

1. Communication Stage: before knowing the true color of the ball, the Sender chooses a Communication Plan to send a message to the Receiver.

2. Update Stage: A ball is drawn from the urn. The computer reveals its color to the Sender. The Sender can now UPDATE the plan she previously chose.

3. Guessing Stage: The actual message received by the Receiver may come from the Communication stage or the Update stage. Specifically, with probability 80% the message comes from the Communication Stage and with probability 20% it comes from the Update Stage. The Receiver will not be informed what stage the message comes from. The Receiver can see the Communication Plan, but she cannot see the Update. Given this information, the Receiver has to guess the color of the ball.

At the end of a Match, subjects are randomly matched into new pairs. We now describe what happens in each one of these stages and what each screen looks like:
D.2.1 Communication Stage: (Only the Sender plays)

In this stage, the Sender doesn’t yet know the true color of the ball. However, she instructs the computer on what message to send once the ball is drawn. In the left panel, the Sender decides what message to send if the Ball is Red. In the right panel, she decides what message to send if the Ball is Blue. We call this a Communication Plan.

Every time you see this screen, pointers in each slider will appear in a different random initial position. The position you see now is completely random. If I had to reproduce the screen once again I would get a different initial position. By sliding these pointers, the Sender can color the bar in different ways and change the probabilities with which each message will be sent. The implied probabilities of your current choice can be read in the table above the sliders.

When clicking Confirm, the Communication Plan is submitted and immediately reported to the Receiver.

D.2.2 Update Stage: (Only the Sender plays)

In this Stage, the Sender learns the true color of the ball. She can now update the Communication Plan she selected at the previous stage. We call this decision Update. The Receiver will not be informed whether at this stage the Sender updated her Communication Plan.

D.2.3 Guessing Stage. (Only the Receiver plays)

While the Sender is in Update Stage, the Receiver will have to guess the color of the ball. On the left, she can see the Communication Plan that the Sender selected in the Communication Stage. By hovering on the bars, she can read the probabilities the Sender chose in the Communication Stage. Notice that the Receiver cannot see whether and how the Sender updated her Communication Plan in the Update Stage. On the right, the Receiver needs to express her best guess for each possible message she could receive. We call this a Guessing Plan. Notice that once you click on these buttons, you won’t be able to change your choice. Every click is final.
D.2.4 How is a message generated?

<table>
<thead>
<tr>
<th>With 80% probability</th>
<th>With 20% probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>The message is sent according to Communication Plan</td>
<td>The message is sent according to Update</td>
</tr>
<tr>
<td>(Remember: Communication Plan is always seen by the Receiver)</td>
<td>(Remember: Update is never seen by the Receiver)</td>
</tr>
</tbody>
</table>

D.3 Practice Rounds:

Before the beginning of the experiment, you will play 2 Practice rounds. These rounds are meant for you to familiarize yourselves with the screens and tasks of both roles. You will be both the Sender and the Receiver at the same time. All the choices that you make in the Practice Rounds are unpaid. They do not affect the actual experiment.

D.4 Final Summary:

Before we start, let me remind you that:

− The Receiver wins $2 if she guesses the right color of the ball.

− The Sender wins $2 if the Receiver says the ball is Red, regardless of its true color.

− There are three balls in the urn: two are Blue (66.6% probability), one is Red (33.3% probability). After the Practice rounds, you will play in a given role for the rest of the experiment.

− The message the Receiver sees is sent with probability 80% using Communication Plan and with probability 20% using Update.

− The choice in the Communication Stage is communicated to the Receiver. The choice in the Update stage is not.

− At the end of each Match you are randomly paired with a new player.
References

