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A Martingale Representation for Matching Estimators
Alberto ABADIE and Guido W. IMBENS

Matching estimators are widely used in statistical data analysis. However, the large sample distribution of matching estimators has been
derived only for particular cases. This article establishes a martingale representation for matching estimators. This representation allows the
use of martingale limit theorems to derive the large sample distribution of matching estimators. As an illustration of the applicability of the
theory, we derive the asymptotic distribution of a matching estimator when matching is carried out without replacement, a result previously
unavailable in the literature. In addition, we apply the techniques proposed in this article to derive a correction to the standard error of a
sample mean when missing data are imputed using the “hot deck,” a matching imputation method widely used in the Current Population
Survey (CPS) and other large surveys in the social sciences. We demonstrate the empirical relevance of our methods using two Monte Carlo
designs based on actual datasets. In these Monte Carlo exercises, the large sample distribution of matching estimators derived in this article
provides an accurate approximation to the small sample behavior of these estimators. In addition, our simulations show that standard errors
that do not take into account hot-deck imputation of missing data may be severely downward biased, while standard errors that incorporate
the correction for hot-deck imputation perform extremely well. This article has online supplementary materials.
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1. INTRODUCTION

Matching methods provide simple and intuitive tools for ad-
justing the distribution of covariates among samples from dif-
ferent populations. Probably because of their transparency and
intuitive appeal, matching methods are widely used in evaluation
research to estimate treatment effects when all treatment con-
founders are observed (Rubin 1973a, 1977; Dehejia and Wahba
1999; Rosenbaum 2002; Hansen 2004). Matching is also used
for the analysis of missing data, where it is often referred to
as “hot-deck imputation” (Little and Rubin 2002). As a noto-
rious example, missing weekly earnings are currently imputed
using hot-deck methods for more than 30% of the records with
weekly earnings data in the monthly U.S. Current Population
Survey (CPS) files (Bollinger and Hirsch 2009).

In spite of the pervasiveness of matching methods, the asymp-
totic distribution of matching estimators has been derived only
for special cases (Abadie and Imbens 2006). In the absence of
large sample approximation results to the distribution of match-
ing estimators, empirical researchers employing matching meth-
ods have sometimes used the bootstrap as a basis for inference.
However, recent results have shown that, in general, the boot-
strap does not provide valid large sample inference for matching
estimators (Abadie and Imbens 2008). Similarly, the properties
of statistics based on data imputed using sequential hot-deck
methods, similar to those employed in the CPS and other large
surveys, are not well understood, and empirical researchers us-
ing these surveys typically ignore missing data imputation issues
when they construct standard errors. Andridge and Little (2010)
provided a recent survey on hot-deck imputation methods.

The main contribution of this article is to establish a martin-
gale representation for matching estimators. This representation
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allows the use of martingale limit theorems (Hall and Heyde
1980; Billingsley 1995; Shorack 2000) to derive the asymptotic
distribution of matching estimators. Because the martingale rep-
resentation applies to a large class of matching estimators, the
applicability of the methods presented in this article is very
broad. Despite its simplicity and immediate implications, the
martingale representation of matching estimators described in
this article seems to have been previously unnoticed in the lit-
erature. The use of martingale methods is attractive because
the limit behavior of martingale sequences has been extensively
studied in the statistics literature (see, e.g., Hall and Heyde
1980).

As an illustration of the usefulness of the theory, we apply
the martingale methods proposed in this article to derive the
asymptotic distribution of a matching estimator when matching
is carried out without replacement, a result previously unavail-
able in the literature. In addition, we apply the techniques pro-
posed in this article to derive a correction to the standard error
of a sample mean when missing data are imputed using the hot
deck.

Finally, we demonstrate the empirical relevance of our meth-
ods using two Monte Carlo designs based on actual datasets.
In these Monte Carlo exercises, the large sample distribution of
matching estimators derived in this article provides an accurate
approximation to the small sample behavior of these estimators.
In addition, our simulations show that standard errors that do not
take into account hot-deck imputation of missing data may be
severely downward biased, while standard errors that incorpo-
rate the correction for hot-deck imputation perform extremely
well.

In this article, we reserve the term “matching” for proce-
dures that use a small number of matches per unit. Heckman,
Ichimura, and Todd (1998) proposed estimators that treat the
number of matches as an increasing function of the sample size.
Under certain conditions, these estimators have asymptotically
linear representations, so their large sample distributions can be
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derived using the standard machinery for asymptotically linear
estimators. In contrast, despite the pervasiveness of matching
estimators that use a small number of matches (e.g., hot-deck
imputation in the CPS), the previous literature does not pro-
vide a general framework for establishing their large sample
properties.

The rest of the article is organized as follows. Section 2 de-
scribes matching estimators. Section 3 presents the main result
of the article, which establishes a martingale representation for
matching estimators. In Section 4, we apply martingale tech-
niques to analyze the large sample properties of a matching
estimator when matching is carried out without replacement.
In Section 5, we apply martingale techniques to study hot-deck
imputation. Section 6 describes the Monte Carlo simulation ex-
ercises and reports the results. Section 7 concludes. Proofs are
presented in the Appendix.

2. MATCHING ESTIMATORS

Let W be a binary variable that indicates membership to a
particular population of interest. Empirical researchers often
compare the distributions of some variable, Y , between units
with W = 1 and units with W = 0 after adjusting for the differ-
ences in a (k × 1) vector of observed covariates, X. For example,
in discrimination litigation research, W may represent member-
ship in a certain demographic group, Y may represent labor
wages, and X may represent a vector of variables describing job
and/or worker characteristics. In evaluation research, W typi-
cally indicates exposure to an active treatment or intervention,
Y is an outcome of interest, and X is a vector of observed con-
founders. As in that literature, we will say that units with W = 1
are “treated” and units with W = 0 are “untreated.” Let

τ = E[Y |W = 1] − E[E[Y |X,W = 0]|W = 1]. (1)

In evaluation research, τ is given a causal interpretation as the
“average treatment effect on the treated” under unconfound-
edness assumptions (Rubin 1977). Applied researchers often
use matching methods to estimate τ . Other parameters of inter-
est that can be estimated by matching methods include (1) the
“average treatment effect” on the entire population, which is of
widespread interest in evaluation studies, (2) parameters that fo-
cus on features of the distribution of Y other than the mean, and
(3) parameters estimated by hot-deck imputation methods in the
presence of missing data. Rosenbaum (2002), Imbens (2004),
and Rubin (2006) provided detailed surveys of the literature.
For concreteness, and to avoid tedious repetition or unnecessary
abstraction, in this section, we discuss matching estimation of
τ only. While our main focus is on “treatment effect” param-
eters, in Section 5, we show that the techniques proposed in
this article can be applied in the context of missing data imputa-
tion. The two contexts are intimately related, because estimating
treatment effects can be seen as a missing data problem (Rubin
1974; Rosenbaum and Rubin 1983).

Also, to avoid notational clutter, we consider only estimators
with a fixed number of matches, M, per unit. However, as it
will be explained later, our techniques can also be applied to
estimators for which the number of matches may differ across
units (see, e.g., Hansen 2004).

Consider two random samples of sizes N0 and N1 of untreated
and treated units, respectively. Pooling these two samples, we
obtain a sample of size N = N0 + N1 containing both treated
and untreated units. For each unit in the pooled sample, we
observe the triple (Y, X,W ). For each treated unit i, let JM (i)
be the indices of M untreated units, with values in the covariates
similar to Xi (where M is some small positive integer). In other
words,JM (i) is a set of M matches for observation i. To simplify
notation, we will assume that at least one of the variables in
the vector X has a continuous distribution, so perfect matches
happen with probability zero. Let ‖ · ‖ be some norm in Rk

(typically the Euclidean norm). Let 1A be the indicator function
for the event A. For matching with replacement, JM (i) consists
of the indices of the M untreated observations with the closest
covariate values to Xi :

JM (i) =
{

j ∈ {1, . . . , N} s.t. Wj = 0,(
N∑

k=1

(1 − Wk) 1{‖Xi−Xj ‖≤‖Xi−Xk‖}

)
≤ M

}
.

For matching without replacement, the elements of
{JM (i) s.t. Wi = 1} are nonoverlapping subsets of {j ∈
{1, . . . , N} s.t. Wj = 0}, chosen to minimize the sum of the
matching discrepancies:

N∑
i=1

Wi

∑
j∈JM (i)

‖Xi − Xj‖.

In both cases, the matching estimator of τ is defined as

τ̂ = 1

N1

N∑
i=1

Wi

⎛⎝Yi − 1

M

∑
j∈JM (i)

Yj

⎞⎠ . (2)

Many other matching schemes are possible (see, e.g., Gu and
Rosenbaum 1993; Rosenbaum 2002; Hansen 2004; Iacus, King,
and Porro 2009; Diamond and Sekhon 2010), and the results
in this article are of broad generality. However, as discussed
above, our results pertain to matching estimators that employ
a small number, M, of matches per unit. Heckman, Ichimura,
and Todd (1998) proposed “kernel matching” estimators, which
require that the number of matches increases with the sample
size (with M → ∞ as N → ∞) to consistently estimate the
conditional expectation function E[Y |X,W = 0] in Equation
(1). In addition, the results of this article apply to estimators that
match directly on the covariates, X, and do not directly apply
to matching on the estimated propensity score (Rosenbaum and
Rubin 1983). Abadie and Imbens (2010) derived an adjustment
to the distribution of the propensity score matching estimators
for the case when the propensity score is not known, so matching
is done on a first-step estimator of the propensity score.

3. A MARTINGALE REPRESENTATION FOR
MATCHING ESTIMATORS

This section derives a martingale representation for matching
estimators. For w ∈ {0, 1}, let µw(x) = E[Y |X = x,W = w]
and σ 2

w(x) = var(Y |X = x,W = w). Given Equation (2), we
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can write τ̂ − τ = DN + RN , where

DN = 1

N1

N∑
i=1

Wi(µ1(Xi) − µ0(Xi) − τ )

+ 1

N1

N∑
i=1

Wi

(
(Yi − µ1(Xi)) − 1

M

∑
j∈JM (i)

(Yj − µ0(Xj ))

)
,

and

RN = 1

N1

N∑
i=1

Wi

(
µ0(Xi) − 1

M

∑
j∈JM (i)

µ0(Xj )

)
.

The term RN is the conditional bias of matching estimators
described by Abadie and Imbens (2006). This term is zero if all
matches are perfect (i.e., if all matching discrepancies, Xi − Xj

for j ∈ JM (i), are zero), or if the regression µ0 is a constant
function. In most cases of interest, however, this term is different
from zero, as perfect matches happen with probability zero for
continuous covariates. The order of magnitude of RN depends on
the number of continuous covariates, as well as the magnitude
of N0 relative to N1. Under appropriate conditions,

√
N1RN

converges in probability to zero [see Section 4 for the case of
matching without replacement, or Abadie and Imbens (2006)
for the case of matching with replacement].

Next, it will be shown that the term DN is a martingale array
with respect to a certain filtration. First, note that

DN = 1

N1

N∑
i=1

Wi(µ1(Xi) − µ0(Xi) − τ )

+ 1

N1

N∑
i=1

(
Wi − (1 − Wi)

KN,i

M

)
(Yi − µWi

(Xi)),

where KN,i is the number of times that observation i (with
Wi = 0) is used as a match:

KN,i =
N∑

j=1

1{i∈JM (j )}.

Therefore, we can write√
N1DN =

2N∑
k=1

ξN,k,

where

ξN,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
N1

Wk(µ1(Xk) − µ0(Xk) − τ ), if 1 ≤ k ≤ N,

1√
N1

(
Wk−N − (1 − Wk−N )

KN,k−N

M

)
× (Yk−N − µWk−N

(Xk−N )), if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN } and WN = {W1, . . . ,WN }. Con-
sider the σ -fields FN,k = σ {WN, X1, . . . , Xk} for 1 ≤ k ≤ N

and FN,k = σ {WN,XN, Y1, . . . , Yk−N } for N + 1 ≤ k ≤ 2N .
Then, and this is the key insight in this article,⎧⎨⎩

i∑
j=1

ξN,j ,FN,i, 1 ≤ i ≤ 2N

⎫⎬⎭
is a martingale for each N ≥ 1. As a result, the asymptotic be-
havior of

√
N1DN can be analyzed using martingale methods.

This martingale representation holds no matter whether match-
ing is done with or without replacement, whether a fixed or a
variable number of matches per unit are used, or which par-
ticular distance metric is employed to measure the matching
discrepancies. Regardless of the choice of matching scheme, if
matches depend only on the covariates X, a martingale repre-
sentation holds for

√
N1DN . The reason is that no matter how

matching is implemented, (1) the number of times that unit k
is used as a match, KN,k , is a deterministic function of XN and
WN , and (2) E[Yk − µWk

(Xk) |XN,WN, Y1, . . . , Yk−1] = 0.
So far, we have considered the case where KN,i is fixed, given

XN and WN , for all 1 ≤ i ≤ N . This assumption does not hold
for certain matching schemes that break matching ties using
randomization. Note, however, that any sequence of randomized
tiebreakers can be included in the set of variables that spanFN,k ,
for N + 1 ≤ k ≤ 2N , to preserve the martingale representation
of DN . As a result, our derivations extend easily to randomized
matching methods.

4. APPLICATION: MATCHING WITHOUT
REPLACEMENT

In this section, we illustrate the usefulness of the martingale
representation of matching estimators by deriving the asymp-
totic distribution of a matching estimator when matching is
done without replacement, so KN,i ∈ {0, 1} for every unit i with
Wi = 0. To simplify the exposition, we obviate some regularity
conditions in the derivations. A precise statement of the result,
including all regularity conditions, is provided at the end of the
section.

For 1 ≤ k ≤ N , the conditional variances of the martingale
differences are given by

E
[
ξ 2
N,k|FN,k−1

] = 1

N1
WkE[(µ1(Xk) − µ0(Xk) − τ )2|FN,k−1]

= 1

N1
WkE[(µ1(Xk) − µ0(Xk) − τ )2|Wk = 1].

For N + 1 ≤ k ≤ 2N , the conditional variances of the martin-
gale differences are given by

E
[
ξ 2
N,k|FN,k−1

] = 1

N1
E

[(
Wk−N − (1 − Wk−N )

KN,k−N

M

)2

× (Yk−N − µWk−N
(Xk−N ))2

∣∣∣∣FN,k−1

]
= 1

N1

(
Wk−Nσ 2

1 (Xk−N ) + (1 − Wk−N )

× KN,k−N

M2
σ 2

0 (Xk−N )

)
= 1

N1
Wk−N

(
σ 2

1 (Xk−N ) + σ 2
0 (Xk−N )

M

)
+ rN,k−N,

where

rN,k−N = 1

N1

(
(1 − Wk−N )

KN,k−N

M2
σ 2

0 (Xk−N )

− Wk−N

σ 2
0 (Xk−N )

M

)
.
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Assume that the conditional variance function σ 2
0 (x) is Lipschitz

continuous, with Lipschitz constant equal to cσ 2
0
. For 1 ≤ i ≤ N

such that Wi = 1, let ‖U(M,m)
N0,N1,i

‖ be the mth matching discrep-
ancy for treated unit i when untreated units are matched without
replacement to treated units in such a way that the sum of
the matching discrepancies is minimized. That is, if unit i is a
treated observation, and unit j is the mth match for unit i, then
‖U(M,m)

N0,N1,i
‖ = ‖Xi − Xj‖. Lipschitz continuity of σ 2

0 (x) implies∣∣∣∣∣
2N∑

k=N+1

rN,k−N

∣∣∣∣∣ ≤ cσ 2
0

M2

1

N1

N∑
i=1

M∑
m=1

Wi

∥∥U(M,m)
N0,N1,i

∥∥.
Because the average matching discrepancy converges to zero in
probability (see Proposition 1 in the Appendix for a stronger
result), the weak law of large numbers implies

2N∑
k=1

E
[
ξ 2
N,k

∣∣FN,k−1
] p→ σ 2,

where

σ 2 = E[(µ1(X) − µ0(X) − τ )2|W = 1]

+ E

[
σ 2

1 (X) + σ 2
0 (X)

M

∣∣∣∣W = 1

]
. (3)

In view of this result, to apply a martingale central limit theorem
to DN , it is sufficient to check the Lindeberg’s condition,

2N∑
k=1

E
[
ξ 2
N,k1{|ξN,k |≥ε}

] → 0, for all ε > 0

[see Billingsley (1995), Hall and Heyde (1980), and Shorack
(2000) for alternative conditions]. Because for all δ > 0,
|ξN,k|21{|ξN,k |≥ε}εδ ≤ |ξN,k|2+δ , it follows that Lindeberg’s con-
dition is implied by Lyapunov’s condition:

2N∑
k=1

E[|ξN,k|2+δ] → 0, for some δ > 0.

For the matching estimators considered in this section, Lya-
punov’s condition can be established imposing regularity con-
ditions on the existence of moments (such as condition (3) in
the statement of Theorem 1). Then, the central limit theorem for
triangular martingale arrays implies√

N1DN
d−→ N (0, σ 2).

The proof concludes by showing that
√

N1RN

p→ 0. If µ0 is
Lipschitz continuous, then there exists a constant cµ0 such that

√
N1RN ≤ cµ0

1√
N1

1

M

N∑
i=1

M∑
m=1

Wi

∥∥U(M,m)
N0,N1,i

∥∥.
Proposition 1 in the Appendix shows that under some conditions,
and if there exists c > 0 and r > k, where k is the number of
(continuous) covariates, such that Nr

1 /N0 ≤ c, then,

1√
N1

N∑
i=1

M∑
m=1

Wi

∥∥U(M,m)
N0,N1,i

∥∥ p→ 0,

so
√

N1RN vanishes asymptotically.

We now collect in a theorem, the result of this section along
with precise regularity conditions.

Theorem 1. Suppose that (1) {Yi, Xi ,Wi}Ni=1 is a pooled sam-
ple of N1 treated and N0 untreated observations obtained by
random sampling from their respective population counterparts,
(2) the support of X given W = 1, is a subset of the sup-
port of X given W = 0, (3) for some δ > 0, and w = 0, 1,
E[|Y |2+δ|X = x,W = w] is bounded on the support of X given
W = w, (4) the functions µ0(·) and σ 2

0 (·) are Lipschitz con-

tinuous, and (5) (1/
√

N1)
∑N

i=1

∑M
m=1 Wi‖U(M,m)

N0,N1,i
‖ p→ 0 as

N1 → ∞. Then,
√

N1(̂τ − τ )
d→ N (0, σ 2) as N1 → ∞.

Assumption (5) in Theorem 1 is not primitive and Proposi-
tion 1 in the Appendix provides a set of primitive regularity
conditions under which assumption (5) holds. The conditions
of Proposition 1 assume that all covariates have continuous
distributions. This is done without loss of generality for large
enough samples. As sample sizes increase, discrete covariates
with a finite number of support points are perfectly matched, so
they can be easily dealt with by conditioning on their values,
in which case k is equal to the number of continuous covariates
in X. In practice, however, discrete covariates may not be per-
fectly matched, and may therefore contribute to the bias of the
matching estimator.

The proof of Proposition 1 indicates that the support con-
ditions in this proposition can also be relaxed. However, the
requirement that the size of the untreated group is of a larger
order of magnitude than the size of the treated group (implied
by Nr

1 /N0 ≤ c for c > 0 and r > k) is crucial to the result in the
proposition. To see that r = 1 is not sufficient (even in the one-
dimensional case where k = 1), consider the case with M = 1
and N0 = N1. Then, because matching is done without replace-
ment and all treated units are matched, the matching estimator
is equal to the difference in sample means of Y between treated
and untreated units, regardless of the total sample size N.

Proposition 1 provides the conditions under which matching
discrepancies are negligible in large samples. In practical terms,
Proposition 1 demonstrates the benefits of having a large “donor
pool” of control units for matching estimators. However, for
any given sample, matching discrepancies are observed, and
researchers can assess the quality of the matches directly from
the data. If present, large matching discrepancies indicate that
the magnitude of the bias term, RN , is potentially large, in
which case the large sample approximation of Theorem 1 is not
warranted. Therefore, the size of the matching discrepancies
should be conscientiously described (e.g., using the techniques
in Abadie and Imbens 2011) before the result in Theorem 1 is
applied.

When matching discrepancies are large, the resulting bias can
be eliminated or reduced using the bias correction techniques in
Rubin (1973b), Quade (1982), and Abadie and Imbens (2011).
These authors proposed a bias-corrected matching estimator that
adjusts each matched pair for its contribution to the conditional
bias term:

τ̂bc = 1

N1

N∑
i=1

Wi

⎛⎝(Yi − µ̂0(Xi))− 1

M

∑
j∈JM (i)

(Yj −µ̂0(Xj ))

⎞⎠ ,

(4)
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where µ̂0(·) is an estimator of µ0(·). Under certain conditions,
Abadie and Imbens (2011) showed that this bias-correction tech-
nique eliminates the asymptotic bias of a matching with replace-
ment estimator without affecting its asymptotic variance.

Straightforward calculations show that the variance estimator

σ̂ 2 = 1

N1 − 1

N∑
i=1

Wi

⎛⎝Yi − 1

M

∑
j∈JM (i)

Yj − τ̂

⎞⎠2

(5)

is consistent for σ 2. Despite the simplicity of this result, to our
knowledge, the validity of σ̂ 2/N1 as an estimator of the variance
of τ̂ when matching is done without replacement has not been
established previously. Conversely, it is known that σ̂ 2/N1 is
not a valid estimator of the variance of τ̂ when matching is done
with replacement (Abadie and Imbens 2006).

5. APPLICATION: HOT-DECK IMPUTATION

In this section, we consider a “cell hot-deck” imputation
scheme, where incomplete records of Y are imputed using com-
plete observations within the same “cell” of the covariates, X.
That is, the support of the covariates is partitioned into T cells,
C1, . . . ,CT , and each incomplete record of Y is filled using a
complete record from the same cell. Other hot-deck imputation
procedures are possible (see, e.g., Little and Rubin 2002). How-
ever, the cell hot-deck method is probably the most widely used
in practice, as it is the one used by the U.S. Census Bureau to
impute missing data in the CPS, the decennial census, the Sur-
vey of Income and Program Participation (SIPP), and other large
surveys. Derivations similar to the ones presented in this section
can be applied to alternative hot-deck imputation schemes.

Let W be an indicator for a complete record, that is, W = 1
indicates that Y is observed. Cell hot-deck imputation methods,
such as the one employed in the CPS, can be justified by the as-
sumption that Y is independent of (X,W ) conditional on X ∈ Ct ,
for 1 ≤ t ≤ T . This is sometimes referred to as the cell mean
model assumption (Brick, Kalton, and Kim 2004). This may be a
strong assumption in many contexts where data are imputed us-
ing the cell hot deck. However, without this assumption or a sim-
ilar one, in general, the cell hot deck will produce inconsistent
estimators. Therefore, in our analysis, we adopt the cell mean
model assumption. Also, we restrict our derivations to the case of
simple random sampling. Let µ = E[Y ], µ(x) = E[Y |X = x],
µt = E[Y |X ∈ Ct ], and σ 2

t = var(Y |X ∈ Ct ). Let j (i) be the in-
dex of the observation used to impute Y for observation i (if
Wi = 1, then j (i) = i). Let

Ȳ = 1

N

N∑
i=1

Yj (i)

= 1

N

N∑
i=1

Wi(1 + KN,i)Yi, (6)

where now KN,i is the number of times that observation i is used
to impute an incomplete record. The variables KN,i depend on
how imputations are chosen from the complete records within a
cell. One possibility is the random cell hot deck, which imputes
missing records using a record chosen at random among the
complete observations in the same cell. The CPS and other large
surveys use a more complicated procedure called the sequential

cell hot deck. The sequential cell hot deck imputes missing
records using the last complete record in the same cell. That is,
unlike the random cell hot deck, the sequential cell hot deck uses
information about the order of the observations in the sample.

Note that

Ȳ − µ = 1

N

N∑
i=1

(µ(Xi) − µ)

+ 1

N

N∑
i=1

Wi(1 + KN,i)(Yi − µ(Xi))

+ 1

N

N∑
i=1

(
µ
(
Xj (i)

) − µ (Xi)
)
.

Under the cell mean model assumption, µ(Xj (i)) − µ(Xi) = 0,
for all i. Let Nt be the number of observations in cell Ct . Assume
that the second moment of KN,i exists, and that for each cell t,
we have∣∣∣∣∣ 1

Nt

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

− E

[
1

Nt

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

]∣∣∣∣∣ p−→ 0, (7)

which can be usually established using negative associa-
tion properties of {KN,i s.t. Wi = 1, Xi ∈ Ct } (Joag-Dev and
Proschan 1983; see Proposition 2 in the Appendix). We can
write

Ȳ − µ

σ/
√

N
=

2N∑
k=1

ξN,k,

where

σ 2 = E

[
T∑

t=1

(
Nt

N

)
(µt − µ)2

]

+ E

[
T∑

t=1

(
Nt

N

)
σ 2

t

1

Nt

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

]
,

and

ξN,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

σ
√

N
(µ(Xk) − µ), if 1 ≤ k ≤ N,

1

σ
√

N
Wk−N (1 + KN,k−N )

× (Yk−N − µ(Xk−N )), if N + 1 ≤ k ≤ 2N.

Let XN = {X1, . . . , XN } and WN = {W1, . . . ,WN }. Consider
the σ -fields FN,k = σ {W1, . . . ,Wk, X1, . . . , Xk} for 1 ≤ k ≤
N and FN,k = σ {WN,XN, Y1, . . . , Yk−N } for N + 1 ≤ k ≤
2N . Then, ⎧⎨⎩

i∑
j=1

ξN,j ,FN,i, 1 ≤ i ≤ 2N

⎫⎬⎭
is a martingale for each N ≥ 1. Equation (7) along with the
central limit theorem for martingale arrays (e.g., theorem 35.12
in Billingsley 1995) imply

Ȳ − µ

σ/
√

N

d−→ N (0, 1). (8)
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We now present the result of this section in the form of a theorem,
along with precise regularity conditions.

Theorem 2. Suppose that (1) {X1, . . . , XN }Ni=1 are sampled
at random from the population of interest, (2) Pr(W = 1|X ∈
Ct ) > 0, for t = 1, . . . , T , (3) Y is independent of (W, X), given
X ∈ Ct , for t = 1, . . . , T , (4) var(Y ) > 0, and (5) for some δ >

0, E[|Y |2+δ] < ∞. Then, Equation (8) holds.

Consider now the usual variance estimator that ignores miss-
ing data imputation:

σ̂ 2 = 1

N − 1

N∑
i=1

(
Yj (i) − Ȳ

)2
. (9)

Note that∣∣∣∣∣̂σ 2 −
T∑

t=1

(
Nt

N

)
(µt − µ)2 −

T∑
t=1

(
Nt

N

)
σ 2

t

∣∣∣∣∣ p−→ 0.

In addition, because
∑N

i=1 1{Xi∈Ct }Wi(1 + KN,i) = Nt , then

1

Nt

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

= 1 + 1

Nt

N∑
i=1

1{Xi∈Ct }Wi

(
K2

N,i + KN,i

)
.

This suggests using the following estimator of the variance of
the rescaled estimator:

σ̂ 2
adj = σ̂ 2 + 1

N

T∑
t=1

(
N∑

i=1

1{Xi∈Ct }Wi

(
K2

N,i + KN,i

))
σ̂ 2

t

= σ̂ 2 +
T∑

t=1

(
Nt

N

)(
1

Nt

N∑
i=1

1{Xi∈Ct }Wi

(
K2

N,i + KN,i

))
σ̂ 2

t ,

(10)

where σ̂ 2
t is the sample variance of Y calculated from the com-

plete observations in cell Ct . Similar formulas of the estimator
of the variance in contexts different from the one considered in
this section have been previously derived by Hansen, Hurwitz,
and Madow (1953, vol. II, pp. 139–140), Kalton (1983), and
Brick, Kalton, and Kim (2004). Note that this formula applies
no matter how imputation is done within the cells (e.g., random-
ized or based on the order of the observations in the sample) as
long as Equation (7) holds.

6. MONTE CARLO ANALYSIS

This section reports the results of two Monte Carlo simula-
tions based on actual data. Section 6.1 uses the Boston U.S.
Home Mortgage Disclosure Act (HMDA) dataset, a dataset col-
lected by the Federal Reserve Bank of Boston to investigate
racial discrimination in mortgage credit markets, to assess the
quality of the large sample approximation to the distribution
of matching estimators derived in Section 4. Section 6.2 uses
CPS data to investigate the performance of the standard error
correction for missing data imputation derived in Section 5.

6.1 Matching Without Replacement in the Boston HMDA
Dataset

To detect potential discriminatory practices of mortgage
credit lenders against minority applicants, the HMDA of 1975

requires lenders to routinely disclose information on mortgage
applications, including the race and ethnicity of the applicants.
The information collected under the HMDA does not include,
however, data on the credit histories of the applicants, and other
loan and applicant characteristics that are considered to be im-
portant factors in determining the approval or denial of mortgage
loans. The absence of such information has generated some
skepticism about whether the HMDA data can effectively be
used to detect discrimination in the mortgage credit market.
To overcome these deficiencies in the HMDA data, the Fed-
eral Reserve Bank of Boston collected an additional set of
38 variables included in mortgage applications for a sample
of applications in the Boston metropolitan area in 1990. The
Boston HMDA dataset includes all mortgage applications by
black and Hispanic applicants in the Boston metropolitan area
in 1990, as well as a random sample of mortgage applications
by white applicants in the same year and geographical area. Re-
gression analysis of the Boston HMDA data indicated that mi-
nority applicants were more likely to be denied mortgage than
white applicants with the same characteristics (Munnell et al.
1996).

In this section, we use the Boston HMDA dataset to evaluate
the empirical performance of the large sample approximation
to the distribution of matching estimators derived in Section 4.
HMDA data provide a relevant context for this evaluation be-
cause the Federal Reserve System employs matching in HMDA
data as an screening device for fair lending regulation com-
pliance (Avery, Beeson, and Calem 1997; Avery, Canner, and
Cook 2005). We restrict our sample to single-family residences
and male applicants who are white non-Hispanic or black non-
Hispanic, not self-employed, who were approved for private
mortgage insurance, and who do not have a public record of
default or bankruptcy at the time of the application. This leaves
us with a sample of 148 black applicants and 1336 white appli-
cants, for a total of 1484 applicants.

In the context of this application, the outcome variable, Y ,
is an indicator variable that takes value 1 if the mortgage ap-
plication was denied, and 0 if the mortgage application was
approved; W is a binary indicator that takes value 1 for black
applicants; and X is a vector of six applicant and loan char-
acteristics used in Munnell et al. (1996): housing expense to
income ratio, total debt payments to income ratio, consumer
credit history, mortgage credit history, regional unemployment
rate in the applicant’s industry, and loan amount to appraised
value ratio [see Munnell et al. (1996) for a precise definition of
these variables].

To run our simulations for samples sizes of N1 black obser-
vations and N0 white observations, we proceed in five steps.
First, for the entire sample, we estimate a logistic model of the
mortgage denial indicator on the black indicator and the covari-
ates in X. Second, we draw (with replacement) N1 observations
from the empirical distribution of X for black applicants and
N0 observations from the empirical distribution of X for white
applicants. Third, for each individual in the simulated sample,
we generate the mortgage denial indicator, Y , using the logis-
tic model estimated in the first step. Fourth, for the simulated
sample, we compute τ̂ , the matching estimator in Equation (2),
matching without replacement, the bias-corrected version of this
estimator, τ̂bc, in Equation (4), and the variance estimator, σ̂ 2, in
Equation (5). All covariates are normalized to have unit variance
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Table 1. Boston HMDA data simulation results: black–white difference in mortgage denial probability for matched pairs (number of
simulations =10,000)

Bias Variance Coverage of 95% CI

(1) (2) (3) (4) (5) (6)
Sample sizes |E[̂τ ] − τ | |E[̂τbc] − τ | var(̂τ ) E[̂σ 2/N1] τ̂ ±1.96 σ̂ /

√
N1 τ̂bc±1.96 σ̂ /

√
N1

N1 = 25 N0 = 250 0.0143 0.0012 0.0091 0.0091 0.9225 0.9348
N0 = 500 0.0106 0.0001 0.0092 0.0091 0.9244 0.9394
N0 = 1000 0.0077 0.0002 0.0090 0.0091 0.9263 0.9430

N1 = 50 N0 = 500 0.0106 0.0011 0.0045 0.0045 0.9427 0.9458
N0 = 1000 0.0073 0.0009 0.0044 0.0046 0.9427 0.9456

N1 = 100 N0 = 1000 0.0090 0.0001 0.0023 0.0023 0.9436 0.9468

prior to matching, and a logistic model is employed to calcu-
late the bias correction. Finally, we repeat steps two to four for
a total number of 10,000 simulations. That is, in this simula-
tion, we sample from a population distribution of the covariates
that is equal to the distribution of the covariates in the HMDA
sample of 1484 applicants. The distribution of Y conditional on
W and X in our simulation is given by a logistic model with
parameters equal to those estimated in the HMDA sample of
1484 applicants. In this Monte Carlo design, the parameter τ in
Equation (1) is equal to 0.099, which represents the difference
in the probability of denial between black applicants and white
applicants of the same characteristics in our simulation.

Table 1 reports the results of the simulation, for different sam-
ple sizes N1 and N0. Column (1) reports the bias of τ̂ relative
to τ . As suggested by the results in Section 4, our simulation
results indicate that for a fixed N1, the bias of τ̂ decreases when
N0 increases. For small samples, however, the bias of τ̂ may
be substantial, reflecting the high dimensionality of the vector
of matching variables. The bias-corrected estimator in column
(2) generates much smaller biases. Columns (3) and (4) report
the variance of τ̂ across simulations and the average, also across
simulations, of the variance estimator of τ̂ in Equation (5). Even
in fairly small samples (N1 = 25 and N0 = 250), σ̂ 2/N1 pro-
vides a very precise approximation to the variance of τ̂ . Finally,
columns (5) and (6) report coverage rates of nominal 95% con-
fidence intervals (CIs) constructed with (̂τ , σ̂ 2) and (̂τbc, σ̂

2),
respectively. The results indicate that, in this simulation, the
normal approximation to the distribution of matching estima-
tors derived in Section 4 is very accurate, especially when the
bias of the matching estimator is corrected using the bias cor-
rection techniques in Rubin (1973b), Quade (1982), and Abadie
and Imbens (2011).

Because we consider matching without replacement, the un-
treated sample should include a subset of N1 units that are
sufficiently close in their covariate values to the N1 units in
the treatment sample. This is important, as it precludes the use
of matching without replacement in some important settings.
In particular, in the National Supported Work Demonstration
(NSW) dataset of LaLonde (1986) and Dehejia and Wahba
(1999), which is prominently used to evaluate the performance
of different matching methods (Dehejia and Wahba 1999; De-
hejia 2005; Smith and Todd 2005; Diamond and Sekhon 2010;
Abadie and Imbens 2011), there are severe imbalances in demo-
graphic characteristics between the treated sample and the un-

treated sample. This makes it impossible to obtain good matches
across the treated and untreated samples when matching is done
without replacement on the entire list of covariates included in
propensity score specification by Dehejia and Wahba (1999).
In an appendix available online, we repeat the analysis in this
section using a subset of the NSW treated units and matching
variables for which close matches exist when matching is car-
ried out without replacement. The results are similar to those
reported here for the HMDA data.

6.2 Hot-Deck Imputation in the CPS

Hot-deck methods have long been used to impute missing data
in large surveys (see, e.g., Andridge and Little 2010). However,
the sampling properties of complex hot-deck imputation meth-
ods, such as the sequential hot deck used by the Census Bureau
in the CPS, are largely unknown. This void in the literature has
become an object of serious concern in recent years, because
the proportion of observations in the CPS with imputed values
of weekly earnings has increased steadily: from around 16%
in 1979, when weekly earnings were included in the monthly
survey questionnaire, to more than 30% in recent years (Hirsch
and Schumacher 2004; Bollinger and Hirsch 2009).

In this section, we investigate the performance of the ap-
proximation to the distribution of a sample mean proposed in
Section 5, when data are imputed using a sequential hot deck
as in the CPS. To make our exercise as realistic as possible, we
base our Monte Carlo design on actual CPS data. However, as
in Section 5 and in contrast to the CPS sampling scheme, we
base our simulation on simple random sampling.

Hot-deck imputation in the CPS outgoing rotation groups is
carried out through a series of steps, each one imputing a specific
survey item. Here, we focus on imputation of missing earnings,
because earnings are affected by imputation rates that are much
higher than for other survey items. Like other missing survey
items, the imputation of weekly earnings for nonhourly workers
is implemented through a cell hot-deck procedure. Observations
are assigned to cells defined by age, race, gender, education,
occupation, hours worked, and receipt of overtime wages, tips,
or commissions, for a total of 11,520 cells (see Bollinger and
Hirsch 2009 for details). Then, each missing record is imputed
using the value of weekly earnings of the last complete record
in the same cell.
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Table 2. CPS data simulation results: average log weekly earnings (number of simulations =50,000)

Variance Coverage of 95% CI

Sample size (1) (2) (3) Ratio (4) (5) (6)
N var(Ȳ ) E[̂σ 2

adj/N ] E[̂σ 2/N ] (3)/(1) Ȳ ±1.96 σ̂adj/
√

N Ȳ ±1.96 σ̂ /
√

N

50 0.0072 0.0071 0.0052 0.7262 0.9436 0.8973
100 0.0039 0.0039 0.0026 0.6701 0.9476 0.8888
200 0.0021 0.0021 0.0013 0.6342 0.9492 0.8799
856 0.0005 0.0005 0.0003 0.5834 0.9482 0.8661

The imputation of weekly earnings in the CPS outgoing rota-
tion groups cannot be perfectly reproduced with the CPS public
use data files. The main reason is that the race variable used by
the imputation algorithm is different from the one included in the
public use data release. Nevertheless, the Monte Carlo exercise
carried out in this section is designed to reproduce as closely as
possible the imputation algorithm used by the Census Bureau for
weekly earnings. In our simulation, we use data from the CPS
monthly file of August 2009. To simplify the analysis, we first
restrict our sample to male individuals working for a pay, who
are white, aged 25–64, have a high school diploma or equiva-
lent, hold one job only, have a tertiary occupation, do not receive
overtime wages, tips, or commissions, and work 40 hr per week.
In addition, we discard four observations with zero recorded
weekly earnings. This leaves us with 856 observations in 30 of
the 11,520 original hot-deck cells. The 30 hot-deck cells are de-
fined by three categories of age, two of education, and five of oc-
cupation. The average number of observations per cell is 28.53,
the minimum is 2, and the maximum is 149. In this sample,
the percentage of observations with missing weekly earnings is
32.83, and each cell has at least two complete observations.

For a given number of observations, N, the simulation pro-
ceeds as follows. First, for each cell t, we simulate two obser-
vations of log weekly earnings, Y ∗

t,1 and Y ∗
t,2, from a normal

distribution, with the same mean and variance as in the distribu-
tion of log weekly earnings for the complete CPS observations
in the same cell. In our simulation, Y ∗

t,1 and Y ∗
t,2 represent the

last two complete observations in cell t in previous CPS waves.
Second, we sample N observations from the multinomial dis-
tribution of cell frequencies in the CPS sample. For each of
these N observations, we simulate log weekly earnings using
a normal distribution, with the same mean and variance as in
the distribution of log weekly earnings for the complete CPS
observations in the same cell. Then, for each observation, we
mark weekly earnings as unrecorded, with probability equal to
the proportion of missing weekly earnings in the same cell of
the CPS sample. Third, in our simulated sample of N obser-
vations, we impute missing log weekly earnings using the last
complete observation in the cell (which may possibly be Y ∗

t,2).
This creates a partially imputed sample with N values of log
weekly earnings. Fourth, we calculate the sample average, Ȳ ,
in Equation (6), as well as the usual and adjusted variance esti-
mators, σ̂ 2 and σ̂ 2

adj, in Equations (9) and (10), respectively. To
compute the intracell variances, σ̂ 2

t , of Equation (10), we use
all the complete simulated observations in the cell plus Y ∗

t,1 and
Y ∗

t,2. Simulating two complete observations per cell, Y ∗
t,1 and

Y ∗
t,2, that correspond to the last two complete observations in

the cell, in previous CPS waves, allows us to compute σ̂ 2
t even

for cells with no other complete observations in the simulation.
Finally, we repeat steps one to four for a total number of 50,000
simulations.

The results are reported in Table 2 for sample sizes 50, 100,
200, and 856, the actual number of observations in the CPS
sample. The average of our adjusted variance estimator across
simulations, in column (2), closely approximates the variance of
Ȳ , in column (1), even for fairly small sample sizes. In contrast,
columns (3) and (4) show that the usual variance estimator is
severely downward biased, and that the bias of this estimator
(as a percentage of the true variance) increases with the sample
size. For 856 observations, that is, the actual size of the CPS
data sample used in the simulation, the usual variance estima-
tor is only 58% of the true variance of Ȳ . Large sample sizes
make possible that some observations are repeatedly used for
imputation, increasing the difference between the adjusted and
the unadjusted variances in Equation (10). This happens when
missing observations arrive consecutively to a cell, without the
observation used for imputation being “refreshed” by another
complete observation. Columns (5) and (6) report coverage rates
of nominal 95% CIs constructed with σ̂ 2

adj and σ̂ 2, respectively.
The results show coverage rates close to nominal coverage in
column (5), when the adjusted variance estimator is used to
construct CI. In contrast, CIs calculated with the usual vari-
ance estimator suffer from severe undercoverage, as reported in
column (6).

7. CONCLUSION

This article establishes a martingale array representation for
matching estimators. This representation allows the use of well-
known martingale limit theorems to determine the large sample
distribution of matching estimators. Because the martingale rep-
resentation applies to a large class of matching estimators, the
applicability of the methods presented in this article is very
broad. Specific applications include matching estimators of av-
erage treatment effects as well as “hot-deck” imputation meth-
ods for missing data. Two realistic simulations demonstrate the
empirical relevance of the results of this article.

APPENDIX

Proposition 1. Let F0 and F1 be the distributions of X given W = 0
and X given W = 1, respectively. Assume that F0 and F1 have a
common support that is a Cartesian product of intervals, and that
the densities f0(x) and f1(x) are bounded and bounded away from
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zero: f ≤ f0 ≤ f̄ and f ≤ f1 ≤ f̄ . Assume that there exists c > 0
and r > k, where k is the number of (continuous) covariates, such that
Nr

1 /N0 ≤ c. Then,

1√
N1

N∑
i=1

M∑
m=1

Wi

∥∥∥U(M,m)
N0,N1,i

∥∥∥ p→ 0.

Proof of Proposition 1. By changing units of measurement, we can
always make the support of the covariates equal to the unit k-cube. (This
only adds a multiplicative constant to our bounds.) Note that we can
always divide a unit k-cube into Nk

1 identical cubes, for N1 = 1, 2, 3,

. . . .
Divide the support of F0 and F1 into Nk

1 identical cubes. Let ZM,N0,N1

be the number of such cells where the number of untreated observations
is less than M times the number of observations from the treated sample.
Let MN1 be the maximum number of observations from the treated
sample in a single cell. Let mN0,N1 be the minimum number of untreated
observations in a single cell. Note that for any series, f (N1), such that
1 ≤ f (N1) < N1, we have

Pr(ZM,N0,N1 > 0) ≤
N1∑
n=1

Pr
(
mN0,N1 < Mn

)
Pr
(
MN1 = n

)
≤

	f (N1)
∑
n=1

Pr
(
mN0,N1 < Mn

)
Pr
(
MN1 = n

)
+

N1∑
n=	f (N1)
+1

Pr
(
mN0,N1 < Mn

)
Pr
(
MN1 = n

)
≤ f (N1) Pr

(
mN0,N1 < Mf (N1)

)
+ (N1 − f (N1)) Pr(MN1 > f (N1)).

Let DN1,n be the number of cells where the number of treated
observations is larger than n. Let 0 < α < min{r − k, 1}. Consider
f (N1) = Nα

1 . For N1 large enough, f̄ /Nk
1 < 1. Using Bonferroni’s

inequality, we obtain for N1 large enough,

Pr
(
MN1 > f (N1)

) = Pr
(
DN1,Nα

1
≥ 1

)
≤ Nk

1 Pr
(
B
(
N1, f̄ /Nk

1

)
> Nα

1

)
,

where B(N, p) denotes a binomial random variable with parameters
(N, p). Using Bennett’s bound for binomial tails (e.g., Shorack and
Wellner 1986, p. 440), we obtain

Pr
(
B
(
N1, f̄ /Nk

1

)
> Nα

1

)
= Pr

(
B
(
N1, f̄ /Nk

1

) − f̄ /Nk−1
1√

N1
>

Nα
1 − f̄ /Nk−1

1√
N1

)

≤ exp

{
− f̄ /Nk−1

1

1 − f̄ /Nk
1

[
Nα+k−1

1

f̄

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+ 1

]}

= exp

{
− 1

1 − f̄ /Nk
1

[
Nα

1

(
log

(
Nα+k−1

1

f̄

)
− 1

)
+ f̄

Nk−1
1

]}
.

Similarly, let CN0,N1,m be the number of cells with less than m untreated
observations. Then, using Bonferroni’s inequality, we obtain

Pr
(
mN0,N1 < m

) = Pr
(
CN0,N1,m ≥ 1

)
≤

Nk
1∑

n=1

Pr(B(N0, pn) < m),

where pn is the probability that an untreated observation falls in cell n.
Then, because for all n, pn ≥ f /Nk

1 , we obtain

Pr
(
mN0,N1 < m

) ≤ Nk
1 Pr

(
B
(
N0, f /Nk

1

)
< m

)
.

Also, for large enough N1, there exists δ such that (Mc/f )/Nr−α−k
1 <

δ < 1. Using Chernoff’s bound for the lower tail of a sum of inde-
pendent Poisson trials (e.g., Motwani and Raghavan 1995, p. 70), we
obtain that for large enough N1,

Pr
(
B
(
N0, f /Nk

1

)
< MNα

1

)
= Pr

(
B
(
N0, f /Nk

1

)
< f

N0

Nk
1

MNα+k
1

f N0

)

≤ Pr

(
B
(
N0, f /Nk

1

)
< f

N0

Nk
1

Mc/f

Nr−α−k
1

)

≤ exp

(
−
(
f N0/N

k
1

) (
1 − (Mc/f )/Nr−α−k

1

)2
/2

)
≤ exp

(
−f Nr−k

1 (1 − δ)2/2c
)

.

This proves an exponential bound for Pr(ZM,N0,N1 > 0).
Rearrange the observations so the first N1 observations in the sam-

ple are the treated observations. For 1 ≤ i ≤ N1, let ‖U(M,m)
N0,N1,i‖ be

the mth matching discrepancy for treated unit i when untreated units
are matched without replacement to treated units in such a way that
the sum of the matching discrepancies is minimized. For 1 ≤ i ≤ N1,
let ‖V(M,m)

N0,N1,i‖ be the mth matching discrepancy for treated unit i when
untreated units are matched without replacement to treated units in
such a way that the matches are first done within cells and, after all
possible within-cell matches are exhausted, untreated units that were
not previously used as a match are matched without replacement to
previously unmatched treated units in other cells. Note that

N1∑
i=1

M∑
m=1

∥∥∥U(M,m)
N0,N1,i

∥∥∥ ≤
N1∑
i=1

M∑
m=1

∥∥∥V(M,m)
N0,N1,i

∥∥∥ .

Let dN1,k be the diameter of the cells. Let Ck be the diameter of the unit
k-cube. Note that if the unit k-cube is divided into Nk

1 identical cells,
then Ck = N1dN1,k . For 1 ≤ n ≤ Nk

1 , let AN1,n be the nth cell. Then,

E
[∥∥∥V(M,m)

N0,N1,i

∥∥∥ ∣∣ZM,N0,N1 =0
]

≤
Nk

1∑
n=1

dN1,k Pr
(
X1,i ∈AN1,n|ZN0,N1 =0

)
≤ dN1,k

= Ck

N1
.

Now,

E

[
1√
N1

N1∑
i=1

M∑
m=1

∥∥∥U(M,m)
N0,N1,i

∥∥∥]

≤ E

[
1√
N1

N1∑
i=1

M∑
m=1

∥∥∥V(M,m)
N0,N1,i

∥∥∥]

= E

[
1√
N1

N1∑
i=1

M∑
m=1

∥∥∥V(M,m)
N0,N1,i

∥∥∥∣∣∣∣ZM,N0,N1 = 0

]
Pr
(
ZM,N0,N1 = 0

)
+ E

[
1√
N1

N1∑
i=1

M∑
m=1

∥∥∥V(M,m)
N0,N1,i

∥∥∥∣∣∣∣ZM,N0,N1 > 0

]
Pr
(
ZM,N0,N1 > 0

)
≤ M

Ck√
N1

+
√

N1MCk Pr
(
ZM,N0,N1 > 0

) −→ 0.

Markov’s inequality produces the desired result. �

Proof of Theorem 1. Note that condition (3) in Theorem 1 implies
that for w = 0, 1, µw(x) and σ 2

w(x) are bounded on the support of X,
given W = w. Then, the result of the theorem follows easily from the
derivations in Section 4. �
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Before proving Theorem 2, it is useful to prove the following propo-
sition.

Proposition 2. Let

AN,t = 1

N

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

− E

[
1

N

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

]
.

Under the conditions of Theorem 2, we have AN,t

p→ 0, for all t =
1, 2, . . . , T .

Proof of Proposition 2. Given the nature of the sequential hot deck,
it is easy to check that for any N and i, the positive moments of KN,i

conditional on Xi ∈ Ct are bounded by the corresponding moments
of a geometric distribution with parameter Pr(W = 1|X ∈ Ct ). There-
fore, we obtain that for any r > 0, there exists a constant cr such that
E[Kr

N,i] ≤ cr for all N and i.
Because E[AN,t ] = 0, Markov’s inequality implies that if

var(AN,t ) → 0, then AN,t

p→ 0.

var(AN,t ) = var

(
1

N

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)
2

)

= 1

N 2

N∑
i=1

var
(
1{Xi∈Ct }Wi(1 + KN,i)

2
)

+ 2

N 2

N∑
i=1

∑
j>i

cov
(

1{Xi∈Ct }Wi(1 + KN,i)
2,

1{Xj ∈Ct }Wj (1 + KN,j )2
)
.

To show that var(AN,t ) converges to zero, we will first prove the
following intermediate result: for all i = 1, . . . , N − 1, all j = i +
1, . . . , N , and all p ≥ 0, Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤
p) ≥ Pr(1{Xj ∈Ct }Wj = 1). To prove this result, note that

Pr((1 + KN,i) > p|Wi = 1, Xi ∈ Ct )

= Pr(W = 0|X ∈ Ct )
p Pr

(
N∑

k=i+1

1{Xk∈Ct } ≥ p

)
.

Therefore,

Pr
(
1{Xi∈Ct }Wi(1 + KN,i) > p

)
= Pr(W = 0|X ∈ Ct )

p Pr

(
N∑

k=i+1

1{Xk∈Ct } ≥ p

)
× Pr(Wi = 1|Xi ∈ Ct ) Pr(Xi ∈ Ct ).

Similarly,

Pr(1{Xi∈Ct }Wi(1 + KN,i) > p | 1{Xj ∈Ct }Wj = 1)

= Pr(W = 0|X ∈ Ct )
p Pr

(
j−1∑

k=i+1

1{Xk∈Ct } ≥ p

)
× Pr(Wi = 1|Xi ∈ Ct ) Pr(Xi ∈ Ct ).

Now, because

Pr

(
j−1∑

k=i+1

1{Xk∈Ct } ≥ p

)
≤ Pr

(
N∑

k=i+1

1{Xk∈Ct } ≥ p

)
,

we obtain that

Pr(1{Xi∈Ct }Wi(1 + KN,i) > p | 1{Xj ∈Ct }Wj = 1)

≤ Pr(1{Xi∈Ct }Wi(1 + KN,i) > p),

or equivalently,

Pr(1{Xi∈Ct }Wi(1 + KN,i) ≤ p | 1{Xj ∈Ct }Wj = 1)

≥ Pr(1{Xi∈Ct }Wi(1 + KN,i) ≤ p).

By Bayes’ theorem,

Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

Pr(1{Xj ∈Ct }Wj = 1)

= Pr(1{Xi∈Ct }Wi(1 + KN,i) ≤ p | 1{Xj ∈Ct }Wj = 1)

Pr(1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

and we therefore obtain the desired result,

Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p) ≥ Pr(1{Xj ∈Ct }Wj = 1).
(A.1)

We will now show that, for all i = 1, . . . , N − 1 and all j =
i + 1, . . . , N , cov(1{Xi∈Ct }Wi(1 + KN,i)2, 1{Xj ∈Ct }Wj (1 + KN,j )2) ≤ 0.
Consider two units i and j, with j > i. Note that because of the sequen-
tial nature of hot-deck imputation, KN,j is independent of (Wi, KN,i)
conditional on Wj . Therefore,

Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

= Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xj ∈Ct }Wj = 1, 1{Xi∈Ct }
× Wi(1 + KN,i) ≤ p) Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }
× Wi(1 + KN,i) ≤ p)

+ Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xj ∈Ct }Wj = 0, 1{Xi∈Ct }
× Wi(1 + KN,i) ≤ p) Pr(1{Xj ∈Ct }Wj = 0 | 1{Xi∈Ct }
× Wi(1 + KN,i) ≤ p)

= Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xj ∈Ct }Wj = 1)

× Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

+ Pr(1{Xj ∈Ct }Wj = 0 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

= 1 −
(

1 − Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xj ∈Ct }Wj = 1)
)

× Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p).

Now, because Pr(1{Xj ∈Ct }Wj = 1 | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p) ≥
Pr(1{Xj ∈Ct }Wj = 1) [Equation (A.1)], we obtain

Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xi∈Ct }Wi(1 + KN,i) ≤ p)

≤ 1 − (1 − Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q | 1{Xj ∈Ct }Wj = 1)

× Pr(1{Xj ∈Ct }Wj = 1)

= Pr(1{Xj ∈Ct }Wj (1 + KN,j ) ≤ q).

As a result, the variables 1{Xj ∈Ct }Wj (1 + KN,j ) and 1{Xj ∈Ct }Wj (1 +
KN,j ) are negative quadrant dependent and, therefore, negatively asso-
ciated (Joag-Dev and Proschan 1983). Furthermore, because increasing
transformations of negatively associated random variables are also neg-
atively associated (Joag-Dev and Proschan 1983), we obtain

cov(1{Xi∈Ct }Wi(1 + KN,i)
2, 1{Xj ∈Ct }Wj (1 + KN,j )2) ≤ 0,

for all i = 1, . . . , N and all j = i + 1, . . . , N . This result implies

var(AN,t ) ≤ 1

N 2

N∑
i=1

var
(
1{Xi∈Ct }Wi(1 + KN,i)

2
)
. (A.2)

To finish the proof, we will show that var(1{Xi∈Ct }Wi(1 + KN,i)2) is
uniformly bounded in (i, N ). Because

var
(

1{Xi∈Ct }Wi(1 + KN,i)
2
)

≤ E
[
1{Xi∈Ct }Wi(1 + KN,i)

4
]

= E
[
(1 + KN,i)

4 | 1{Xi∈Ct }Wi = 1
]

× Pr(1{Xi∈Ct }Wi = 1),

and because E[K4
N,i |1{Xi∈Ct }Wi = 1] is uniformly bounded in (i, N ),

we obtain var(AN,t ) → 0. �
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Proof of Theorem 2. First, note that, because (1 + KN,i)2 ≥ (1 +
KN,i) and

∑N

i=1 1{Xi∈Ct }Wi(1 + KN,i) = Nt , we obtain

σ 2 ≥ E

[
T∑

t=1

(
Nt

N

)
(µt − µ)2

]

+ E

[
T∑

t=1

σ 2
t

1

N

N∑
i=1

1{Xi∈Ct }Wi(1 + KN,i)

]

= E

[
T∑

t=1

(
Nt

N

)
(µt − µ)2

]
+ E

[
T∑

t=1

(
Nt

N

)
σ 2

t

]
= var(Y ) > 0,

and the sequence {ξN,k}2N
k=1 is well defined. Now, applying Proposition

2, we obtain

2N∑
k=1

E
[
ξ 2
N,k|FN,k−1

]
= 1

σ 2N

N∑
k=1

E[(µ(Xk) − µ)2]

+ 1

σ 2N

2N∑
k=N+1

T∑
t=1

1{Xk−N ∈Ct }Wk−N (1 + KN,k−N )2σ 2
t

= 1

σ 2
E

[
1

N

N∑
k=1

T∑
t=1

1{Xk∈Ct }(µt − µ)2

]

+ 1

σ 2

T∑
t=1

σ 2
t

1

N

N∑
k=1

1{Xk∈Ct }Wk(1 + KN,k)2 p→ 1.

Jensen’s inequality implies E[|µ(Xi)|2+δ] ≤ E[|Yi |2+δ] < ∞. Because
E[|Yi − µ(Xi)|2+δ] < ∞ and because all positive moments of KN,i

are bounded (uniformly in N and i), Hölder’s inequality implies that
E[Wi(1 + KN,i)2+δ/2|Yi − µ(Xi)|2+δ/2] is bounded (uniformly in N and
i). As a result, we obtain the Lyapunov’s condition

2N∑
k=1

E
[
ξ

2+δ/2
N,k

]
→ 0.

The result of Theorem 2 follows now from Theorem 35.12 in Billings-
ley (1995).

�

SUPPLEMENTARY MATERIALS

In the online supplementary materials we repeat the analysis
of Section 6.1 using a subset of the NSW data from Dehejia and
Wahba (1999).

[Received April 2010. Revised January 2012.]
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