Myopia and Anchoring

George-Marios Angeletos
MIT

Zhen Huo
Yale University

University of Cambridge / INET Conference
May 4, 2018
Context

- Textbook version of forward-looking models

\[a_t = \varphi \xi_t + \delta \mathbb{E}_t [a_{t+1}] \]

- NKPC: \(\pi_t = \kappa x_t + \delta \mathbb{E}_t [\pi_{t+1}] \)

- DIS: \(c_t = -\sigma r_t + \mathbb{E}_t [c_{t+1}] \)

- AP: \(p_t = \mathbb{E}_t [d_{t+1}] + \delta \mathbb{E}_t [p_{t+1}] \)
Motivation

- **Empirical challenges:**
 - do not generate sluggish response to shocks
 - respond too strongly to news about distant feature fundamentals

- **DSGE literature** (*Christiano & Eichenbaum, Smets & Wouters*)
 - addresses first issue with hybrid NKPC, habit, IAC, etc
 - but is inconsistent with micro

- **Recent work on bound rationality** (*Gabaix, Farhi & Werning, Woodford*)
 - addresses second issue by dropping REE (a cost on its own right?)
 - but abstracts from first issue
Motivation

○ **Empirical challenges:**
 ○ do not generate sluggish response to shocks
 ○ respond too strongly to news about distant feature fundamentals

○ **DSGE literature** (Christiano & Eichenbaum, Smets & Wouters)
 ○ addresses first issue with hybrid NKPC, habit, IAC, etc
 ○ but is inconsistent with micro

○ **Recent work on bound rationality** (Gabaix, Farhi & Werning, Woodford)
 ○ addresses second issue by dropping REE (a cost on its own right?)
 ○ but abstracts from first issue

○ **This paper: simple resolution to both issues**
 ○ consistent with REE
 ○ consistent with evidence on expectations
 ○ explains why distortions more prevalent at macro level
What We Do: Theory

○ Take a model of the form

\[a_t = \varphi \xi_t + \delta \mathbb{E}_t [a_{t+1}] \]

○ Add:
 o incomplete info (rational inattention)
 o higher-order uncertainty (doubts about others)
 o learning (gradual consensus)
What We Do: Theory

○ Take a model of the form

\[a_t = \varphi \xi_t + \delta \mathbb{E}_t[a_{t+1}] \]

○ Add:
 ○ incomplete info (rational inattention)
 ○ higher-order uncertainty (doubts about others)
 ○ learning (gradual consensus)

○ Main result: observational equivalence with

\[a_t = \varphi \xi_t + \delta \omega f \mathbb{E}_t [a_{t+1}] + \omega_b a_{t-1} \]

○ \(\omega_f < 1 \) → myopia, additional discounting
○ \(\omega_b > 0 \) → anchoring, backward looking
○ distortions intensify with strength of GE feedback
○ distortions more prevalent at macro level
What We Do: Applications

- Evaluate quantitative performance in context of inflation/NKPC
 - rationalize evidence on hybrid NKPC (Gali and Gertler)
 - match evidence on inflation expectations (Coibion and Gorodnichenko)
 - quantify role of informational friction

- Other applications
 - habit in consumption
 - IAC
 - myopia and momentum in asset prices
Literature

○ Informational frictions and higher-order uncertainty
 o Sims (2003), Woodford (2003), Mankiw and Reis (2003, 2011)
 o Angeletos and Lian (2016), Huo and Takayama (2015b)

○ DSGE, Philips Curves, and Micro vs Macro
 o Havranek, Rusnak, and Sokolova (2017), Altissimo et al. (2010)

○ Bounded rationality
Framework

○ Continuum of infinitely-lived agents with Euler-like best responses given by

\[a_{it} = \mathbb{E}_{it} \left[\varphi \xi_t + \beta a_{it+1} + \gamma a_{t+1} \right] \]

○ \(\xi_t \): persistent economic fundamental

\[\xi_t = \rho \xi_{t-1} + \eta_t \]

○ \(a_t \): aggregate action

○ \(\beta \geq 0 \) parameterizes PE discounting

○ \(\gamma \geq 0 \) parameterizes GE feedback

○ Agents are forward-looking \(\rightarrow \) dynamic beauty contest
Frictionless Benchmark

- Assume ξ_t perfectly and commonly known

- Model reduces to a representative agent with

 $$a_t = \varphi \xi_t + (\beta + \gamma) \mathbb{E}_t[a_{t+1}]$$

- PE and GE do not play separate roles, are “hidden” behind δ
Frictionless Benchmark

- Equilibrium condition:
 \[a_t = \varphi \xi_t + \delta \mathbb{E}_t[a_{t+1}] \]

- By forward iteration:
 \[a_t = \varphi \sum_{k=0}^{\infty} \delta^k \mathbb{E}_t[\xi_{t+k}] \]

- By AR(1) assumption:
 \[\mathbb{E}_t[\xi_{t+k}] = \rho^k \xi_t \]

- Result:
 \[a_t = a_t^* \equiv \frac{\varphi}{1 - \rho \delta} \xi_t \]

 i.e., outcome follows same AR(1) as fundamental, up to rescaling
Adding Incomplete Information

- Why incomplete information?
 - dispersion of information (Hayek, Lucas)
 - rational inattention (Sims) and costly cognition (Tirole)
 - plus: lack of CK = doubts about others’ awareness and response
Adding Incomplete Information

○ Why incomplete information?
 ○ dispersion of information (Hayek, Lucas)
 ○ rational inattention (Sims) and costly cognition (Tirole)
 ○ plus: lack of CK = doubts about others’ awareness and response

○ Main specification: sequence of private signals given by

\[x_{it} = \xi_t + u_{it}, \quad u_{it} \sim \mathcal{N}(0, \sigma^2) \]

 ○ not only first-order uncertainty (imperfect knowledge of \(\xi_t \))
 ○ but also higher-order uncertainty (doubts about others)
Forward-Iteration Representation

- Recall that equilibrium behavior obeys:
 \[a_{it} = \mathbb{E}_{it} [\varphi \xi_t + \beta a_{it+1} + \gamma a_{t+1}] \]

- By forward iteration and aggregation:
 \[a_t = \varphi \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t [\xi_{t+k}] + \gamma \sum_{k=0}^{\infty} \beta^k \mathbb{E}_t [a_{t+k+1}] \]

- Distinct role of \(\beta \) and \(\gamma \)
 - \(\beta \): PE discounting \(\rightarrow \) FOB
 - \(\gamma \): GE interaction \(\rightarrow \) HOB
Higher-Order Beliefs

○ To illustrate, consider the case where $\beta = 0$:

$$a_t = \varphi \bar{E}_t[\xi_t] + \gamma \bar{E}_t[a_{t+1}]$$
Higher-Order Beliefs

- To illustrate, consider the case where $\beta = 0$:
 \[a_t = \varphi \mathbb{E}_t [\xi_t] + \gamma \mathbb{E}_t [a_{t+1}] \]

- Evaluating at $t + 1$ and taking the period-t average expectation:
 \[\mathbb{E}_t [a_{t+1}] = \varphi \mathbb{E}_t [\mathbb{E}_{t+1} [\xi_{t+1}]] + \gamma \mathbb{E}_t [\mathbb{E}_{t+1} [a_{t+2}]] \]
 2nd-order beliefs
Higher-Order Beliefs

○ To illustrate, consider the case where $\beta = 0$:

$$a_t = \varphi \overline{E}_t [\xi_t] + \gamma \overline{E}_t [a_{t+1}]$$

○ Evaluating at $t + 1$ and taking the period-t average expectation:

$$\overline{E}_t [a_{t+1}] = \varphi \overline{E}_t [\overline{E}_{t+1} [\xi_{t+1}]] + \gamma \overline{E}_t [\overline{E}_{t+1} [a_{t+2}]]$$

2nd-order beliefs

○ Iterating again and again:

$$a_t = \varphi \sum_{h=0}^{\infty} \gamma^h \overline{F}_t^{h+1} [\xi_{t+h}]$$

where $\overline{F}_t^h [X]$ is an h-th order, forward-looking belief defined by

$$\overline{F}_t^1 [X] \equiv \overline{E}_t [X] \quad \text{and} \quad \overline{F}_t^h [X] \equiv \overline{E}_t [\overline{F}_{t+1}^{h-1} [X]] \quad \forall h \geq 2.$$

○ Alert: with $\beta > 0$, structure of HOB more involved
Tractability and Solution

- Characterizing the dynamics of HOB can be a computational nightmare!

- This is where our signal specification and solution method come to rescue

- We bypass complexity of HOB and solve for RE fixed point in closed form
 - using methods of Huo and Takayama (2015b)
Tractability and Solution

Proposition

The equilibrium exists, is unique, and is such that

\[a_t = \left(1 - \frac{\vartheta}{\rho} \right) \left(\frac{1}{1 - \vartheta L} \right) a_t^* \]

where \(a_t^* \equiv \frac{\varphi}{1 - \delta \rho} \xi_t \) is the complete-information outcome and \(\vartheta \in (0, \rho) \) is the reciprocal of the largest root of the following cubic:

\[C(z) \equiv -z^3 + \left(\rho + \frac{1}{\rho} + \frac{1}{\rho \sigma^2} + \beta \right) z^2 - \left(1 + \beta \left(\rho + \frac{1}{\rho} \right) + \frac{\beta + \gamma}{\rho \sigma^2} \right) z + \beta \]

- Key 1: \(\vartheta \) controls both impact effect and endogenous persistence
- Key 2: \(\vartheta \) increasing in both \(\sigma \) and \(\gamma \)
- Instrumental for observational equivalence, but insights more robust
Remark: HOB and Rational Expectations

○ For the analyst: understanding HOB = understanding RE

○ However, agents themselves need not engage in higher-order reasoning!
 ○ in Muth/Lucas tradition, agents can still be understood as “statisticians”
 ○ the literature often misses this elementary point

○ Plus: fixed point can be computationally/cognitively easier than iterating
 ○ our solution itself is an illustration of this point
Proposition

The incomplete-info economy is replicated by a complete-info economy with

\[a_t = \varphi \xi_t + \delta \omega_f \mathbb{E}_t [a_{t+1}] + \omega_b a_{t-1} \]

for a unique pair of \((\omega_f, \omega_b)\) which is such that \(\omega_f < 1\) and \(\omega_b > 0\).

- myopia : \(\omega_f < 1\)
- anchoring : \(\omega_b > 0\)
Equivalence Result

Proposition

The incomplete-info economy is replicated by a complete-info economy with

\[a_t = \varphi \xi_t + \delta \omega_f \mathbb{E}_t [a_{t+1}] + \omega_b a_{t-1} \]

for a unique pair of \((\omega_f, \omega_b)\) which is such that \(\omega_f < 1\) and \(\omega_b > 0\).

- myopia : \(\omega_f < 1\)
- anchoring : \(\omega_b > 0\)

Proposition

\(\omega_f \downarrow\) and \(\omega_b \uparrow\) as either \(\sigma \uparrow\) or \(\gamma \uparrow\)

- both distortions larger when GE is stronger
Understanding Myopia ($\omega_f < 1$)

- To simplify, let $\beta = 0$:

$$\bar{a}_t = \mathbb{E}_t[\xi_t] + \gamma \mathbb{E}_t[a_{t+1}]$$

$$= \varphi \sum_{h=0}^{\infty} \gamma^h \mathbb{E}_t^{h+1}[\xi_{t+h}]$$

- Consider response of a_t to news about ξ_{t+h}, for some $h \geq 1$

- Response depends on h-th order beliefs
 - thinking about the future path of a is the same as thinking about HOB

- HOB move much less than FOB \Rightarrow as if the news is discounted
 - Indeed, in the absence of learning, effective discounting modified

$$\delta = \beta + \gamma \quad \rightarrow \quad \delta' = \beta + \lambda \gamma$$

for some $\lambda \in (0, 1)$ that is inversely related to σ.
Understanding Anchoring ($\omega_b < 0$)

- Anchoring, or momentum, is a product of learning interacted with GE/HOB.

- Think of Kalman filter about ξ (with $\rho = 1$)
 \[
 \mathbb{E}_t[\xi_t] = (1 - K)\mathbb{E}_{t-1}[\xi_{t-1}] + K\xi_t
 \]

- Past belief shows up as a state variable.

- Similar logic applies in our setting except that
 - relevant state variable is a_{t-1} (summarizes HOB)
 - effective K is smaller the stronger the GE effect.
Relations to the Literature

- Earlier versions of basic insights
Relations to the Literature

- Earlier versions of basic insights

- Bridge to DSGE literature
 - DSGE: ad-hoc modifications on Euler, NKPC, Q-theory
 - this paper: a unified micro-foundation to these modifications
 - plus: relate distortions to GE effects and expectations

Connection to recent macro literature on bounded rationality
- Gabaix (2016), Farhi and Werning (2017): offer $\omega_f < 1$ but restrict $\omega_b = 0$.
- data want both $\omega_f < 1$ and $\omega_b > 0$.
- incomplete info (or RI): delivers both, plus maintains RE.
Relations to the Literature

- Earlier versions of basic insights

- Bridge to DSGE literature
 - DSGE: ad-hoc modifications on Euler, NKPC, Q-theory
 - this paper: a unified micro-foundation to these modifications
 - plus: relate distortions to GE effects and expectations

- Connection to recent macro literature on bounded rationality
 - Gabaix (2016), Farhi and Werning (2017): offer $\omega_f < 1$ but restrict $\omega_b = 0$.
 - data want both $\omega_f < 1$ and $\omega_b > 0$
 - incomplete info (or RI): delivers both, plus maintains RE
Testable Predictions

- A hybrid economy can be replicated by an incomplete-info economy iff

\[\omega_b = \Omega(\omega_f; \delta, \rho) \]

- Additional testable predictions regard dynamics of average forecast errors

- We return to these points in the NKPC application
Disentangling GE from PE

- Extend our previous model to

\[a_{it} = \mathbb{E}_{it}[\varphi \xi_{it} + \beta a_{it+1} + \gamma a_{t+1}] \]

- \(\xi_{it} \) individual fundamental: \(\xi_{it} = \xi_t + \zeta_{it} \)
- \(\zeta_{it} \) idiosyncratic shock: \(\zeta_{it} = \rho \zeta_{it-1} + \epsilon_{it} \)

- Forward-iteration representation

\[a_{it} = \sum_{k=0}^{\infty} \beta^k \mathbb{E}_{it} [\xi_{i,t+k}] + \gamma \sum_{k=0}^{\infty} \beta^k \mathbb{E}_{it} [a_{t+k+1}] \]

- GE is tied to higher-order beliefs, PE isolates first-order beliefs
Disentangling GE from PE

- Information
 - imperfect info about aggregate fundamental: \(x_{it} = \xi_t + u_{it} \)
 - perfect info about individual fundamental: \(z_{it} = \xi_{it} \)

- Consider limit \(\frac{\nabla(\zeta_{it})}{\nabla(\xi_t)} \approx \infty \)
 - consistent with fact that micro shocks much larger than macro shocks
 - shuts down inertia in FOB, isolates HOB
Disentangling GE from PE

○ Information
 ○ imperfect info about aggregate fundamental: \(x_{it} = \xi_t + u_{it} \)
 ○ perfect info about individual fundamental: \(z_{it} = \xi_{it} \)

○ Consider limit \(\frac{V(\zeta_{it})}{V(\xi_t)} \approx \infty \)
 ○ consistent with fact that micro shocks much larger than macro shocks
 ○ shuts down inertia in FOB, isolates HOB

Proposition

\begin{align*}
\text{Aggregate outcome given by } a_t & = \overline{PE}_t + \overline{GE}_t \\
\overline{PE}_t & \text{ is the same as with full information} \\
\overline{GE}_t & \text{ follows the same distorted law of motion as in the baseline model}
\end{align*}

○ Bottom line: GE is key, higher-order uncertainty suffices
Micro vs Macro

- Distortions are likely to be more pronounced at macro level
 - resolve disconnect between DSGE and micro evidence

- Robust to imperfect info at both individual and aggregate level

- Driven by GE and higher-order uncertainty

- Distinct from (complementary) point in Mackowiak and Wiederholt (2009)
 - first-order uncertainty about idiosyncratic < than that about aggregate
NKPC with Incomplete Information

- Firms’ optimal pricing decision, with probability $1 - \theta$ to reset price:
 \[
p^*_it = (1 - \delta\theta) \sum_{k=0}^{\infty} (\delta\theta)^k \mathbb{E}_{it}[\xi_{t+k} + p_{t+k}]
 \]

- real marginal cost: ξ_t
- observe $x_{it} = \xi_t + u_{it}$

- Equilibrium inflation dynamics:
 \[
 \pi_t = \frac{(1-\delta\theta)(1-\theta)}{\theta} \sum_{k=0}^{\infty} (\delta\theta)^k \mathbb{E}_t[\xi_{t+k}] + \delta(1 - \theta) \sum_{k=1}^{\infty} (\delta\theta)^k \mathbb{E}_t[\pi_{t+k}]
 \]

- Dynamic beauty contest representation:
 \[
a_{it} = \left[\frac{(1-\delta\theta)(1-\theta)}{\theta}\right] \mathbb{E}_{it}[\xi_{t}] + \left[\frac{\delta\theta}{\beta}\right] \mathbb{E}_{it}[a_{it+1}] + \left[\frac{\delta(1 - \theta)}{\gamma}\right] \mathbb{E}_{it}[a_{t+1}]
 \]
Test 1: Matching Estimates of Hybrid NKPC

- Our equivalence result: incomplete-info dynamics satisfies

\[\pi_t = \varphi \xi_t + \omega_f E_t[\pi_{t+1}] + \omega_b \pi_{t-1} \]

where \((\omega_f, \omega_b)\) needs to satisfy the restriction

\[\omega_b = \Omega(\omega_f; \delta, \rho) \]

- Gali and Gertler (1999), Gali et al (2005) provide estimates of \((\omega_f, \omega_b)\)

- Test whether these estimates satisfy our theory’s restriction
Test 1: Matching Estimates of Hybrid NKPC

Ellipses are 90% confidence regions for various estimates in Gali et al (2005)
Test 2: Matching Evidence on Inflation Expectations

- Is the requisite informational friction empirically plausible?

- Match inflation survey evidence as in Coibion and Gorodnichenko (2015)

\[\pi_{t+k} - \mathbb{E}_t[\pi_{t+k}] = K \left(\mathbb{E}_t[\pi_{t+k}] - \mathbb{E}_{t-1}[\pi_{t+k}] \right) + v_{t+k, t} \]

 - with complete information, \(K = 0 \)
 - a positive \(K \) indicates correlated forecast error, which helps to pins down \(\sigma \)

- Beyond Coibion and Gorodnichenko (2015)

 - their limitation: exogenous \(\pi \Rightarrow \) could not not quantify role info friction
 - our contribution: endogenous \(\pi \Rightarrow \) fill in the gap
Test 2: Matching Evidence on Inflation Expectations

Dashed part corresponds to 90% confidence interval in Coibion and Gorodnichenko (2015)

Parameters: $\rho = 0.95, \theta = 0.6$
Quantitative Role

![Graph showing inflation over quarters]

- **Perfect info**
- **Incomplete info**
- **90% confidence interval**

Angeletos & Huo
Other Applications

1. Consumption habit
 - reconcile DSGE with smaller micro estimates of habit (Havranek et al, 2017)

2. Investment adjustment cost
 - reconcile DSGE with standard Q theory
 - and micro literature on capital adjustment cost

3. Asset pricing
 - myopia towards earnings/fundamentals at longer horizons
 - challenges literature on long run risks
 - explains more momentum at aggregate level (Jung and Shiller, 2005)
Conclusion

- A theory of myopia and anchoring
 - recast RI and HOB as behavioral distortions
 - provide micro-foundation of ad hoc DSGE add-ons
 - ease disconnect between micro and macro
 - promising quantitative potential

- Rational Expectations (evil empire?) strikes back
 - emerging literature on bounded rationality