Agenda

1. Rising Trade Flows
2. Trade and Inequality—Is There a Connection?
3. Factor-Biased Technical Change in a One Good Economy
4. A 2×2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change
5. Some Evidence
6. The Silence of the Lerner Diagram
Trade Flows Fell at Start of WW I, Did Not Rebound Until 1970s!

Ratios of Merchandise Trade to GDP (percent)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>15.7</td>
<td>21.0</td>
<td>13.0</td>
<td>11.5</td>
<td>13.6</td>
<td>13.4</td>
</tr>
<tr>
<td>Canada</td>
<td>12.8</td>
<td>17.0</td>
<td>14.5</td>
<td>18.0</td>
<td>24.1</td>
<td>22.0</td>
</tr>
<tr>
<td>Denmark</td>
<td>24.0</td>
<td>30.7</td>
<td>26.9</td>
<td>23.3</td>
<td>26.8</td>
<td>24.3</td>
</tr>
<tr>
<td>France</td>
<td>14.2</td>
<td>15.5</td>
<td>9.9</td>
<td>11.9</td>
<td>16.7</td>
<td>17.1</td>
</tr>
<tr>
<td>Germany</td>
<td>15.9</td>
<td>19.9</td>
<td>14.5</td>
<td>16.5</td>
<td>21.6</td>
<td>24.0</td>
</tr>
<tr>
<td>Italy</td>
<td>9.7</td>
<td>14.4</td>
<td>10.0</td>
<td>12.8</td>
<td>19.3</td>
<td>15.9</td>
</tr>
<tr>
<td>Japan(^a)</td>
<td>5.1</td>
<td>12.5</td>
<td>8.8</td>
<td>8.3</td>
<td>11.8</td>
<td>8.4</td>
</tr>
<tr>
<td>Norway</td>
<td>21.8</td>
<td>25.5</td>
<td>24.9</td>
<td>27.6</td>
<td>30.8</td>
<td>28.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>23.6</td>
<td>21.2</td>
<td>18.8</td>
<td>19.7</td>
<td>25.0</td>
<td>23.5</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>27.3</td>
<td>29.8</td>
<td>15.3</td>
<td>16.5</td>
<td>20.3</td>
<td>20.6</td>
</tr>
<tr>
<td>United States(^b)</td>
<td>5.6</td>
<td>6.1</td>
<td>3.4</td>
<td>4.1</td>
<td>8.8</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Notes: Merchandise trade is measured as the average of imports and exports, except as noted below.

\(^a\) Data for 1890–1950 uses three-year averages.

\(^b\) Data recorded under 1890 is for 1889, and along with that in 1913, measures the ratio of merchandise exports to GNP.

Sources:

1890–1913: Data for the United States from Irwin (1996, Table 1); data for Japan from Bairoch and Kozul-Wright (1996); data for other countries from Williamson (1996, Table 1).
Merchandise Trade to GDP 1960 – 2009: Rising

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>23.6</td>
<td>29.4</td>
<td>26.0</td>
<td>32.5</td>
<td>34.6</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>28.9</td>
<td>36.0</td>
<td>48.4</td>
<td>43.1</td>
<td>71.9</td>
<td>48.4</td>
</tr>
<tr>
<td>China</td>
<td>8.5</td>
<td>5.0</td>
<td>20.1</td>
<td>32.3</td>
<td>39.6</td>
<td>44.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>52.8</td>
<td>46.8</td>
<td>51.8</td>
<td>51.7</td>
<td>60.5</td>
<td>56.9</td>
</tr>
<tr>
<td>France</td>
<td>21.0</td>
<td>25.3</td>
<td>36.3</td>
<td>36.2</td>
<td>50.2</td>
<td>39.4</td>
</tr>
<tr>
<td>Germany</td>
<td>30.7</td>
<td>41.4</td>
<td>45.3</td>
<td>55.2</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>9.9</td>
<td>6.8</td>
<td>12.8</td>
<td>13.1</td>
<td>20.4</td>
<td>29.9</td>
</tr>
<tr>
<td>Italy</td>
<td>20.8</td>
<td>25.8</td>
<td>38.9</td>
<td>31.1</td>
<td>43.7</td>
<td>38.7</td>
</tr>
<tr>
<td>Japan</td>
<td>19.3</td>
<td>18.5</td>
<td>25.4</td>
<td>17.1</td>
<td>18.4</td>
<td>22.3</td>
</tr>
<tr>
<td>Norway</td>
<td>45.4</td>
<td>48.4</td>
<td>55.7</td>
<td>52.1</td>
<td>56.1</td>
<td>49.8</td>
</tr>
<tr>
<td>Singapore</td>
<td>380.0</td>
<td>211.7</td>
<td>369.8</td>
<td>308.1</td>
<td>293.7</td>
<td>282.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>36.8</td>
<td>39.1</td>
<td>48.8</td>
<td>45.7</td>
<td>64.7</td>
<td>61.8</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>32.7</td>
<td>33.1</td>
<td>41.6</td>
<td>40.3</td>
<td>42.9</td>
<td>38.4</td>
</tr>
<tr>
<td>United States</td>
<td>7.1</td>
<td>8.4</td>
<td>17.4</td>
<td>15.8</td>
<td>20.6</td>
<td>18.8</td>
</tr>
</tbody>
</table>

World Bank Data, April 2011
China’s Opening
Changing Shares of World Manufacturing

Share of world manufacturing exports

- USA
- China
- Germany
- Other emerging economies
Changing Composition of Trade

Sector Trade Shares of GDP, by Income Group

A: Low-income countries

Per capita GDP of less than $800 (in 2000 U.S. dollars);

1994

Food, agriculture
Raw materials
Apparel, shoes
Metals
Chemicals
Machinery
Electronics
Transport equipment
Other manufacturing

2008

Food, agriculture
Raw materials
Apparel, shoes
Metals
Chemicals
Machinery
Electronics
Transport equipment
Other manufacturing

Exports/GDP
Imports/GDP

Hanson, 2012
Changing Composition of Trade

B: China and India

1994

- Food, agriculture
- Raw materials
- Apparel, shoes
- Metals
- Chemicals
- Machinery
- Electronics
- Transport equipment
- Other manufacturing

2008

- Food, agriculture
- Raw materials
- Apparel, shoes
- Metals
- Chemicals
- Machinery
- Electronics
- Transport equipment
- Other manufacturing

Exports/GDP
Imports/GDP

Hanson, 2012
Per capita GDP of $800 to $10,000: Brazil, Korea, Mexico, Russia, Argentina, Turkey, Indonesia, Poland, South Africa, Thailand, Egypt, Colombia, Malaysia, the Philippines, and Chile.

Changing Composition of Trade

- 1994
 - Food, agriculture
 - Raw materials
 - Apparel, shoes
 - Metals
 - Chemicals
 - Machinery
 - Electronics
 - Transport equipment
 - Other manufacturing

- 2008
 - Food, agriculture
 - Raw materials
 - Apparel, shoes
 - Metals
 - Chemicals
 - Machinery
 - Electronics
 - Transport equipment
 - Other manufacturing

Exports/GDP and Imports/GDP

Hanson, 2012
Changing Composition of Trade

D: High-income countries

Per capita GDP of $10,000 to $33,000.

1994

- Food, agriculture
- Raw materials
- Apparel, shoes
- Metals
- Chemicals
- Machinery
- Electronics
- Transport equipment
- Other manufacturing

2008

- Food, agriculture
- Raw materials
- Apparel, shoes
- Metals
- Chemicals
- Machinery
- Electronics
- Transport equipment
- Other manufacturing

Exports/GDP Imports/GDP

Hanson, 2012
China’s Changing Specialization

Figure 3
China’s Top Export Products, 1994–2008

Per capita GDP of $10,000 to $33,000.

Source: Author’s calculations using (World Bank) World Development Indicators and UN Comtrade.

Hanson, 2012
Education and Exports of Office Machines

Figure 4
Education and Exports of Office Machines

Revealed comparative advantage in office machines, 2006–08

Years of schooling, 2005

Hanson, 2012
Figure 5
Share of Products with Positive Exports by Country

Source: Author's calculations using (World Bank) World Development Indicators and UN Comtrade.
Note: Using data for 2008, Figure 5 shows the fraction of products in which countries have greater than zero exports, plotted against log real GDP, as a measure of country size.

Hanson, 2012
Figure 6
Concentration of Non-Oil Exports in Top Products

- Low-income countries
- Middle-income countries
- China and India
- High-income countries

Share of top SITC three-digit product in non-oil exports
Share of top 4 SITC three-digit products in non-oil exports
Share of top 8 SITC three-digit products in non-oil exports

Hanson, 2012
Agenda

1. Rising Trade Flows

2. Trade and Inequality–Is There a Connection?

3. Factor-Biased Technical Change in a One Good Economy

4. A 2 x 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change

5. Some Evidence

6. The Silence of the Lerner Diagram
Was/Is Trade Responsible for Rising Global Inequality?

- Until 1990s, most economists said “probably not”
- But... things have changed a lot since then.
 - Rising share of low-income countries in world trade (China!)
 - Increasing trade flows b/w low and middle income countries
 - China’s rise
Trade and Inequality

- Opening up to trade: equivalent to skill transfers b/w economies

- North-South trade: trade b/w skill-endowed and unskilled economies
 - Implications for the (relative) supply of skills in developed countries?
 - Which skill group should be better off in the US?
Trade and Inequality: Simple Example

- Suppose the final good is produced according to

\[Y = \left[Y_L^\rho + Y_H^\rho \right]^{\frac{1}{\rho}} \]

where

\[Y_j = A_j J \] for \(j = H, L \)

- Each intermediate good is tradable, and its US price is given by \(p_j \)
- What happens when the US moves from autarky to free trade?
• Before trade, the US relative price is given by

\[p^{US} \equiv \frac{p_H}{p_L} = \frac{Y_H^{\rho-1}}{Y_L^{\rho-1}} \]

\[= \left(\frac{A_H H}{A_L L} \right)^{\rho-1} \]

• Thus, the skill premium, \(\omega^{US} \equiv \frac{w_H}{w_L} \) is given by

\[\omega^{US} = p^{US} \frac{A_H}{A_L} \]
Suppose the US starts trading w/ less developed countries (LDCs). LDCs relative skill supplies, $\frac{\hat{H}}{\hat{L}}$, are lower than in the US:

\[
\frac{\hat{H}}{\hat{L}} < \frac{H}{L}
\]

After full trade opening, there is a unique world relative price, p^W.

Relative skill supplies are now given by

\[
\frac{H + \hat{H}}{L + \hat{L}}
\]
Thus, the world relative price will be *higher* than the US one price

\[p^W = \left(\frac{(H + \hat{H}) A_H}{(L + \hat{L}) A_L} \right)^{\rho - 1} > p^US \]

- What is the intuition?
• Since $\omega^W = p^W \frac{A_H}{A_L}$, it follows directly that

$$\omega^W > \omega^{US}$$

• *That is, trade with LDCs increases US wage inequality*

• What happens in LDCs, instead?

• See Krugman (2000)
Rising US Inequality: Trade and Technical Change

- Trade and technology are both considered causes of rising inequality
- How can we incorporate SBTC in a standard H-O trade model?
- In H-O models, SBTC is equivalent to a factor-biased technical change
 - Change that raises the relative quantity demanded of a specific factor
 - How does this differ from sector-biased technical change?
Agenda

1. Rising Trade Flows

2. Trade and Inequality—Is There a Connection?

3. Factor-Biased Technical Change in a One Good Economy

4. A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change

5. Some Evidence

6. The Silence of the Lerner Diagram
An economy with 1 sector, 2 factors: high- & low-skilled labor

\[\frac{W_H}{W_L} = \frac{Q_L}{Q_H} \]
Factor Biased Technical Change in a One Good Economy

- Hicks neutral technical change moves isoquant I towards the origin
 - This raises real earnings but leaves relative skill prices unchanged
- Instead, SBTC moves I and shifts its slope
 - High skilled wage rises
 - *What happens to the unskilled wage?*
Factor Biased Technical Change in a One Good Economy

\[\frac{w'_H}{w'_L} = \frac{Q_L}{Q'_H} > \frac{Q_L}{Q_H} \]
In a one good economy, SBTC moves I to I'

At baseline prices, there will be excess demand for L_S

Thus, in the new equilibrium, $\omega' > \omega$
Factor Biased Technical Change in a One Good Economy

• Familiar predictions: SBTC will...
 • Increase real wages of high skilled workers
 • Increase wage inequality
 • Possibly lower real wages of low skilled workers

• Note that productivity *must* rise
 • Cannot have a demand shift towards more expensive factor without a rise in productivity—otherwise, should use the less expensive factor!

• These predictions match our Katz-Murphy style facts well
 • But, what happens when we introduce a second good?
Agenda

1. Rising Trade Flows
2. Trade and Inequality—Is There a Connection?
3. Factor-Biased Technical Change in a One Good Economy
4. A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change
5. Some Evidence
6. The Silence of the Lerner Diagram
A 2 × 2 Heckscher-Ohlin Economy

- Suppose the economy produces two goods, S and U
- Using two factors of production, H and L labor
- Sector S is skill-intensive (H–intensive), and sector U is unskilled-intensive (L–intensive)
- H-O framework assumes
 - Constant return to scale production technology
 - Perfect competition
 - Homothetic preferences
 - Incomplete specialization (i.e., in the cone of diversification)
- Start by assuming that all countries are price takers
 - Why does this matter?
This Guy
A 2×2 Heckscher-Ohlin Economy: $\frac{W_H}{W_L} = \frac{Q(L)}{Q(H)}$
Let the economy be characterized by the following production functions:

\[Y_s = \alpha_1 H^{\beta_1} L^{1-\beta_1} \]

\[Y_u = \alpha_2 H^{\beta_2} L^{1-\beta_2} \]

with \(\beta_1 > \beta_2 \)

In this economy, the good is relatively skill-intensive.

- How do we model a sector-biased technical change?
- What about a factor biased technical change?
Agenda

1. Rising Trade Flows

2. Trade and Inequality—Is There a Connection?

3. Factor-Biased Technical Change in a One Good Economy

4. A 2×2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change

5. Some Evidence

6. The Silence of the Lerner Diagram
Consider a small open economy that is relatively skill-intensive.

What happens when this economy opens up to trade from autarky?

1. The relative price of the skill-intensive good, p_s?
2. Skill intensity in both sectors $(\frac{H}{L})_S, (\frac{H}{L})_U$?
3. Skill premium W_S / W_U?
From Autarky to Free Trade

Equal value isoquants

\[Q(L) \]
\[Q(H) \]
\[H \]
\[C1 \]
\[C1' \]
\[Q(L') \]
\[Q(H') \]

\[\frac{w_H'}{w_L'} = \frac{Q(L')}{Q(H')} > \frac{Q(L)}{Q(H)} \]
Factor Allocations by Sector
Factor Allocations by Sector: After P_S/P_U Increase
From Autarky to Free Trade

- Consider a small open economy that is relatively skill-intensive.

- What happens when this economy opens up to trade from autarky?

- Isoquant C_1 shifts to the origin.

- Relevant margins:
 1. The relative price of the skill-intensive good, p_s? *Rises*.
 2. Skill intensity in both sectors $\left(\frac{H}{L}\right)_S, \left(\frac{H}{L}\right)_U$? *Declines*.

- How does this compare to a *Hicks neutral technical change* in the S sector?
1 Rising Trade Flows

2 Trade and Inequality—Is There a Connection?

3 Factor-Biased Technical Change in a One Good Economy

4 A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change

5 Some Evidence

6 The Silence of the Lerner Diagram
Factor Biased Technical Change

- A small open economy that is relatively skill-intensive
- What happens when there is a factor-biased technical change in S sector?
 1. The relative price of the skill-intensive good, p_s?
 2. Skill intensity in both sectors $\left(\frac{H}{L}\right)_S, \left(\frac{H}{L}\right)_U$?
 3. Skill premium W_s/W_u?
Factor Biased Technical Change in a SOE

Diagram showing the relationship between \(Q(L) \) and \(Q(H) \) with \(C1 \) and \(C2 \) curves.
Factor Biased Technical Change in an SOE
Factor Biased Technical Change

- A small open economy that is relatively skill-intensive

- What happens when there is a factor-biased technical change in S sector?

 1. The relative price of the skill-intensive good, p_s? *Unchanged*
 2. Skill intensity in both sectors $\left(\frac{H}{L} \right)_S, \left(\frac{H}{L} \right)_U$? *More skill intensive*
 3. Skill premium W_s/W_u? *Unchanged*

- When we are ‘in the cone’ and prices are pinned down by trade, we have ‘factor price insensitivity’
Agenda

1. Rising Trade Flows
2. Trade and Inequality—Is There a Connection?
3. Factor-Biased Technical Change in a One Good Economy
4. A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change
5. Some Evidence
6. The Silence of the Lerner Diagram
What if SBTC occurs simultaneously in many economies?

- In this case, the world market acts like a single country in autarky
- What happens to...
 1. The relative price of the skill-intensive good, p_s?
 2. Skill intensity in both sectors $\left(\frac{H}{L}\right)_S,\left(\frac{H}{L}\right)_U$?
 3. Skill premium W_s/W_u?

- Pervasive SBTC is consistent with...
Pervasive Factor Biased Technical Change
Pervasive Factor Biased Technical Change
Pervasive Factor Biased Technical Change

Diagram showing different curves labeled C1, C2, C1', C2', C2'', Q(H), Q(H'), Q(H''), Q(L), Q(L'), Q(L''), and Q(L'').
What if SBTC occurs simultaneously in many economies?

- In this case, the world market acts like a single country in autarky
 - SBTC releases unskilled labor in both sectors
 - The unskilled-intensive sector expands

- What happens to...
 1. The relative price of the skill-intensive good, p_s? Rises
 2. Skill intensity in both sectors $\left(\frac{H}{L}\right)_S, \left(\frac{H}{L}\right)_U$? Rises
 3. Skill premium W_s/W_u? Rises

- Pervasive SBTC is consistent with a simultaneous rise in both
 - Demand for high skilled labor
 - Wages of high skilled labor
To distinguish trade from SBTC, must consider

- Δ Relative price of goods P_S/P_L
Pervasive Factor Biased Technical Change

To distinguish trade from SBTC, must consider

- \(\Delta \) Relative price of goods \(P_S / P_L \)
- \(\Delta \) Skill premium \(W_H / W_L \)
To distinguish trade from SBTC, must consider

• \(\Delta \) Relative price of goods \(\frac{P_S}{P_L} \)

• \(\Delta \) Skill premium \(\frac{W_H}{W_L} \)

• \(\Delta \) Skill intensity by sector \(\left(\frac{H}{L} \right)_S, \left(\frac{H}{L} \right)_U \)
To distinguish trade from SBTC, must consider

- \(\Delta \text{Relative price of goods } \frac{P_S}{P_L} \)
- \(\Delta \text{Skill premium } \frac{W_H}{W_L} \)
- \(\Delta \text{Skill intensity by sector } \left(\frac{H}{L} \right)_S, \left(\frac{H}{L} \right)_U \)
- \(\Delta \text{Relative size of the two sectors sector, measured by output } \frac{Y_S}{Y_S} \) or labor inputs \(\frac{H_S}{H_U}, \frac{L_S}{L_U} \)
Agenda

1. Rising Trade Flows
2. Trade and Inequality–Is There a Connection?
3. Factor-Biased Technical Change in a One Good Economy
4. A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change
5. Some Evidence
6. The Silence of the Lerner Diagram
Within vs. Between-Industry Shifts in Skill Composition

TABLE III

Proportion of Increased Wage Bill Share of Skill “within” Industries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change in</td>
<td>Change in</td>
</tr>
<tr>
<td></td>
<td>% nonpro-</td>
<td>% wage</td>
</tr>
<tr>
<td></td>
<td>duction</td>
<td>ratio</td>
</tr>
<tr>
<td></td>
<td>(annualized) within</td>
<td>(%)</td>
</tr>
<tr>
<td>U. S.</td>
<td>0.19</td>
<td>86</td>
</tr>
<tr>
<td>Norway</td>
<td>0.33</td>
<td>76</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.90</td>
<td>95</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.38</td>
<td>81</td>
</tr>
<tr>
<td>Australia</td>
<td>0.07</td>
<td>51</td>
</tr>
<tr>
<td>Japan</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.12</td>
<td>42</td>
</tr>
<tr>
<td>Finland</td>
<td>0.27</td>
<td>82</td>
</tr>
<tr>
<td>W. Germany</td>
<td>0.67</td>
<td>95</td>
</tr>
<tr>
<td>Austria</td>
<td>0.69</td>
<td>93</td>
</tr>
<tr>
<td>U. K.</td>
<td>0.39</td>
<td>91</td>
</tr>
<tr>
<td>Belgium</td>
<td>0.77</td>
<td>86</td>
</tr>
<tr>
<td>Average</td>
<td>0.43</td>
<td>79.8</td>
</tr>
</tbody>
</table>

Source: Berman, Bound and Machin 1998
Does Inequality Fall in Low-Income Countries as it Rises in High Income Countries?

Figure IV
Change in Relative Wages in 1980s by GNP

Source: Berman, Bound and Machin 1998
Mechanical Tomato Harvester
“When plant breeder Jack Hanna and engineer Coby Lorenzen, two scientists at the University of California, Davis, teamed up in the mid-1950s to invent a machine that could mechanically harvest tomatoes, no one thought they could do it. The laughingstock of the Davis Plant Science department for more than a decade, the two made countless prototypes that failed — tomatoes split and turned to juice in the field, and the machine broke down after hitting clods of dirt.

Plus, when they started, it was cheap and efficient to pay farm laborers, many of whom were brought into the country from Mexico through the Bracero program. These guest workers harvested tomatoes by hand in much the same way that workers in places pick fresh tomatoes today: very gently.”

UC Davis Department of Plant Sciences, Ann Filmer, July 24, 2015
Figure 1. The diversification cone $[\phi_{\ell}, \phi_u]$ and shutdown margin $\bar{\phi}$
Are These Crops Cherry-Picked?

Figure 6. Event study regression coefficients: crop physical production index
Agenda

1. Rising Trade Flows
2. Trade and Inequality—Is There a Connection?
3. Factor-Biased Technical Change in a One Good Economy
4. A 2 × 2 Heckscher-Ohlin Economy
 - From autarky to free trade
 - Factor-Biased Technical Change
 - Pervasive factor-biased technical change
5. Some Evidence
6. The Silence of the Lerner Diagram
The Silence of the Lerner Diagram

Surprisingly difficult to say anything meaningful about trade and inequality in the H-O model

1. In a small country, we have factor price insensitivity
2. If all countries experience the same technological change, we are in a pervasive technical change world. *Ironically, this is a lot like Katz-Murphy world*

Model makes no direct connection b/w trade flows, wages, prices

- The single-intervening mechanism is change in goods prices
- No specific prediction on quantity of goods flows

Few empirical toeholds. Only margins with clear predictions are

1. Goods prices
2. Skill prices
3. Factor intensities within sectors
“I hate these Mexicans, always coming back here to Mexico from America and taking American jobs from the Mexicans who stayed in Mexico,” said 55-year-old former Goodyear factory manager Juan-Miguel Diaz. “Why don’t they go back to where they went to?”