14.452 Economic Growth: Lecture 1, Questions and Evidence

Daron Acemoglu

MIT

October 23, 2018
Cross-Country Income Differences
There are very large differences in income per capita and output per worker across countries today.

Figure: Distribution of PPP-adjusted GDP per capita.
Part of the spreading out of the distribution in the Figure is because of the increase in average incomes.

More natural to look at the log of income per capita when growth is approximately proportional:

- when $x(t)$ grows at a proportional rate, $\log x(t)$ grows linearly,
- if $x_1(t)$ and $x_2(t)$ both grow by 10%, $x_1(t) - x_2(t)$ will also grow, while $\log x_1(t) - \log x_2(t)$ will remain constant.

The next Figure shows a similar pattern, but now the spreading-out is more limited.
Cross-Country Income Differences (continued)

Figure: Estimates of the distribution of countries according to log GDP per capita (PPP-adjusted) in 1960, 1980 and 2000.
Theory is easier to map to data when we look at output (GDP) per worker.

Moreover, key sources of difference in economic performance across countries are national policies and institutions.

The next Figure looks at the unweighted distribution of countries according to (PPP-adjusted) GDP per worker

“workers”: total economically active population according to the definition of the International Labour Organization.

Overall, two important facts:

1. Large amount of inequality in income per capita and income per worker across countries.
2. Slight but noticeable increase in inequality across nations (though not necessarily across individuals in the entire world).
Cross-Country Income Differences (continued)

Figure: Distribution of log GDP per worker (PPP-adjusted).
Economic Growth and Income Differences

Figure: The evolution of income per capita 1960-2000.
Economic Growth and Income Differences

- Why is the United States richer in 1960 than other nations and able to grow at a steady pace thereafter?
- How did Singapore, South Korea, and Botswana manage to grow at a relatively rapid pace for 40 years?
- Why did Spain grow relatively rapidly for about 20 years, but then slow down? Why did Brazil and Guatemala stagnate during the 1980s?
- What is responsible for the disastrous growth performance of Nigeria?
 - Central questions for understanding how the capitalist system works and the origins of economic growth.
 - Central questions also for policy and welfare, since differences in income related to living standards, consumption, and health.
- Our first task is to develop a coherent framework to investigate these questions and as a byproduct we will introduce the workhorse models of dynamic economic analysis and macroeconomics.
Persistence of Prosperity

Figure: Log GDP per worker in 1960 and 2000.
Figure: Evolution of GDP per capita 1820-2000.
Figure: Evolution of income per capita in various countries.
From Correlates to Fundamental Causes

- Correlates of economic growth, such as physical capital, human capital and technology, will be our first topic of study.
- But these are only *proximate causes* of economic growth and economic success:
 - why do certain societies fail to improve their technologies, invest more in physical capital, and accumulate more human capital?
- Return to Figure above to illustrate this point further:
 - how did South Korea and Singapore manage to grow, while Nigeria failed to take advantage of the growth opportunities?
 - If physical capital accumulation is so important, why did Nigeria not invest more in physical capital?
 - If education is so important, why are our education levels in Nigeria still so low and why is existing human capital not being used more effectively?
- The answer to these questions is related to the *fundamental causes* of economic growth.
Persistence and Reversal

- But is there persistence even if we go further? If yes, this might suggest there are important “unchanging” factors affecting growth at the country level (such as geography).
- If, on the other hand, this persistence breaks down during periods of fundamental institutional change, this would put the spotlight on institutions.
- How to approximate prosperity/GDP before national accounts? Some proxies:
 - Urbanization: before industrial times only more prosperous places (and those with agricultural surplus) could support large urban areas.
 - Population density: similar justification.
- Focusing on the sample of former colonies, we do in fact see a sharp reversal from before colonization to today.
Reversal of Fortune in Urbanization

GDP per capita, PPP, in 1995 vs. Urbanization in 1500

Countries plotted include:
- USA
- CAN
- AUS
- CHL
- ARG
- MEX
- BOL
- BRA
- GUY
- DOM
- PRY
- NZL
- HKG
- SGP
- BGD
- LAO
- VNM
- THA
- MYS
- COL
- PAN
- CAN
- GTM
- ARG
- HND
- TUN
- DZA
- MEX
- EGY
- MAR

[Graph showing the relationship between GDP per capita and urbanization]
Reversal of Fortune in Population Density

GDP per capita, PPP, in 1995
Log Population Density in 1500

-5 0 5
6 7 8 9 10
AGO ARG AUS BDI BEN BFA BGD BHS BLZ BOL BRA BWA CAF CAN CHL COM CPV CRI CMC DAD DOM DZA ECU EGY ERI GAB GHA GIN GMB GRD GTM GUY HKG HND HND HRV HUN IDN IDR IIN JAM JPN KAG KAM KEM KIN KMR KNX KOR LAC LAC LCA LCN LCP LDT LDM LDG LGN LSO LTO MAR MDR MFW MKR MLT MMS MNE NAM NCA NER NIG NLD NZL OMD ORG PAK PHL POL POR PRK PRL PNG PRT PSE QAT REP RGA ROU RUS RWJ RWJ RWA SAM SAND SCG SEN SLE SLE SMR SPA SRI SDS SLO SVN SWZ TCD TGO TTO TUN TZA UG A URA VCT VEN VNM ZAF ZMB ZWE
Reversal of Fortune: Timing

The graph shows the urbanization levels of different countries over time, with distinct lines for countries with low urbanization in 1500, countries with high urbanization in 1500, India, and the US. The x-axis represents the years from 800 to 1920, while the y-axis represents the percentage of urbanization.
Growth and Development: The Questions and Evidence
Persistence, Reversal and Geography

Reversal of Fortune: Role of Industrialization

Industrial Production Per Capita, UK in 1900 = 100
(from Bairoch)

Daron Acemoglu (MIT)
Economic Growth Lecture 1
October 23, 2018 18 / 38
What about direct evidence of the effect of institutions of growth? Three types of evidence have been presented in the literature:

1. Country-level evidence on the long-run effects of institutions, exploiting potentially exogenous sources of variation (e.g., Acemoglu, Johnson and Robinson, 2001).
2. Within-country evidence on the long-run effects of institutional features that three across localities within a country (e.g., Dell, 2010).
3. Growth regressions, focusing on shorter periods (such as decades or even shorter periods).

Even though growth regressions are the most problematic from a variety of viewpoints (as we will discuss later), since they connect to some of the issues we will discuss in this course, I now provide evidence using a modified version of growth regressions.
The Effects of Democracy on Growth

- Democracy is a key aspect of political institutions of a society.
- Much controversy on its merits, and many popular writings and some economists emphasize its weaknesses and distortions (which are indeed many). Relatedly, the conventional wisdom appears to be that democracy is not good for economic growth and main fact be bad.
- Is this true?
- Let me share results from Acemoglu, Naidu, Restrepo and Robinson (2014) attempting to answer these questions.
Challenges of Estimating the Effect of Democracy

- Measuring democracy—create a dichotomous measure of democracy, minimizing measurement error.
- Not comparing apples and oranges—models that country fixed effects.
- Dynamics—allow for mean reversion in income per capita exploiting our annual data.
- Sources of exogenous variation.
Importance of Dynamics

- Democratizations are more likely to happen when nondemocracies are having economic difficulties:

![Graph showing change in GDP per capita log points over years around democratization.](image-url)
Method I: Panel Data

Consider the following linear panel data model at annual frequency:

\[y_{ct} = \beta D_{ct} + \sum_{j=1}^{p} \gamma_j y_{ct-j} + \alpha_c + \delta_t + \epsilon_{ct}. \]

Here \(y_{ct} \) is the log of GDP per capita in country \(c \) at time \(t \), and \(D_{ct} \) is the dichotomous measure of democracy in country \(c \) in year \(t \).

In addition \(\alpha_c \) denote a full set of country fixed effects, the \(\delta_t \) denote a full set of year fixed effects, and \(\epsilon_{ct} \) is the error term.

Note that this specification has level on the RHS rather than growth (does that matter?)

It also imposes that democracy does not have a permanent effect on growth (does this matter?).

Crucially, none of the intermediating variables like education or investment are controlled for on the right-hand side.
Results: Importance of Dynamics Again

Table: The dependent variable is the log of GDP per capita.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democracy</td>
<td>-10.112</td>
<td>0.973</td>
<td>0.651</td>
<td>0.787</td>
<td>0.887</td>
</tr>
<tr>
<td></td>
<td>(4.316)</td>
<td>(0.294)</td>
<td>(0.248)</td>
<td>(0.226)</td>
<td>(0.245)</td>
</tr>
<tr>
<td>log GDP first lag</td>
<td>0.973</td>
<td>1.266</td>
<td>1.238</td>
<td>1.233</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.039)</td>
<td></td>
</tr>
<tr>
<td>log GDP second lag</td>
<td>-0.300</td>
<td>-0.207</td>
<td>-0.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.046)</td>
<td>(0.043)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log GDP third lag</td>
<td></td>
<td>-0.026</td>
<td>-0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.028)</td>
<td>(0.028)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>log GDP fourth lag</td>
<td></td>
<td>-0.043</td>
<td>-0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.017)</td>
<td>(0.034)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- *p*—value remaining lags: [0.565]
- Long-run effect of democracy: 35.59, 19.60, 21.24, 22.01
- *p*—value long-run effect: [0.011], [0.023], [0.003], [0.004]
- Persistence of GDP: 0.973, 0.967, 0.963, 0.960
- Unit-root test adjusted *t*—stat: -4.791, -3.892, -4.127, -6.991
- *p*—value (rejects unit root): [0.000], [0.000], [0.000], [0.000]
- Observations: 6,934, 6,790, 6,642, 6,336, 5,688
- Countries: 175, 175, 175, 175, 175
Inspecting the Residuals: The Case of Korea

Figure: Red: Korean before democracy. Orange: Korea after democracy.
The Nickell Bias

- The presence of the lagged dependent variable creates bias in panel estimates. But this potential bias turns out not to be important in this case.

Table: The dependent variable is the log of GDP per capita.

<table>
<thead>
<tr>
<th></th>
<th>Base (1)</th>
<th>ABOND (2)</th>
<th>HHK (3)</th>
<th>Imposing persistence of GDP process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At 0.96 (4)</td>
</tr>
<tr>
<td>Democracy</td>
<td>0.787</td>
<td>0.875</td>
<td>1.178</td>
<td>0.752</td>
</tr>
<tr>
<td></td>
<td>(0.226)</td>
<td>(0.374)</td>
<td>(0.355)</td>
<td>(0.228)</td>
</tr>
<tr>
<td>Long-run effect of democracy</td>
<td>21.24</td>
<td>16.45</td>
<td>25.03</td>
<td>13.28</td>
</tr>
<tr>
<td>p-value long-run effect</td>
<td>[0.003]</td>
<td>[0.051]</td>
<td>[0.005]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Persistence of GDP</td>
<td>0.963</td>
<td>0.947</td>
<td>0.953</td>
<td>0.960</td>
</tr>
<tr>
<td>Observations</td>
<td>6,636</td>
<td>6,161</td>
<td>6,161</td>
<td>6,636</td>
</tr>
<tr>
<td>Countries</td>
<td>175</td>
<td>175</td>
<td>175</td>
<td>175</td>
</tr>
</tbody>
</table>
Robustness

- The results are quite robust to a range of controls for other factors and trends.

<table>
<thead>
<tr>
<th>Country controls:</th>
<th>Panel A: Within estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Democracy</td>
<td>0.787</td>
</tr>
<tr>
<td></td>
<td>(0.226)</td>
</tr>
<tr>
<td>Observations</td>
<td>6336</td>
</tr>
<tr>
<td>Long run effect</td>
<td>21.24</td>
</tr>
<tr>
<td>P-value</td>
<td>0.003</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.963</td>
</tr>
<tr>
<td>P-value (< 1)</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Semi-Parametric Matching

- Relax linearity and allow for richer dynamics.
- More generally, and using the potential outcomes notation, the causal effect of a transition to democracy at time t on GDP s periods thereafter for countries that are democratizing is

$$\beta^s = \mathbb{E} (\Delta y^s_{ct}(1) - \Delta y^s_{ct}(0) | D_{ct} = 1, D_{ct-1} = 0).$$

- The challenge in estimating β^s is that countries that democratize may be different in terms of their potential outcomes than those that remain in nondemocracy.
- To overcome this problem, let us assume:

Assumption 2 (selection on observables):

$$\Delta y^s_{ct}(d) \perp D_{ct} | D_{ct-1} = 0, y_{ct-1}, y_{ct-2}, y_{ct-3}, y_{ct-4}, t \text{ for all } y_{ct-1}, \ldots, y_{ct-4}, \text{ and for all } c, t, \text{ and } s \geq 0.$$

- Estimation then uses inverse propensity score weighting and regression adjustment based on observables.
Semi-Parametric Estimates: Democratizations
Semi-Parametric Estimates: Reversal in Democracy
Instrumental Variables

- So far, the strategy for identifying the effect of democracy on future economic outcomes has been to condition on observables.
- Alternative is to use an instrumental-variables (IV) strategy exploiting a source of variation that is less likely to be contaminated with omitted variable biases.
- There is no perfect instrument for democracy, but a plausibly exogenous source of variation still provides useful estimates for triangulating the effect of democracy.
- Democracy spreads within (culturally homogeneous) areas, reminiscent of democratization waves.
- Here exploit regional democratization waves.
IV Strategy

- Let R_c denote the geographic region of country c.
- Construct the set of countries $I_c = \{ c' : c' \neq c, R_{c'} = R_c, D_{c't_0} = D_{ct_0} \}$, countries in the same region with the same political history, i.e., $D_{c't_0} = D_{ct_0}$.
- Then construct the instrument

$$Z_{ct} = \frac{1}{|I_c|} \sum_{c' \in I_c} D_{c't}.$$

- Here, Z_{ct} is the jack-knifed average of democracy in a region × initial regime cell, which leaves out the own-country observation.
First Stage

![Chart showing mean democracy over years around first democratization in the region. The chart compares initial nondemocracies in the region and initial nondemocracies in other regions.](chart)

- **Title**: Growth and Development: The Questions and Evidence
- **Subheading**: Institutions and Growth
- **Speaker**: Daron Acemoglu (MIT)
- **Lecture**: Economic Growth Lecture 1
- **Date**: October 23, 2018
- **Page**: 33 / 38
IV Estimates

Table: 2SLS effects of democracy on GDP using regional democratization waves as instrument.

<table>
<thead>
<tr>
<th>Covariates</th>
<th>(1)</th>
<th>GDP in 1960 quintiles×year effects</th>
<th>(2)</th>
<th>Soviet dummies</th>
<th>(3)</th>
<th>Regional unrest, GDP & trade</th>
<th>(4)</th>
<th>Spatial lag of GDP</th>
<th>(5)</th>
<th>Spatial lags of DGP and democracy</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democracy</td>
<td>1.149</td>
<td>1.125</td>
<td></td>
<td>1.292</td>
<td></td>
<td>1.107</td>
<td></td>
<td>1.335</td>
<td></td>
<td>0.989</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.554)</td>
<td>(0.689)</td>
<td></td>
<td>(0.651)</td>
<td></td>
<td>(0.656)</td>
<td></td>
<td>(0.536)</td>
<td></td>
<td>(0.537)</td>
<td></td>
</tr>
<tr>
<td>Long-run effect of democracy</td>
<td>31.521</td>
<td>35.226</td>
<td></td>
<td>35.723</td>
<td></td>
<td>25.016</td>
<td></td>
<td>37.482</td>
<td></td>
<td>27.952</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6,309</td>
<td>5,496</td>
<td></td>
<td>6,309</td>
<td></td>
<td>6,309</td>
<td></td>
<td>6,181</td>
<td></td>
<td>6,181</td>
<td></td>
</tr>
<tr>
<td>Countries in sample</td>
<td>174</td>
<td>148</td>
<td></td>
<td>174</td>
<td></td>
<td>174</td>
<td></td>
<td>173</td>
<td></td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>Exc. Instruments F-stat.</td>
<td>33.2</td>
<td>16.8</td>
<td></td>
<td>26.7</td>
<td></td>
<td>16.7</td>
<td></td>
<td>17.5</td>
<td></td>
<td>12.7</td>
<td></td>
</tr>
</tbody>
</table>
Mechanisms

Table: Effects of democracy on potential channels. Within estimates.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Log of investment share in GDP (1)</th>
<th>Log of TFP (2)</th>
<th>Index of economic reforms (3)</th>
<th>Log of trade share in GDP (4)</th>
<th>Log of tax share in GDP (5)</th>
<th>Log of primary enrollment (6)</th>
<th>Log of secondary enrollment (7)</th>
<th>Log of child mortality (8)</th>
<th>Dummy for unrest (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democracy</td>
<td>2.391</td>
<td>-0.205</td>
<td>0.687</td>
<td>0.689</td>
<td>3.311</td>
<td>1.042</td>
<td>1.345</td>
<td>-0.253</td>
<td>-7.832</td>
</tr>
<tr>
<td>Observations</td>
<td>5,665</td>
<td>3,879</td>
<td>4,692</td>
<td>5,738</td>
<td>4,511</td>
<td>3,714</td>
<td>2,883</td>
<td>6,094</td>
<td>5,646</td>
</tr>
<tr>
<td>Countries in sample</td>
<td>169</td>
<td>107</td>
<td>150</td>
<td>172</td>
<td>131</td>
<td>166</td>
<td>158</td>
<td>173</td>
<td>171</td>
</tr>
</tbody>
</table>
Mechanisms (continued)

Table: Effects of democracy on potential channels. 2SLS estimates.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Log of investment share in GDP (1)</th>
<th>Log of TFP (2)</th>
<th>Index of economic reforms (3)</th>
<th>Log of trade share in GDP (4)</th>
<th>Log of tax share in GDP (5)</th>
<th>Log of primary enrollment (6)</th>
<th>Log of secondary enrollment (7)</th>
<th>Log of child mortality (8)</th>
<th>Dummy for unrest (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democracy</td>
<td>2.211</td>
<td>-0.941</td>
<td>3.224</td>
<td>5.512</td>
<td>8.088</td>
<td>1.757</td>
<td>4.116</td>
<td>-0.715</td>
<td>-5.560</td>
</tr>
<tr>
<td>(2.852)</td>
<td>(0.667)</td>
<td>(0.863)</td>
<td>(2.005)</td>
<td>(3.021)</td>
<td>(0.721)</td>
<td>(1.626)</td>
<td>(0.164)</td>
<td>(5.682)</td>
<td></td>
</tr>
<tr>
<td>Long-run effect of democracy</td>
<td>8.440</td>
<td>-12.738</td>
<td>23.775</td>
<td>40.589</td>
<td>38.609</td>
<td>36.693</td>
<td>57.072</td>
<td>-95.728</td>
<td>-8.471</td>
</tr>
<tr>
<td>Persistence of outcome process</td>
<td>0.738</td>
<td>0.926</td>
<td>0.864</td>
<td>0.864</td>
<td>0.791</td>
<td>0.952</td>
<td>0.928</td>
<td>0.993</td>
<td>0.343</td>
</tr>
<tr>
<td>(0.020)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.017)</td>
<td>(0.008)</td>
<td>(0.013)</td>
<td>(0.001)</td>
<td>(0.030)</td>
<td></td>
</tr>
<tr>
<td>Exc. instruments F-stat.</td>
<td>21.7</td>
<td>27.7</td>
<td>43.7</td>
<td>21.5</td>
<td>31.8</td>
<td>12.1</td>
<td>10.4</td>
<td>26.3</td>
<td>28.6</td>
</tr>
<tr>
<td>Hansen p-value</td>
<td>[0.29]</td>
<td>[0.06]</td>
<td>[0.22]</td>
<td>[0.09]</td>
<td>[0.60]</td>
<td>[0.09]</td>
<td>[0.12]</td>
<td>[0.02]</td>
<td>[0.84]</td>
</tr>
<tr>
<td>Observations</td>
<td>5,640</td>
<td>3,871</td>
<td>4,670</td>
<td>5,714</td>
<td>4,489</td>
<td>3,710</td>
<td>2,879</td>
<td>6,057</td>
<td>5,619</td>
</tr>
<tr>
<td>Countries in sample</td>
<td>168</td>
<td>107</td>
<td>149</td>
<td>171</td>
<td>130</td>
<td>164</td>
<td>156</td>
<td>172</td>
<td>170</td>
</tr>
</tbody>
</table>
Summary

- A range of different strategies yield positive and large effects of democracy on future GDP per capita, indicating roughly that a country that democratizes becomes 20-30% richer than it would otherwise be in the next 20 years.

- This effect does not appear to be related to other confounding effects or country-specific trends potentially impacting both democracy and growth.

 - But important to control for GDP dynamics (and of course country fixed effects).
 - We will see later that many “cross-country regressions” do not do this, sometimes leading to unreliable or unstable results.
In the rest of the course, we will introduce several workhorse models of economic growth used in macroeconomics and other fields more broadly (as well as some applications of techniques of dynamic economic analysis utilized even more widely).

Three objectives:

- Build practice and skills in the analysis of dynamic economic models.
- Obtain intuition and insight about sources and causes of differences in long run economic performance across countries.
- Start thinking about how to map some of these ideas to data.

In the process, of the second goal, we will focus on *proximate causes* of economic growth (physical capital, human capital and technology), but useful to bear in mind that, especially in the context of the third goal, it is also important to investigate why these vary systematically across countries—the question of *fundamental causes*.