Machine learning for set-identified linear models

Vira Semenova
MIT
November 14, 2018

Abstract

Set-identified models often restrict the number of covariates leading to wide identified sets in practice. This paper provides estimation and inference methods for set-identified linear models with high-dimensional covariates where the model selection is based on modern machine learning tools. I characterize the boundary (i.e, support function) of the identified set using a semiparametric moment condition. Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly asymptotically Gaussian estimator of the support function. I also prove the validity of the Bayesian bootstrap procedure to conduct inference about the identified set. I provide a general method to construct a Neyman-orthogonal moment condition for the support function. I apply this result to estimate sharp nonparametric bounds on the average treatment effect in Lee (2008)’s model of endogenous selection and substantially tighten the bounds on this parameter in Angrist et al. (2006)’s empirical setting. I also apply this result to estimate sharp identified sets for two other parameters - a new parameter, called a partially linear predictor, and the average partial derivative when the outcome variable is recorded in intervals.

I am deeply grateful to my advisors Victor Chernozhukov, Whitney Newey, and Anna Mikusheva for their guidance and encouragement. I am grateful to Josh Angrist for kindly sharing the code and data and for the subsequent guidance on empirical application. I am thankful to Alberto Abadie, Chris Ackerman, Isaiiah Andrews, Sydnee Caldwell, Denis Chetverikov, Ben Deaner, Mert Demirer, Jerry Hausman, Peter Hull, Tetsuya Kaji, Kevin Li, Elena Manresa, Rachael Meager, Denis Nekipelov, Oles Shtanko, Cory Smith, Sophie Sun, Roman Zarate, and the participants at the MIT Econometrics Lunch for helpful comments. Email: vsemen@mit.edu
1 Introduction

Economists are often interested in bounds on parameters when parameters themselves are not point-identified (e.g., Manski (2010)). In practice, however, bounds are often wide. For example, the upper and lower bounds on average treatment effect frequently have opposite signs and cannot determine whether the treatment helps or hurts. As discussed in Lee (2008) and Manski and Pepper (2011), covariates can help tighten the bounds. However, economists rarely know which covariates have the strongest tightening ability. As a result, the reported bounds may not be as tight as possible.

The covariate selection problem has gained recent attention in the context of high-dimensional data sets that contain hundreds of covariates per observation. On the one hand, ex-ante covariate selection delivers valid inference but leads to wide bounds since important covariates may be dropped in this approach. On the other hand, ex-post covariate selection is prone to overfitting. To perform data-driven model selection and obtain valid inference at the same time, economists have used modern machine learning tools to control for omitted variable bias (Belloni et al. (2016), Chernozhukov et al. (2017a), Chernozhukov et al. (2017b)) and to model treatment effect heterogeneity (Wager and Athey (2016)) in point-identified settings. However, exploiting the predictive power of machine learning tools to tighten the bounds is a novel idea.

The main contribution of this paper is to provide estimation and inference methods for identified sets where the selection among high-dimensional covariates is based on machine learning tools. Using my methods, economists can conduct inference about sharp (that is, tightest possible) nonparametric bounds on the average treatment effect (ATE) in the presence of endogenous sample selection. I develop a general set-identified linear model with high-dimensional covariates that covers a broad variety of set-identified models: for example, those considered in Beresteanu and Molinari (2008), Bontemps et al. (2012), Chandrasekhar et al. (2011), and Kaido (2017). I propose a root-\(N\) consistent, uniformly asymptotically Gaussian estimator of the identified set’s boundary (i.e., support function) and conduct uniform inference about the boundary.

This paper focuses on identified sets whose boundaries can be characterized by a semiparametric moment equation. In this equation, the parametric component gives the description of the boundary (i.e., support function) and the nonparametric component is a nuisance parameter, for example, a conditional mean function. A natural approach would be to plug-in a machine learning estimate of the nuisance parameter into the moment equation and solve the moment equation for the boundary. However, to achieve consistency in a high-dimensional setting, I must employ modern regularized methods whose bias converges slower than the parametric rate. As a result, plugging such estimates into the moment equation produces a biased, low-quality estimate of the identified set’s boundary.
The major challenge of this paper is to overcome the transmission of the biased estimation of the first-stage nuisance parameter into the second stage. A basic idea, proposed in the point-identified case, is to make the moment equation insensitive, or, formally, Neyman-orthogonal, to the biased estimation of the first-stage parameter (Neyman (1959)). Combining Neyman-orthogonality and sample splitting, Chernozhukov et al. (2017a) derive a root-N consistent and asymptotically normal estimator of the low-dimensional parameter identified by a semiparametric moment equation. However, extending this idea to a set-identified case presents additional challenges.

The main distinction between the point- and set-identified cases is that the target parameter is no longer a finite-dimensional vector, but a boundary that consists of continuum points. Therefore, in addition to pointwise inference, economists are interested in uniform statistical properties over the identified set’s boundary. Second, because the moment condition for the boundary depends on the nuisance parameter in a non-smooth way, establishing Neyman-orthogonality is a non-trivial exercise. I develop high-level sufficient conditions for Neyman-orthogonality and derive a uniformly root-N consistent, uniformly asymptotically Gaussian estimator of the identified set’s boundary.

To make the orthogonal approach useful, I provide a general recipe to construct a Neyman-orthogonal moment equation starting from a non-orthogonal one, extending the previous work on orthogonal estimation (Hardle and Stoker (1989), Newey and Stoker (1993), Newey (1994), Ichimura and Newey (2017), Chernozhukov et al. (2017b)) from a point- to a set-identified case. I also provide a Bayesian bootstrap algorithm to conduct inference about the identified set’s boundary. The procedure simplifies the Bayesian bootstrap algorithm from Chandrasekhar et al. (2011): instead of re-estimating the first-stage parameter in each bootstrap repetition, I estimate the first-stage parameter once on an auxiliary sample. My algorithm is faster to compute because only the second stage is repeated in the simulation. I show that the simpler Bayesian bootstrap procedure is valid when the moment equation is Neyman-orthogonal.

I demonstrate my method’s utility with three applications. In the first application, I estimate sharp bounds on the average treatment effect in the presence of endogenous sample selection and non-compliance. Reporting nonparametric bounds on the average treatment effect in addition to the point estimates derived under stronger identification assumptions is a common robustness check in labor and education studies (Angrist et al. (2006), Lee (2008), Engberg et al. (2014), Huber et al. (2017), Abdulkadiroglu et al. (2018), Sieg and Wang (2018)). In some cases, such as Engberg et al. (2014), the bounds have opposite signs and are therefore uninformative. To tighten these bounds, Lee (2008) suggests splitting the observations

\(^1\)For example, Engberg et al. (2014) reports the effect of attending a magnet program on the Mathematics test score lies between $-24.22(148.06)$ and $87.09(57.62)$. The results are taken from Table 8 of Engberg et al. (2014), which reports the ATE of attending a magnet program in a mid-sized urban school district on the high school achievement in Mathematics, as measured by a standardized
into several categories, performing the analysis within each category, and then averaging the lower and the upper bounds across categories. I show how to tighten the bounds even further by conditioning on high-dimensional covariates.

In the second application, I study the partially linear model from Robinson (1988) in the presence of high-dimensional covariates when the outcome variable is recorded in intervals. I characterize the identified set for the causal parameter in this model and provide estimation and inference methods for the identified set’s boundary. I provide primitive conditions on the problem design that allow to incorporate machine learning tools to conduct uniform inference about the boundary. Because Robinson (1988)’s model may be misspecified in practice, I introduce a new parameter, called a partially linear predictor, to measure the predictive effect of an endogenous variable on an outcome variable in the presence of high-dimensional controls. I show that the identified set for the causal parameter in Robinson (1988) is the sharp identified set for the partially linear predictor.

In the third application, I study the average partial derivative (Hardle and Stoker (1989), Newey and Stoker (1993)) in the presence of high-dimensional controls when the outcome variable is recorded in intervals. Kaido (2017) characterized the identified set’s boundary. He also derived an orthogonal moment equation for the boundary and proposed the estimator for the boundary when the number of control variables is small. I extend his result, allowing the number of covariates to exceed the sample size. I also provide primitive sufficient conditions on the problem design that allow to incorporate machine learning tools to conduct uniform inference about the boundary.

As an empirical application, I revisit the bounds analysis of Lee (2008) using the data in Angrist et al. (2006) and substantially tighten the bounds suggested by Lee (2008)’s method. In the original study, Angrist et al. (2006) examined the effect of a private school-subsidizing voucher on test scores. To derive the bounds, Angrist et al. (2006) assumed that the voucher can neither deter the test participation nor harm the test score. Following the approach in Lee (2008), I use only the first assumption and estimate sharp bounds using all available covariates. For both Mathematics and Language, the estimated bounds are substantially tighter than the original bounds reported in Angrist et al. (2006) and are both positive. For Language, the estimated bounds are both positive and significant.

The paper is organized as follows. Section 2 provides motivating examples and constructs an estimator for the support function in a one-dimensional case of the partially linear predictor. Section 3 introduces a general set-identified linear model with high-dimensional covariates and establishes theoretical properties of the support function estimator. Section 4 describes the applications of the proposed framework to bounds achievement test score. The standard errors are indicated in parentheses.
analysis and to models where an outcome variable is recorded in intervals. Section 5 revisits the empirical application in Angrist et al. (2006) and sharpens the bounds on the treatment effect. Section 6 states my conclusions.

1.1 Literature Review

This paper is related to two lines of research: estimation and inference in set-identified models and Neyman-orthogonal semiparametric estimation. This paper contributes to the literature by introducing Neyman-orthogonal semiparametric estimation to the set-identified literature.

Set-identification is a vast area of research (Manski (1989), Manski and Tamer (2002), Beresteanu and Molinari (2008), Bontemps et al. (2012), Beresteanu et al. (2011), Ciliberto and Tamer (2009), Chen et al. (2011), Kaido and White (2014), Kaido and Santos (2014), Chandrasekhar et al. (2011), Kaido (2016), Kaido (2017)), see e.g. Tamer (2010) or Molinari and Molchanov (2018) for a review. There are two approaches to estimate and conduct inference on identified sets: the moment inequalities approach (Chernozhukov et al. (2007), Kaido and White (2014)) and the support function approach (Beresteanu and Molinari (2008), Bontemps et al. (2012)), which applies only to convex and compact identified sets. A framework to unify these approaches was proposed by Kaido (2016). In this paper, I extend the support function approach, allowing the moment equation for the identified set’s boundary to depend on a nuisance parameter that can be high-dimensional and is estimated by machine learning methods. In Semenova (2018), I introduce the same dependence in moment inequalities.

Within the first line of research, my empirical applications are most connected to work that derives nonparametric bounds on the average treatment effect in the presence of endogenous sample selection and non-compliance. This literature (Angrist et al. (2002), Angrist et al. (2006), Engberg et al. (2014), Huber et al. (2017), Abdulkadiroglu et al. (2018), Sieg and Wang (2018)) derives nonparametric bounds on the average treatment effect. Specifically, I build on Lee (2008), who derived sharp bounds on the average treatment effect and highlighted the role of covariates in achieving sharpness. However, Lee (2008)’s estimator only applies to a small number of discrete covariates. In this paper, I permit a large number of both discrete and continuous covariates and leverage the predictive power of machine learning tools to identify sharp bounds.

It is common to estimate the target parameter in two stages, where a first-stage estimator of the nuisance \(\hat{\eta} \) is plugged into a sample analog of a mathematical relation that identifies the target, such as a moment condition, a likelihood function, etc. A statistical procedure is called Neyman-orthogonal (Neyman (1959), Neyman (1979)) if it is locally insensitive with respect to the estimation error of the first-stage nuisance parameter. In a point-identified problem, the orthogonality condition is defined at the true value of the target \(\theta_0 \). Since the notion of unique true value \(\theta_0 \) no longer exists in a set-identified framework, I extend the orthogonality condition to hold on a slight expansion of the boundary of the identified set.

2 Setup and Motivation

2.1 General Framework

I focus on identified sets that can be represented as weighted averages of an outcome variable that is known to lie within an interval. Let \(Y \) be an outcome and \(Y_L, Y_U \) be random variables such that

\[
Y_L \leq Y \leq Y_U \text{ a.s.}
\] (2.1)

Consider an identified set of the following form

\[
\mathcal{B} = \{ \beta = \Sigma^{-1} \mathbb{E} V Y, \quad Y_L \leq Y \leq Y_U \},
\] (2.2)

where \(V \in \mathbb{R}^d \) is a \(d \)-vector of weights and \(\Sigma \in \mathbb{R}^{d \times d} \) is a full-rank normalizing matrix. \(\Sigma \) can be either known or unknown, covering a variety of cases. For example, \(\Sigma = V = 1 \) corresponds to the expectation of an outcome \(Y \). For another example, \(\Sigma = (\mathbb{E} V V^\top)^{-1} \) corresponds to the set-valued best linear predictor of the outcome \(Y \) when \(V \) is used as a predictive covariate. I have adopted this structure because it allows me to cover a wide class of set-identified models that are usually studied separately.

A key innovation of my framework is that the bounds \(Y_L, Y_U \) and the weighting variable \(V \) can depend on an identified nuisance parameter that I allow to be high-dimensional. To fix ideas, let \(W \) be a vector of observed data and \(P_W \) denote its distribution. Then, I allow each coordinate of the weighting vector \(V \) and the bounds \(Y_L, Y_U \) to depend on an identified parameter of the data distribution \(P_W \). The examples below demonstrate the importance of this innovation.
2.2 Motivating Examples

Example 1. Endogenous Sample Selection. In this example I revisit the model of endogenous sample selection from Lee (2008). I use the following notation for the potential outcomes. Let \(D \in \{1, 0\} \) denote an indicator for whether an unemployed subject has won a lottery to participate in a job training program. Let \(S_0 = 1 \) be a dummy for whether the subject would have been employed after losing the lottery, and \(S_1 = 1 \) be a dummy for whether the subject would have been employed after winning the lottery. Similarly, let \(\{Y_d, d \in \{1, 0\}\} \) represent the potential wages in case of winning and losing the lottery, respectively. The object of interest is the average effect on wages

\[
\beta = \mathbb{E}[Y_1 - Y_0 | S_1 = 1, S_0 = 1]
\]

for the group of people who would have been employed regardless of lottery’s outcome, or, briefly, the always-employed.

The data consist of the admission outcome \(D \), the observed employment status

\[
S = DS_1 + (1 - D)S_0,
\]

and the baseline covariates \(X \) (e.g., age, gender, race). In addition, the data contain wages for employed subjects

\[
S \cdot Y = S \cdot (DY_1 + (1 - D)Y_0).
\]

Without additional assumptions, the average treatment effect on the always-employed is not point-identified.

Under the Assumptions from Lee (2008), the average wage in case of non-admission, \(\mathbb{E}[Y_0 | S_1 = 1, S_0 = 1] \), is point-identified. In contrast, the average potential wage in case of admission, \(\mathbb{E}[Y_1 | S_1 = 1, S_0 = 1] \), is not. Then (see Lemma 11 for details), the sharp bounds on \(\mathbb{E}[Y_1 | S_1 = 1, S_0 = 1] \) are given by

\[
[\mathbb{E}Y_L(X), \mathbb{E}Y_U(X)],
\]

where the lower bound \(Y_L(X) \) is equal to

\[
Y_L = Y_L(X) := \frac{D \cdot S \cdot Y \cdot 1\{Y \leq Y_0(x, X)\} \Pr(D = 0|X)}{\Pr(D = 0, S = 1) \Pr(D = 1|X)}
\]
and the upper bound is equal to

\[Y_U = Y_U(X) := \frac{D \cdot S \cdot Y \cdot 1_{\{Y \geq y_{1-p_0(X), X}\}} \Pr(D = 0 | X)}{\Pr(D = 0, S = 1) \Pr(D = 1 | X)}, \tag{2.8} \]

where \(s(D, X), p_0(X), y_{\{p_0(X), X\}}, y_{\{1-p_0(X), X\}}\) are functions of \(X\) defined as follows

\[
s(D, X) = \mathbb{E}[S = 1 | D, X], \tag{2.9}
\]

\[
p_0(X) = \frac{s(0, X)}{s(1, X)},
\]

\[
y_{\{u, X\}} : \Pr(Y \leq y_{\{u, X\}} | X, D = 1, S = 1) = u, \quad u \in [0, 1].
\]

Specifically, \(s(D, X)\) is the probability of employment given \(X\), \(p_0(X)\) is the ratio of conditional probabilities, and \(y_{\{u, X\}}\) is the quantile function of employed and admitted individuals given \(X\). As a result, the sharp bounds on the program effect depend on the first-stage parameter \(\eta_0(X) = \{s(0, X), s(1, X), y_{\{u, X\}}\}\). Therefore, the identified set (2.6) is a special case of model (2.1)-(2.2) with \(V = \Sigma = \Pr(D = 0, S = 1)\) and the first-stage parameter \(\eta_0(X)\).

Table 1: Lee (2008)’s bounds on Voucher Effect on Test Scores using the data in Angrist et al. (2006)

<table>
<thead>
<tr>
<th>Covariates</th>
<th>None (1)</th>
<th>{ Age, gender } (2)</th>
<th>My result, all 7 covs (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate</td>
<td>[-1.304, 2.073]</td>
<td>[-1.100, 1.827]</td>
<td>[0.160, 0.904]</td>
</tr>
<tr>
<td>95% CR</td>
<td>(-2.131, 2.886)</td>
<td>(-1.875, 2.599)</td>
<td>(-0.168, 1.570)</td>
</tr>
<tr>
<td>B. Language</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate</td>
<td>[-1.192, 2.640]</td>
<td>[-0.946, 2.341]</td>
<td>[0.473, 1.112]</td>
</tr>
<tr>
<td>95% CR</td>
<td>(-2.086, 3.542)</td>
<td>(-1.8007, 3.211)</td>
<td>(0.144, 1.847)</td>
</tr>
</tbody>
</table>

Table 2 reports estimated bounds for the voucher effect (Estimates) and a 95% confidence region (95% CR) for the identified set for the voucher effect for test scores in Mathematics (Panel A) and Language (Panel B). I report the results for 3 specifications: without covariates (Column 1), with age and gender covariates (Column 2), and my result based on all 7 covariates (Column 3).

Table 1 shows the bounds on the voucher’s effect on the test scores using the data in Angrist et al. (2006). The empirical details are discussed in Section 5. Without any covariates, Lee (2008)’s bounds have opposite signs and cannot determine the direction of the effect (Column 1). Including age and gender covariates, selected by Angrist et al. (2006), does not help determine the direction of the effect (Column 2). However,
conditioning on all covariates (Column 3) that better predict test participation results in bounds that are both positive and substantially tighter. The bounds for Language are also significant.

Example 2. Average Partial Derivative. An important parameter in economics is the average partial derivative. This parameter shows the average effect of a small change in an endogenous variable D on the outcome Y conditional on the covariates X. To describe this change, define the conditional expectation function of an outcome Y given the endogenous variable D and exogenous variable X as

$$ \mu(D, X) := \mathbb{E}[Y|D, X] $$

and its partial derivative with respect to D as $\partial_D \mu(D, X) := \partial_d \mu(d, X)|_{d=D}$. Then, the average partial derivative is defined as

$$ \beta = \mathbb{E} \partial_D \mu(D, X). $$

(2.10)

For example, when Y is the logarithm of consumption, D is the logarithm of price, and X is the vector of other demand attributes, the average partial derivative stands for the average price elasticity.

Assume that the endogenous variable D has bounded support $D \subset \mathbb{R}^d$ and has positive density on this support. Hardle and Stoker (1989) have shown that the average partial derivative can be represented as

$$ \beta = \mathbb{E} V(Y), $$

where

$$ V = -\partial_D \log f(D|X) = -\frac{\partial_D f(D|X)}{f(D|X)} $$

(2.11)

is the negative partial derivative of the logarithm of the density $f(D|X)$.

Suppose the outcome Y is interval-censored. As discussed in Kaido (2017), the sharp identified set \mathcal{B} for the average partial derivative can be represented as

$$ \mathcal{B} = \{ \mathbb{E} V(Y), Y_L \leq Y \leq Y_U \}, $$

(2.12)

which is a special case of model (2.1)-(2.2) with $\Sigma = 1, V = -\frac{\partial_D f(D|X)}{f(D|X)}$, and the nuisance parameter $\eta_0(X) = \frac{\partial_D f(D|X)}{f(D|X)}$. In contrast to Kaido (2017), I allow the vector of covariates X to be high-dimensional.
Example 3. Partially Linear Predictor. A widely used approach to measure the causal effect of an endogenous variable D on an outcome variable Y is to adopt the partially linear model from Robinson (1988)

$$
Y = D\beta_0 + f_0(X) + U, \quad \mathbb{E}[U|D, X] = 0,
$$

(2.13)

where X is a vector of covariates. However, when the conditional exogeneity restriction (2.13) does not hold, the parameter β_0 has no interpretation. An alternative parameter, which is robust to misspecification of the partially linear model, is a partially linear predictor. This parameter is defined as the linear component of the projection of Y on a partially linear combination of the endogenous variable D and the covariates X

$$
\beta = \arg \min_{b \in \mathbb{R}^d, f \in \mathcal{M}} \mathbb{E}(Y - D^\top b - f(X))^2,
$$

(2.14)

where \mathcal{M} is a set of integrable functions of X. Equivalently, the parameter β can be represented as the best linear predictor of variable Y in terms of the first-stage residual V (see Lemma 12 for the derivation)

$$
\beta = \arg \min_{b \in \mathbb{R}^d} \mathbb{E}(Y - V^\top b)^2,
$$

(2.15)

where the first-stage residual V is

$$
V := D - \mathbb{E}[D|X].
$$

(2.16)

Suppose the outcome Y is interval-censored. Then, the sharp identified set \mathcal{B} for the partially linear predictor is

$$
\mathcal{B} = \{ (\mathbb{E}VV^\top)^{-1}\mathbb{E}VY, \ Y_L \leq Y \leq Y_U \},
$$

(2.17)

which is a special case of model (2.1)-(2.2) with $V = D - \mathbb{E}[D|X]$, $\Sigma = \mathbb{E}VV^\top$, and the nuisance parameter $\eta_0(X) = \mathbb{E}[D|X]$. Moreover, the identified set \mathcal{B} is a non-sharp identified set for the causal parameter β_0 when the partially linear model is correctly specified (i.e., (2.13) holds).
2.3 Partially linear predictor, one-dimensional case

Consider the setting from Example 3 when the endogenous variable D is one-dimensional. Then the identified set \mathcal{B} is a closed interval

\[\mathcal{B} = [\beta_L, \beta_U]. \]

Given an i.i.d sample \((W_i)_{i=1}^N = (D_i, X_i, Y_{L,i}, Y_{U,i})_{i=1}^N\), I derive a root-N consistent asymptotically normal estimator, \([\hat{\beta}_L, \hat{\beta}_U]\), of the identified set and construct a confidence region for the identified set \mathcal{B}.

I characterize the upper bound β_U as a solution to a semiparametric moment equation. Inspecting (2.17), one can see that the identified set (2.17) consists of the ordinary least squares coefficients where the first-stage residual \((D - \eta_0(X))\) is the regressor and $Y \in [Y_L, Y_U]$ is an outcome. To achieve the upper bound β_U, or, equivalently, the largest possible least squares coefficient, I construct a random variable Y^{UBG} as

\[
Y^{UBG}(\eta) = \begin{cases}
Y_L, & D - \eta(X) \leq 0, \\
Y_U, & D - \eta(X) > 0.
\end{cases}
\]

(2.18)

Intuitively, $Y^{UBG}(\eta)$, referred to as an upper bound generator, takes the largest possible value Y_U when $D - \eta(X)$ is positive and the smallest possible value Y_L otherwise\(^2\). As a result, the upper bound is characterized by the semiparametric moment equation

\[
\mathbb{E}(Y^{UBG}(\eta_0) - (D - \eta_0(X))\beta_U)(D - \eta_0(X)) = 0
\]

(2.19)

(see, e.g. Beresteanu and Molinari (2008) or Bontemps et al. (2012)). The major difficulty when estimating β_U comes from the nuisance function $\eta_0(X) = \mathbb{E}[D|X]$, which is a function of high-dimensional covariates vector and must be estimated by regularized machine learning methods in order to achieve consistency.

I describe the naive approach to estimate β_U and explain why it does not work. To abstract away from other estimation issues, I use different samples for the first and second stages. Given the sample \((W_i)_{i=1}^N\), I split it into a main sample J_1 and an auxiliary sample J_2 of equal size $n = \lfloor N/2 \rfloor$ such that $J_1 \cup J_2 = \{1, 2, \ldots, N\}$. I use the auxiliary sample J_2 to construct an estimator $\hat{\eta}(X)$. Then, I construct an estimate of the upper bound generator \hat{Y}_i^{UBG} and regress it on the estimated first-stage residual $D_i - \hat{\eta}(X_i)$

\[
\hat{\beta}_U^{NAIVE} = (\sum_{i \in J_1} (D_i - \hat{\eta}(X_i))^2)^{-1} \sum_{i \in J_1} (D_i - \hat{\eta}(X_i))\hat{Y}_i^{UBG}.
\]

\(^2\)In what follows, I assume that the residual V has a continuous distribution and is equal to zero with probability zero.
Unfortunately, the naive estimator converges at a rate slower than \sqrt{N}

$$\sqrt{N}|\hat{\beta}_U^{\text{NAIVE}} - \beta_U| \to \infty \quad (2.20)$$

and cannot be used to conduct inference about β_U using standard Gaussian approximation. The behavior of the naive estimator is shown in Figure 1(a).

Figure 1: Finite-sample distribution of non-orthogonal (naive) and orthogonal estimates of the bounds

![Figure 1](image)

Figure 1 shows the finite-sample distribution (blue histogram) of naive (left panel) and orthogonal (right panel) estimates of the lower ($\hat{\beta}_L$) and the upper ($\hat{\beta}_U$) bounds of the identified set. The red curve shows the normal (infeasible) approximation when the first-stage parameter $\eta_0(X) = E[D|X]$ is known. The dashed line should the true value of the bound. In the left panel, the distribution of the naive estimator is centered substantially far from the true value. The naive estimator is biased because the first-stage bias transmits into the bias of the bounds. In the right panel, the distributions are close. This estimator is approximately unbiased because the first-stage bias of $\hat{\eta}$ does not transmit into the bias of the bounds. The function $E[D|X]$ is a linear sparse function of a high-dimensional vector X, so the gamma-lasso first-stage estimator of $E[D|X]$ from Taddy (2011) has good prediction properties. I use the cross-fitting procedure from Definition 2 with the number of folds $K = 2$.

The slow convergence of the naive estimator $\hat{\beta}_U^{\text{NAIVE}}$ is due to the slower-than-root-N convergence of the first-stage estimator of $\eta_0(X)$. In order to estimate $\eta_0(X)$ consistently in a high-dimensional framework, I must employ modern regularized methods, such as boosting, random forest, and lasso, that rely on regularization constraints to achieve convergence. This regularization creates bias in the first-stage estimates. The bias converges slower than root-N and carries over into the naive estimator $\hat{\beta}_U^{\text{NAIVE}}$.

I show that the major obstacle to optimal convergence and valid inference is the sensitivity of the moment function (2.19) with respect to the biased estimation of the first stage parameter η_0. Assume that I can somehow generate the true value of the upper bound generator $y_0 = y^{\text{UBG}}(\eta_0)$. Consider a smooth moment function

$$m_0(W, \beta_U, \eta_0) = (y_0 - (D - \eta_0(X))\beta_U) \cdot (D - \eta_0(X)) \quad (2.21)$$
Then the difference between the infeasible moment equation \(m_0(W, \beta_U, \eta_0) \), based on the true value of the nuisance parameter \(\eta_0 \), and the feasible yet slightly incorrect moment equation \(m_0(W, \beta_U, \hat{\eta}) \), based on the first-stage estimate \(\hat{\eta} \) is proportional to the expected derivative of (2.21)

\[
\mathbb{E}[m_0(W, \beta_U, \hat{\eta}) - m_0(W, \beta_U, \eta_0)] \approx \partial_\eta \mathbb{E}[m_0(W, \beta_U, \eta_0)(\hat{\eta}(X) - \eta_0(X))].
\]

The derivative of (2.21) is non-zero

\[
\partial_\eta \mathbb{E}m_0(W, \beta_U, \eta_0)(\hat{\eta} - \eta_0) = -\mathbb{E}[y_0(\hat{\eta}(X) - \eta_0(X))],
\]

which is why the first-stage bias carries over into the second stage.

To overcome the transmission of the bias, I replace the moment equation (2.19) by another moment equation that is less sensitive to the biased estimation of its first-stage parameters. Using the classic idea from Frisch-Waugh-Lowell, I replace \(y_0 \) by the second-stage residual \(y_0 - \mathbb{E}[y_0|X] \). The derivative of the new moment equation takes the form

\[
-\mathbb{E}[(y_0 - \mathbb{E}[y_0|X])(\hat{\eta}(X) - \eta_0(X))] = 0.
\]

The new moment equation takes the form

\[
\mathbb{E}(y_0 - \mathbb{E}[y_0|X]) - (D - \eta_0(X))\beta_U \cdot (D - \eta_0(X)) = 0
\]

and can be interpreted as the ordinary least squares regression of the second-stage residual \(y_0 - \mathbb{E}[y_0|X] \) on the first-stage residual \(D - \eta_0(X) \). This equation is known as a doubly-robust moment equation (Robins and Rotnitzky (1995), Robins et al. (1994), Chernozhukov et al. (2017a)) from point-identified case, where an observed outcome \(Y \) appeared in place of the constructed (and unobserved) upper bound generator \(y_0 \).

I argue that the estimation error of the upper bound generator \(Y^{UBG}(\eta_0) \) can be ignored when the first-stage residual \(V = D - \eta_0(X) \) is continuously distributed. Then this estimation error matters (i.e., \(Y^{UBG}(\hat{\eta}) \neq Y^{UBG}(\eta_0) \)) only if the first-stage residual is small enough

\[
|Y^{UBG}(\hat{\eta}) - Y^{UBG}(\eta_0)| \leq \begin{cases}
Y_U - Y_L, & 0 < |D - \eta_0(X)| < |\hat{\eta}(X) - \eta_0(X)| \\
0, & \text{otherwise}
\end{cases}
\]

When the residual \(D - \eta_0(X) \) is sufficiently continuous, the probability of the event \(Y^{UBG}(\hat{\eta}) \neq Y^{UBG}(\eta_0) \) is
smaller than the estimation error $|\hat{\eta}(X) - \eta_0(X)|$. Assuming that the estimation error $|\hat{\eta}(X) - \eta_0(X)|$ itself converges at $o(N^{-1/4})$ rate, I show that this error can be ignored since its contribution to bias is second-order.

The proposed estimator has two stages. In the first-stage, I estimate the conditional expectations

$$\{\eta_0(X), \mathbb{E}[y_0|X]\}$$

of the endogenous variable D and of the upper bound generator Y_{UBG}, respectively, using machine learning tools. In the second stage, I regress the estimated second-stage residual on the estimated first-stage residual. I use different samples in the first and the second stages (a more sophisticated form of sample splitting, called cross-fitting, is defined in Section 3). The behavior of the proposed estimator is shown in Figure 1(b).

Algorithm 1 Upper Bound on the Partially Linear Predictor

Let $\eta_{0,0}(X) := \mathbb{E}[y_0|X]$. Input: an i.i.d sample $(W_i)_{i=1}^N = (D_i, X_i, Y_{L,i}, Y_{U,i})_{i=1}^N$, estimated values $(\hat{\eta}(X_i), \hat{\gamma}_{UBG}(X_i))_{i \in J_2}$, where $\hat{\gamma}(\cdot)$ is estimated using the auxiliary sample J_2.

1. Estimate the upper bound generator for every $i \in J_1$

$$\hat{\gamma}_{UBG}^i := \begin{cases} Y_{L,i}, & D_i - \hat{\eta}(X_i) \leq 0, \\ Y_{U,i}, & D_i - \hat{\eta}(X_i) > 0. \end{cases}$$

2. Estimate $\hat{\beta}_U$ by Ordinary Least Squares using the second-stage residual of the upper bound generator as the dependent variable and the first-stage residual V as the regressor

$$\hat{\beta}_U = \left(\sum_{i \in J_1} (D_i - \hat{\eta}(X_i))^2 \right)^{-1} \sum_{i \in J_1} (D_i - \hat{\eta}(X_i)) [\hat{\gamma}_{UBG}^i - \hat{\gamma}(X_i)].$$

Return: $\hat{\beta}_U$.

Sample Splitting. I can use machine learning methods in the first stage because of sample splitting. In the absence of sample splitting, the estimation error of the first-stage machine learning estimator may be correlated with the true values of the first and second-stage residuals. This correlation leads to bias, referred to as overfitting bias. The behavior of the overfit estimator is shown in Figure 2 (a).

While sample splitting helps overcome overfitting bias, it cuts the sample used for the estimation in half. This problem can lead to the loss of efficiency in small samples. To overcome this problem, I use the cross-fitting technique from Chernozhukov et al. (2017a) defined in Section 3. Specifically, I partition the sample into two halves. To estimate the residuals for each half, I use the other half to estimate the first-stage nuisance parameter. Then, the upper bound is estimated using the whole sample. As a result, each observation is used both in the first and second stages, improving efficiency in small samples.
Figure 2 shows the finite-sample distribution (blue histogram) of the orthogonal estimator without (left panel) and with (right panel) sample splitting. The red curve shows the normal (infeasible) approximation when the first-stage parameter $\eta_0(X) = \mathbb{E}[D|X]$ is known. The dashed line should the true value of the bound. In the left panel, the distribution of the naive estimator is centered substantially far from the true value. The naive estimator is biased because of overfitting. In the right panel, the distributions are close. This estimator is approximately unbiased because different samples are used in the first and the second stages. The function $\mathbb{E}[D|X]$ is a linear sparse function of a high-dimensional vector X, so the gamma-lasso first-stage estimator of $\mathbb{E}[D|X]$ from Taddy (2011) has good prediction properties. I use the cross-fitting procedure from Definition 2 with the number of folds $K = 2$.

Sketch of the pointwise result. I end this section with a sketch of my pointwise result. Let $[\hat{\beta}_L, \hat{\beta}_U]^\top$ be a vector of the estimators of the lower and upper bounds defined in Algorithm 1. My estimator is root-N consistent and asymptotically Gaussian

$$\sqrt{N} \left(\begin{array}{c} \hat{\beta}_L - \beta_L \\ \hat{\beta}_U - \beta_U \end{array} \right) \Rightarrow N(0, \Omega),$$

where the sample size N converges to infinity, \Rightarrow denotes convergence in distribution, and Ω is a covariance matrix. The confidence region of level $\alpha \in (0, 1)$ for the identified set $[\beta_L, \beta_U]$ takes the form

$$[\hat{\beta}_L - N^{-1/2} \hat{C}_{\alpha/2}, \hat{\beta}_U + N^{-1/2} \hat{C}_{1-\alpha/2}],$$

where the critical values $\hat{C}_{\alpha/2}, \hat{C}_{1-\alpha/2}$ are

$$\begin{pmatrix} \hat{C}_{\alpha/2} \\ \hat{C}_{1-\alpha/2} \end{pmatrix} = \hat{\Omega}^{1/2} \begin{pmatrix} \Phi^{-1}(\sqrt{1-\alpha}) \\ \Phi^{-1}(\sqrt{1-\alpha}) \end{pmatrix}$$

and $\Phi^{-1}(t)$ is the inverse of the standard normal distribution. I estimate the covariance matrix Ω using a version of Bayesian bootstrap given in Definition 7.
3 Main Results

In this section, I introduce a general set-identified linear model with a high-dimensional nuisance parameter. I describe the boundary of the identified set (support function) by a semiparametric moment equation. I introduce a new sufficient condition for a moment equation - uniform near-orthogonality - and establish uniform asymptotic theory for the support function estimator and bootstrap support function process under that condition. Finally, I provide a general recipe to construct a uniformly near-orthogonal moment equation starting from a non-orthogonal one.

Notation. I use the following standard notation. Let $S^{d-1} = \{ q \in \mathbb{R}^d, \| q \| = 1 \}$ be the d-dimensional unit sphere and $q \in S^{d-1}$ be a generic vector on the unit sphere. I use the following notation

$$\Gamma(t_1, t_2 - t_1, t_3) := t_1 + (t_2 - t_1)1_{\{t_3 \geq 0\}}, \quad (3.1)$$

where $1_{\{t_3 \geq 0\}} = 1$ if t_3 is non-negative and $1_{\{t_3 \geq 0\}} = 0$ otherwise. I use standard notation for numeric and stochastic dominance. For two numeric sequences $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$, let $a_n \preceq b_n$ stand for $a_n = O(b_n)$. For two sequences of random variables $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$, let $a_n \preceq_P b_n$ stand for $a_n = O_P(b_n)$. For a random variable ξ, $(\xi)^0 := \xi - \mathbb{E}[\xi]$. Let $L^\infty(S^{d-1})$ be the space of absolutely surely bounded functions defined on the unit sphere S^{d-1}. Define an L^p norm of a vector-valued random variable W as: $\|W\|_{L^p} := (\int_{W \in W} \|W\|^p)^{1/p}$. Let W be the support of the data vector W of the distribution P_W. Let $(W_i)_{i=1}^N$ be an i.i.d sample from the distribution P_W. Denote the sample average of a function $f(\cdot)$ as

$$\mathbb{E}_N[f(W_i)] := \frac{1}{N} \sum_{i=1}^N f(W_i)$$

and the centered, root-N scaled sample average as

$$G_N[f(W_i)] := \frac{1}{\sqrt{N}} \sum_{i=1}^N [f(W_i) - \mathbb{E}[f(W_i)]]$$

3.1 High-Level Assumptions

One of this paper’s key innovations is to allow the identified set \mathcal{B}, given in (2.2), to depend on an identified parameter of data distribution P_W. Definition 1 formalizes this dependence.

Definition 1 (Constructed Random Variable). Let W be the vector of the observed data, P_W its distribution, and \mathcal{W} its support. I refer to V as a constructed random variable if there exists an identified parameter
\(\eta_0, \eta_0 \in \mathcal{T} \) from a linear and convex set \(\mathcal{T} \) and a known measurable map \(H(W, \eta) : W \times \mathcal{T} \to \mathbb{R} \) such that

\[V = H(W, \eta_0) \quad a.s. \]

I refer to \(\eta \) as a nuisance parameter and \(\eta_0 \) as the true value of \(\eta \).

ASSUMPTION 1 (Constructed Random Variables). *Each coordinate of the random vector \((V, Y_L, Y_U)\) in the identified set (2.2) is either an observed or constructed random variable.*

To complete the model, I need to identify matrix \(\Sigma \) in (2.2) when \(\Sigma \) is unknown. If this is the case, I assume that \(\Sigma \) is identified by a semiparametric moment condition (Assumption 2).

ASSUMPTION 2 (Identification of \(\Sigma \)).

1. There exists an identified parameter \(\eta \) of the distribution \(P_W \) and a known measurable map \(A(W, \eta) : W \times \mathcal{T} \to \mathbb{R} \) such that

\[\Sigma = \mathbb{E} A(W, \eta_0). \]

(3.2)

2. There exist constants \(\lambda_{\min} > 0 \) and \(\lambda_{\max} < \infty \) that bound the eigenvalues of \(\Sigma \) from above and below

\[0 < \lambda_{\min} \leq \min \text{eig}(\Sigma) \leq \max \text{eig}(\Sigma) < \lambda_{\max}. \]

In what follows, let \(\eta \) be a vector-valued nuisance parameter whose components appear in Assumptions 1, 2, or both assumptions.

According to Bontemps et al. (2012), the identified set \(\mathcal{B} \) is a compact and convex set. Therefore, it can be equivalently represented by its support function. Fix a direction \(q \) on a unit sphere \(S^{d-1} := \{ q \in \mathbb{R}^d, \| q \| = 1 \} \). Define the support function

\[\sigma(q, \mathcal{B}) := \sup_{b \in \mathcal{B}} q^\top b \]

(3.3)

as the (signed) distance from the origin to the hyperplane tangent to \(\mathcal{B} \) in the direction \(q \). According to Bontemps et al. (2012), the function \(\sigma(q, \mathcal{B}) \) is equal to the expectation of the product of two random variables \(z_q \) and \(Y_q \)

\[\sigma(q, \mathcal{B}) = \mathbb{E} z_q Y_q, \]

(3.4)
where
\[z_q = q^\top \Sigma^{-1} V \]
is a normalized projection of the covariate \(V \) onto the direction \(q \) and the variable \(Y_q \) is defined as
\[Y_q = Y_L + (Y_U - Y_L)1_{\{z_q > 0\}} := \Gamma(Y_L, Y_U - Y_L, z_q). \] (3.5)

Namely, \(Y_q \) is equal to the lower bound \(Y_L \) when \(z_q \) is non-positive and equal to the upper bound \(Y_U \) otherwise.

To highlight the dependence of \(z_q \) and \(Y_q \) on \(\eta \), I will rewrite (3.4) as a semiparametric moment equation for \(\sigma(q, B) \)
\[\mathbb{E}[\sigma(q, B) - z_q(\eta_0)Y_q(\eta_0)] = 0. \] (3.6)

Equation (3.6) shows that the support function \(\sigma(q, B) \) depends on
\[p_0(q) = (\Sigma^{-1})^\top q, \]
that is, the projection of the matrix \(\Sigma^{-1} \) onto the direction \(q \), rather than \(\Sigma^{-1} \) itself. I define the projection \(\mathcal{P} \) as a set that contains \(p_0(q) \) for all directions \(q \in S^{d-1} \), when \(\Sigma \) is known, or as a slight expansion of this set, when \(\Sigma \) is unknown.

Definition 2 (Projection Set).
1. When \(\Sigma \) is known, let \(\mathcal{P} = \{(\Sigma^{-1})^\top q, q \in S^{d-1}\} \).
2. When \(\Sigma \) is unknown, let \(\mathcal{P} \) be
\[\mathcal{P} = \{p \in \mathbb{R}^d, 0.5\lambda_{\min} \leq \|p\| \leq 2\lambda_{\max}\}. \] (3.7)

Orthogonality and near-orthogonality. As discussed in the introduction, the moment equation (3.6) produces a low-quality estimator of the support function. The problem arises because the moment equation (3.6) is sensitive with respect to the biased estimation of \(\eta_0 \). To overcome this problem, I replace this equation with
\[\mathbb{E}[\sigma(q, B) - g(W, p_0(q), \xi_0(p_0(q)))] = 0, \] (3.8)
where the new moment function \(g(W, p, \xi(p)) : \mathcal{W} \times \mathcal{P} \times \Xi \to \mathcal{R} \) depends on a functional nuisance parameter \(\xi = \xi(p) \). I assume that the true value \(\xi_0 = \xi_0(p) \) of the nuisance parameter includes \(\eta_0 \) (i.e., \(\eta_0 \subseteq \xi_0(p) \))
and contains additional parameters that introduce dependence on the projection \(p \). Below I formalize the notion that (3.8) is an insensitive moment equation and provide the sufficient conditions for (3.8) to deliver a high-quality estimator of the support function.

Let \(\Xi \) be a convex subset of a normed vector space that contains the functional parameter \(\xi_0 = \xi_0(p) \). Define the pathwise (Gateaux) derivative map on the set \(\Xi - \xi_0 \) as

\[
D_r[\xi - \xi_0] := \partial_r Eg(W, p, r(\xi - \xi_0) + \xi_0), \quad \xi \in \Xi, \quad p \in P, \quad r \in [0, 1)
\]

which I assume exists. I will also use the notation

\[
\partial_0 Eg(W, p, \xi_0)[\xi - \xi_0] = D_0[\xi - \xi_0]
\]

for the Gateaux derivative at \(\xi_0 \). Let \(\{\Xi_N, N \geq 1\} \) be a sequence of subsets of \(\Xi \) (i.e., \(\Xi_N \subseteq \Xi \)) and \(\{T_N, N \geq 1\} \) be a sequence of subsets of \(T \) (i.e., \(T_N \subseteq T \)).

Definition 3 (Neyman-orthogonality). The moment function \(g(W, p, \xi) \) obeys the orthogonality condition at \(\xi_0 \) with respect to the nuisance realization set \(\Xi_N \subset \Xi \) if the following conditions hold.

1. Equation (3.8) holds.

2. The pathwide derivative map \(D_r[\xi - \xi_0] \) exists for all \(r \in [0, 1) \) and \(\xi \in \Xi_N \) and vanishes at \(r = 0 \) for each \(p \in P \)

\[
\partial_0 Eg(W, p, \xi_0)[\xi - \xi_0] = 0 \quad \forall p \in P. \quad (3.9)
\]

Definition 3 requires the expectation of the moment function \(g(W, p, \xi_0) \) to have zero Gateaux derivative with respect to \(\xi \) at \(\xi_0 \) at each vector \(p \) in the projection set \(P \). To accommodate the moment function (3.4) that depends on \(\eta \) in a non-smooth way, I relax the requirement of Definition 3 using the notion of uniform near-orthogonality.

Definition 4 (Uniform near-orthogonality). The moment function \(g(W, p, \xi) \) obeys the near-orthogonality condition at \(\xi_0 \) with respect to the nuisance realization set \(\Xi_N \subset \Xi \) uniformly over \(P \) if the following conditions hold.

1. Equation (3.8) holds.

2. The pathwise derivative map \(D_r[\xi - \xi_0] \) exists for all \(r \in [0, 1) \) and \(\xi \in \Xi_N \).
3. There exists a sequence of positive constants \(\mu_N = o(N^{-1/2}) \) such that the pathwide derivative \(D_r[\xi - \xi_0] \) at \(r = 0 \) is uniformly small over the set \(\mathcal{P} \)

\[
\sup_{p \in \mathcal{P}} |\partial_\xi E g(W, p, \xi_0)(\xi - \xi_0)| \leq \mu_N
\]

Assumption 3 (Near-orthogonality).
1. There exists a measurable moment function \(g(W, p, \xi) : \mathcal{W} \times \mathcal{P} \times \Xi \to \mathbb{R} \) that obeys (3.8) and the near orthogonality condition uniformly over \(\mathcal{P} \).

2. When \(\Sigma \) is unknown, there exists a moment matrix-valued function \(A(W, \eta) \) that obeys (3.2) and the orthogonality condition

\[
\partial_\eta E A(W, \eta_0)[\eta - \eta_0] = 0.
\]

Assumption 3 is the key assumption of my paper. Assumption 3 (1) states that there exists a moment function \(g(W, p, \xi) \) for the support function \(\sigma(q, \mathcal{B}) \) that is approximately insensitive with respect to the biased estimation of the nuisance parameter \(\xi \) at \(\xi_0 \). I show how to achieve this condition in Section 3.3.

The second assumption states that the moment function \(A(W, \eta) \) is insensitive with respect to the biased estimation of the parameter \(\eta \) at \(\eta_0 \). This assumption holds in practical applications (e.g., in Example 3).

To sum up, the uniform near-orthogonal moment equation for \(\sigma(q, \mathcal{B}) \) is

\[
\mathbb{E} \psi(W, \theta(q), \xi_0(p)) := \mathbb{E} \left[\sigma(q, \mathcal{B}) - g(W, p(q), \xi_0(p(q))) \right] = 0.
\]

Algorithm 2 Cross-fitting

Input: an array of sample indices \(|N| = \{1, 2, ..., N\} \).

1. For \(K \geq 2 \), denote a \(K \)-fold random partition of this array by \((J_k)^K_{k=1} \), and a complement of \(J_k \) as \(J_k^c \). (For example, when \(K = 2 \), \(J_1 \cup J_2 = [N] \) and \(J_1^c = J_2 \).

2. For each partition \(k \in [K] \), construct the estimator \(\hat{\xi}_{W,\mathcal{B}}^c(p) \) of the nuisance parameter using only the data in the \(J_k^c \).

3. For each sample index \(i \in J_k \), estimate \(\hat{\xi}_i(p) = \hat{\xi}_{W,\mathcal{B}}^c(p) \).

Return: \((\hat{\xi}_i(p))_{i=1}^N \).

Definition 5 (Support Function Estimator when \(\Sigma \) is Known). Let \((W_i)_{i=1}^N \) be an i.i.d sample of the distribution \(P_W \) and \(\xi_0(p) \) be an identified parameter of \(P_W \). Let \(\hat{\xi}(p) \) be the estimate of \(\xi_0(p) \) constructed in
Algorithm 2. Define an estimate of the support function \(\hat{\sigma}(q, \mathcal{B}) \) as follows

\[
\hat{\sigma}(q, \mathcal{B}) = \frac{1}{N} \sum_{i=1}^{N} g(W_i, p_0(q), \hat{\xi}_i(p))
\]

(3.11)

where \(p_0(q) = (\Sigma^{-1})^\top q \).

Definition 6 (Support Function Estimator when \(\Sigma \) is Unknown). Let \((W_i)_{i=1}^{N} \) be an i.i.d. sample from a distribution \(P \). Let \(\hat{\xi}(p), p \in \mathcal{P} \) be the estimate of \(\xi_0(p) \) constructed in Algorithm 2. Define an estimate of the support function \(\hat{\sigma}(q, \mathcal{B}) \) as follows

\[
\hat{\sigma}(q, \mathcal{B}) = \frac{1}{N} \sum_{i=1}^{N} g(W_i, (\hat{\Sigma}^{-1})^\top q, \hat{\xi}_i((\hat{\Sigma}^{-1})^\top q)) \]

(3.12)

Additional regularity conditions. Assumption 4 formalizes the speed of convergence of the estimated nuisance parameter \(\hat{\xi}(p) \). It introduces the sequence of neighborhoods \(\{\Xi_N, N \geq 1\} \) around the true value \(\xi_0(p) \) that contain the estimate \(\hat{\xi}(p) \) with probability approaching one. As the sample size \(N \) increases, the neighborhoods shrink. The following rates \(r_N, r'_N, r''_N, \delta_N \) control the speed at which these neighborhoods shrink around \(\hat{\xi}_0(p) \).

Assumption 4 (Quality of the First-Stage Estimation and Regularity of the Moment Function). There exists a sequence \(\{\Xi_N, N \geq 1\} \) of subsets of \(\Xi \) (i.e., \(\Xi_N \subseteq \Xi \)) such that the following conditions hold.

1. The true value \(\xi_0 \) belongs to \(\Xi_N \) for all \(N \geq 1 \). There exists a sequence of numbers \(\phi_N = o(1) \) such that the first-stage estimator \(\hat{\xi}(p) \) of \(\xi_0(p) \) belongs to \(\Xi_N \) with probability at least \(1 - \phi_N \). There exist sequences \(r_N, r'_N, r''_N, \delta_N : r''_N \log^{1/2}(1/r''_N) = o(1), r'_N \log^{1/2}(1/r'_N) = o(1), r_N = o(N^{-1/2}), \) and \(\delta_N = o(N^{-1/2}) \) such that the following bounds hold

\[
\sup_{\xi \in \Xi_N} \sup_{p \in \mathcal{P}} (\mathbb{E}(g(W, p, \xi(p)) - g(W, p, \xi_0(p)))^2)^{1/2} \lesssim r''_N,
\]

\[
\sup_{\xi \in \Xi_N} \sup_{p \in \mathcal{P}} \sup_{q \in B_{d-1}} (\mathbb{E}(g(W, p, \xi_0(p)) - g(W, p_0, \xi_0(p_0)))^2)^{1/2} \lesssim r'_N
\]

\[
\sup_{\xi \in \Xi_N} \sup_{p \in \mathcal{P}} (\mathbb{E}(g(W, p, \xi(p) - \xi_0(p) + \xi_0(p))) \leq r_N
\]
\[
\sup_{r \in [0,1]} \| \partial^2_x \mathbb{E}(W, r(\eta - \eta_0) + \eta_0) \| \leq r_N, \\
\sup_{\eta \in \mathcal{E}_N} \left(\mathbb{E} \| A(W, \eta) - A(W, \eta_0) \|^2 \right)^{1/2} \lesssim \delta_N.
\]

2. The following conditions hold for the function class \(\mathcal{F}_\xi = \{ g(W, p, \xi(p)); p \in \mathcal{P} \} \). There exists a measurable envelope function \(F_\xi = F_\xi(W) \) that absolutely surely bounds all elements in the class

\[
\sup_{p \in \mathcal{P}} | g(W, p, \xi(p)) | \leq F_\xi(W) \quad \text{a.s.}
\]

There exists \(c > 2 \) such that \(\| F_\xi \|_{L^c} := \left(\int_{w \in W} (F_\xi(w))^c \right)^{1/c} < \infty \). There exist constants \(a, v \) that do not depend on \(N \) such that the uniform covering entropy of the function class \(\mathcal{F}_\xi \) is bounded

\[
\log \sup_Q N(\epsilon | F_\xi |_{Q, 2}; \mathcal{F}_\xi, \| \cdot \|_{Q, 2}) \leq v \log(a/\epsilon), \quad \text{for all } 0 < \epsilon \leq 1.
\]

Assumption 5 is a standard requirement for a differentiable support function \(\sigma(q, \mathcal{B}) \) (see, e.g. Chandrasekhar et al. (2011)). The differentiability of the support function ensures that the identified set \(\mathcal{B} \) is strongly convex. This property rules out the presence of the exposed faces of the identified set \(\mathcal{B} \) where the bias accumulates non-trivially. When the random variable \(V \) in (2.2) is sufficiently continuous, Assumption 5 holds. When the distribution of \(V \) is discrete, adding a small amount of continuously distributed noise suffices to achieve this requirement (see, e.g. Chandrasekhar et al. (2011)).

ASSUMPTION 5 (Differentiable Support Function). Let \(\mathcal{P} \subset \mathbb{R}^d \) be an open set that contains \(\mathcal{P} : \mathcal{P} \subset \mathcal{P} \). Assume that the function \(p \to \mathbb{E}[g(W, p, \xi_0(p))], p \in \mathcal{P} \) is differentiable on \(\mathcal{P} \). Define its gradient

\[
G(p) := \nabla_p \mathbb{E}g(W, p, \xi_0(p)).
\]

(3.13)

In addition, if \(\Sigma \) is unknown, assume that the following bound holds uniformly on \(p_0 \in \mathcal{P} \)

\[
\mathbb{E}[g(W, p, \xi_0(p)) - g(W, p_0, \xi_0(p_0))] = G(p_0)(p - p_0) + o(\|p - p_0\|), \quad \|p - p_0\| \to 0.
\]

(3.14)

3.2 Asymptotic Results

Theorem 1 (Limit Theory for the Support Function Estimator). Suppose Assumptions 1, 2, 3, 4, 5 hold. Let \(p_0(q) = (\Sigma^{-1})^\top q \). Let \(\hat{\sigma}(q, \mathcal{B}) \) be the Support Function Estimator provided in Definition 5 when \(\Sigma \) is known
and Definition 6 when \(\Sigma \) is unknown. Define an influence function

\[
h(W, q) := g(W, p_0(q), \xi_0(p_0(q))) - \mathbb{E}[g(W, p_0(q), \xi_0(p_0(q)))]
\]

when \(\Sigma \) is known and

\[
h(W, q) = g(W, p_0(q), \xi_0(p_0(q))) - \mathbb{E}[g(W, p_0(q), \xi_0(p_0(q)))] - q^\top \Sigma^{-1} (A(W, \eta_0) - \Sigma) \Sigma^{-1} G(p_0(q))
\]

when \(\Sigma \) is unknown. Then, the Support Function Estimator \(\hat{\sigma}(q, B) \) is uniformly asymptotically linear over the unit sphere \(S^{d-1} \)

\[
\sqrt{N}(\hat{\sigma}(q, B) - \sigma_0(q, B)) = \mathbb{G}_N[h(W, q)] + o_P(1).
\]

(3.15)

Moreover, the empirical process \(\mathbb{G}_N[h(W, q)] \) converges to a tight Gaussian process \(\mathbb{G}[h(W, q)] \) in \(\mathbb{L}^\infty(S^{d-1}) \) with the non-degenerate covariance function

\[
\Omega(q_1, q_2) = \mathbb{E}[h(W, q_1) h(W, q_2)] - \mathbb{E}[h(W, q_1)] \mathbb{E}[h(W, q_2)], \quad q_1, q_2 \in S^{d-1}.
\]

Theorem 1 is my first main result. It shows that the Support Function Estimator is asymptotically equivalent to the sample average of the function \(h(W, q) \). Due to uniform near-orthogonality and sample splitting, the first-stage estimation of \(\hat{\xi}(p), p \in \mathcal{P} \) has no effect on the sample average representation of \(\hat{\sigma}(q, B) \) at any point \(q \) on the unit sphere \(S^{d-1} \). By Assumption 4, the class of the moment functions \(\mathcal{F}_\xi = \{g(W, p, \xi(p)), p \in \mathcal{P}\} \) is \(P \)-Donsker. Therefore, the approximation by a tight Gaussian process follows by, e.g., Skorohod-Dudley-Whichura representation (van der Vaart (1998)).

Theorem 1 allows the matrix \(\Sigma \) to be known or unknown. When \(\Sigma \) is known, the influence function \(h(W, q) \) coincides with the centered moment equation (3.8). When \(\Sigma \) is unknown, the influence function \(h(W, q) \) contains an additional component from the estimation \(\Sigma \). According to the Delta method, this component is equal to the derivative of the expected moment function \(G(p) = \mathbb{E}g(W, p_0(q), \xi_0(p_0(q))) \) with respect to \(\Sigma \)

\[
h(W, q) = g(W, p_0(q), \xi_0(p_0(q))) - \mathbb{E}g(W, p_0(q), \xi_0(p_0(q))) - q^\top \Sigma^{-1} (A(W, \eta_0) - \Sigma) \Sigma^{-1} G(p_0(q)).
\]

This result mirrors the sample average representation of the Support Function Estimator in Chandrasekhar et al. (2011).
Definition 7 (Bayesian Bootstrap). Let B represent a number of bootstrap repetitions. For each $b \in \{1, 2, \ldots, B\}$, repeat

1. Draw N i.i.d. exponential random variables $(e_i)_{i=1}^N : e_i \sim \text{Exp}(1)$. Let $\bar{e} = \mathbb{E}_{N} e_i$.

2. When the matrix Σ is known, set $\tilde{\Sigma} = \Sigma$. Otherwise, estimate $\tilde{\Sigma}$ as follows

 \[
 \tilde{\Sigma} = \mathbb{E}_N e_i \bar{e} A(W_i, \hat{\eta}_i).
 \]

3. Estimate $\tilde{\sigma}_b^b(q, B) = \mathbb{E}_N e_i \bar{e} g(W_i, (\tilde{\Sigma}^{-1})^\top q, \tilde{\xi}_i((\tilde{\Sigma}^{-1})^\top q))$.

Bayesian bootstrap algorithm from Definition 7 is a simplification of the Bayesian bootstrap algorithm from Chandrasekhar et al. (2011). Instead of estimating the first-stage parameter in each bootstrap repetition, I estimate the first-stage parameter once on an auxiliary sample.

Theorem 2 (Limit Theory for the Bootstrap Support Function Process). The bootstrap support function process $\tilde{S}_N(q) := \sqrt{N}(\hat{\sigma}(q, B) - \tilde{\sigma}(q, B))$ admits the following approximation conditional on the data $\tilde{S}_N(q) = \mathbb{G}_N[h^0(q)] + o_p(1)$ in $L^\infty(Sd^{-1})$. Moreover, the support function process admits an approximation conditional on the data

\[
\tilde{S}_N(q) = \mathbb{G}[h(q)] + o_p(1) \text{ in } L^\infty(Sd^{-1}),
\]

where $\mathbb{G}[h(q)]$ is a sequence of tight P-Brownian bridges in $L^\infty(Sd^{-1})$ with the same distributions as the processes $\mathbb{G}_N[h(q)]$, and independent of $\mathbb{G}_N[h(q)]$.

Theorem 2 is my second main result. It states that the support function process from Theorem 1 and bootstrap support function process from Theorem 2 converge to the same stochastic process. Therefore, the bootstrap support function process can be used to construct pointwise and uniform critical values for testing hypotheses about $\sigma(q)$. By virtue of Neyman-orthogonality (and near-orthogonality), the estimation error of the nuisance parameter $\hat{\xi}(p)$ does not contribute to the asymptotic variance of the support function. Because first-stage estimation error does not contribute to the asymptotic variance, the first-stage nuisance parameter does not have to be repeated in the bootstrap simulation.

3.3 General Recipe for the Construction of an Orthogonal Moment Condition

In this section, I provide a general recipe to construct a near-orthogonal moment condition for the support function starting from a non-orthogonal moment condition (3.4), extending the previous work of (Hardle and Stoker (1989), Newey (1994), Chernozhukov et al. (2017b), Ichimura and Newey (2017)) from a point-
to a set-identified case. Adding generality helps to understand the derivation. Suppose I am interested in a function $M(p)$ defined by the moment condition

$$M(p) = \mathbb{E} m(W, p, \eta_0),$$

where $\eta_0(X)$ is a functional parameter. To make the moment condition above insensitive to the biased estimation of η_0, I add a bias correction term $\alpha(W, p, \xi(p))$ that enjoys the following two properties. First, the bias correction term has zero mean

$$\mathbb{E}[\alpha(W, p, \xi_0(p))] = 0,$$

so that the new moment condition is still valid. Second, I require that the function

$$g(W, p, \xi(p)) = m(W, p, \eta) + \alpha(W, p, \xi(p))$$

obeys the Neyman-orthogonality condition (Assumption 3).

Lemma 3 derives a general form of a bias correction term for the case $\eta_0(X)$ is defined via the conditional exogeneity restriction (3.17). In our applications, we consider two important cases of this Lemma: a conditional expectation function (Lemma 4) and a conditional quantile function (Lemma 5). Lemma 3 is the extension of Ichimura and Newey (2017)’s result to the set-identified case.

Lemma 3 (Bias Correction Term for a Nuisance Function Determined by a Conditional Exogeneity Restriction). Suppose the true value $\eta_0 = \eta_0(X)$ of a functional nuisance parameter η satisfies the generalized conditional exogeneity restriction

$$\mathbb{E} R[(W, \eta_0(X))|X] = 0,$$

(3.17)

where $R(W, \eta) : \mathbb{W} \times \mathcal{T} \to \mathbb{R}^L$ is a known measurable map that maps a data vector W and a square-integrable vector-function η into a subset of \mathbb{R}^L. Define the bias correction term $\alpha(W, p, \xi(p))$ for the moment $m(W, p, \eta)$ as

$$\alpha(W, p, \xi(p)) := -\gamma(p, X)(X)^{-1}R(W, \eta(X)),$$

(3.18)

where the nuisance parameter $\xi(p) = \xi(p, x)$ is a P-square integrable vector-valued function of x $\xi(p, x) = \xi_0(X)$.

3Lemma 3 was co-developed in the co-authored project "Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models" with Vasilis Syrgkanis, Denis Nekipelov, and Victor Chernozhukov.
\{ \gamma(p,x), I(x), \eta(x) \}. The true value \(\xi_0(p,x) \) of \(\xi(p,x) \) is
\[
\xi_0(p,x) = \{ \eta_0(x), \gamma_0(p,x), I_0(x) \},
\]
where \(\eta_0(x) \) is the original functional parameter defined by (3.17), \(\gamma_0(p,x) = \partial_{\eta_0(x)} \mathbb{E}[m(W,p,\eta_0)|X = x] \), and \(I_0(x) := \partial_{\eta_0} \mathbb{E}[R(W,\eta)|X = x] \) is the Gateaux derivative of the expected generalized residual \(\mathbb{E}[R(W,\eta)|X] \) with respect to \(\eta \) conditionally on \(X \). Furthermore, the function \(g(W,p,\xi(p)) \) in (7.11) has zero Gateaux derivative with respect to \(\xi(p) \) at \(\xi_0(p) \) uniformly on \(\mathcal{P} \)
\[
\partial_{\xi(p)} \mathbb{E}g(W,p,\xi_0(p))|[\xi(p) - \xi_0(p)] = 0 \quad \forall p \in \mathcal{P}.
\]

Lemma 4 is a special case of Lemma 3 when \(R(W,\eta(X)) = U - \eta(X) \). This result is an extension of Newey (1994)’s result to the set-identified case.

Lemma 4 (Bias Correction Term for Conditional Expectation Function). Suppose the true value \(\eta_0(X) \) of a functional parameter \(\eta = \eta(X) \) is the conditional expectation of an observed random variable \(U \) given \(X \)
\[
\eta_0(x) = \mathbb{E}[U|X = x].
\]
Define the bias correction term \(\alpha(W,p,\xi(p)) \) for the moment \(m(W,p,\eta) \)
\[
\alpha(W,p,\xi(p)) := \gamma(p,x)[U - \eta(X)],
\]
where \(\xi(p) = \xi(p,x) \) is a \(P \)-square integrable vector-valued function of \(x \) \(\xi(p,x) = \{ \eta(x), \gamma(p,x) \} \). The true value \(\xi_0(p,x) \) is equal to
\[
\xi_0(p,x) = \{ \eta_0(x), \gamma_0(p,x) \},
\]
where \(\gamma_0(p,x) \) is the expectation function conditional on \(X \) of the moment derivative
\[
\gamma_0(p,x) := \partial_{\eta} \mathbb{E}[m(W,p,\eta_0)|X = x].
\]
Then, the function \(g(W,p,\xi(p)) \) in (3.16) has zero Gateaux derivative with respect to \(\xi(p) \) at \(\xi_0(p) \) for each \(p \in \mathcal{P} \)
\[
\partial_{\xi} \mathbb{E}g(W,p,\xi_0(p))[\xi - \xi_0] = 0 \quad \forall p \in \mathcal{P}.
\]
Lemma 4 is a special case of Lemma 3 when \(R(W, \eta(X)) = 1_{U \leq \eta(X)} - u_0 \). This result is an extension of Ichimura and Newey (2017)'s result (Proposition 7) to the set-identified case.

Lemma 5 (Bias Correction Term for Conditional Quantile Function). Suppose the true value \(\eta_0(X) \) of the functional parameter \(\eta(X) \) is the conditional quantile of an observed random variable \(U \) given \(X \) at a given quantile level \(u_0 \in (0, 1) \)

\[
\eta_0(X) = Q_{U|X=x}(u_0, x).
\]

Define the bias correction term \(\alpha(W, p, \xi(p)) \) for the moment \(m(W, p, \eta) \)

\[
\alpha(W, p, \xi(p)) = -\gamma(p, X) \frac{1_{U \leq \eta(X)} - u_0}{l(X)},
\]

where \(\xi(p, x) \) is a \(P \)-square integrable vector-valued function of \(p \) and \(x \)

\[
\xi(p, x) = \{ \eta(x), \gamma(p, x), l(x) \}.
\]

The true value \(\xi_0(p, x) \) is equal to

\[
\xi_0(p, x) = \{ \eta_0(x), \gamma_0(p, x), f_{U|X}(\eta_0(X)) \},
\]

where \(\gamma_0(p, x) \) is the expectation function conditional on \(X \) of the moment derivative

\[
\gamma_0(p, x) = \partial_{\eta} \mathbb{E}[m(W, p, \eta_0)|X = x]
\]

and \(f_{U|X}(\eta_0(X)) \) is the conditional density of \(U \) given \(X \) evaluated at \(\eta_0(X) \). Then, the function \(g(W, p, \xi(p)) \) in (3.16) has zero Gateaux derivative with respect to \(\xi \) at \(\xi_0 \) for each \(p \in \mathcal{P} \)

\[
\partial_{\xi} \mathbb{E}[g(W, p, \xi_0)|\xi - \xi_0] = 0 \quad \forall p \in \mathcal{P}.
\]

Lemma 6 discusses the empirically relevant case where there are multiple components appearing in an initial moment condition (7.10).

Lemma 6 (Additive Structure of bias correction Term). Suppose \(\eta_0(X) \) is an \(L \)-dimensional vector-function. Suppose each of its \(L \) distinct components \(l \in \{1, 2, \ldots, L\} \) is defined by a separate exclusion restriction:

\[
\mathbb{E}[R_l(W, \eta_l, 0(X))|X] = 0, l \in \{1, 2, \ldots, L\}.
\]

Then, the bias correction term \(\alpha(W, p, \xi(p)) \) is equal to the sum of \(L \) bias correction terms \(\{1, 2, \ldots, L\} \)

\[
\alpha(W, p, \xi(p)) = \sum_{l=1}^{L} \alpha_l(W, p, \xi_l(p)), \quad (3.19)
\]

27
where each term \(\alpha_l(W, p, \xi_l(p)) \) corrects for the estimation of \(\eta_l, l \in \{1, 2, \ldots, L\} \) holding the other components \(\eta_{-l} \) fixed at their true value \(\eta_{-l,0} \). The new nuisance function \(\xi(p) \) is equal to the union \(\cup_{l=1}^L \xi_l(p) \):
\[\xi = \bigcup_{l=1}^L \xi_l(p). \]

Lemma 6 is an extension of Newey (1994)’s result to the set-identified case.

Lemmas 4, 5, and 6 give a general recipe for the construction of the bias correction term \(\alpha(W, p, \xi_l(p)) \) starting from the moment condition (3.4), which is not orthogonal. Let \(\eta \) be an \(L \)-dimensional vector. First, for each \(l \in \{1, 2, \ldots, L\} \) I derive a bias correction term \(\alpha_l(W, p, \xi_l(p)) \) as if the nuisance parameter \(\eta_{-l,0} \) were known. Then, the bias correction term \(\alpha(W, p, \xi_l(p)) \) is the sum of these \(L \) bias correction terms, and the new nuisance parameter \(\xi_l(p) \) is the union \(\bigcup_{l=1}^L \xi_l(p) \) of the nuisance parameters of each of the \(L \) terms.

In several applications, including the support function problem, the nuisance parameter \(\eta \) appears inside the weighting variable \(V \) defined in (2.2). As a result, the moment equation (3.4) depends on \(\eta \) in a non-smooth way. In particular, \(V = V_\eta \) appears inside a function \(x \to x 1_{x > 0} \) whose first derivative \(1_{x > 0} \) is not a differentiable function of \(x \) at \(x = 0 \).

I resolve this problem in two steps. First, I show that the difference between the expectations of the target function
\[m(W, p, \eta) = p^\top V_\eta(Y_L + (Y_U - Y_L) 1_{\{p^\top V_\eta > 0\}}) \]
and its smooth analog
\[m_0(W, p, \eta) = p^\top V_\eta(Y_L + (Y_U - Y_L) 1_{\{p^\top V_\eta_0 > 0\}}) \]
is negligible under regularity conditions. Second, I derive the bias correction term for the smooth moment function \(m_0(W, p, \eta) \). Lemma 7 provides the sufficient conditions for the first step. Lemmas 4, 5, and 6 give an orthogonalization recipe for the second step.

Lemma 7 (Indicator Function). Suppose the following statements hold.

1. There exists a bound \(B_{UL} < \infty \) such that the interval width is absolutely surely bounded for all nuisance parameter values \(\eta \in \mathcal{T}_N \), \(\sup_{\eta \in \mathcal{T}_N} Y_{U, \eta} - Y_{L, \eta} \leq B_{UL} < \infty \).

2. A collection of distributions of \(\{p^\top V_\eta, p \in \mathcal{P}\} \) is uniformly continuous on \(\mathcal{P} \)
\[\sup_{p \in \mathcal{P}} \sup_{\eta \in \mathcal{T}_N} \mathbb{E}\left| p^\top V_\eta - p^\top V_{\eta_0} 1_{\{0 < |p^\top V_{\eta_0}| \leq |p^\top V_\eta - p^\top V_{\eta_0}|\}} \right| \leq \mathbb{E}\|V_\eta - V_{\eta_0}\|^2. \]
3. The following convergence bound applies

\[
\sup_{\eta \in \mathcal{T}_N} (\mathbb{E} \| V_{\eta} - V_{\eta_0} \|^2)^{1/2} \lesssim \sup_{\eta \in \mathcal{T}_N} (\mathbb{E} \| \eta - \eta_0 \|^2)^{1/2}.
\]

4. The nuisance parameter \(\eta \) is estimated at least at \(o(N^{-1/4}) \) rate

\[
\sup_{\eta \in \mathcal{T}_N} (\mathbb{E} \| \eta - \eta_0 \|^2)^{1/2} = o(N^{-1/4}).
\]

Then replacing (3.6) by its smooth analog produces a bias of order \(o(N^{-1/2}) \)

\[
\sup_{p \in \mathcal{P}} \sup_{\eta \in \mathcal{T}_N} |\mathbb{E}[m(W, p, \eta) - m_0(W, p, \eta)]| = o(N^{-1/2}).
\]

An argument similar to Lemma 7 was used to establish the consistency and asymptotic normality of Censored Least Absolute Deviation in Powell (1984).

4 Applications

In this section, I apply the asymptotic theory of Section 3 to three empirically relevant settings: Endogenous Sample Selection of Lee (2008), Average Partial Derivative of Kaido (2017), and Partially Linear Predictor. For each setting, I derive an orthogonal (or uniformly near-orthogonal) moment equation for the support function and provide primitive sufficient conditions for the theoretic results of Section 3 to hold.

4.1 Endogenous Sample Selection

I start this section with the original assumptions of Lee (2008), under which the bounds in (2.7) and (2.8) are derived.

ASSUMPTION 6 (Identification in Endogenous Sample Selection). The following assumptions hold.

1. The program admission \(D \) is independent of the potential employment and wage outcomes, as well as the subject covariates: \((S_1, S_0, Y_1, Y_0, X)\)

\[
D \perp (S_1, S_0, Y_1, Y_0).
\]

2. The program admission \(D \) cannot hurt selection \(S_1 \geq S_0 \) a.s.
I follow the recipe of Section 3.3 to construct the Neyman-orthogonal moment equation. The non-orthogonal moment equation for the upper bound β_U is

$$\mathbb{E}[\beta_U - m_U(W, \eta_0)] = 0,$$

where the function $m_U(W, \eta)$ is equal to

$$m_U(W, \eta) = \frac{D \cdot S \cdot Y_1 \{Y \geq \eta_3(\eta_1(x)/\eta_2(x), x)\} \Pr(D = 0|X)}{\Pr(D = 0, S = 1) \Pr(D = 1|X)},$$

and $\eta(x) = \{\eta_1(x), \eta_2(x), \eta_3(u, x)\}$ is a P-square integrable vector-valued function whose true value $\eta_0(x) = \{s(0, x), s(1, x), Q_{Y|D=1, S=1, X=x}(u, x)\}$.

The functions $s(1, x)$ and $s(0, x)$ are the conditional employment probabilities in case of admission and non-admission, respectively. For a given quantile $u \in [0, 1]$ the function $Q_{Y|D=1, S=1, X=x}(u, x)$ is the quantile function of the Y conditional on X in the employed and admitted group $D = 1, S = 1$.

The nuisance parameter $\eta(x)$ is a vector-valued functional parameter. According to Lemma 6, the bias correction term

$$\alpha_U(W, \eta) = \sum_{i=1}^{3} \alpha_i(W, \xi_i)$$

is the sum of three bias correction terms, correcting for the functions $s(0, x)$, $s(1, x)$, and

$$Q_{Y|D=1, S=1, X=x}(y_{1-p_0(x)}, x),$$

respectively, and ξ_i is the new nuisance parameter of the respective term $i, i \in \{1, 2, 3\}$.

The individual bias correction terms for each component in $\eta_0(x)$ are below. The true value $s(0, x)$ and $s(1, x)$ of the functional parameters $\eta_1(x)$ and $\eta_2(x)$ are the conditional expectation functions:

$$s(0, x) := \mathbb{E}[\frac{(1-D)S}{\Pr(D = 0|X)}|X = x], \quad s(1, x) := \mathbb{E}[\frac{DS}{\Pr(D = 1|X)}|X = x]$$

Applying Lemma 4 gives the bias correction term

$$\alpha_i(W, \eta) = \gamma_i(X) \left(\frac{(1-D)S}{\Pr(D = 0|X)} - \eta_1(X) \right).$$

\footnote{For simplicity I treat $\Pr(D = 1|X)$ as a known functional parameter. In case $\Pr(D = 1|X)$ is unknown, the bias correction term for $\Pr(D = 1|X)$ can be derived similarly to the bias correction terms of other nuisance parameters.}
where the true value of $\gamma_{1,0}(X)$ is

$$
\gamma_{1,0}(X) = y_{\{1-p_0(X),X\}} \frac{\Pr(D = 0|X)}{\Pr(D = 0, S = 1)}
$$

and $p_0(X) = s(0,X)/s(1,X)$. Applying Lemma 4 gives the bias correction term

$$
\alpha_2(W, \eta) = \gamma_2(X) \left(\frac{DS}{\Pr(D = 1|X)} - \eta_2(X) \right),
$$

where the true value of $\gamma_{2,0}(X)$ is

$$
\gamma_{2,0}(X) = y_{\{1-p_0(X),X\}} \frac{\Pr(D = 0|X)s(0,X)}{\Pr(D = 0, S = 1)s(1,X)}.
$$

The true value of $\eta_3(u,x)$ is the conditional quantile function. Applying Lemma 5 gives the bias correction term

$$
\alpha_3(W, \eta) = -\gamma_3(X) \left(1_{\{Y \leq u_{\{1-p_0(X),X\}}\}} - 1 + p_0(X) \right),
$$

where the true value of $\gamma_{3,0}(X)$ is

$$
\gamma_{3,0}(X) = -y_{\{1-p_0(X),X\}} \frac{\Pr(D = 0|X)s(1,X)}{\Pr(D = 0, S = 1)}.
$$

The bias correction term for the lower bound β_L is derived in the Appendix.

ASSUMPTION 7 (Regularity Conditions for Endogenous Sample Selection). The following assumptions hold.

1. There exist both a lower bound $\underline{s} > 0$ and an upper bound $\bar{s} < \infty$ such that the conditional employment probability $s(d,x)$ is bounded from above and below:

 $$
 0 < \underline{s} \leq s(D,X) \leq \bar{s} < \infty \text{ a.s.}
 $$

2. Let $\mathcal{U} \subset \mathcal{R}$ be an open set that contains the support of $s(0,X)/s(1,X)$ and $1 - s(0,X)/s(1,X)$. Assume that the conditional quantile function $u \rightarrow Q_{Y|D=1,S=1,X=x}(u,x)$ is differentiable on \mathcal{U} absolutely surely
in X, and its derivative is bounded by some $K_Q < \infty$

$$\Pr(\sup_{u \in \text{cl}(U)} |\partial_u Q_{Y|D=1,S=1,X=x}(u,X)| \leq K_Q) = 1.$$

3. There exist sequences of numbers $\phi_N = o(1)$, $g_N = o(N^{-1/4})$ and realization sets $\Xi_N \subset \Xi$ such that the following statements hold. The estimators $\hat{\xi}_U$ of ξ_U and $\hat{\xi}_L$ of ξ_L belong to $\Xi_N^U(\Xi_N^L)$ with probability approaching one, respectively. The true values $\xi_{U,0}$ and $\xi_{L,0}$ belong to Ξ_N^U and Ξ_N^L for all $N \geq 1$. The realization sets shrink at the following speed

$$\sup\limits_{\xi_U \in \Xi_N^U} \|\xi_U - \xi_{U,0}\|_{P,2} \leq g_N, \sup\limits_{\xi_L \in \Xi_N^L} \|\xi_L - \xi_{L,0}\|_{P,2} \leq g_N.$$

4. Assume that the functional parameter $u \rightarrow \eta_3(u,X)$ is differentiable on U, and its derivative is bounded by some $K_Q < \infty$ absolutely surely in X

$$\Pr(\sup\limits_{\eta_3 \in \Xi_N^U} \sup_{u \in \text{cl}(U)} |\partial_u \eta_3(u,X)| \leq K_Q) = 1.$$

5. There exists a conditional density $y \rightarrow \rho_{Y|D=1,S=1,X=x}(y,x)$ whose zero $\rho_{Y|D=1,S=1,X=x}^0$ and first $\rho_{Y|D=1,S=1,X=x}^1$ derivatives are bounded from above and below by some $\bar{f} < \infty$

$$\Pr(0 < \bar{f} \leq \rho_{Y|D=1,S=1,X=x}^j(Y,X) \leq \tilde{f} < \infty) = 1, j \in \{0,1\}.$$

Theorem 8 (Asymptotic Theory for Endogenous Sample Selection). Suppose Assumption 7 holds. Then, the estimator $(\hat{\beta}_L, \hat{\beta}_U)$ of Definition 6 obeys:

$$\sqrt{N} \left(\begin{array}{c} \hat{\beta}_L - \beta_L \\ \hat{\beta}_U - \beta_U \end{array} \right) \Rightarrow N(0, \Omega),$$

where Ω is a positive-definite covariance matrix.

Theorem 8 is my third main result. It establishes that the bounds defined by (4.1) are consistent and asymptotically normal. It extends the bounds estimator from Lee (2008), defined for a small number of discrete covariates, to the case of high-dimensional covariates that can be either discrete and continuous. Because the bounds (2.7) and (2.8) condition a larger number of covariates, the identified set (2.6) is necessarily weakly tighter than the identified set from Lee (2008), where only small number of covariates is
permitted.

4.2 Average Partial Derivative

Consider the setup of Example 2. The constructed random variable V is equal to the derivative of the log conditional density

$$V = -\partial_D \log f(D|X) = \eta_0(D,X),$$

the orthonormalized projection $z_q(\eta)$ is

$$z_q(\eta) := q^\top \eta(D,X)$$

and the q-generator $Y_q = \Gamma(Y_L,Y_U - Y_L,q^\top \eta(D,X))$. Equation (3.6) does not satisfy Assumption 3(1). The uniform near-orthogonal moment equation (3.10) takes the form

$$g(W,q,\xi(q)) = z_q(\eta)Y_q(\eta) - q^\top \eta(D,X)\gamma_q(D,X) + q^\top \partial_D \gamma_q(D,X),$$

where $z_q(\eta) = q^\top \eta(D,X)$, $Y_q(\eta) = \Gamma(Y_L,Y_U - Y_L,q^\top \eta(D,X))$, and

$$\gamma_q(D,X) = \gamma_L(D,X) + \gamma_{U-L}(D,X)1\{q^\top \partial_D \log f(D|X) > 0\}.$$

The nuisance parameter of this problem is

$$\xi(q,X) = \xi(D,X) = \{\eta(D,X), \gamma_L(D,X), \gamma_{U-L}(D,X)\},$$

and its true value $\xi_0(D,X)$ is $\xi_0(D,X) = \{\partial_D \log f(D|X), \mathbb{E}[Y_L|D,X], \mathbb{E}[Y_{U-L}|D,X]\}$.

ASSUMPTION 8 (Regularity Conditions for Average Partial Derivative). The following conditions hold.

1. There exists a bound $B_{UL} < \infty$ such that the interval width $Y_U - Y_L \leq B_{UL}$ is bounded a.s.

2. The distribution of the gradient of the log-density $\eta_0(D,X) = \partial_D \log f(D|X)$ is sufficiently continuous. Define the event E_q as follows: $E_q := \{0 < |q^\top \partial_D \eta(D,X)| < |q^\top \partial_D (\eta(D,X) - \eta_0(D,X))|\}$. The following bound holds

$$\sup_{q \in S^{d-1}} \mathbb{E}[q^\top \partial_D (\eta(D,X) - \eta_0(D,X))1(E_q)] \leq \|\eta(D,X) - \eta_0(D,X)\|_{L_{P2}}.$$
3. There exist sequences $\phi_N = o(1), g_N = o(N^{-1/4})$ of numbers $Z_N \subset \mathcal{T}$ of nuisance realization sets such that the following statements hold. The vector-valued parameter $\xi_0(D, X)$ belongs to Z_N for all $N \geq 1$. With probability at least $1 - \phi_N$, the estimator $\hat{\xi}(D, X)$ of $\xi_0(D, X)$ belongs to Z_N. The set Z_N shrinks at the following rate

$$\sup_{\xi \in Z_N} \|\xi(D, X) - \xi_0(D, X)\|_{L^2} \leq g_N.$$

4.3 Simple sufficient conditions for Average Partial Derivative

Suppose the endogenous covariate vector D obeys the following decomposition

$$D = m_0(X) + V, \quad V \sim N(0, \Lambda), \quad (4.4)$$

where $m_0(X) = E[D|X]$ is the conditional expectation function and V is the first-stage residual that is independent of X and distributed as $N(0, \Lambda)$. Then, the true value of the logarithm of the conditional density is

$$\partial_D \log f(D|X) = \Lambda^{-1}(D - m_0(X)).$$

I describe the computation steps of the Support Function Estimator $\hat{\sigma}(q, \mathcal{B})$ for Average Partial Derivative in the following algorithm.

Algorithm 3 Support Function Estimator for Average Partial Derivative

Input: a direction q on a unit sphere S^{d-1}, an i.i.d sample $(W_i)_{i=1}^N = (D_i, X_i, Y_{L,i}, Y_{U,i})_{i=1}^N$, estimated values $(\hat{m}(X_i), \hat{\gamma}_L(D_i, X_i), \hat{\gamma}_{U-L}(D_i, X_i))_{i=1}^N$.

1. Estimate the first-stage residual for every $i \in \{1, 2, \ldots, N\}$: $\hat{V}_i := D_i - \hat{m}(X_i)$.
2. Compute the sample covariance matrix of the first-stage residuals: $\hat{\Lambda} := \frac{1}{N} \sum_{i=1}^N \hat{V}_i \hat{V}_i^\top$.
3. Estimate the q-generator for every $i \in \{1, 2, \ldots, N\}$

$$\hat{V}_{q,i} := Y_{L,i} + (Y_{U,i} - Y_{L,i})1_{\{q^\top \hat{\Lambda}^{-1} \hat{V}_i > 0\}}.$$

4. Compute the second-stage reduced form $\hat{\gamma}_q(D_i, X_i) := \hat{\gamma}_L(D_i, X_i) + \hat{\gamma}_{U-L}(D_i, X_i)1_{\{q^\top \hat{\Lambda}^{-1} \hat{V}_i > 0\}}$

5. Estimate $\hat{\beta}_q$ by Ordinary Least Squares with the second-stage residual of the q-generator as the dependent variable and the first-stage residual V as the regressor

$$\hat{\beta}_q = \hat{\Lambda}^{-1} \frac{1}{N} \sum_{i=1}^N \hat{V}_i[\hat{\gamma}_{q,i} - \hat{\gamma}(D_i, X_i)].$$

Return: the projection of $\hat{\beta}_q$ on the direction q: $\hat{\sigma}(q, \mathcal{B}) = q^\top \hat{\beta}_q$.

ASSUMPTION 9 (Simple Sufficient Conditions for Average Partial Derivative). *There exist a sequence*
of realization sets \(\{Z_{L,N}, N \geq 1\} \) and \(\{Z_{U-L,N}, N \geq 1\} \) that are shrinking neighborhoods of \(\gamma_{L,0}(D, X) := \mathbb{E}[Y_L|D, X] \) and \(\gamma_{U-L,0}(D, X) := \mathbb{E}[Y_U - Y_L|D, X] \) obeying the following conditions. For some sequence \(\phi_N = o(1) \) the estimate \(\tilde{\gamma}_L \) of \(\gamma_{L,0} \) and \(\tilde{\gamma}_{U-L} \) of \(\gamma_{U-L,0} \) belong to respective sets with probability at least \(1 - \phi_N \). There exists rates \(\xi_{L,N} = o(N^{-1/4}) \) and \(\xi_{U-L,N} = o(N^{-1/4}) \) such that the following bounds hold

\[
\sup_{\tilde{\gamma}_L \in Z_{L,N}} (\mathbb{E}(\tilde{\gamma}_L(D, X) - \gamma_{L,0}(D, X))^2)^{1/2} \leq \xi_{L,N}, \quad \sup_{\tilde{\gamma}_{U-L} \in Z_{U-L,N}} (\mathbb{E}(\tilde{\gamma}_{U-L}(D, X) - \gamma_{U-L,0}(D, X))^2)^{1/2} \leq \xi_{U-L,N}.
\]

Assumption 9(3) requires the functions \(\gamma_{L,0}(D, X) \) and \(\gamma_{U-L,0}(D, X) \) to be estimated at the \(o(N^{-1/4}) \) rate. A variety of classic econometric and modern machine learning methods achieve this requirement.

Theorem 9 (Asymptotic Theory for Average Partial Derivative with an Interval-Valued Outcome). Suppose Assumption 8 holds. Then, Theorems 1 and 2 hold for the Support Function Estimator of Definition 5 with the influence function equal to

\[
h(W, q) = g(W, q, \tilde{\xi}(q)) - \mathbb{E}[g(W, q, \tilde{\xi}(q))].
\]

In particular, if Equation (4.4) and Assumption 9 hold, then Assumption 8 holds.

Theorem 9 is my fourth main result. It establishes that the Support Function Estimator given in (5) is uniformly consistent and asymptotically normal. It extends the support function estimator of Kaido (2017), defined for a small number of covariates, to the case of high-dimensional covariates.

4.4 Partially Linear Predictor

Consider the setup in Example 3. The constructed variable \(V_\eta = D - \eta(X) \) is equal to the first-stage residual, the orthonormalized projection \(z_q(\eta) \) is equal to the inner product of this residual and the projection \(p(q) = (\Sigma^{-1})^\top q \)

\[
z_q(\eta) = q^\top \Sigma^{-1} (D - \eta(X)),
\]

and the \(q \)-generator \(Y_q \) is equal to \(Y_q(\eta) = Y_L + (Y_U - Y_L)1_{\{q^\top \Sigma^{-1} (D - \eta(X)) > 0\}} \). Equation (3.6) does not satisfy Assumption 3(1). The Neyman near-orthogonal moment equation (3.10) is

\[
\psi(W, \theta(q), \tilde{\xi}(p(q))) = \begin{bmatrix}
\sigma(q, B) - p(q)^\top (D - \eta(X))(Y_q(\eta) - \mathbb{E}[Y_q(\eta)|X]) \\
(D - \eta(X))(D - \eta(X))^\top p(q) - q
\end{bmatrix}, \tag{4.5}
\]
where the true value of $\theta(q)$ is $\theta_0(q) = [\sigma(q, \mathcal{B}), p(q)]$ and the true value of the nuisance parameter $\xi(p) = \{\eta(X), \gamma(p,X)\}$ is

$$
\xi_0(p(q)) = \{\eta_0(X), \mathbb{E}[\gamma_0(\eta_0)|X]\}.
$$

I describe the computation steps of the Support Function Estimator $\hat{\sigma}(q, \mathcal{B})$ in the following algorithm.

Algorithm 4 Support Function Estimator for Partially Linear Predictor

Input: a direction q on a unit sphere S^{d-1}, an i.i.d sample $(W_i)_{i=1}^N = (D_i, X_i, Y_{L,i}, Y_{U,i})_{i=1}^N$, estimated values $(\hat{\eta}(X_i), \hat{\gamma}(p,X_i))_{i=1}^N, p \in \mathcal{P}$.

1. Estimate the first-stage residual for every $i \in \{1,2,\ldots,N\}$: $\hat{V}_i := D_i - \hat{\eta}(X_i)$.
2. Compute the sample covariance matrix of the first-stage residuals: $\hat{\Sigma} := \frac{1}{N} \sum_{i=1}^N \hat{V}_i \hat{V}_i^\top$.
3. Estimate the q-generator for every $i \in \{1,2,\ldots,N\}$

$$
\hat{Y}_{i,q} := Y_{L,i} + (Y_{U,i} - Y_{L,i}) 1_{\{q^\top \hat{\Sigma}^{-1} \hat{V}_i > 0\}}.
$$

4. Estimate $\hat{\beta}_q$ by Ordinary Least Squares with the second-stage residual of the q-generator as the dependent variable and the first-stage residual V as the regressor

$$
\hat{\beta}_q = \hat{\Sigma}^{-1} \frac{1}{N} \sum_{i=1}^N \hat{V}_i [\hat{Y}_{i,q} - \hat{\gamma}(\hat{\Sigma}^{-1} q^\top, X_i)].
$$

Return: the projection of $\hat{\beta}_q$ on the direction q: $\hat{\sigma}(q, \mathcal{B}) = q^\top \hat{\beta}_q$.

Assumption 10 gives the regularity conditions for the Support Function Estimator.

ASSUMPTION 10 (Regularity Conditions for Partially Linear Predictor). The following regularity condition holds for the universal constants $\lambda_{\min}, \lambda_{\max}, B_{UL}, K_h$. Let the projection set \mathcal{P} be as in (3.7).

1. The data vector $W = (D, X, Y_L, Y_U)$ is square integrable.

2. There exist constants $\lambda_{\min} > 0$ and $\lambda_{\max} < \infty$ such that all of the eigenvalues of the covariance matrix $\Sigma = \mathbb{E}(D - \eta_0(X))(D - \eta_0(X))'$ are bounded from above and below

$$
0 < \lambda_{\min} \leq \min \text{eig}(\Sigma) \leq \max \text{eig}(\Sigma) \leq \lambda_{\max} < \infty.
$$

3. There exists $D < \infty$ such that $\max(\|D\|, |Y_L|, |Y_U|) \leq D$ holds absolutely surely.

4. For all vectors $p \in \mathcal{P}$ there exists a conditional density $\rho_{\{p^\top V | X=x\}}(\cdot | x)$ absolutely surely in X.

5. A bound $K_h < \infty$ exists such that the collection of the densities in (4) $\{\rho_{\{p^\top V | X=x\}}(\cdot | x), p \in \mathcal{P}\}$ is
uniformly bounded over \(p \in \mathcal{P} \) a.s. in \(X \)

\[
\Pr(\sup_{p \in \mathcal{P}} \sup_{t \in \mathbb{R}} \rho_{\{p^\top V|X=x\}}(t,x) < K_h) = 1.
\]

6. There exist sequences \(\phi_N = o(1) \) and \(g_N = o(N^{-1/4}) \) such that, with probability at least \(1 - \phi_N \), the estimates \(\|\hat{\eta}(X) - \eta_0(X)\|_{\mathcal{P}^2} \leq g_N = o(N^{-1/4}) \).

7. Let \(\mathcal{F}_\gamma = \{ \gamma(p,x) : \mathcal{P} \times \mathcal{X} \to \mathbb{R} \} \) be a class of functions in \(p, x \) that satisfy Conditions 4(1,2). Moreover, there exists a sequence of realization sets \(\mathcal{G}_N \) that are subsets of \(\mathcal{F}_\gamma \)

\[
\mathcal{G}_N \subseteq \mathcal{F}_\gamma
\]

such that the estimator \(\hat{\gamma}(\cdot,\cdot) \) belongs to \(\mathcal{G}_N \) with probability at least \(1 - \phi_N \). Moreover, the nuisance realization set shrinks at a statistical rate uniformly in \(p \in \mathcal{P} \)

\[
\sup_{p \in \mathcal{P}} \sup_{\gamma(\cdot,\cdot) \in \mathcal{G}_N} \|\gamma(p,X) - \gamma_0(p,X)\|_{L^2_{\mathcal{P}}} \leq g_N = o(N^{-1/4}).
\]

8. Let \(\gamma_0(p,x) \) be the conditional expectation on \(X \) of the \(q \)-generator \(\gamma_0(p,x) = \mathbb{E}[Y_q|X] = \mathbb{E}[\Gamma(Y_L,Y_U - Y_L,p^\top V\eta_0)|X] \). Assume that there exists a sequence \(g'_N \) such that \(\gamma_0(p,x) \) is continuous uniformly on \(\mathcal{P} \), on average in \(X \)

\[
\sup_{q \in \mathcal{S}^{d-1}} \sup_{p \in \mathcal{P} : \|p - p_0(q)\| \leq RN^{-1/2}} \|\gamma_0(p,X) - \gamma_0(p_0(q),X)\|_{L^2_{\mathcal{P}}} \leq g'_N : g'_N \log(1/g'_N) = o(1).
\]

9. The first-stage residual \(D - \eta_0(X) \) has a uniformly sufficiently smooth distribution on \(\mathcal{P} \). Namely, for some \(m \) such that \(0 < m \leq 1 \), the following bound holds:

\[
\sup_{p \in \mathcal{P}} \Pr(0 < \frac{p^\top (D - \eta_0(X))}{\|D - \eta_0(X)\|} < \delta) = O(\delta^m), \delta \to 0.
\]

ASSUMPTION 11 (Simple Sufficient Conditions for Partially Linear Predictor). The following conditions hold.

1. The first-stage residual is independent from the covariates \(X \) and has a symmetric continuous distribution around zero (i.e., \(\Pr(p^\top V > 0) = \frac{1}{2} \) \(\forall p \in \mathcal{R}^d \)).
2. Conditional on X, the interval width $Y_U - Y_L$ and the covariate D are mean independent

$$
E[(Y_U - Y_L)I_{\{\rho'V > 0\}}|X] = E[Y_U - Y_L|X] Pr(\rho'V > 0|X) = \frac{1}{2} E[Y_U - Y_L|X].
$$

3. There exists a sequence of realization sets $\{Z_{L,N}, N \geq 1\}$ and $\{Z_{U-L,N}, N \geq 1\}$ that are shrinking neighborhoods of $\gamma_{L,0}(X) := E[Y_L|X]$ and $\gamma_{U-L,0}(X) := E[Y_U - Y_L|X]$ obeying the following conditions. For some sequence $\phi_N = o(1)$ the estimate $\hat{\gamma}_L$ of $\gamma_{L,0}$ and $\hat{\gamma}_{U-L}$ of $\gamma_{U-L,0}$ belong to respective sets $Z_{L,N}$ and $Z_{U-L,N}$ with probability at least $1 - \phi_N$. There exist rates $\zeta_{L,N} = o(N^{-1/4})$ and $\zeta_{U-L,N} = o(N^{-1/4})$ such that the following bounds hold

$$
\sup_{\gamma \in Z_{L,N}} (E(\gamma(X) - \gamma_{L,0}(X))^2)^{1/2} \lesssim \zeta_{L,N}, \quad \sup_{\gamma \in Z_{U-L,N}} (E(\gamma(X) - \gamma_{U-L,0}(X))^2)^{1/2} \lesssim \zeta_{U-L,N}.
$$

When Assumptions 11(1) and (2) hold, the conditional expectation function $\gamma_0(q, X)$ takes the following simple form:

$$
\gamma_0(p, X) := \gamma_0(X) = E[Y_L|X] + \frac{1}{2} E[Y_U - Y_L|X] = \gamma_{L,0}(X) + \frac{1}{2} \gamma_{U-L,0}(X).
$$

Assumption 11(3) requires that the functions $\gamma_{L,0}(X)$ and $\gamma_{U-L,0}(X)$ are estimated at the $o(N^{-1/4})$ rate.

Theorem 10 (Asymptotic Theory for Partially Linear Predictor with an Interval-Valued Outcome). Suppose Assumption 10 holds. Then, Theorem 1 and 2 hold for the Support Function Estimator with the influence function $h(W, q)$ equal to

$$
h(W, q) = g(W, p_0(q), \xi_0(p_0(q), X)) - E[g(W, p_0(q), \xi_0(p_0(q), X))] - q^\top \Sigma^{-1} \left((D - \eta_0(X))(D - \eta_0(X))' - \Sigma \right) \Sigma^{-1} E(D - \eta_0(X)) Y_q,
$$

where $p_0(q) = (\Sigma^{-1})^\top q$ and $Y_q = Y_L + (Y_U - Y_L)I_{q^\top \Sigma^{-1}(D - \eta_0(X)) > 0}$. If Assumption 11 holds, then Assumption 10 holds with the estimator $\hat{\gamma}(p, X)$ of $\gamma_0(p, X)$ equal to $\hat{\gamma}(p, X) = \hat{\gamma}_L(X) + \frac{1}{2} \hat{\gamma}_{U-L}(X)$

Theorem 10 is my fifth main result. It establishes that the Support Function Estimator given in (5) is uniformly consistent and uniformly asymptotically Gaussian.
5 Empirical Application

In this section, I re-examine the effectiveness of Colombia PACES program, a voucher initiative established in 1991 to subsidize private school education in low-income population, studied in Angrist et al. (2002) and in Angrist et al. (2006). After being admitted to a private school, a student participates in a lottery to win a voucher that partially covers his tuition fee. Each year, a student can renew an existing voucher if he passes to the next grade. After high school graduation, some students take a centralized test to enter a college. Following Angrist et al. (2006), I am interested in the average effect of winning the private school voucher today on the college admission test scores several years later.

I use the notation of Example 1 to define the voucher’s effect. The variable $D = 1$ is a dummy for whether a student has won a voucher, $S_0 = 1$ is a dummy for whether a student would have participated in a test after losing the voucher, $S_1 = 1$ is a dummy for whether a student would have participated in a test after winning the voucher. Similarly, the potential test scores Y_0 and Y_1 are the scores a student would have had after losing and winning the lottery, respectively. I am interested in the average voucher’s effect on the group of students who would have taken the test regardless of receiving the voucher

$$\mathbb{E}[Y_1 - Y_0 | S_1 = 1, S_0 = 1],$$

of, briefly, the always-takers. The data contain the voucher status D, observed test participation\(^5\) S (2.4), test score $S \cdot Y$ observed only if a student takes a test (2.5), and the covariates. The covariates X include age, phone access, gender, and four indicators of having an invalid or inaccurately recorded ID constructed by Angrist et al. (2006) by matching PACES records to administrative data.

Because test participation may be endogenous, the average voucher effect is not point-identified. To bound the effect, Angrist et al. (2006) make two assumptions: receiving a voucher can neither deter the test participation $S_1 \geq S_0$ for everyone, \(^{(5.1)}\)

\(^5\)The test participation S is not explicitly recorded in the data. I conclude that a student comes to a test if and only if his test score is positive $S = 1_{\{Y > 0\}}$. My conclusion is based on two facts. For a given subject, Angrist et al. (2006) interprets the subset of voucher losers with positive test scores as the always-takers (page 14). To arrive at this interpretation, one needs to assume that $S = 1_{\{Y > 0\}}$ and that (2.4) holds. Second, the test scores have a 66% point mass at zero value for both subjects.
nor hurt the test scores

\[Y_1 \geq Y_0 \text{ for everyone.} \]

(5.2)

Angrist et al. (2006) state that the assumption (5.2) may not hold if private school applicants anticipated educational gains that did not materialize. To relax this assumption, I use Lee (2008)’s bounds that are based only on the first assumption (5.1). I describe the construction of Lee (2008)’ bounds in Example 1.

I estimate Lee (2008)’s bounds with all covariates in two stages. In the first stage, I estimate the probability of receiving the voucher given covariates \(X \) (i.e, \(\Pr(D = 1|X) \)), the probability of test participation given the voucher status \(D \) and covariates \(X \) (i.e, \(s(D, X) = \mathbb{E}[S = 1|D, X] \)), and the quantile function of the winners’ test scores given the covariates. I estimate the first two functions using logistic lasso algorithm of Belloni et al. (2016) with the penalty choice described in Chernozhukov et al. (2018) package. Assuming that winners’ test scores are determined by age and gender only, I estimate the quantile function by taking an empirical quantile\(^6\) in the relevant group. In the second stage, I plug the estimates into Neyman-orthogonal moment equations for the bounds given in (7.13). Because logistic lasso is not prone to overfitting under reasonable sparsity assumptions (see, e.g. Chernozhukov et al. (2017a)), I use the whole sample in the first and the second stage.

Table 2: Bounds on Voucher Effect on Test Scores in Angrist et al. (2006)

<table>
<thead>
<tr>
<th>Method Covariates</th>
<th>Angrist et al. (2006) { Age, gender } (1)</th>
<th>Lee (2008) { Age, gender } (2)</th>
<th>My method All 7 covs (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Mathematics</td>
<td>Estimate [0.401, 2.410]</td>
<td>[-1.100, 1.827]</td>
<td>[0.160, 0.904]</td>
</tr>
<tr>
<td></td>
<td>95% CR (0.163,2.869)</td>
<td>(-1.868, 2.592)</td>
<td>(-0.168, 1.570)</td>
</tr>
<tr>
<td>B. Language</td>
<td>Estimate [0.697, 2.798]</td>
<td>[-0.946, 2.341]</td>
<td>[0.473, 1.112]</td>
</tr>
<tr>
<td></td>
<td>95% CR (0.440, 3.198)</td>
<td>(-1.800, 3.211)</td>
<td>(0.144, 1.847)</td>
</tr>
</tbody>
</table>

Table 2 reports estimated bounds for the voucher effect (Estimates) and a 95% confidence region (95% CR) for the identified set for the voucher effect for test scores in Mathematics (Panel A) and Language (Panel B). Original bounds from Angrist et al. (2006) are based on age and gender covariates (Column 1). These bounds are valid assuming (5.1) and (5.2) hold. Lee (2008)’s bounds, based on the assumption (5.1) only, are reported in Column 2 with age and gender covariates. My estimate of Lee (2008)’s bounds, based on a full set of covariates, are reported in Column 3.

\[^6\]Because the test scores’ distribution had multiple point masses, I added a small amount of \(N(0,0.01) \) distributed noise in order to compute the exact quantiles.
Table 2 shows the bounds on the voucher effect constructed by Angrist et al. (2006) (Column 1), Lee (2008) (Column 2), and my method (Column 3). Original Angrist et al. (2006)’s bounds, based on age and gender covariates, are positive by construction. Lee (2008)’s bounds with the same set of covariates have opposite signs and cannot determine the direction of the effect. Including all covariates into Lee (2008)’s method is challenging because some within certain groups determined by covariates’ values there is no variation in voucher status, resulting in identification problem. Finally, my method, based Lee (2008)’s bounds with a full set of covariates, gives both substantially tighter and positive bounds. I find the voucher effect on the test score in Language to be both positive and significant.

My bounds are tighter because the covariates, selected by the logistic lasso algorithm, predict test participation substantially better than age and gender. For each subject, having a valid ID explains 96% of the total variance in test participation, while age and gender explain only 35%. Once ID validity is taken into account, voucher has little effect on the test-taking decision. Mechanically, the probability of taking the test after losing the lottery, \(s(0, X) \), is close to the respective probability after winning the lottery given \(X \), \(s(1, X) \), i.e.

\[
p_0(X) = \frac{s(0, X)}{s(1, X)} \approx 1.
\]

As a result, the distributions of the always-takers’ test scores in the worst (2.7) and the best (2.8) cases are close to each other, resulting in tighter bounds. Intuitively, because voucher has little effect on the test-taking decision, test participation is close to being exogenous given the covariates, thereby leading to tighter bounds (Remark 2 from Lee (2008)).

6 Conclusion

In this paper, I incorporate machine learning tools into set-identification and harness their predictive power to tighten an identified set. I focus on the set-identified models with high-dimensional covariates and provide two-stage estimation and inference methods for an identified set. In the first stage, I select covariates (or estimate a nonparametric function of them) using machine learning tools. In the second stage, I plug the estimates into the moment equation for the identified set’s boundary that is insensitive, or, formally, Neyman-orthogonal, to the bias in the first-stage estimates. I establish the uniform limit theory for the proposed estimator and the Bayesian bootstrap procedure and provide a general recipe to construct a Neyman-orthogonal moment function starting from a non-orthogonal one.

My method’s main application is to estimate Lee (2008) nonparametric bounds on the average treatment effect in the presence of endogenous selection. I derive a Neyman-orthogonal moment equation for Lee
(2008)’s bounds and provide primitive sufficient conditions for their validity. Moreover, I substantially
tighten Lee (2008)’s bounds in the data from Angrist et al. (2006). In addition, I also provide the low-level
sufficient conditions to estimate sharp identified sets for two other parameters - the causal parameter in the
partially linear model and the average partial derivative when the outcome variable is interval-censored.

7 Appendix

Notation. We use the standard notation for vector and matrix norms. For a vector \(v \in \mathbb{R}^d \), denote the
\(\ell_2 \) norm of \(a \) as \(\| v \|_2 := \sqrt{\sum_{j=1}^{d} v_j^2} \). Denote the \(\ell_1 \) norm of \(v \) as \(\| v \|_1 := \sum_{j=1}^{d} |v_j| \), the \(\ell_\infty \) norm of \(v \) as
\(\| v \|_\infty := \max_{1 \leq j \leq d} |v_j| \), and \(\ell_0 \) norm of \(v \) as \(\| v \|_0 := \sum_{j=1}^{d} 1_{\{a_j \neq 0\}} \). Denote a unit sphere as \(S^{d-1} = \{ \alpha \in \mathbb{R}^d : \| \alpha \| = 1 \} \). For a matrix \(M \), denote its operator norm by \(\| M \|_2 = \sup_{\alpha \in S^{d-1}} \| M \alpha \| \). We use standard
notation for numeric and stochastic dominance. For two numeric sequences \(\{a_n, b_n\}, n \geq 1 \) \(a_n \preceq b_n \) stands
for \(a_n = O(b_n) \). For two sequences of random variables \(\{a_n, b_n, n \geq 1\} \) \(a_n \preceq_P b_n \) stands for \(a_n = O_P(b_n) \).
Finally, let \(a \wedge b = \min\{a, b\} \) and \(a \vee b = \max\{a, b\} \). For a random variable \(\xi \), \((\xi)^0 := \xi - \mathbb{E}[\xi] \).

Fix a partition \(k \) in a set of partitions \([K] = \{1, 2, \ldots, K\} \). Define the sample average of a function \(f(\cdot) \)
within this partition as: \(\mathbb{E}_{n,k}[f] = \frac{1}{n} \sum_{i \in J_k} f(x_i) \) and the scaled normalized sample average as:
\[
\mathbb{G}_{n,k}[f] = \frac{\sqrt{n}}{n} \sum_{i \in J_k} [f(x_i) - \mathbb{E}[f(x_i)|J_k]],
\]
where \([J_k] := \{ (W_i, i \in J_k) \} \). For each partition index \(k \in [K] \) define an event \(\mathcal{E}_{n,k} := \{ \hat{\xi}_k \in \Xi_n \} \) as the
nuisance estimate \(\hat{\xi}_k \) belonging to the nuisance realization set \(\mathcal{G}_N \). Define \(\mathcal{E}_N = \cap_{k=1}^{K} \mathcal{E}_{n,k} \) as the intersection
of such events.

7.1 Proof of Section 2

Lemma 11 (Derivation of Equation (2.6)). Let the Assumptions 1 and 2a of Lee (2008) hold. Let \(\Pr(D = 0|X) = \Pr(D = 1|X) = \frac{1}{2} \) hold. Then, the bounds given in Equation (2.6) coincide with the bounds given in
Proposition 1b of Lee (2008).
Proof. The lower bound of Lee (2008) (Proposition 1b) is given by

\[
\int_{x\in\mathcal{X}} \frac{f(x|D = 0, S = 1)}{f(x|D = 1, S = 1)} \mathbb{E}[Y|D = 1, S = 1, Y \leq y_{p_0(x),x}, X = x]
\]

\[
= \int_{x\in\mathcal{X}} \frac{f(x|D = 0, S = 1)}{f(x|D = 1, S = 1)} \mathbb{E}[Y|D = 1, S = 1, Y \leq y_{p_0(x),x}, X = x] f(x|D = 1, S = 1)
\]

\[
= \int_{x\in\mathcal{X}} \frac{f(x|D = 0, S = 1)}{f(x|D = 1, S = 1)} \frac{1}{p_0(x)} \mathbb{E}[Y 1\{y \leq y_{p_0(x),x}\}|D = 1, S = 1, X = x] f(x|D = 1, S = 1),
\]

(7.1)

where \(p_0(X)\) in my notation is \(1 - p(x)\) in Lee (2008)’s notation. Bayes’ rule implies

\[
\frac{f(x|D = 0, S = 1)}{f(x|D = 1, S = 1)} = \frac{\Pr(X = x, D = 0, S = 1) \Pr(D = 1, S = 1)}{\Pr(D = 0, S = 1) \Pr(X = x, D = 1, S = 1)}
\]

(7.2)

Definition of \(p_0(X)\) and Bayes’ rule imply

\[
p_0(x) = \frac{\Pr(S = 1|D = 0, X = x)}{\Pr(S = 1|D = 1, X = x)}
\]

(7.3)

\[
= \frac{\Pr(S = 1, D = 0, X = x) \Pr(D = 1|X = x)}{\Pr(S = 1, D = 1, X = x) \Pr(D = 0|X = x)}
\]

Plugging (7.2) and (7.3) into (7.1) gives (7.4)

\[
\int_{x\in\mathcal{X}} \frac{f(x|D = 0, S = 1)}{f(x|D = 1, S = 1)} \frac{1}{p_0(x)} \mathbb{E}[Y 1\{y \leq y_{p_0(x),x}\}|D = 1, S = 1, X = x] f(x|D = 1, S = 1)
\]

(7.4)

\[
= \mathbb{E} \frac{D \cdot S \cdot Y \cdot 1\{y \leq y_{p_0(x),x}\} \Pr(D = 0|X = x)}{\Pr(D = 0, S = 1) \Pr(D = 1|X = x)}
\]

(7.5)

The proof for the upper bound is similar.

\[\square\]

Lemma 12 (Equivalence of Long and Short Definitions of the Partially Linear Predictor). Suppose the matrix \(\Sigma = \mathbb{E}[D - \eta_0(X)][D - \eta_0(X)]'\) is invertible. Then, the identified set \(\mathcal{B}\) given by:

\[\mathcal{B} = \{\beta = \arg \min_{b \in \mathbb{R}^p, f \in \mathcal{M}} \mathbb{E}(Y - D^\top b - f(X))^2, \ Y_L \leq Y \leq Y_U\}\]

(7.6)

coincides with the identified set given by (2.17).

Proof. Fix a random variable \(Y\) in a random interval \([Y_L, Y_U]\). Let us show that the minimizer \(\beta_0\) of (7.6)
coincides with the minimizer β_0^* defined as:

$$
\beta_0^* = \arg\min_{b \in \mathbb{R}^d, f \in \mathcal{M}} \mathbb{E}(Y - (D - \eta_0(X))^\prime b)^2,
$$

(7.7)

where $\eta_0(X) = \mathbb{E}[D|X]$. For each b in (2.15) we solve for $f(X) = f_b(X)$ as a function of b. The solution $f_b(X)$ is a conditional expectation function:

$$
f_b(X) = \mathbb{E}[Y - Db|X] = \mathbb{E}[Y|X] - \eta_0(X).
$$

Substituting $f_b(X)$ into (2.15) gives:

$$
\beta = \arg\min_{b \in \mathbb{R}^d} \mathbb{E}(Y - \mathbb{E}[Y|X] - (D - \eta_0(X))^\prime b)^2.
$$

(7.8)

Expanding $(m+n)^2 = m^2 + 2mn + n^2$ with $m = Y - (D - \eta_0(X))^\prime b$ and $n = \mathbb{E}[Y|X]$ gives:

$$
\beta = \arg\min_{b \in \mathbb{R}^d} \mathbb{E}(Y - (D - \eta_0(X))^\prime b)^2
\begin{align*}
&- 2\mathbb{E}(Y - (D - \eta_0(X))^\prime b)\mathbb{E}[Y|X] \\
&+ \mathbb{E}(\mathbb{E}[Y|X])^2 \\
&= \arg\min_{b \in \mathbb{R}^d} \mathbb{E}(Y - (D - \eta_0(X))^\prime b)^2 - \mathbb{E}(\mathbb{E}[Y|X])^2 \\
&= \arg\min_{b \in \mathbb{R}^d} \mathbb{E}(Y - (D - \eta_0(X))^\prime b)^2
\end{align*}
$$

Since $\mathbb{E}[(D - \eta_0(X))^\prime b]\mathbb{E}[Y|X] = 0$ and $\mathbb{E}(Y - (D - \eta_0(X))^\prime b)\mathbb{E}[Y|X] = \mathbb{E}[Y]^2$, \textit{ii} follows. Since $\mathbb{E}[Y|X]^2$ does not depend on b, \textit{iii} follows. The solution to the minimization problem in \textit{iii} coincides with β_0^* in (2.17). According to Bontemps et al. (2012) (Proposition 2), the set (2.17) is a sharp identified set for β_0.

\square
7.2 Proofs of Section 3

Proof of Theorem 1, Σ is known. To simplify notation, we assume $\Sigma = I_d$. The proof holds for any invertible matrix Σ. Let us focus on the partition $k \in [K]$.

$$\sqrt{n} \| \mathbb{E}_{n,k}[g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))] \| \leq \sqrt{n} \mathbb{E} [g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))] + |G_{n,k}[g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))]|
\leq: |i(q)| + |ii(q)|.$$

Step 1. Recognize that $|i(q)|$ converges to zero conditionally on the partition complement J_k^c and the event E_N:

$$|i(q)| := \sup_{q \in S^{d-1}} \sqrt{n} \mathbb{E}[g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))|E_N \cup J_k^c]|$$

$$\leq \sup_{q \in S^{d-1}} \sup_{\xi \in \Xi_n} \sqrt{n} \mathbb{E}[g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))|E_N \cup J_k^c]|$$

$$\leq \sup_{q \in S^{d-1}} \sup_{\xi \in \Xi_n} \sqrt{n} \mathbb{E}[g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q))]$$

$$\leq \sqrt{n} \mu_n = o(1).$$

By Lemma 6.1 of Chernozhukov et al. (2017a), the term $i(q) = O(\mu_n) = o(1)$ unconditionally.

Step 2. To bound the second quantity, consider the function class

$$\mathcal{F}_{\hat{\xi}, \tilde{\xi}_0} = \{g(W_i, q, \hat{\xi}(q)) - g(W_i, q, \tilde{\xi}_0(q)), \quad q \in S^{d-1}\}.$$

for some fixed $\hat{\xi}$. By definition of the class,

$$\mathbb{E} \sup_{q \in S^{d-1}} |ii(q)| := \mathbb{E} \sup_{f \in \mathcal{F}} |G_{n,k}[f]|.$$

We apply Lemma 6.2 of Chernozhukov et al. (2017a) conditionally on the hold-out sample J_k^c and the event E_N so that $\hat{\xi}(q) = \hat{\xi}_k$ can be treated as a fixed member of Ξ_n. The function class $\mathcal{F}_{\hat{\xi}, \tilde{\xi}_0}$ is obtained as the difference of two function classes: $\mathcal{F}_{\hat{\xi}} := \mathcal{F}_{\hat{\xi}} - \mathcal{F}_{\tilde{\xi}_0}$, each of which has an integrable envelope and bounded logarithm of covering numbers by Assumption 4. In particular, one can choose an integrable envelope as
Recognize that the first and the second moments of \(\phi \) where \(\Sigma \) exists, Proof of Theorem 1, implies that Step 3. Asymptotic Normality.

By Theorem 19.14 from van der Vaart (1998), Assumption 4 implies that the function class of Lemma 6.2 of Chernozhukov et al. (2017a) gives with \(M := \max_{i \in I} F_{\hat{\xi}_{\tilde{\xi}_0}}(W_i) \) the application of Lemma 6.2 of Chernozhukov et al. (2017a) gives with \(M := \max_{i \in I} F_{\hat{\xi}_{\tilde{\xi}_0}}(W_i) \)

\[
\sup_{q \in S^{d-1}} |i(q)| \leq \sup_{q \in S^{d-1}} |G_{n,k}[g(W_i,q,\hat{\xi}_0(q))-g(W_i,q,\xi_0(q))]| \\
\leq \sqrt{v(r')^2 \log(a\|\|F_{\hat{\xi}_0}\|\|_2/r'_n)} + v\|M\|_{p,c'}/\sqrt{n} \log(a\|\|F_{\hat{\xi}_0}\|\|_2/r'_n) \\
\lesssim_P r'_n \log^{1/2}(1/r'_n) + n^{-1/2 + 1/c'} \log^{1/2}(1/r'_n)
\]

where a constant \(\|M\|_{p,c'} \leq n^{1/c'} \|F\|_{p,c'} \) for the constant \(c' \geq 2 \) in Assumption 4.

Step 3. Asymptotic Normality. By Theorem 19.14 from van der Vaart (1998), Assumption 4 implies that the function class \(\mathcal{F}_{\xi} = \{g(W_i,q,\xi_0(q)), \quad q \in S^{d-1}\} \) is \(P \)-Donsker. Therefore, the asymptotic representation follows from the Skorohod-Dudley-Whichura representation, assuming the space \(L^\infty(S^{d-1}) \) is rich enough to support this representation.

Proof of Theorem 1, \(\Sigma \) is unknown. Step 1. \(\sqrt{n} \)-Convergence of Matrix Estimator. Let us show that there exists \(\phi_N = o(1) \) and a constant \(R \) such that with probability at least \(1 - \phi_N \),

\[
\|\hat{\Sigma} - \Sigma\| \leq RN^{-1/2},
\]

where

\[
\hat{\Sigma} := \mathbb{E}_n A(W_i, \hat{\eta}_i) = \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{n,k} A(W_i, \hat{\eta}_i) - \mathbb{E}_{n,k} A(W_i, \eta_0) + \mathbb{E}_n A(W_i, \eta_0) - \mathbb{E} A(W_i, \eta_0).
\]

Recognize that the first and the second moments of \(\sqrt{N} I_{1,k} \) converge to zero conditionally on the partition
complement J_k^c and the event E_N. The first moment is bounded as:

$$\sqrt{n}\|\mathbb{E}_I[I_k|E_N \cup J_k^c]\| := \sqrt{n}\|\mathbb{E}[A(W_i, \hat{\eta}) - A(W_i, \eta_0)]|E_N \cup J_k^c]\|$$

$$\leq \sup_{\eta \in E_N} \sqrt{n}\|\mathbb{E}[A(W_i, \eta) - A(W_i, \eta_0)]|E_N \cup J_k^c]\|$$

$$\leq \sqrt{n}\mu_0 = o(1).$$

By Assumption 4, the bound on the second moment $\|I_{1,k}\|^2$ applies:

$$n\mathbb{E}[\|I_{1,k}\|^2|E \cup J_k^c] \leq \sup_{\eta \in E_N} \mathbb{E}\|A(W_i, \eta) - A(W_i, \eta_0)\|^2 \leq \delta_n = o(1).$$

Applying the Markov inequality conditionally on J_k^c, E_N yields: $ii = o_p(\delta_n)$. By Lemma 6.1 of Chernozhukov et al. (2017a), conditional convergence to zero implies unconditional convergence. Therefore, for each $k \in [K]$, $I_{1,k} = o_p(1)$. Since the number of partitions K is finite, $\frac{1}{K} \sum_{k=1}^{K} I_{1,k} = o_p(1)$. The application of the Law of Large Numbers for Matrices to the term $\mathbb{E}_N[A(W_i, \eta_0) - \Sigma]$ yields: $||\mathbb{E}_N A(W_i, \eta_0) - \Sigma|| = O_p(N^{-1/2}).$

Step 2. Decomposition of the error. Let P be as defined in (3.7). Fix a generic element of this set $p \in P$ and $\xi \in E_N$.

$$\mathbb{E}_N g(W_i, p, \xi(p)) = \mathbb{E}_N g(W_i, p_0(q), \xi_0(p_0(q)))$$

$$+ \mathbb{E}_N [g(W_i, p, \xi(p)) - g(W_i, p_0(q), \xi_0(p_0(q)))]_{I_3}^{0}$$

$$+ \mathbb{E} [g(W_i, p, \xi(p)) - g(W_i, p_0(q), \xi_0(p_0(q)))]_{I_4}.$$

Consider the following expansion:

$$I_4 = \mathbb{E} [g(W_i, p, \xi(p)) - g(W_i, p, \xi_0(p))] + \mathbb{E} [g(W_i, p, \xi(p)) - E g(W_i, p_0(q), \xi_0(p_0(q)))]$$

$$= \mathbb{E} [g(W_i, p, \xi(p)) - E g(W_i, p, \xi_0(p))] + J_0(p_0(q))[p - p_0(q)] + R(p, p_0(q)),$$

where the gradient $J_0(p_0(q)) = \nabla_{p_0(q)} \mathbb{E} g(W_i, p_0(q), \xi_0(p))$. By Assumption 5, the remainder term $R(p, p_0) = o(||p - p_0(q)||)$ uniformly over $q \in S^{d-1}$. By Assumption 4 applied on P, the term $I_{4,1}$ in (7.9) is bounded.
as:

$$\sqrt{n}I_{4.1} = \sqrt{n}\|\mathbb{E}[g(W_i, p, \xi(p)) - g(W_i, p, \xi_0(p))]|$$

$$\leq \sqrt{n} \sup_{p \in \mathcal{P}} \sup_{\xi \in \mathcal{Z}} |\mathbb{E}[g(W_i, p, \xi(p)) - g(W_i, p, \xi_0(p))]|$$

$$\leq \sqrt{n}r_n'' = o(1).$$

Step 4. The bound on I_3. We have

$$\mathcal{I}_{\xi, \xi_0} := \{g(\cdot, p, \xi(p)) - g(\cdot, p_0(q), \xi(p_0(q))), p \in \mathcal{P}, q \in S^{d-1}, \|p - p_0(q)\| \leq RN^{-1/2}\}.$$

We apply Lemma 6.2 of Chernozhukov et al. (2017a) conditionally on J_1^c and \mathcal{E}_N, so that $\hat{\xi}$ can be treated as fixed. By Assumption 4, the class \mathcal{I}_{ξ, ξ_0} has a measurable envelope $F_{\xi, \xi_0} := F_{\xi} + F_{\xi_0}$:

$$\sup_{q \in S^{d-1}} \sup_{p \in \mathcal{P}, \|p - p_0(q)\| \leq RN^{-1/2}} |g(W_i, p, \xi(p)) - g(W_i, p_0(q), \xi(p_0(q)))|$$

$$\leq \sup_{q \in S^{d-1}} \sup_{p \in \mathcal{P}, \|p - p_0(q)\| \leq RN^{-1/2}} |g(W_i, p, \xi(p))| + \sup_{q \in S^{d-1}} \sup_{p \in \mathcal{P}, \|p - p_0(q)\| \leq RN^{-1/2}} |g(W_i, p, \xi(p))|$$

$$\leq F_{\xi} + F_{\xi_0}.$$

Moreover, the uniform covering entropy of the function class $F_{\xi, \xi_0} := F_{\xi} + F_{\xi_0}$ is bounded by the sum of the entropies of F_{ξ} and F_{ξ_0}. Finally,

$$\sup_{q \in S^{d-1}} \sup_{p \in \mathcal{P}, \|p - p_0(q)\| \leq RN^{-1/2}} \sup_{\xi \in \mathcal{Z}} (\mathbb{E}[g(W_i, p, \xi(p)) - g(W_i, p_0(q), \xi_0(p_0(q)))])^{1/2}$$

$$\lesssim r_n' \log^{1/2}(1/r_n') + n^{-1/2+1/c} \log^{1/2}n.$$

$$\square$$

Lemma 13. Let \mathcal{P} be as in (3.7). Let $\{D_i(p), p \in \mathcal{P}\}$ be a function class with a bounded uniform covering entropy and $\mathbb{E}D_i(p) = 0 \forall p \in \mathcal{P}$. Let $(D_i(p))_{i=1}^N$ be an i.i.d sequence of random functions. Let $(e_i)_{i=1}^N$ be an i.i.d sequence of $\text{Exp}(1)$ random variables independent from $(D_i(p))_{i=1}^N$. Then uniformly in \mathcal{P}

$$\sqrt{N}\mathbb{E}_N\frac{\epsilon}{\bar{e}}D_i(p) = \sqrt{N}\mathbb{E}_N\epsilon_i D_i(p)(1 + o_P(1)).$$

Proof follows from Theorem 3.4 of Chandrasekhar et al. (2011).
Lemma 14. Let Assumptions 3 - 4 hold. Then

\[\sqrt{N} E_N \left(g(W_i, (\Sigma^{-1})^T q, \hat{\xi}((\Sigma^{-1})^T q)) - g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q)) \right) \frac{e_i}{\bar{c}} = o_p(1). \]

Proof. Step 1. Decompose the sample average into the sample averages within each partition:

\[E_N \left(g(W_i, (\Sigma^{-1})^T q, \hat{\xi}(p)) - g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q)) \right) \frac{e_i}{\bar{c}} = \frac{1}{K} \sum_{k=1}^{K} E_{n,k} \left(g(W_i, (\Sigma^{-1})^T q, \hat{\xi}(p)) - g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q)) \right) \frac{e_i}{\bar{c}}. \]

Since the number of partitions \(K \) is finite, it suffices to show that the bound holds on every partition:

\[E_{n,k} \left(g(W_i, (\Sigma^{-1})^T q, \hat{\xi}(p)) - g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q)) \right) \frac{e_i}{\bar{c}} = o_p(1). \]

Let \(\mathcal{E}_N := \bigcap_{k=1}^{K} \{ \hat{\xi}_{k} \in \Xi_n \} \). By Assumption 4 \(\Pr(\mathcal{E}_N) \geq 1 - K \phi_N = 1 - o(1) \). The analysis below is conditionally on \(\mathcal{E}_N \) for some fixed element \(\hat{\xi}_k \in \Xi_n \). Since the probability of \(\mathcal{E}_N \) approaches one, the statements continue to hold unconditionally, which follows from the Lemma 6.1 of Chernozhukov et al. (2017a).

Step 2. Consider the function class \(\mathcal{F}_{\xi \xi_0} := \{(g(W_i, p, \hat{\xi}(p)) - g(W_i, p, \xi_0(p)), \quad p \in \mathcal{P} \} \). Consider the function class \(\mathcal{F}_{\xi} := \{(g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p)))e_i, \quad p \in \mathcal{P} \} \). The function class is obtained by the multiplication of a random element of class \(\mathcal{F}_{\xi \xi_0} \) by an integrable random variable \(e_i \). Therefore, \(\mathcal{F}_{\xi} \) is also \(P \)-Donsker and has bounded uniform covering entropy. The expectation of the random element of the class \(\mathcal{F}_{\xi \xi_0} \) is bounded as:

\[\sqrt{n} \sup_{p \in \mathcal{P}} \mathbb{E}[g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p))|\mathcal{E}_N] \lesssim \sup_{\xi \in \Xi_n} \mathbb{E}[g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p))] \lesssim \sqrt{n} \mu_n = o(1). \]

The variance of each element of the class \(\mathcal{F}_{\xi \xi_0} \) is bounded as:

\[\sup_{p \in \mathcal{P}} \sup_{\xi \in \Xi_n} \mathbb{E}((g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p)))^2) = \sup_{p \in \mathcal{P}} \sup_{\xi \in \Xi_n} \mathbb{E}((g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p)))^0)^2 \mathbb{E}e_i^2 \leq 2 \sup_{p \in \mathcal{P}} \sup_{\xi \in \Xi_n} \mathbb{E}((g(W_i, p, \hat{\xi}_n(p)) - g(W_i, p, \xi_0(p)))^2 \lesssim \tau_n, \]

where the bound follows from the conditional independence of \(e_i \) from \(W_i \), \(\mathbb{E}e_i^2 = 2 \) for \(e_i \sim \text{Exp}(1) \), and...
Assumption 4. By Lemma 13

\[\mathbb{E}[\sup_{p \in \mathcal{P}} \mathbb{E}_{n,k}[(g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0)))^0 e_i (1 - \bar{e}) | \mathcal{E}_N] = o_P(1). Q.E.D. \]

Lemma 15. Let Assumptions 3 - 4 hold. Consider the function class \(\mathcal{F}_{pp_0} = \{ g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0)), \| p - p_0(q) \| \leq N^{-1/2}, q \in \mathbb{S}^{d-1}, p \in \mathcal{P} \}. \) Then uniformly on \(\mathcal{F}_{pp_0}, \)

\[\sqrt{N} \mathbb{E}_N (g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q) - g(W_i, (\Sigma^{-1})^T q, \xi_0((\Sigma^{-1})^T q))) e_i^t \]

\[= \sqrt{N} q^T \Sigma^{-1} (\Sigma - \Sigma) \Sigma^{-1} G(\Sigma^{-1} q) + o_P(1), \]

where the gradient \(G(p) \) is defined in Assumption 5.

Proof. Consider the function class \(\mathcal{F}_{pp_0} = \{ e_i (g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0))), \| p - p_0(q) \| \leq N^{-1/2}, q \in \mathbb{S}^{d-1}, p \in \mathcal{P} \}. \) The function class is obtained by the multiplication of a random element of class \(\mathcal{F}_{pp_0} \) by an integrable random variable \(e_i \). Therefore, \(\mathcal{F}_{pp_0} \) is also \(P \)-Donsker and has bounded uniform covering entropy. The expectation of the random element is decomposed as:

\[\mathbb{E}[(g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0)))] = (p - p_0) \cdot G(p_0) + R(p, p_0). \]

By Assumption 5, the remainder term \(R(p, p_0) = o(\| p - p_0(q) \|) \) uniformly over \(q \in \mathbb{S}^{d-1}. \) The variance of each element of the class \(\mathcal{F}_{pp_0} \) is bounded as:

\[\mathbb{E}[(g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0))) e_i^2] \leq 2 \mathbb{E}[g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0))^2 \leq r_n', \]

where the bound follows from the conditional independence of \(e_i \) from \(W_i, \) \(\mathbb{E}(e_i)^2 = 2 \) for \(e_i \sim \text{Exp}(1), \) and Assumption 4. By Lemma 13

\[\mathbb{E}[\sup_{p \in \mathcal{P}} \mathbb{E}_{n,k}[(g(W_i, p, \xi_0(p)) - g(W_i, p_0, \xi_0(p_0)))^0 e_i (1 - \bar{e}) | \mathcal{E}_N] = o_P(1). Q.E.D. \]
Proof of Theorem 2. The difference between the bootstrap and the true support function as follows:

\[
\sqrt{N}(\hat{\sigma}(q, B) - \sigma(q, B)) \leq \sqrt{N} \left(\sum_{i=1}^{N} \frac{e_i}{\hat{e}} \left(g(W_i, (\hat{\Sigma}^{-1})^\top q, \hat{\xi}_0((\hat{\Sigma}^{-1})^\top q)) - g(W_i, (\Sigma^{-1})^\top q, \xi_0((\Sigma^{-1})^\top q)) \right) \right) \\
+ \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e_i \left(g(W_i, (\hat{\Sigma}^{-1})^\top q, \hat{\xi}_0((\hat{\Sigma}^{-1})^\top q)) - g(W_i, (\Sigma^{-1})^\top q, \xi_0((\Sigma^{-1})^\top q)) \right)
\]

By Lemma 14 \(\sup_{q \in S^{-1}} |K_{\hat{\xi}B_0}| = o_P(1) \). By Lemma 15 \(K_{pp_0}(q) = -q'\Sigma^{-1}(E_N e_i A(W_i, \eta_0) - \Sigma)\Sigma^{-1} G((\Sigma^{-1})^\top q) + o_P(1) \) uniformly in \(q \). By Lemma 13,

\[
K_e = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e_i \left(g(W_i, (\Sigma^{-1})^\top q, \xi_0((\Sigma^{-1})^\top q)) - \sigma(q, B) \right)
\]

\[
= i \sqrt{N} \left(\sum_{i=1}^{N} e_i \left(g(W_i, (\Sigma^{-1})^\top q, \xi_0((\Sigma^{-1})^\top q)) \right) \right) + o_P(1),
\]

where \(i \) follows from (3.8) and \(ii \) from Lemma 13. A similar argument applies to the leading term of \(K_{pp_0} \)

\[
q'\Sigma^{-1}(E_N e_i A(W_i, \eta_0) - \Sigma)\Sigma^{-1} G((\Sigma^{-1})^\top q) = q'\Sigma^{-1}(E_N e_i A(W_i, \eta_0) - \Sigma)\Sigma^{-1} G((\Sigma^{-1})^\top q) + o_P(1).
\]

The first statement of Theorem 2 follows from:

\[
\tilde{S}_N(q) = i \sqrt{N}(\hat{\sigma}(q, B) - \hat{\sigma}(q, B))
= i \sqrt{N}(\hat{\sigma}(q, B) - \sigma(q, B) - (\hat{\sigma}(q, B) - \sigma(q, B)))
= ii \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e_i h(W_i, q) + o_P(1)
= \frac{1}{\sqrt{N}} \sum_{i=1}^{N} e_i^0 (h(W_i, q))^0,
\]

where \(i \) is by definition of the bootstrap support function process and \(ii \) is by definition of \(h(W, q) \) in Theorem 1. Once the asymptotic approximation conditional on the data has been established all further statements
follows from Steps 2 and 3 of the Proof of Theorem 3 Chandrasekhar et al. (2011).

7.3 Proofs of Section 3.3

Below we present examples of bias correction terms $\alpha(W, p, \xi(p))$ for various types of functional nuisance parameter η. In order to guess a general form of these bias correction terms we have relied on the previous work that used semiparametric efficiency theory to produce an efficient (and, therefore, Neyman-orthogonal) score. In particular, a general form of a bias correction term for conditional expectation functions is given in Newey (1994) and for average partial derivatives in Hardle and Stoker (1989).

Adding a level of generality helps to understand the derivation. Suppose one is interested in the function $M(p)$ defined by the following equation:

$$M(p) - \mathbb{E}m(W, p, \eta_0) = 0,$$

where $m(W, p, \eta) : \mathcal{W} \times \mathcal{P} \times \mathcal{T} \to \mathbb{R}^{\dim(m)}$ is a measurable moment function. We constructed a bias correction term $\alpha(W, p, \xi(p))$ such that the function:

$$g(W, p, \xi(p)) = m(W, p, \eta) + \alpha(W, p, \xi(p))$$

obeys orthogonality condition with respect to ξ at x_0 for all $p \in \mathcal{P}$.

Proof of Lemma 3. Fix a vector p in \mathcal{P}. Let us show that the Gateaux derivative of $\mathbb{E}[g(W, p, \xi(p))]$ with respect to $\xi(p)$ at $\xi_0(p)$ is equal to zero. The derivative with respect to η at η_0 is:

$$\partial_{\eta_0} \mathbb{E}g(W, p, \xi_0(p)) = \partial_{\eta_0} \mathbb{E}m(W, p, \eta_0(X))[\eta(X) - \eta_0(X)]
\quad - \gamma_0(p, X)I_0(X)^{-1} \partial_{\eta_0} \mathbb{E}R(W, \eta_0)[\eta(X) - \eta_0(X)]
\quad = \mathbb{E}_X \left[\partial_{\eta_0} \mathbb{E}[m(W, p, \eta_0(X))|X] - \gamma_0(p, X)I_0(X)^{-1}I_0(X)[\eta(X) - \eta_0(X)]\right]
\quad = 0,$$

where equality i follows from the definition of $I_0(X) = \partial_{\eta_0} \mathbb{E}[R(W, \eta_0)|X]$ and equality ii follows from the
definition of $\gamma_0(p, X) = \partial_{\eta_0} \mathbb{E}[m(W, p, \eta_0(X))|X]$. The derivative with respect to $I(X)$ at I_0 is:

$$
\partial_{I_0} \mathbb{E}(W, p, \xi_0(p)) = -\mathbb{E}_X I_0(X)^{-2} \mathbb{E}(p, X) \mathbb{E}(R(W, \eta_0(X)) [I(X) - I_0(X)]
$$

by Equation (3.17). The derivative with respect to $\gamma(p, \cdot)$ at $\gamma_0(p, \cdot)$ is:

$$
\partial_{\gamma_0} \mathbb{E}(W, p, \xi_0(p)) = -\mathbb{E}_X I_0(X)^{-1} \mathbb{E}(R(W, \eta_0(X)) [\gamma(p, X) - \gamma_0(p, X)]
$$

by Equation (3.17).

Lemma 7 derives a general form of a bias correction term for the case $\eta_0(X)$ is defined via the conditional exogeneity restriction (3.17). In our applications, we consider two important cases of this Lemma: a conditional expectation function (Lemma 4) and a conditional quantile function (Lemma 5), respectively.

Lemma 4 is a special case of Lemma 3 with $R(W, \eta(X)) = U - \eta(X)$.

Proof of Lemma 4. Consider the setup of Lemma 3 with

$$
R(W, \eta(X)) := U - \eta(X).
$$

Then, $I_0(X) := \partial_{\eta_0} \mathbb{E}[R(W, \eta_0(X))] = -1$ and is bounded away from zero a.s. in X. Therefore, by Lemma 3 the bias correction term is equal to

$$
\alpha(W, p, \xi_0(p)) := \gamma(p, X)(U - \eta(X)),
$$

where $\gamma_0(p, X) := \partial_{\eta_0} \mathbb{E}[m(W, p, \eta_0)|X]$.

Lemma 5 is a special case of Lemma 3 with $R(W, \eta(X)) = 1_{\{U \leq \eta(X)} - u_0$, where $u_0 \in (0, 1)$ is a given quantile level.

Proof of Lemma 5. Let $u_0 \in (0, 1)$ be a given quantile level. Suppose the true value $\eta_0(X)$ of the nuisance parameter $\eta(X)$ is the conditional quantile function $\eta_0(X) = Q_{U|X=x}(u_0, x)$ of level u_0. Consider the setup

Lemma 3 was co-developed in the co-authored project "Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models" with Vasilis Syrgkanis, Denis Nekipelov, and Victor Chernozhukov.
of Lemma 3 with
\[R(W, \eta) := 1_{U \leq \eta(X)} - u_0. \]

Then,
\[l_0(X) := \partial_{\eta_0} \mathbb{E}[1_{U \leq \eta_0(X)}|X] = f_{U|X}(\eta_0(X)) \]
where \(f_{U|X}(\eta_0(X)) \) is the conditional density of \(U \) given \(X \) evaluated at \(\eta_0(X) \). By Assumptions of Lemma 5, \(f_{U|X}(\eta_0(X)) \) is bounded away from zero a.s. in \(X \). Therefore, by Lemma 3 the bias correction term is equal to
\[\alpha(W, p, \xi(p)) := -\gamma(p, X) \frac{1_{U \leq \eta(X)} - u_0}{l(X)}, \]
where \(\gamma(p, X) := \partial_{\eta_0} \mathbb{E}[m(W, p, \eta_0)|X] \) and \(l_0(X) = f_{U|X}(\eta_0(X)) \).

\[\square \]

Lemma 16 (Bias Correction term for Average Partial Derivative). *Suppose the true value \(\eta_0(D, X) \) of the functional parameter \(\eta(D, X) \) is the gradient of the logarithm of the conditional density of \(D \) given \(X \):
\[\eta_0(D, X) = \partial_D \log f_0(D|X) = \partial_D \log f(D = d|X). \] Let the moment function be:
\[m(W, p, \eta(D, X)) := p^\top \eta(D, X)Y. \]
Define the bias correction term
\[\alpha(W, p, \xi(p)) := p^\top [-\eta(D, X)\mu(D, X) + \partial_D \mu(D, X)], \]
where \(\xi(p) = \xi(D, X) := \{ \eta(D, X), \mu(D, X) \} \) consists of two \(P \)-square-integrable function of \(D, X \) which do not depend on \(p \). Moreover, the true value of \(\eta(D, X) \) is \(\eta_0(D, X) = \partial_D \log f(D = d|X) \), and that of \(\mu(D, X) \) is \(\mu_0(D, X) := \mathbb{E}[Y|D, X] \). Then, the moment function \(g(W, p, \xi(p)) \) in (7.11) has a zero Gateaux derivative with respect to \(\xi(p) \) at \(\xi_0(p) \) uniformly on \(\mathcal{P} \):
\[\partial_\xi \mathbb{E} g(W, p, \xi_0)[\xi - \xi_0] = 0, \quad \forall p \in \mathcal{P}. \]

Lemma 16 is the extension of Hardle and Stoker (1989) to set-identified case.

Proof of Lemma 6. Consider the setup of Lemma 3. Since each component \(\eta_l(X), l \in \{1, 2, \ldots, L\} \) is defined by a separate exclusion restriction, the matrix \(l_0(X) \) is a diagonal matrix whose \(l \)’th element on the diagonal
is equal to \(I_{ll,0}(X) := \partial_{\eta_l,0} \mathbb{E}[R_l(W, \eta_{l,0}(X)) | X] \). Therefore,

\[
\alpha(W, p, \xi(p)) = \gamma(p, X) I(X)^{-1} R(W, \eta(X))
= \sum_{l=1}^{L} \gamma_l(p, X) I_{ll}(X)^{-1} R_l(W, \eta_l(X))
= \sum_{l=1}^{L} \alpha(W, p, \xi_l(p)).
\]

Proof of Lemma 16. Let \(\xi(p, X) = \xi(X) = \{ \eta(D, X), \mu(D, X) \} \) be a \(P \)-square integrable vector-valued function that does not depend on \(p \).

\[
g(W, p, \xi) = p^\top \eta(D, X) Y + p^\top [-\eta(D, X) \mu(D, X) + \partial_D \mu(D, X)].
\]

The first-order Gateaux derivative of \(\mathbb{E}g(W, p, \xi) \) w.r.t \(\xi \) at \(\xi_0 \) is equal to:

\[
\partial_{\xi_0} \mathbb{E}g(W, p, \xi_0) [\xi - \xi_0] = \begin{bmatrix}
p^\top \mathbb{E}[\eta(D, X) - \partial_D \log f_0(D | X)] [Y - \mu_0(D, X)] \\
\mathbb{E}[\partial_D [\mu(D, X) - \mu_0(D, X)] - \eta_0(D, X) \mu(D, X) - \mu_0(D, X)]
\end{bmatrix}
= \begin{bmatrix} 0 \\
0 \end{bmatrix},
\]

where the second equality follows from integration by parts:

\[
\mathbb{E}[\partial_D [\mu(D, X) - \mu_0(D, X)] - \eta_0(D, X) \mu(D, X) - \mu_0(D, X)]
= \mathbb{E}[\eta_0(D, X) \mu(D, X) - \mu_0(D, X)] - \eta_0(D, X) [\mu(D, X) - \mu_0(D, X)]
= 0.
\]

Proof of Lemma 7. Fix an element \(\eta \) in the realization set \(\mathcal{T}_N \). Define an event of an incorrectly chosen sign in the indicator function \(1 \{ _ \} \):

\[
\mathcal{E} := \{ p^\top V_\eta > 0 \neq 1_p, V_{\eta_0} > 0 \} = \{ p^\top V_\eta > 0 > p^\top V_{\eta_0}, \quad p^\top V_\eta < 0 < p^\top V_{\eta_0} \}.
\]
Recognize that the event \(\mathcal{E} \) is included into the event

\[
\mathcal{E}_{\eta_0} := \{ 0 < |p^\top V_{\eta_0}| < |p^\top V_\eta - p^\top V_{\eta_0}| \},
\]

that is: \(\mathcal{E} \subseteq \mathcal{E}_{\eta_0} \) a.s. Therefore, the contribution of an incorrectly chosen sign in the indicator function admits the following bound, where we dropped the dependence of \(Y_L \) and \(Y_U \) on \(\eta \) in the notation:

\[
\begin{align*}
&\left| \mathbb{E} p^\top V_{\eta} (Y_U - Y_L) (1_{\{p^\top V_{\eta_0} > 0\}} - 1_{\{p^\top V_{\eta_0} > 0\}}) \right| \\
&= \left| \mathbb{E} p^\top V_{\eta} (Y_U - Y_L) 1_{\{\mathcal{E}\}} \right| \quad \text{(Definition of \(\mathcal{E} \))} \\
&\leq \left| \mathbb{E} p^\top V_{\eta} (Y_U - Y_L) 1_{\{\mathcal{E}_{\eta_0}\}} \right| \quad \text{\(\mathcal{E} \subseteq \mathcal{E}_{\eta_0} \) a.s.} \\
&\leq B_{UL} \left| \mathbb{E} p^\top V_{\eta} 1_{\{\mathcal{E}_{\eta_0}\}} \right| \quad \text{(Assumption (a))} \\
&\leq B_{UL} \left| \mathbb{E} p^\top V_{\eta_0} 1_{\{\mathcal{E}_{\eta_0}\}} \right| + B_{UL} \mathbb{E} p^\top (V_\eta - V_{\eta_0}) 1_{\{\mathcal{E}_{\eta_0}\}} \\
&:= B_{UL} (i + ii)
\end{align*}
\]

The first-order term is bounded by an \(L_2 \)-bound of the error \(V_\eta - V_{\eta_0} \)

\[
i = \mathbb{E} |p^\top V_{\eta_0}| 1_{\{0 < |p^\top V_{\eta_0}| \leq |p^\top V_\eta - p^\top V_{\eta_0}| \}} \leq \mathbb{E} \|p^\top (V_\eta - V_{\eta_0})\|^2 \leq \sup_{p \in \mathcal{P}} \|p\| \mathbb{E} (V_\eta - V_{\eta_0})^2.
\]

The second-order term is bounded by Assumption (2):

\[
ii = \mathbb{E} |p^\top V_{\eta_0} - p^\top V_{\eta_0}| 1_{\{0 < |p^\top V_{\eta_0}| \leq |p^\top V_\eta - p^\top V_{\eta_0}| \}} \leq \mathbb{E} \|V_\eta - V_{\eta_0}\|^2.
\]

Therefore, \(i + ii \lesssim \mathbb{E} \|V_\eta - V_{\eta_0}\|^2 = o(N^{-1/2}) \). \qed

Lemma 17 (From Zero Gateaux Derivative to Uniform Near Orthogonality). *Let \(M(p) \) be a target function defined by (7.10) on a compact set \(\mathcal{P} \). Suppose Assumption 4 holds on \(\mathcal{P} \). Moreover, the moment condition (7.11) has zero Gateaux derivative for all vectors \(p \) in \(\mathcal{P} \). Then, the moment condition (7.11) satisfies Assumption 4 uniformly on \(\mathcal{P} \).*

Proof. We repeat the proof of Step 2, Lemma 6.3 in Chernozhukov et al. (2017a). Consider a Taylor
Lemma 18 (Achieving Small Bias Assumption for Support Function). Suppose the conditions of Lemma 7 hold. Let $m_0(W, p, \eta)$ be a smoothened analog of the support function moment (3.6) defined as:

$$m_0(W, p, \eta) := p^\top V_\eta \Gamma(Y_{L, \eta}, Y_{U, \eta} - Y_{L, \eta}, p^\top V_\eta).$$

Let $\alpha_0(W, p, \bar{\xi}(p))$ be a bias correction term for $m_0(W, p, \eta)$ such that $m_0(W, p, \eta) + \alpha_0(W, p, \bar{\xi}(p))$ obeys orthogonality condition with respect to $\bar{\xi}$ at $\bar{\xi}_0$ for each $p \in \mathcal{P}$. Then, the moment function

$$g(W, p, \bar{\xi}(p)) := m(W, p, \eta) + \alpha_0(W, p, \bar{\xi}(p))$$

satisfies Assumption 3.

Proof of Lemma 18. Let Ξ be a space of P-square integrable functions, $\bar{\xi}_0(p, X)$ be a functional nuisance parameter that depends on p, and Ξ_n be a sequence of realization sets around $\bar{\xi}_0(p, X)$.

$$\sup_{p \in \mathcal{P}} \sup_{\bar{\xi} \in \Xi_n} \mathbb{E}[g(W, p, \bar{\xi}(p)) - g(W, p, \bar{\xi}_0(p))]$$

$$\leq \sup_{p \in \mathcal{P}} \sup_{\bar{\xi} \in \Xi_n} \mathbb{E}[p^\top V(\eta) \Gamma(Y_{L, \eta}, Y_{U, \eta} - Y_{L, \eta}, p^\top V(\eta)) - p^\top V(\eta) \Gamma(Y_{L, \eta}, Y_{U, \eta} - Y_{L, \eta}, p^\top V(\eta_0))]$$

$$+ \sup_{p \in \mathcal{P}} \sup_{\bar{\xi} \in \Xi_n} \mathbb{E}[p^\top V(\eta) \Gamma(Y_{L, \eta}, Y_{U, \eta} - Y_{L, \eta}, p^\top V(\eta_0)) + \alpha_0(W, p, \bar{\xi}(p)))]$$

$$\leq \mathbb{E}||V_\eta - V_{\eta_0}||^2 + r_N$$

where the bound on the first summand is by Lemma 7 and on the second one by Lemma 17.

Lemma 19 (Maximal Inequality for Support Function). Let R and C be positive constants. Assume there exist $c > 2$ such that the vector $(V_{\eta}, Y_{L, \eta}, Y_{U, \eta})$ is $L_{P,c}$-integrable: $\|V_{\eta}, Y_{L, \eta}, Y_{U, \eta}\|_{L_{P,c}} \leq C < \infty$. Then, the
function class $\mathcal{F}_\eta = \{ p^\top V(\eta) \Gamma (Y_{L,\eta}, Y_{U,\eta} - Y_{L,\eta}, p^\top V(\eta)) : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$ satisfies Assumption 4(1,2,3(a)). If, in addition, the function class

$$A_\xi = \{ \alpha_0(W, p, \xi(p)) : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$$

satisfies Assumption 4, so does the class $\mathcal{R}_\xi = \{ g(W, p, \xi(p)) : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$.

Proof. Let $\eta \in \Xi_n$ be a fixed element of the nuisance realization set. Let $F_\eta = \lambda_{\max} \| V(\eta) (|Y_{L,\eta}| + |Y_{U,\eta}|) \|$ be a measurable envelope. By the condition of the Lemma, there exists $c > 2$ such that $\| F \|_{L^p} \leq C$. Next, recognize that the function class $F_\eta = F_{L,\eta} + F_{U-L,\eta}$, where

$$F_{L,\eta} = \{ p^\top V_{L,\eta} : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$$

and

$$F_{U-L,\eta} = \{ p^\top V_{U,\eta} (Y_{U,\eta} - Y_{L,\eta}) 1_{\{ p^\top V_{L,\eta} > 0 \}} : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}.$$

First, the linear class $L_\eta := \{ p^\top V_{\eta} : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$ and the class of the indicators:

$$J_\eta := \{ 1_{\{ p^\top V_{\eta} > 0 \}} : \| p - p_0(q) \| \leq R N^{-1/2}, q \in S^{d-1} \}$$

have bounded uniform covering entropy (UCE), respectively:

$$\log \sup_{Q} N(\varepsilon, L_\eta, \cdot \| Q_{2}) \leq d \log (a/\varepsilon), \quad \text{for all } 0 < \varepsilon \leq 1,$$

$$\log \sup_{Q} N(\varepsilon, J_\eta, \cdot \| Q_{2}) \leq d \log (a/\varepsilon), \quad \text{for all } 0 < \varepsilon \leq 1.$$

The conclusions below follow from Lemma 8.3 of Chandrasekhar et al. (2011). The multiplication of the class L_η by a random variable $Y_{L,\eta}$ preserves UCE. Third, the product of the classes $L_\eta \cdot J_\eta$ has bounded UCE. Therefore, $F_{L,\eta}$ and $F_{U-L,\eta}$ have bounded UCE. Finally, the sum of the classes $F_{L,\eta}, F_{U-L,\eta}, A_\xi$ has bounded UCE.
7.4 Proofs of Section 4

Proof of Theorem 8. The nuisance parameter \(\eta = \{\eta_1(X), \eta_2(X), \eta_3(u, X)\} \) whose true value

\[
\eta_0 = \{s(0, X), s(1, X), Qy/D=1,S=1,X(u, X)\}.
\]

The notation \(\eta_{-k,0}, k \in \{1, 2, 3\} \) stands for the true value of \(\eta_{-k} \) obtained from \(\eta \) by excluding the \(k \)’th component of the nuisance parameter. Step 1. Derivation of \(\alpha_1(W, \eta) \). The nuisance parameter \(s(0, X) \) appears in (4.1) inside the quantile \(y_{1-s(0,X)/s(1,X)} \) and in the denominator of (4.1). The Gateaux derivative of the function \(\mathbb{E}[m_U(W, \eta)|X] \) with respect to \(\eta_1 \) at \(\eta_{1,0} = s(0, X) \) is equal to:

\[
\partial_{\eta_1} \mathbb{E}[m_U(W, \eta_{1,0}; \eta_{-1,0})|X] = \partial_{\eta_1} \mathbb{E}[Y_{1\gamma \geq \varnothing_{0}(x)(1-\eta_{1,0})/s(1,X,x)}|X,D=1,S=1] s(1,X) \Pr(D=0|X) \Pr(S=1,D=0)
\]

\[= y_{1-s(0,X)/s(1,X)} \Pr(D=0|X) \Pr(S=1,D=0) \]

The application of Lemma 4 gives the bias correction term:

\[
\alpha_1(W, \eta) = \gamma_1(X) \left(\frac{(1-D)S}{\Pr(D=0|X)} - \eta_1(X) \right),
\]

where the true value of \(\gamma_1,0(X) \) equals to:

\[
\gamma_1,0(X) = y_{1-s(0,X)/s(1,X)} \Pr(D=0|X) \Pr(S=1,D=0).
\]

Step 2. Derivation of \(\alpha_2(W, \eta) \). The nuisance parameter \(s(1, X) \) appears inside the quantile function in Equation (4.1). The Gateaux derivative of the function \(\mathbb{E}[m_U(W, \eta)|X] \) with respect to \(\eta_2 \) at \(\eta_{2,0} = s(1, X) \) is equal to:

\[
\partial_{\eta_2} \mathbb{E}[m_U(W, \eta_{2,0})|X] = - \frac{y_{1-s(0,X)/s(1,X)} s(0,X) \Pr(D=0|X) \Pr(S=1,D=0)}{s(1,X) \Pr(S=1,D=0)}.
\]

The application of Lemma 4 gives the bias correction term:

\[
\alpha_2(W, \eta) = \gamma_2(X) \left(\frac{DS}{\Pr(D=1|X)} - s(1,X) \right),
\]

59
where the true value of $\gamma_{2,0}(X)$ is equal to:

$$
\gamma_{2,0}(X) = -\frac{\gamma_1 - s(0, X)}{s(1, X)} \frac{\Pr(D = 0 | X)}{\Pr(S = 1, D = 0)}.
$$

Step 3. Derivation of $\alpha_3(W, \eta)$. The nuisance parameter $\eta_3(u, x) = Q_{Y|D=1,S=1,X=x}(u, x)$ appears in the numerator of (4.1). The application of Lemma 5 gives the bias correction term:

$$
\alpha_3(W, \eta) = -\gamma_3(X) \frac{1 - s(0, X)}{s(1, X)} \frac{\Pr(D = 0 | X)}{\Pr(D = 0, S = 1)} - 1 + s(0, X) / s(1, X),
$$

where the true value of $\gamma_{3,0}(X)$ is equal to:

$$
\gamma_{3,0}(X) = -\gamma_3(X) \frac{1 - s(0, X)}{s(1, X)} \frac{\Pr(D = 0 | X)}{\Pr(D = 0, S = 1)} - 1 + s(0, X) / s(1, X).
$$

Therefore,

$$
\alpha_3(W, \eta) = \gamma_3(X) \frac{1 - s(0, X)}{s(1, X)} \frac{\Pr(D = 0 | X)}{\Pr(D = 0, S = 1)} (1 - s(0, X) / s(1, X)) - 1 + s(0, X) / s(1, X).
$$

Step 4. Define the moment function $m_L(W, \eta)$ for the lower bound as:

$$
m_L(W, \eta) := \frac{D \cdot S \cdot \gamma_1(Y \leq \eta_3(\eta_1, \eta_2, X)) \Pr(D = 0 | X)}{\Pr(D = 0, S = 1) \Pr(D = 1 | X)}.
$$

The bias correction term $\alpha_L(W, \eta)$ for B_L is:

$$
\alpha_L(W, \eta) = \sum_{i=4}^{6} \alpha_i(W, \eta),
$$

where the bias correction terms for individual components are:

$$
\alpha_4(W, \eta) = \gamma_4(X) \left(\frac{(1 - D)S}{\Pr(D = 1 | X)} - \eta_1(X) \right),
$$

$$
\alpha_5(W, \eta) = \gamma_5(X) \left(\frac{DS}{\Pr(D = 1 | X)} - \eta_2(X) \right),
$$

$$
\alpha_6(W, \eta) = -\gamma_6(X) \left(1_{\{Y \leq \eta_5(\eta_3, \eta_4, X)\}} - \eta_0(X) \right),
$$

and the true values of the nuisance parameters above are:

$$
\gamma_{4,0}(X) = \gamma_{1}(s(0, X)/s(1, X), X) \frac{\Pr(D = 0 | X)}{\Pr(S = 1, D = 0)}.
$$
\[\gamma_{5,0}(X) = -\frac{y_{10}(0,X)}{s(0,X)} \Pr(D=0|X) \text{Pr}(S=1,D=0) \] and \[\gamma_{6,0}(X) = y_{p0}(X) \frac{s(1,X) \Pr(D=0|X)}{ \Pr(D=0,S=1) }. \]

Define the Neyman-orthogonal moment functions for the upper and the lower bound as

\[g_U(W, \xi_U) = m_U(W, \eta) + \alpha_U(W, \xi_U), \quad (7.13) \]
\[g_L(W, \xi_L) = m_L(W, \eta) + \alpha_L(W, \xi_L), \quad (7.14) \]

where the nuisance parameter \(\xi_U \) consists of the original nuisance parameter \(\eta \) and the functions \((\gamma_i)_{i=1}^3 \): \(\xi_U = \{ \eta, (\gamma_i)_{i=1}^3 \} \); the nuisance parameter \(\xi_L \) consists of the original nuisance parameter \(\eta \) and the functions \((\gamma_i)_{i=4}^6 \): \(\xi_L = \{ \eta, (\gamma_i)_{i=4}^6 \} \).

Step 5. To apply Lemma 17 and conclude that Assumption 3 holds, we should verify that the conditional Hessian of the moment function with respect to \(\eta(X) \) is bounded a.s. in \(X \).

Step 6. Verification of Assumption 4(3(b)). The first derivative \(\partial_\eta \mathbb{E}[m_U(W, \eta_0)|X] \) is a composition of the functions \((t_1,t_2) \to t_1/t_2, t \to tf(t) \), where \(f(\cdot) \) is the conditional density of \(Y \) given \(D = 1, S = 1, X = x \), and the functional elements of \(\Xi_N^L: u \to \eta_3(u,x) \). By Assumption 7, each of these functions is bounded and has a bounded first derivative. Therefore, Assumption 4 holds.

Having established the estimates of the bounds on the expected wage \(\mathbb{E}[Y_1|S_1 = 1, S_0 = 1] \), we proceed to deriving the bounds on the actual Average Treatment Effect on the always-employed:

\[\theta := \mathbb{E}[Y_1 - Y_0|S_1 = 1, S_0 = 1]. \]

The sharp bounds \(\theta_L, \theta_U \) on \(\theta \) are given by the following moment conditions:

\[\theta_L = g_L(W, \eta) - \frac{(1-D)SY}{\mathbb{E}[D=0|X]s(0,X)} - \mathbb{E}[Y|S=1,D=0,X] \left(\frac{(1-D)S}{\mathbb{E}[D=0|X]} - s(0,X) \right), \]
\[\theta_U = g_U(W, \eta) - \frac{(1-D)SY}{\mathbb{E}[D=0|X]s(0,X)} - \mathbb{E}[Y|S=1,D=0,X] \left(\frac{(1-D)S}{\mathbb{E}[D=0|X]} - s(0,X) \right), \]

where the term \(\frac{\mathbb{E}[Y|S=1,D=0,X]}{s(0,X)} \left(\frac{(1-D)S}{\mathbb{E}[D=0|X]} - s(0,X) \right) \) is correcting the bias of the estimation of the function \(s(0,X) \).

Remark 1 (Asymptotic Theory for the Average Treatment Effect in Endogenous Sample Selection of Lee (2008)). Suppose Assumption 7 holds. In addition, suppose the function \(\gamma_0(X) := \mathbb{E}[Y|S=1,D=0,X] \) is a
P-square integrable function $\gamma(X)$ **such that** $\|\gamma - \gamma_0\|_{L^p} \leq o(N^{-1/4})$. **Then, the Bounds Estimator obeys:**

$$
\sqrt{N} \left(\frac{\hat{\theta}_L - \theta_L}{\hat{\theta}_U - \theta_U} \right) \Rightarrow N(0, \Omega),
$$

(7.15)

where Ω is a positive-definite covariance matrix.

Proof of Theorem 10. Step 1. Verification of Assumption 3(1). Consider the original moment function:

$$
m(W, p, \eta) = p^\top (D - \eta(X)) \Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta(X))).
$$

First, we apply Lemma 7 (verified in Step 2) to shift to a smoothened moment function

$$
m_0(W, p, \eta) = p^\top (D - \eta(X)) \Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta_0(X))).
$$

Second, we apply Lemma 4 to the moment function $m_0(W, p, \eta)$ and derive the bias correction term

$$
\alpha_0(W, p, \eta) = -\gamma(p, X)[D - \eta(X)],
$$

where for each $p \in \mathcal{P}$ the function $\gamma(p, \cdot)$ is a P-square integrable function. The true value of the nuisance parameter $\xi(p, X) = \{\eta(X), \gamma(p, X)\}$ is:

$$
\xi_0(p, X) = \{E[D|X], E[(Y_U - Y_L)1_{(p^\top (D - \eta_0(X)) > 0)}|X]\}.
$$

Therefore,

$$
g(W, p, \xi(p)) = p^\top (D - \eta(X))[\Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta(X))) - \gamma(p, X)]
$$

has zero Gateaux derivative with respect to $\xi(p)$. Since the function $m_0(W, p, \eta)$ is linear in η, its second derivative w.r.t η is equal to zero. Therefore, Assumption 4 holds. Assumption 17 implies that Assumption 3 is satisfied. Step 2. Verification of Lemma 7. Assumption 1 of Lemma 7 follows from Assumption 7 (3).
Assumptions 3 and 4 follows from the Assumption 7 (6). Assumption 2 is verified below:

\[\sup_{p \in \mathcal{P}} \sup_{\eta \in \mathcal{T}_N} \mathbb{E} \left| p^\top V_\eta - p^\top V_{\eta_0} \right| 1_{0 < |p^\top V_{\eta_0}| < |p^\top V_\eta - p^\top V_{\eta_0}|} = \sup_{p \in \mathcal{P}} \sup_{\eta \in \mathcal{T}_N} \mathbb{E} \left| p^\top (\eta(X) - \eta_0(X)) \right| 1_{0 < |p^\top (D - \eta_0(X))| < |p^\top (\eta(X) - \eta_0(X))|} \leq \mathbb{E}_X \left| p^\top (\eta(X) - \eta_0(X)) \right| \int_0^{|p^\top (\eta(X) - \eta_0(X))|} \rho_p(D - \eta_0(X))|X(t,X)|dt \leq K_N \mathbb{E}_X (p^\top (\eta(X) - \eta_0(X)))^2 \leq K_N \|p\|^2 \mathbb{E}_X \|\eta(X) - \eta_0(X)\|^2 \lesssim o(N^{-1/2}). \]

Step 3. Verification of Assumption 3(2). The moment condition for \(\Sigma \) is insensitive to the biased estimation of \(\eta \):

\[\partial_\eta \mathbb{E} A(W, \eta_0) = 2\partial_\eta \mathbb{E} (D - \eta_0(X))(\eta(X) - \eta_0(X))^\top = 0. \]

Step 4. Verification of Assumption 5. The moment function \(g(W, p, \xi(p)) \) takes the form:

\[g(W, p, \xi(p)) = p^\top (D - \eta(X))(\Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta(X))) - \gamma(p, X)). \]

The expectation of \(g(W, p, \xi(p)) \) evaluated at \(\xi_0(p) = \{\eta_0(X), \gamma_0(p, X)\} \) is equal to:

\[L(p) := \mathbb{E} g(W, p, \xi_0(p)) = p^\top \mathbb{E} (D - \eta_0(X))(\Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta_0(X)))), \]

since \(\mathbb{E} \gamma_0(p, X)(D - \eta_0(X)) = 0 \). According to Lemma 3 of Chandrasekhar et al. (2011), the function \(L(p) \) is differentiable on \(\mathcal{P} \) with a uniformly continuous derivative:

\[\nabla L(p) := \mathbb{E}(D - \eta_0(X))(\Gamma(Y_L, Y_U - Y_L, p^\top (D - \eta_0(X))) =: G(p). \]

Moreover, the gradient \(G(p) \) is uniformly continuous on \(\mathcal{P} \). Verification of (3.14). The intermediate Value Theorem implies:

\[L(p) - L(p_0) = \nabla L(p_0)(p - p_0) = G(p_0)(p - p_0), \]

63
where \(p_0' \) is a point on the interval \([p_0, p]\). Therefore,

\[
G(p_0') - G(p_0) = G(p_0) - G(p_0') - (G(p_0) - G(p_0)) = G(p_0) - G(p_0) + o(\|p - p_0\|)
\]

where the last equality follows from the uniform continuity of \(G(p) \) that is established in Lemma 3 of Chandrasekhar et al. (2011).

Step 5. Verification of Assumption 4. Consider the setting of Lemma 19. Consider the function class \(A_\xi = \{p^T(D - \eta(X))\gamma(p,X), p \in \mathcal{P}\} \). Consider an envelope function \(F_\delta(X) = \|p\||D - \eta(X)||B_{UL} \). By Assumption 10, this function is integrable. Since the class is obtained by multiplying a linear function \(p \to p^T(D - \eta(X)) \) by a Lipshitz function \(\gamma(p,X) \), its uniform covering entropy is bounded. The application of Lemma 19 with the function class \(A_\xi \) implies that Assumptions 4(4) hold.

Step 6. Verification of Assumption 4. We use the following notation: \(Y_{p, \eta} := \Gamma(Y_L, Y_U - Y_L, p^T(D - \eta(X))) \), \(p \in \mathcal{P}, \eta \in \mathcal{T}_N \). Let us decompose the difference of \(g(W, p, \xi(p)) \) and \(g(W, p, \xi_0(p)) \)

\[
g(W, p, \xi(p)) - g(W, p, \xi_0(p)) = p^T(D - \eta(X))(Y_{p, \eta} - \gamma(p,X)) - p^T(D - \eta_0(X))(Y_{p, \eta_0} - \gamma_0(p,X))
\]

\[
= \underbrace{p^T(\eta(X) - \eta_0(X))\gamma(p,X)}_{I_1} + \underbrace{p^T(D - \eta_0(X))(\gamma(p,X) - \gamma_0(p,X))}_{I_2}
\]

\[
+ \underbrace{p^T(D - \eta_0(X))(Y_{p, \eta} - Y_{p, \eta_0})}_{I_3} + \underbrace{p^T(\eta_0(X) - \eta(X))(Y_{p, \eta} - Y_{p, \eta_0})}_{I_4}.
\]

Under Assumptions 7, the terms \(I_k, k \in \{1, 2, 3, 4\} \) exhibit mean square convergence with the rate \(o(N^{-1/4}) \):

\[
\langle EI_k \rangle^{1/2} \lesssim \lambda_{\min}^{-1} Y_{UL} \|\eta - \eta_0\|_{L^2} = o(N^{-1/4}),
\]

\[
\langle EI_2 \rangle^{1/2} \lesssim \lambda_{\min}^{-1} D\|\xi(p) - \xi_0(p)\|_{L^2} = o(N^{-1/4}),
\]

\[
\langle EI_3 \rangle^{1/2} \lesssim \mathbb{E}(p^T(D - \eta_0(X)))^2 1_{|p^T(D - \eta_0(X))| < |p^T(\eta(X) - \eta_0(X))|} B_{UL}
\]

\[
\lesssim \mathbb{E}|p^T(\eta(X) - \eta_0(X))|^2 1_{|p^T(\eta(X) - \eta_0(X))| < |p^T(D - \eta_0(X))|} B_{UL}
\]

\[
= o(N^{-1/4}),
\]

\[
\langle EI_4 \rangle^{1/2} \lesssim \lambda_{\min}^{-1} Y_{UL} \|\eta - \eta_0\|_{L^2}.
\]
Under Assumption 7, the terms $S_k, k \in \{1, 2, 3, 4\}$ exhibit mean square convergence:

$$g(W, p, \xi_0(p)) - g(W, p_0, \xi_0(p_0)) = p^\top (D - \eta_0(X))(Y_p, \eta_0 - \gamma_0(p, X)) - p_0^\top (D - \eta_0(X))(Y_{p_0, \eta_0} - \gamma_0(p_0, X))$$

$$= -p_0^\top (D - \eta_0(X))(\gamma_0(p, X) - \gamma_0(p_0, X)) - (p - p_0)^\top (D - \eta_0(X))\gamma_0(p, X)$$

$$+ p_0^\top (D - \eta_0(X))(Y_{p, \eta_0} - Y_{p_0, \eta_0}) + (p - p_0)^\top (D - \eta_0(X))Y_{p, \eta_0}.$$

By Assumption 7(9),

$$(\mathbb{E}S_1^2)^{1/2} \lesssim g'_N : g'_N \log(1/g'_N) = o(1)$$

holds. The bound on the mean square convergence of the other terms is as follows:

$$(\mathbb{E}S_2^2)^{1/2} \lesssim \|p - p_0\|DYUL = O(N^{-1/2}),$$

$$(\mathbb{E}S_3^2)^{1/2} \leq \left(\mathbb{E}[p_0'(D - \eta_0(X))]^2\right)^{1/2} 1_{|p^\top(D - \eta_0(X))| < |(p - p_0)^\top(D - \eta_0(X))|}$$

$$\leq \|p - p_0\|D = O(N^{-1/2}),$$

$$(\mathbb{E}S_4^2)^{1/2} \lesssim \|p - p_0\|DYUL = O(N^{-1/2}).$$

\[\square \]

Proof of Theorem 9. Step 1. Verification of Assumption 3(1). Consider the original moment function:

$$m(W, q, \eta) = q^\top \eta(D, X)\Gamma(Y_L, Y_U, q^\top \eta(D, X)).$$

First, we apply Lemma 7 (verified in Step 2) to shift to a smoothened moment function

$$m_0(W, q, \eta) = q^\top \eta(D, X)\Gamma(Y_L, Y_U, q^\top \eta_0(D, X)).$$

Second, we apply Lemma 16 to the moment function $m_0(W, q, \eta)$ and derive the bias correction term

$$\alpha_0(W, q, \xi) = -q^\top \eta(D, X)\mu_q(D, X) + q^\top \partial_D \mu_q(D, X),$$

where the nuisance parameter $\xi = \xi(X) = \{\eta(D, X), \gamma_L(D, X), \gamma_{U-L}(D, X)\}$ is a vector-valued P-square
integrable function that does not depend on q. The true value ξ_0 is:

$$\xi_0(q,X) = \{\partial_D \log f(D|X), \gamma_L(D,X), \gamma_{U-L}(D,X)\}.$$

For each $q \in S^{d-1}$ define the function

$$\mu_q(D,X) := \gamma_L(D,X) + \gamma_{U-L}(D,X)1_{\{q^\top \eta(D,X) > 0\}},$$

Therefore,

$$g(W,p,\xi) = m_0(W,q,\eta) + \alpha_0(W,q,\xi)$$

has zero Gateaux derivative with respect to ξ at ξ_0. Since the function $m_0(W,q,\eta)$ is linear in $\eta(D,X)$, its second derivative w.r.t $\eta(D,X)$ is equal to zero. Therefore, Assumption 4 holds. Assumption 17 implies that Assumption 3(1) is satisfied.

Step 2. Verification of the conditions of Lemma 7. Assumptions 1-4 of Lemma 7 follows from Assumptions 8 (1)-(3). Step 3. Verification of Assumption 4. Consider the setting of Lemma 19. Consider the function class

$$A_\xi = \{-q^\top V_\eta \mu_L(D,X) - q^\top V_\eta 1_{\{q^\top \eta(D,X) > 0\}}(\mu_U(D,X) - \mu_L(D,X)) + q^\top \partial_D \mu(D,X), q \in S^{d-1}\}.$$

This class is obtained in three steps:

1. The classes \mathcal{L}_η and \mathcal{I}_η are multiplied by random variables $\mu_L(D,X)$ and $\mu_U(D,X) - \mu_L(D,X)$, respectively.

2. The elements of the classes $\mathcal{L}_\eta \cdot \mu_L(D,X)$ and $\mathcal{I}_\eta \cdot (\mu_U(D,X) - \mu_L(D,X))$ are summed into $\mathcal{L}_\eta \cdot \mu_L(D,X) + \mathcal{I}_\eta \cdot (\mu_U(D,X) - \mu_L(D,X))$.

3. The class $\mathcal{L}_\eta \cdot \mu_L(D,X) + \mathcal{I}_\eta \cdot (\mu_U(D,X) - \mu_L(D,X))$ is added to a linear class $\{q^\top \partial_D \mu(D,X)\}, q \in S^{d-1}\}.$

By Lemma 8 of Chandrasekhar et al. (2011), Steps 1, 2 and 3 do not change the order of the uniform covering entropy of the function class.

\[
\begin{align*}
g(W, q, \xi(q)) - g(W, q, \xi_0(q)) &= q^\top (\partial_D \mu_q(D, X) - \partial_D \mu_q,0(D, X)) + q^\top (\eta(D, X) - \eta_0(D, X))(Y_{q, \eta(D, X)} - \mu_q(D, X)) \\
& \quad + q^\top \eta_0(D, X)(Y_{q, \eta(D, X)} - Y_{q, \eta_0(D, X)}) + q^\top \eta_0(D, X)(\mu_{q,0}(D, X) - \mu_q(D, X)).
\end{align*}
\]

By Assumption 8, the following bounds apply: \(\|K_1\|_{L_{p,2}} \leq g_N\), \(\|K_2\|_{L_{p,2}} \leq g_N\) and \(\|K_3\|_{L_{p,2}} \leq g_N\) where \(g_N = o(N^{-1/4})\). Furthermore, the bound on \(\|K_3\|_{L_{p,2}}\) is as follows:

\[
\|K_3\|_{L_{p,2}} \leq (\mathbb{E}|q^\top \eta_0(D, X)|^2 1_{0<|q^\top \eta_0(D, X)|<|q^\top (\eta(D, X) - \eta_0(D, X))|})^{1/2} \\
\leq (\mathbb{E}|q^\top (\eta(D, X) - \eta_0(D, X))|^2)^{1/2} \\
\lesssim \|\eta(D, X) - \eta_0(D, X)\|_{L_{p,2}} = o(N^{-1/4}).
\]

This step completes the proof of Theorem 9.

References

