We use machine learning to uncover regularities in the initial play of matrix games. We first train a prediction algorithm on data from past experiments. Examining the games where our algorithm predicts correctly, but existing economic models don’t, leads us to add a parameter to the best performing model that improves predictive accuracy. We then observe play in a collection of new “algorithmically-generated” games, and learn that we can obtain even better predictions with a hybrid model that uses a decision tree to decide game-by-game which of two economic models to use for prediction.

We use machine learning algorithms to discover new regularities in the choices that people make the first time they play a new game, and then use these regularities to improve existing models. Our problem is as follows: Given a payoff matrix, we predict the action most frequently chosen by experimental subjects in the role of the row player (i.e. the modal row-player action). Throughout, we evaluate out-of-sample performance, meaning we use different data for training the model and for testing it.\(^1\) We report both the model’s accuracy and its completeness, which we define as the percentage of the possible improvement over random guessing, as in Peysakhovich and Naecker (2017) and Kleinberg, Liang and Mullainathan (2017).\(^2\) Our improvements on existing theories of initial play are of interest in their own right, but our methods for using machine learning to extend and inform economic modeling are more general, and their success here suggests that machine learning can inform modeling in other domains within economics as well.

Our investigation proceeds in the following steps, which we first briefly summarize, and then explain in more detail below.

(A) First, we train a bagged decision tree algorithm to predict play in some past experiments. We study the games where machine learning models predict well and existing models do not, which leads us to formulate a one-parameter

\(^{1}\text{Increasing the model’s flexibility—e.g. by adding additional parameters—results in weakly better in-sample fit (where the training and testing data are the same). But increased flexibility need not result in higher out-of-sample fit, as more complex models are more likely to overfit the training data.}\)

\(^{2}\text{Camerer, Ho and Chong (2004)’s related “economic value” compares the expected payoff that results from best-responding to a theory’s forecast to the payoff that subjects actually obtained; this measure cannot be computed without a prediction of the entire distribution of play.}\)
extension of level-1 play Stahl and Wilson (1994); Nagel (1995), level-1(α), that makes better predictions.

(B) Next we run experiments on games with randomly determined payoffs, and use that data to algorithmically generate new games that are designed to display behaviors that are not captured by level-1(α).

(C) We then elicit play on the algorithmically generated games and train decision trees on the new data. These decision trees suggest that, in the new games, whether an action is part of a Pareto-dominant Nash equilibrium (henceforth PDNE) is a good predictor of whether it will be played.

(D) Neither the level-1(α) model nor PDNE performs well when evaluated on the combined data set of all games (lab, randomly-generated, and algorithmically-generated), but we obtain substantially better predictions by training a hybrid model that decides when to make the level-1(α) prediction and when to make predictions based on PDNE.

We now go into more detail for each of the steps above.

(A) Where and why does the algorithm perform better than level-1?

The initial data set we consider consists of play in symmetric 3×3 matrix games from six experimental game theory papers. In 72% of these games, the modal action was the action that maximizes expected payoff against the uniform distribution, i.e. the level-1 action. Although the level-1 model performs quite well, our relatively crude machine learning techniques (decision trees built on a set of features that describe strategic properties of the available actions) lead to a substantial improvement. To understand the regularities that allow this improvement, we then examine the 14 (out of 86) games where play is predicted correctly by our algorithm, but not by level-1. Each of these games has an action whose average payoffs closely approximate the level-1 action, but with lower variation in possible payoffs. Players are more likely to choose this “almost” level-1 action than the actual level-1 action. One explanation for this behavior is that players maximize a concave function over game payoffs, as if they are risk averse. This leads us to extend the level-1 model to level-1(α), which predicts the level-1 action when dollar payoffs u are transformed under $f(u) = u^\alpha$ (so that the usual level-1 model is level-1(1)). The performance of this model shows how atheoretical prediction rules fit by machine learning algorithms can help researchers discover interpretable and portable extensions of existing models.

(B) Algorithmic Experimental Design

The strong performance of the level-1 prediction rule, and the even better performance of level-1(α), are interesting in their own right, but leave open the question of how widely these findings extend beyond our specific set of labora-

3 The best-performing version of the Poisson Cognitive Hierarchy model, which extends the level-k model by assuming that types best respond to a Poisson distribution over lower level types, is equivalent to the level-1 model when its free parameter τ is estimated from training data. See Section II.B.

4 See Table 2 in Section II.B for accuracy and completeness estimates.

5 As we discuss in Section II.B, allowing for risk aversion parameter to generate better predictions has many precedents in the experimental literature.
tory games. We would like to understand how generally the level-1 model is a
good description of modal behavior, and also identify the games where it predicts
poorly and what behaviors it misses. To do this, we need data on play in new
games.

Our first step was to construct games with randomly generated payoffs. We
found that the level-1(α) model was an even better predictor of play in these
random games than in the lab games, making the correct prediction 89% of the
time. In principle we could still identify new regularities by examining data on a
sufficiently large set of randomly generated games, but it is more efficient to focus
attention on games where behavior is less likely to conform to the predictions of
level-1(α). To generate such games, we used an algorithmic approach: First, we
trained a rule for predicting the frequency of level-1(α) play based on the game
matrix. Then, we generated payoff matrices at random, filtered out all the games
where the predicted frequency of level-1(α) play was over 50%, and repeated until
we had a set of 200 games.

(C) Learning From the the New Data

We elicited play in these “algorithmically designed” games on Amazon Mechani-
cal Turk (MTurk) with 40 subjects per game. The data from these games showed
that the algorithmic game generation procedure was effective in producing games
where level-1(α) performed poorly. Moreover, a decision tree trained on this data
substantially outperforms level-1(α) on this data, suggesting that there are reg-
ularities in initial play that are not captured by level-1(α). Directly consulting
this tree did not yield new insights, since the best decision tree was complex and
hard to interpret. But a simple version of the decision tree (restricted to just
two decision nodes) returns predictions consistent with Pareto Dominant Nash
equilibrium (PDNE).

(D) Hybrid Models

Our findings from the new games demonstrate that level-1(α), while highly
predictive of play in the lab games and randomly-generated games, is outper-
formed in other games by models such as PDNE that depend on both player’s
payoffs, and so are more suggestive of strategic behavior. This suggests that we
could further improve both our predictions and our understanding of initial play
by learning which games are well-predicted by level-1(α) and which games are
better predicted by PDNE.

Thus, we combine the level-1(α) model and PDNE into a hybrid model that first
chooses between the level-1(α) model and PDNE, and then makes the correspond-
ing prediction. To do this, we train regression trees to forecast the accuracies of
these two ways of making predictions, and then use the model with the higher pre-
dicted accuracy. Our combination of the easily-interpreted level-1(α) model and
PDNE is a hybrid “meta-model” that uses an algorithmic structure to combine

6As discussed in Section III.A, this is partly because the games with randomly generated payoffs
tended to be “strategically simpler”: compared to the lab games, the games with random payoffs were
more likely to be dominance solvable, more likely to include a strictly dominated action, and less likely
to have three or more pure-strategy Nash equilibria.
simple behavioral/economic models. This hybrid model outperforms either of its parts, which shows that there are useful methods that straddle the “behavioral versus algorithmic” dichotomy.

A. Background Information and Related Work

As the Crawford, Costa-Gomes and Iriberri (2013) survey shows, there is an extensive literature that models initial play in matrix games. Most of these papers use some variant of “cognitive hierarchies,” whose starting point is the specification of a “level-0” or unsophisticated player who is assumed to assign equal probability to each action. The various models then use the level-0 type to build up a richer specification of play.\(^7\)

The simplest model of initial play is “level-1,” which assumes that the whole population plays a best response to level-0. As we will see, this model does a reasonably good job of predicting the most likely (i.e. modal) action in many games, but there is substantial room for improvement. Our goal is to identify alternative models that are not only better at predicting play, but also interpretable and portable. In this respect our work is analogous to the extensions of the Poisson Cognitive Hierarchy model proposed by Wright and Leyton-Brown (2014) and Chong, Ho and Camerer (2016), which modify the specification of level-0 play. Our paper is similar in spirit to Fragiadakis, Knoepfle and Niederle (2016), which tries to identify the subjects whose play has regularities that are not captured by cognitive hierarchies.

Our paper is also related to other papers that have focused on improving prediction of play in games, including Ert, Erev and Roth (2011), which compares the performance of various models of social preference (and their combinations) for predicting play in a class of extensive-form games, and Sgroi and Zizzo (2009) and Hartford, Wright and Leyton-Brown (2016), which develop deep learning techniques for predicting play. These papers differ from ours in that their emphasis is predictive accuracy, instead of deriving conceptual lessons or portable models.

There is also an extensive literature on the prediction of play in repeated interactions with feedback, where learning plays an important role; see e.g. Erev and Roth (1998), Crawford (1995), Cheung and Friedman (1997) and Camerer and Hua Ho (1999). In this paper, we consider only initial play, leaving open the question of how machine learning methods can contribute to our understanding of play in repeated settings.\(^8\)

Our hybrid models are a form of “mixture of experts” (Masoudinia and Ebrahimpour, 2014). They are related to methods such as “model trees” (Quinlan et al., 1992), which are decision trees that select between various parameters of linear regression models, and to “logistic model trees” (Landwehr, Hall and Frank, 2005),

\(^7\)Outside of the domain of matrix games, modelers sometimes specify other choices for level-0, for example Crawford and Iriberri (2007) study “truthful” level-0’s in an incomplete-information auction.

\(^8\)Camerer, Nave and Smith (2018) uses machine learning to predict play in a repeated bargaining game.
which replace linear regression with logistic regression to adapt model trees to classification tasks.

I. Predictions and Their Performance

A. Prediction Task

Throughout the paper we consider only 3 × 3 matrix games. The set of games is \(G = \mathbb{R}^{18} \), and we use \(g \) to denote a typical game.

The prediction task we study is a classification problem: given a game, we seek to predict the action most frequently chosen by the row player (i.e. the modal row-player action in the observed play). The classification rules for this task are easier to understand than those for predicting distributions, and thus allow for a clearer exposition of our methods.\(^9\)

For this problem, a prediction rule is a mapping \(f : G \to A_1 \) from games to the set of row player actions.

B. Prediction Rules

We evaluate several rules for predicting the modal action in a game. We first consider Nash equilibrium, the level-\(k \) models of Stahl and Wilson (1995), and the Poisson Cognitive Hierarchy model of Camerer, Ho and Chong (2004).

Uniform Nash.

Following Stahl and Wilson (1994, 1995) and Nagel (1995), define a player to be “level-0” if he randomizes uniformly over his actions. The level-1 prediction rule assigns to each game the best response to a level-0 player—we will also refer to these best responses as level-1 actions. When the level-1 prediction is not unique, we randomize over the set of level-1 actions.

Poisson Cognitive Hierarchy Model (PCHM).

Following Camerer, Ho and Chong (2004), define level-0 and level-1 as above and define the play of level-\(k \) players, \(k \geq 2 \), to be the best responses to a perceived distribution

\[
(1) \quad g_k(h) = \frac{\pi_r(h)}{\sum_{l=0}^{k-1} \pi_r(l)} \quad \forall \ h \in \mathbb{N}, \ h < k,
\]

\(^9\)In an earlier version of this paper we considered the problem of predicting the distribution of play. Our results there suggested that hybrid models have potential to be useful for that problem as well, although the improvements were smaller than those we report here.
over (lower) opponent levels, where \(\pi_\tau \) is the Poisson distribution with rate parameter \(\tau \).\(^{10}\) The predicted distribution over actions is based on the assumption that the actual proportion of level-\(k \) players in the population is proportional to \(\pi_\tau(\cdot) \). We predict the mode of this aggregated distribution.

Prediction rules based on game features.

In addition to the methods described above, we introduce prediction rules based on features that describe strategic properties of the available actions. For each action, we define an indicator variable for whether the action has each of the following properties: whether it is part of a pure-strategy Nash equilibrium, whether it is part of a pure-strategy Pareto-dominant Nash equilibrium (i.e. its payoffs Pareto-dominate the payoffs of all other Nash equilibria),\(^{11}\) whether it is part of an action profile that maximizes the sum of player payoffs (altruistic in Costa-Gomes, Crawford and Broseta (2001) and efficiency in Wright and Leyton-Brown (2014)), whether it is part of a Pareto-dominant Nash equilibrium, whether it is level-\(k \) (for each \(k \in \{1, 2, \ldots, 7 \} \)) and whether it allows for the highest possible row player payoff (optimistic in Costa-Gomes, Crawford and Broseta (2001) and max-max in Wright and Leyton-Brown (2014)) or maximizes the minimum row player payoff (pessimistic in Costa-Gomes, Crawford and Broseta (2001)). We also include a score feature for how many of the above properties each action satisfies as a richer expression of how appealing the action seems.

We use two algorithms for learning prediction functions. When we seek an interpretable output, we use a decision tree algorithm to learn predictive functions from these features to outcomes. Decision trees recursively partition the feature space and learn a (best) constant prediction for each partition element.\(^{12}\) To make predictions, we use the tree grown using this method that achieves the highest out-of-sample accuracy. Alternatively, when interpretability is less important than predictive accuracy, we use a bagged decision tree algorithm (also known as bootstrap-aggregated decision trees), which grows decision trees using bootstrapped samples of the data, and predicts based on a majority vote across the ensemble of trees.\(^{13}\) (Appendix ?? discusses the use of 2-layer neural nets, which do not differ substantially from the bagged decision trees in prediction accuracy here).

\(^{10}\)Throughout, we take \(\tau \) to be a free parameter and estimate it from the training data.

\(^{11}\)Note that a unique Nash equilibrium is always Pareto-dominant.

\(^{12}\)We consider trees that use only a single feature to determine the split at each node, and use the standard approach of building up the decision tree one node at a time using a greedy algorithm. Thus the first node is the best single split, the second node is the best second split conditional on the first, and so forth.

\(^{13}\)Bagged trees are generally considered more predictive but less interpretable than the single decision tree (Breiman, 1996).
C. Performance Measure

An observation is a pair \((g, a)\) consisting of a game \(g\) and the action \(a\) most frequently chosen by subjects in the role of the row player in that game, i.e., the modal row-player action. Given a set \(\{(g_i, a_i)\}_{i=1}^n\) of \(n\) games and their modal actions, we measure the accuracy of prediction rule \(f\) using

\[
\frac{1}{n} \sum_{i=1}^n \mathbb{1}(a_i = f(g_i)).
\]

This is the fraction of games \(g_i\) in which the predicted modal action \(f(g_i)\) is indeed the observed modal action \(a_i\) in that game.\(^{14}\)

We call the ideal prediction rule the rule that assigns to each game the observed modal action in that game, and so predicts perfectly. This benchmark is idealized because it uses knowledge of the test set, and also because the modal action in our data may not be the one we would have seen with more data. In Appendix ?? we report completeness measures relative to two alternative benchmarks that do not have these features.\(^{15}\) We use the prediction rule that corresponds to guessing uniformly at random as a naive baseline; this yields an expected accuracy of \(1/3\).

Unless explicitly stated otherwise, we report tenfold cross-validated prediction accuracies. This means that we divide the games into ten folds, use the games in nine of the folds for training, and use the remaining games for testing. The reported accuracy is averaged across the different choices of test fold. The reported standard errors for the cross-validated prediction accuracies are the standard deviation of prediction accuracies across choices of test sets, divided by \(\sqrt{10}\), because we use 10 folds (see Hastie, Tibshirani and Friedman (2009) for procedural details).\(^{16}\) Some of our prediction algorithms do not require estimation from a training set, and for these prediction algorithms we report the bootstrapped standard errors of the prediction accuracy.\(^{17}\)

II. Laboratory Games

A. Laboratory Data

Our data on play in laboratory experiments consists of all \(3 \times 3\) matrix games in a data set collected by Kevin Leyton-Brown and James Wright (see e.g. Wright

\(^{14}\) We consider a related accuracy measure in Appendix ??, where accuracy is the number of instances of play that are predicted correctly. With this accuracy measure, it is more important to correctly predict the modal action in games where the modal action is played more frequently. The performance ranking of the models could in principle change, but we find that it stays the same.

\(^{15}\) The associated completeness measures are higher for all models—and in some cases substantially higher—so the completeness measures that we report in the main text should be understood as conservative estimates.

\(^{16}\) This is a standard approach for computing the standard error of a cross-validated prediction accuracy, although it ignores correlation across the folds.

\(^{17}\) We re-sampled our data 100 times and evaluated the model on each of these data sets. We report the standard deviation of the prediction accuracies.
and Leyton-Brown (2014)). This data includes 40-147 observations of play in each of 86 symmetric 3×3 normal-games. Some of these observations were row players and some were column players, but since the games we consider are symmetric, we label all observed actions as row-player actions. Table 1 lists the number of games and the number of observations from each paper.

<table>
<thead>
<tr>
<th>Games</th>
<th>Total # of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl and Wilson (1994)</td>
<td>10 400</td>
</tr>
<tr>
<td>Haruvy, Stahl and Wilson (2001)</td>
<td>15 869</td>
</tr>
<tr>
<td>Haruvy and Stahl (2007)</td>
<td>20 2940</td>
</tr>
<tr>
<td>Stahl and Haruvy (2008)</td>
<td>18 1288</td>
</tr>
<tr>
<td>Rogers, Palfrey and Camerer (2009)</td>
<td>17 1210</td>
</tr>
<tr>
<td>Total</td>
<td>86 6887</td>
</tr>
</tbody>
</table>

The subject pool and payoff scheme differ across the six papers, but all of them use anonymous random matching without feedback: participants play each game only once, are not informed of their partner’s play, and do not learn their own payoffs until the end of the session.

B. Results

Table 2 reports the accuracies and completeness measures of our prediction rules on the lab data. When evaluating the PCHM, the best-performing τ (estimated from training data) returns the level-1 prediction rule, so we report the performance of these two models together.\(^{19,20}\)

\(^{18}\)Our data set does not have individual-level subject identifiers.
\(^{19}\)We find that prediction error is minimized at all values of τ in the interval $(0, 0.25]$. The values of τ in this range all yield prediction of the level-1 action for the games in our data sets.
\(^{20}\)PCHM (and other variants we consider) better fit the distribution of actions, as we showed in an earlier version of the paper.
Table 2—Predicting the modal action in lab data.

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Uniform Nash</td>
<td>0.42</td>
<td>13%</td>
</tr>
<tr>
<td>(0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-1/PCHM</td>
<td>0.72</td>
<td>58%</td>
</tr>
<tr>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.77</td>
<td>66%</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal prediction</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>

We find that the PDNE rule and the uniform Nash prediction rule are only slightly better than guessing at random. In contrast, the level-1 model achieves a substantial improvement, increasing completeness to 58%. The bagged decision trees based on game features improves further, achieving a completeness of 64%.

Out of the 86 lab games, modal play is level-1 in 62 of the games. Moreover, there are fourteen games in which the modal action is not level-1 but is correctly predicted by the bagged decision trees. The performance of the decision tree on those fourteen games gives us reason to believe that there is a systematic pattern to play in these games, beyond what is already captured by the level-1 model. We thus examine these games, reported in Appendix C, and search for additional regularities. A typical such game is displayed below:

\[
\begin{array}{ccc}
 a_1 & a_2 & a_3 \\
 a_1 & 47,47 & 51,44 & 28,43 \\
 a_2 & 44,51 & 11,11 & 43,91 \\
 a_3 & 43,28 & 91,43 & 11,11 \\
\end{array}
\]

In our data, more subjects choose action \(a_1\) than action \(a_3\). Note that here action \(a_3\) is the level-1 action, but the expected payoff to action \(a_1\) is not much smaller (42 vs. 48.33), and choosing action \(a_1\) yields significantly lower variation in possible row player payoffs.\(^{21}\) This is a general property of the fourteen games where the bagged decision tree predicted the modal action correctly, while level-1 did not: the modal action was “almost level-1” and had lower variation in payoffs.

We can modify the level-1 model to account for this regularity. Specifically, because the departure from level-1 behavior is consistent with a risk averse utility function over payoffs, we consider an alternative model in which players maximize against a uniform distribution of opponents’ play (as in level-1), but the dollar payoffs \(u\) are transformed under \(f(u) = u^\alpha\). We call the resulting model level-1(\(\alpha\)); the standard level-1 model is nested as \(\alpha = 1\). Table 3 compares the

\(^{21}\) Depending on which action the column player takes, the row player will receive one of \(\{43,91,11\}\) if he (the row player) chooses \(a_3\), compared to \(\{47,51,28\}\) if he chooses \(a_1\).
prediction error of level-1(\(\alpha\)) with the original model.\(^{22}\) We find that introducing this risk aversion parameter reduces prediction error substantially, achieving the prediction error of the best decision tree (with an estimated value \(\alpha^* = 0.625\)).

By focusing our attention on the 14 games where the tree predicted correctly but level-1 did not, our machine learning model allowed us to detect a new empirical regularity. Thus, the success of level-1(\(\alpha\)) demonstrates how atheoretical prediction rules can help us identify parametric extensions of existing models that generate better predictions.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1</td>
<td>0.72</td>
<td>58%</td>
</tr>
<tr>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.77</td>
<td>66%</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level-1((\alpha))</td>
<td>0.79</td>
<td>69%</td>
</tr>
<tr>
<td>(0.04)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3—Introducing risk aversion improves level-1.

Risk aversion strikes us as a natural interpretation of the \(\alpha\) parameter, and there is substantial evidence that small stakes risk aversion is a better description of laboratory play choices than is risk neutrality. That said, risk aversion is only one interpretation, and risk aversion for such small stakes is hard to reconcile with standard expected utility theory (see e.g. Rabin (2000)).\(^{23}\)

III. Generating New Games

The strong performance of the level-1 prediction rule, and our subsequent extension to level-1(\(\alpha\)), are interesting in their own right, but leaves open the question of whether this performance is special to our specific set of laboratory games. We would like to understand whether the level-1(\(\alpha\)) model is generally a good description of modal behavior. If there are games in which it does not predict well, we would like to know what these are, and what behaviors the model misses. To answer these questions, we need a larger and more varied set of games.

In a first attempt to generate such games (Section III.A), we constructed 200 games with randomly generated payoff matrices. These games do not have the special structure of the experimentally designed games, so they test the robustness of our findings, and also give us an opportunity to discover new behaviors.

\(^{22}\)Once again, the PCHM did not yield an improvement.

\(^{23}\)Rabin suggested loss aversion as an explanation for apparent risk aversion, but loss aversion is not applicable when all of the gambles are in the gains domain, as in Holt and Laury (2002) and our data. Fudenberg and Levine (2006, 2011) instead explain small stakes risk aversion as a combination of a self control problem and the “narrow bracketing” proposed by Shefrin and Thaler (1988). More recently, Khaw, Li and Woodford (2018) explains small stakes risk aversion as a result of “cognitive imprecision.”
We find that the level-1(\(\alpha\)) model is an even better predictor of modal play in these randomly-generated games than in the laboratory games. This finding is reassuring, since it tells us that the performance of level-1(\(\alpha\)) in the laboratory games was not a quirk of the design of these games. But it also means that studying play in random games is an inefficient way to uncover new regularities. To generate games in which the level-1(\(\alpha\)) action is not modal, we need a more sophisticated approach for game design.

One option would have been to hand-craft games where we conjectured that play would depart from level-1(\(\alpha\)). Instead, we tried to learn this structure from our data. To do this, we trained a machine learning algorithm to predict the frequency of play of the level-1(\(\alpha\)) action, and then selected games that achieved low predicted frequencies according to this algorithm. This “algorithmic game generation” is described in detail in Section III.B.

A. Random Games

Our first auxiliary set of games consists of 200 payoff matrices generated from a uniform distribution over \{10, 20, \ldots, 90\}\(^{18}\). This scale was chosen to match the lab experiments described above, although unlike in the previous section the randomly generated games are not symmetric. We presented each of 550 MTurk subjects with a random subset of fifteen games, and asked them to play as the row player.\(^{24}\)

Subjects faced the following incentives: On top of a base payment of $0.35, they were told that one of the fifteen games would be chosen at random, and their action would be matched with another subject who had been asked to play as the column player. Their joint moves determined payoffs that were multiplied by $0.01 to determine the subject’s bonus winnings (ranging from $0.10 to $0.90).\(^{25,26}\)

Relative to the random games, the games played in lab experiments have more pure-strategy Nash equilibria and a higher number of rationalizable actions, as shown in Figure 1. These differences are large, suggesting that the set of lab games is indeed different from what we would expect in a random sample.

\(^{24}\)Each game was shown to 25-58 subjects, and the average number of responses per game was 41.25.
\(^{25}\)We restricted the subject pool to MTurk participants in the United States who had an approval rate of 75% or higher. Subjects spent an average of seven minutes on the task, and the average payment was $0.93, or $8.14 an hour. (This is a typical hourly wage for MTurk.) The minimum payment was $0.45 and the maximum payment was $1.25; the standard deviation of payments was $0.23. The complete set of instructions can be found in the Online Appendix.
\(^{26}\)In addition to eliciting play, we asked subjects to volunteer a free-form description of how they made their decisions. A selection of answers can be found in the Online Appendix.
Table 4 reports prediction accuracies for this new data set. We find that level-1(α) again improves upon the level-1 model. Moreover, both models perform very well—in fact, achieving higher predictive accuracies than they did on the lab data. The level-1(α) model predicts the modal action correctly in 92% of new instances, and achieves 88% of the achievable improvement over random guessing. (Note that in contrast to the lab data, the level-1 variants are not outperformed by the best decision tree.)

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Uniform Nash</td>
<td>0.57</td>
<td>36%</td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.86</td>
<td>79%</td>
</tr>
<tr>
<td>Level-1</td>
<td>0.87</td>
<td>81%</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.92</td>
<td>88%</td>
</tr>
<tr>
<td>Ideal prediction</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>

27 The value of α estimated on this data set is α = 0.41.
28 Although the level-1 model can always be reproduced by the decision tree algorithm given the set of features we have defined, the estimated tree varies depending on the training data. Table 4 thus says that it would be better to simply force the decision tree to use the level-1 model, instead of giving it the flexibility to learn alternative models from our feature set. Note also that there may well be other feature sets and other learning algorithms that would do better than the level-1 model here.
The improved performance of level-1 here may be due to differences between the games that were crafted by experimenters and those with randomly generated payoffs, as discussed above. A second possibility is that the improvement is driven by differences between the laboratory subjects and the MTurk subjects. Indeed, we might expect that MTurk subjects are less sophisticated about the strategic aspects of the game, and hence are more likely to choose the level-1 action. To separate this subject-based explanation from the previous game-based explanation, we ran another experiment in which we asked MTurk subjects to play the lab games. In this new data, the level-1 model achieved a prediction accuracy of 0.68, which is much closer to the prediction accuracy of 0.72 we found for the lab games (Table 2) than the accuracy in the random games of 0.87 (Table 4). This suggests that the improved performance of level-1 on the new data set of randomly generated games is driven at least in part by the difference in the strategic structures of the games—our subsequent results will reinforce this view.29

Collectively, these results reveal that the structure of the laboratory games made level-1 play less prevalent, which suggests that subjects are most likely to depart from level-1 play exactly in games that are “strategically interesting.” Thus, to identify regularities in play beyond level-1(\(\alpha\)), we need more games that will induce such behaviors. One approach would be to hand-craft games along the lines of the original lab games, or to select games with specific features expected to lead to interesting findings, as in Stahl (2000). Instead, as described in subsection III.B, we automated the game generation procedure by conjecturing many different strategic features that could be relevant, and then using machine learning to select which games were more likely to induce departures from level-1(\(\alpha\)) play.

B. Algorithmic Experimental Design

We first trained a bagged decision tree algorithm on the data in both the lab games and the randomly-generated games to predict the frequency which which the level-1(\(\alpha^*\)) action was played. (Unlike the previous bagged classification trees, here we use an ensemble of regression trees, which each individually predict a continuous-valued outcome. The predictions of the different trees are averaged for out-of-sample prediction.) Throughout, we fix \(\alpha^* = 0.625\) (our estimate of \(\alpha\))

29 Many authors have considered how much behavior in laboratory experiments resembles behavior on MTurk. While there are some differences, the consensus seems to be that the two types of data are similar. See e.g. Paolacci, Chandler and Ipeirotis (2010) “experimenters should consider Mechanical Turk as a viable alternative for data collection”; Rand (2012) “...evidence that data collected (on MTurk) is valid, as well as pointing out limitations”; Mullinix et al. (2015) “The results reveal considerable similarity between many treatment effects”; Thomas and Clifford (2017) “...insufficient attention is no more a problem among MTurk samples than among other commonly used convenience or high-quality commercial samples, and...that employing rigorous exclusion methods consistently boosts statistical power without introducing problematic side effects.” Finally, Snowberg and Yariv (2018) find that behavior in their MTurk data is closer to that in their nationally-representative survey data than is the behavior in their student data.
These trees were built on a feature set describing various strategic properties of the game (see Appendix B.B2 for the complete feature set), chosen based on our conjectures of what might determine the attractiveness of the level-1(α^*) action.

For example, one feature we thought might matter is whether the level-1 action is part of a pure-strategy Nash equilibrium. Another feature is the difference between the sum of possible row player payoffs given play of the level-1 action and the next highest row sum. In the game below, this “row sum gap” takes a value of 20:

<table>
<thead>
<tr>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>Row Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>40</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>100</td>
<td>130</td>
</tr>
</tbody>
</table>

Yet another feature is whether the game contains a Nash equilibrium that yields “high payoffs” (specifically, at least 75% of the largest payoff sum\(^{31}\)) and is not level-1—for example, the action profile (a_3, a_3) above.

After training a tree ensemble to predict the frequency of play of the level-1(α^*) action, we used it to generate a new data set of symmetric games. We started by randomly generating a set of 200 games whose row player payoffs were selected from the empirical payoff distribution from the lab data set, with the column player payoffs chosen symmetrically. Then, we applied our algorithm to predict the frequency of play of the level-1(α^*) action in those games. We eliminated all games in which the predicted frequency was larger than $\frac{1}{2}$, and randomly generated new games to replace them, repeating this procedure until all games were predicted to have less than $\frac{1}{2}$ frequency of play of the level-1(α^*) action.\(^{32,33}\)

A typical game generated by the algorithm is the following:

<table>
<thead>
<tr>
<th>a1</th>
<th>a2</th>
<th>a3</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>55</td>
<td>37</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>70</td>
</tr>
</tbody>
</table>

Note that this game has three pure-strategy Nash equilibria: (a_1, a_1), (a_2, a_2), and (a_3, a_3). The level-1(α^*) action is a_2, but the expected payoff of a_1 against

\(^{30}\)We needed to fix the value of α since we could not anticipate the best-fit value of α for play on the yet-to-be designed games.

\(^{31}\)We chose the cutoff 75% somewhat arbitrarily, although in the subsequent Section V we introduce variations on this feature that use different cutoffs.

\(^{32}\)The threshold $\frac{1}{2}$ was chosen somewhat arbitrarily. Our tree ensemble very rarely predicted frequencies lower than 0.4, so our choice of $\frac{1}{2}$ was guided by our desire to both have a low threshold and also have sufficiently many instances where the frequency of level-1(α^*) is predicted to be below the threshold.

\(^{33}\)Our approach is related in spirit to adversarial machine learning Huang et al. (2011) and generative adversarial networks Goodfellow et al. (2014) in that we are generating instances to trick the level-1(α^*) model. Here, though, our goal is to design new instances for data collection.
uniform play is close to the payoff from \(a_2 \), and \(a_1 \) is also part of a Pareto-dominant Nash equilibrium.

In general, while the randomly-generated games were strategically simple, the algorithmically designed games exaggerate strategic complexity. For example, Figure 2 replicates Figure 1 with the new games added in, and shows that the distribution of the number of pure-strategy Nash equilibria in the new games (as well as the number of rationalizable actions) first-order stochastically dominates the corresponding distribution in the lab games.

We elicit play in these new games on MTurk (using an identical experiment to the previous section), collecting 40 observations per game.

![Figure 2](image)

Figure 2. (a) Percentage of games with zero, one, two, three, or four pure strategy Nash equilibria (no games had more than four Nash equilibria); (b) Percentage of games with one, two, or three actions surviving iterated elimination of (pure-strategy) dominated actions.

IV. Preliminary Lessons from the New Data

Table 5 reports the prediction accuracies of our best decision tree and of the models used above. We evaluate these approaches first on the new set of algorithmically designed games, and then separately on the full data set of games (consisting of the lab games, the randomly-generated games, and the algorithmically designed games).
Table 5—Predicting the modal action

<table>
<thead>
<tr>
<th></th>
<th>Algo Games Only</th>
<th>All Games</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Completeness</td>
</tr>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Uniform Nash</td>
<td>0.43</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Level-1</td>
<td>0.36</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.41</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.73</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Ideal prediction</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>

The algorithmically designed games were selected to be poor matches for the
level-1 models, and we find that they succeed in this goal: the level-1(α) model
correctly predicts the modal action in only 38% of games, achieving a complete-
ess of 7%. (Recall that level-1(α) achieved an completeness of 58% for the lab
games and 84% for the randomly-generated games.) In the aggregated data, the
accuracy of level-1(α) is 0.66 and its completeness is 34%.34

The ensemble of decision trees is complex and hard to interpret, so we present
the best 2-split decision tree for the algorithmically-designed games instead. This
single tree achieves an accuracy of 0.62, which is substantially better than that
of either uniform Nash or level-1(α) but below the accuracy of 0.73 of the bagged
decision trees. The tree is shown in Figure 3, and is very simple: if there is a
Pareto-dominant Nash equilibrium, the tree predicts it; otherwise the tree defaults
to action a_3.35

Motivated by this tree, we introduce the following rule:

Pareto-Dominant Nash Equilibrium (PDNE).

We predict at random from the set of row player actions a_i such that (a_i, a_j)
is a pure-strategy Nash equilibrium whose payoffs Pareto-dominate the payoffs in
every other pure-strategy Nash equilibrium. If this set is empty, we predict an
action uniformly at random.

34The best-performing value of α for the algorithmically designed games is 0.05, but given that play
in these games is poorly predicted by the level-1(α) model, it is not clear that this parameter estimate
has a meaningful economic interpretation. The best-performing value of α for the aggregated data sets
is 0.41.

35When we report trees such as this one, we report the tree estimated on the full data set, since the
trained tree potentially fluctuates across choices of training data. This 2-split tree was produced on seven
of the ten training sets.
This PDNE rule substantially outperforms level-1(α) on the algorithmically generated games, achieving an accuracy of 0.65 and completeness of 48% (compare to 0.38 and 7%). It does not outperform level-1(α) on the set of all games, where it achieves an accuracy of 0.56 and completeness of 34% (compare to 0.68 and 52%).

The differences in play and model fit across data sets highlights the importance of the experimental-design process for the resulting findings. It also raises the question of which distributions over games are the most economically relevant. We find this question difficult to answer, in part because 3×3 games are themselves a simplified representation of real-world interactions. In what follows we will report results on the combined set of all games.

Note also that while PDNE and level-1(α) respectively achieve accuracies of 0.56 and 0.68 on our full data set, the bagged decision trees achieve an accuracy of 0.74. This increased accuracy suggests that there is additional structure to discover. One possibility is that there are regularities beyond PDNE and level-1(α). Another possibility is that PDNE and level-1(α) are good predictors of play in different games, so that neither model on its own performs well on our aggregate data set. Table 6 provides evidence supporting the second hypothesis:

This suggests that, if we can predict when PDNE is a good model of play and when level-1(α) is better, we can improve upon both component models. We explore this idea in the next section.

Note that the differences in the performance of PDNE across these data sets is not simply because there are more Pareto-Dominant NE in the algorithmically-generated games. In fact, the fraction of Pareto-Dominant NE is largest in the set of random games (70%), and comparable in the laboratory games (52%) and the algorithmically designed games (59%).
Table 6—There are many games where level-1(α) predicts correctly while PDNE does not, and vice versa.

<table>
<thead>
<tr>
<th></th>
<th>Level-1(α)</th>
<th>Right</th>
<th>Wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDNE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td></td>
<td>155</td>
<td>115</td>
</tr>
<tr>
<td>Wrong</td>
<td></td>
<td>175</td>
<td>41</td>
</tr>
</tbody>
</table>

V. Hybrid Models

There are many possible ways to make predictions by combing level-1(α) and PDNE. Perhaps the simplest is to use a “lexicographic rule” that predicts the PDNE when a PDNE exists and otherwise uses level-1(α). This rule improves on both PDNE and level-1(α) in our set of all games (due to its superior performance on the algorithmically generated games), but does worse than level-1(α) for the set of lab games (which may have been designed to elicit non-Nash play) and also for the random games.\(^{37}\)

We would like to find a better way to combine these two prediction rules, and moreover do so in a way that can be extended to combine arbitrary prediction rules. To this end, we take the following approach: First, we estimate each model on the training data (if it has free parameters—note that PDNE does not). We then use the estimated model to predict the modal action in each game in the training data. Thus for each model we have a binary vector of accuracy outcomes (“correctly predicted” versus “incorrectly predicted”) across the games in the training data. We then fit a regression tree\(^ {38} \) to predict a probability with which the model chooses the the correct action, based on the feature set described above in Section III.B (and reported in Section B.B2). This returns, for each model, an algorithm that maps game features into a probability that the model’s prediction is correct.

On out-of-sample games, we use the “accuracy prediction algorithms” to predict the probability of an accurate prediction under either model. We then select the model with the larger (predicted) accuracy, and use that model to predict the modal action. This procedure is depicted in Figure 4:

This model selection procedure is a form of “mixtures of experts” (Masoudnia and Ebrahimpour, 2014). There are many possible ways to use game features, and we do not claim that ours is optimal. We chose it because it is relatively simple to implement and interpret. Even with this simple formulation, we were able to achieve notable improvements in performance, but more sophisticated methods might do better still.

Hybrid models are closely related to model trees (Quinlan et al., 1992; Landwehr,

\(^{37}\)The lexicographic rule has accuracy 0.72 on the combined data, 0.62 on the lab games, and 0.71 on the random games.

\(^{38}\)Regression trees are decision trees where the predicted outcome is a real number.
Hall and Frank, 2005), which are decision trees whose branches lead to linear (or logistic) regression models. The hybrid models we use similarly embed models at the nodes of a decision tree, but our component models are simple economic/behavioral models. Our procedure is also related to the literature on forecast combinations (e.g. Timmermann (2006)), where different structural models are averaged using weights determined according to past performance.\(^{39,40}\)

In general, the regression trees used to predict the accuracies of the two component models can vary across folds of cross-validation. But for our hybrid model combining level-1(\(\alpha\)) with PDNE, the best-cross validated prediction trees (reported in Appendix ??) have only two splits each, and are the same on 9 of the 10 folds. The resulting rule for model assignment is depicted in Figure 5 below:

This tree partitions the space of games into four classes. In two of these classes, the tree predicts a PDNE.\(^{41}\) In the other two classes, the tree uses level-1(\(\alpha\)). Of the games assigned to level-1(\(\alpha\)), 74 games have a PDNE, so the tree does not always pick the PDNE model even when a Pareto-dominant Nash equilibrium exists.\(^{42}\)

\(^{39}\)For example, the weights might correspond to posterior probabilities as in Bayesian model averaging.

\(^{40}\)For example, Negro, Hasegawa and Schorfheide (2016) combines different dynamic stochastic general equilibrium (DSGE) models for improvements in forecasting real GDP growth. Our work differs in that we assign a single model to each game, using properties of the game itself to determine this assignment, rather than assigning the same average to all of the games.

\(^{41}\)Note that when there is a profile that maximizes both player’s payoffs, it is guaranteed to be a PDNE, so the tree only uses PDNE to make its prediction when there is a PDNE to predict. Note also that a unique Nash equilibrium is by definition a PDNE.

\(^{42}\)We do not include the source of the game—lab-designed, algorithmically-designed, or randomly-generated—as a feature for the tree to use. Nevertheless it is possible that other features proxy for this, and the tree assigns games to models based on which data set the game belongs to. This turns out not to be the case: of the games assigned to PDNE, 13 come from the lab data set, 101 from the
The specific feature of whether the symmetric NE achieves 75% of the max possible sum of player payoffs was chosen somewhat arbitrarily, but the prediction accuracy of the hybrid model is essentially unchanged when we replace 75% with 70% or 80%. (The accuracy is the same up to two significant figures.) Our qualitative takeaway from this decision tree is that the important feature is whether there is a symmetric NE with “high” payoffs that does not include the level-1 action.

We report the accuracies of PDNE and level-1(α) on each of these four classes in Figure 5. By inspecting the tree, we see that only a little accuracy is gained by using PDNE in the 114 games with a level-1 action that is part of a Pareto-dominant Nash equilibrium, as here both PDNE and level-1(α) predict quite well. The gains from using PDNE are much greater in the other 116 games randomly-generated games, and 116 from the algorithmically-generated games.

43 We set $\alpha = 0.41$, which is the estimate on the full data set. In practice the value of α fluctuates across the different choices of training data, so the prediction accuracies reported above are not exact.

44 Note that there is a gap between the feature that describes whether the level-1 action is part of the Pareto-dominant Nash equilibrium and this hybrid model, because the latter predicts the level-1(α) action. Since the level-1(α) action and the level-1 action are not always the same, there are multiple instances in which the level-1(α) prediction is wrong even though the level-1 action is part of the unique Pareto-dominant Nash equilibrium.
where it is used. In these games, PDNE is right 72% of the time while level-1(α) is worse than guessing at random. These games all contain a very good Nash equilibrium (Pareto-dominant, symmetric, yields maximal payoffs for both players) that does not correspond to the level-1 action. For example:

\[
\begin{array}{ccc}
 & a_1 & a_2 & a_3 \\
 a_1 & 90, 90 & 30, 80 & 45, 30 & 72\% \\
 a_2 & 80, 30 & 55, 55 & 37, 5 & 28\% \\
 a_3 & 30, 45 & 5, 37 & 70, 70 & 0\% \\
\end{array}
\]

In this game, action \(a_2\) is level-1(α) but the action profile \((a_1, a_1)\) is a Pareto-dominant Nash equilibrium and also maximizes both player’s payoffs. We expect that PDNE will be a better prediction than level-1(α) in similar games beyond our data set.

Notice that the hybrid model is not guaranteed to improve upon the (out-of-sample) predictive performance of either base model, as it runs the risk of overfitting due to its greater complexity. Nevertheless, we find that “level-1(α) + PDNE” substantially improves upon the performance of both base models in the data set of all games. Moreover, for the lab data we used to begin our analysis, we find that the hybrid model weakly improves upon the level-1(α) model as well.45

Table 7—The level-1(α) + PDNE hybrid model improves upon the performance of both component models.

<table>
<thead>
<tr>
<th></th>
<th>All Games</th>
<th>Lab Games</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Completeness</td>
</tr>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>PDNE</td>
<td>0.56</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.68</td>
<td>52%</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Level-1(α) + PDNE</td>
<td>0.79</td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>Ideal prediction</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>

Our analysis above demonstrates that we can improve predictions by combining two interpretable models. In principle, hybrid models can be built from a wide array of component models. For example, instead of combining two behavioral/economic models as we do here, we could combine a model such as level-1(α) with an algorithmic model, such as lasso or logistic regression. This

45The hybrid model also outperforms both component models in the set of algorithmically generated games. The hybrid model does not improve on level-1(α) on the random games where level-1(α) already achieves a predictive accuracy of 91%.
kind of model would further blur the distinction between “behavioral” and “algorithmic” approaches. For more complex problem domains, such as predicting the distribution of play, we might consider hybrid models that combine two different structural models of play—for example, PCHM and a mixture-model of level-k types (as in Costa-Gomes, Crawford and Broseta (2001)). Yet another possibility is to combine a model based on the game matrix (as all of the approaches discussed so far are) with more “unconventional” models that use auxiliary data, such as crowd predictions. We leave pursuit of these other interesting hybrid models to future work.

VI. Conclusion

This paper uses approaches from machine learning algorithms not only to improve predictions of initial play, but also to improve our understanding of it. We use these tools to develop simple and portable improvements on existing models. One way we improve existing models is by studying games where machine learning algorithms predict well, but existing models do not. In Section II, we showed how this exercise helped us realize that adding a risk aversion parameter to the level-1 model generates better out-of-sample predictions of the most likely action. We developed even better predictions by generating data on new games where level-1(α) performs poorly, identifying a simple alternative (PDNE) that does better on this new domain, and then using a hybrid model that learns which of the two sub-models should be applied to a given game.

Along with papers such as Wright and Leyton-Brown (2014), these results show how a combination of machine learning and behavioral models can improve the prediction and understanding of play in games. These methods are not special to the problem of predicting initial play in matrix games, so we expect that the proposed approaches can be used to improve prediction in other domains, both in game theory (e.g. the effect of learning and feedback on play in static games, or initial play in extensive-form games) and in other areas of economics such as decision theory, as well as in social science more generally.

We offer a few final comments on interpretations of our results as well as some potential future directions:

1) Although we studied a relatively large and diverse set of games compared to the literature, we restricted attention to the relatively simple setting of 3×3 matrix games. When the test set of games is small or less varied in structure, simple low-parameter models such as level-1(α) have an advantage over models with more parameters, which may overfit. In settings with more diverse behavior, richer models may perform better, just as the hybrid models improved on the level-1(α) model in predicting play in the algorithmically generated games.

2) Our finding that the performance ranking of our different models depends on which data set we examine raises an important caution about generalizing from experiments that were designed to highlight certain behaviors or to make specific points.
3) We did not use subject identifiers, so we could not predict or differentiate across the behavior of different subjects. Another interesting direction would be to use similar methods to categorize subjects (instead of games), assigning different groups of subjects different models of play as in Fragiadakis, Knoepfle and Niederle (2016).

4) We used hand-crafted features to train the rule for selecting between models. It is possible to simultaneously learn the prediction rule and the feature representation of the game, as in the deep learning methods of Hartford, Wright and Leyton-Brown (2016), but at present these techniques do not yield interpretable features.

5) Although many situations are intermediate between the “pure initial play” case we study here and the long-run outcomes studied in models of learning in games (Fudenberg and Levine, 1998), the distribution of initial play in a game can have a major role in determining the evolution of subsequent play. Thus, we expect that better modeling of initial play can improve predictions of medium and long run behaviors. We leave this direction for subsequent work.

REFERENCES

Appendix

Feature Sets

B1. Features Describing Specific Actions

For each row player action a_i, we include an indicator variable for whether that action:
• is part of a pure-strategy Nash equilibrium
• is part of an action profile that maximizes the sum of player payoffs.
• is part of a Pareto-dominant pure-strategy Nash equilibrium (its payoffs Pareto-dominate the payoffs in every other pure-strategy Nash equilibrium)
• is part of an action profile that is Pareto-undominated
• is “max-max”: a_i is played in the profile that maximizes the row player’s payoff
• is “max-min”: a_i maximizes the minimum, over the column player’s actions, of the row player’s payoff
• is level k for each $k = 1, 2, 3$
• is part of a “good” Nash equilibrium, meaning that the sum of player payoffs in this Nash equilibrium is at least $3/4$ of the largest possible player payoff sum
• is part of a symmetric good Nash equilibrium

Additionally, we include a score feature for each action, which is the number of the following properties that it satisfies: part of a Nash equilibrium, level-1, level-2, level-3, level-4, level-5, level-6, level-7, part of a Pareto-dominant Nash equilibrium, part of an action profile that maximizes the sum of player payoffs.

B2. Features Describing Properties of the Game

We define features for the following properties of the payoff matrix:
• number of pure strategy Nash equilibria
• number of actions that survive iterated elimination of strictly dominated pure strategies
• indicator for whether there is at least one action that is strictly dominated
• number of strictly dominated actions
• existence of an action that simultaneously maximizes both players’ payoffs
• number of different actions that yield the maximal row player payoff (for some column player action)
• number of different actions that are part of an action profile that maximizes the sum of player payoffs
• number of different level-1 actions
• number of actions that are simultaneously level-1, achieve the highest possible row-player payoff (for some column player action), and achieve the highest possible sum of player payoffs (for some column player action)
• number of actions that are level-k for some $k \in \{1, 2, \ldots, 7\}$
• indicator for whether there is some row player payoff that is 100
• number of actions that yield a row player payoff of 100
• indicator for whether some level-1 action is also level 2
• indicator for whether some level-1 action also yields the largest possible row player payoff (max-max)
• indicator for whether some level-1 action maximizes the sum of player payoffs (max-sum)
• largest number n where some row player action satisfies n of the following properties: level-1, max-max, max-sum
• indicator for whether some level-1 action is part of a Pareto-dominant pure-strategy Nash equilibrium
• indicator for whether some level-1 action is also part of a pure-strategy Nash equilibrium
• indicator for whether there is a symmetric pure-strategy Nash equilibrium
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of player payoffs
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and includes the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and does not include any level-k row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible sum of player payoffs
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and includes the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 70% of the largest possible sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 80% of the largest possible sum of player payoffs, and does not include the level-1 row player action
• indicator for whether some symmetric Nash equilibrium achieves 75% of the largest possible sum of player payoffs, and does not include any level-k row player action
• indicator for whether the best sum of player payoffs in the matrix exceeds—by at least \(p \)% of the max row player payoff in the matrix—the best payoff sum when the row player chooses a level-\(k \) action (where \(p \in \{20, 40, 60\} \))
• indicator for whether the row sum gap, defined as the difference between the sum of possible row player payoffs when the row player chooses his level-1 action (and the column player’s action is allowed to vary), and the next highest row sum, is at least 25% of the max row player payoff in the matrix\(^{47}\)

\(^{46}\)We note that in this feature and the others below using %’s, the % was chosen somewhat arbitrarily; future work may consider estimation of the optimal choice of what % to use.

\(^{47}\)Prediction accuracies vary only slightly when we change this percentage to 20% or 30%.
Games where Bagged Trees Outperform Level-1

<table>
<thead>
<tr>
<th>20, 20</th>
<th>30, 40</th>
<th>100, 30</th>
<th>10, 10</th>
<th>100, 0</th>
<th>20, 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>40, 30</td>
<td>40, 40</td>
<td>60, 0</td>
<td>0, 100</td>
<td>70, 70</td>
<td>30, 50</td>
</tr>
<tr>
<td>30, 100</td>
<td>0, 60</td>
<td>40, 40</td>
<td>20, 20</td>
<td>50, 30</td>
<td>40, 40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25, 25</th>
<th>30, 40</th>
<th>100, 31</th>
<th>10, 10</th>
<th>100, 0</th>
<th>40, 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>40, 30</td>
<td>45, 45</td>
<td>65, 0</td>
<td>0, 100</td>
<td>70, 70</td>
<td>50, 50</td>
</tr>
<tr>
<td>31, 100</td>
<td>0, 65</td>
<td>40, 40</td>
<td>20, 40</td>
<td>50, 50</td>
<td>60, 60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0, 0</th>
<th>60, 100</th>
<th>50, 50</th>
<th>45, 45</th>
<th>50, 41</th>
<th>21, 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>100, 60</td>
<td>20, 20</td>
<td>50, 40</td>
<td>41, 50</td>
<td>0, 0</td>
<td>40, 100</td>
</tr>
<tr>
<td>50, 50</td>
<td>40, 50</td>
<td>52, 52</td>
<td>40, 21</td>
<td>100, 40</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0, 0</th>
<th>35, 55</th>
<th>100, 30</th>
<th>15, 15</th>
<th>0, 0</th>
<th>0, 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>55, 35</td>
<td>40, 40</td>
<td>20, 0</td>
<td>0, 0</td>
<td>90, 90</td>
<td>10, 0</td>
</tr>
<tr>
<td>30, 100</td>
<td>0, 20</td>
<td>0, 0</td>
<td>100, 0</td>
<td>0, 10</td>
<td>20, 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10, 10</th>
<th>10, 15</th>
<th>10, 100</th>
<th>1.1</th>
<th>0.10</th>
<th>0.100</th>
</tr>
</thead>
<tbody>
<tr>
<td>15, 10</td>
<td>80, 80</td>
<td>15, 0</td>
<td>10, 0</td>
<td>90, 90</td>
<td>10, 5</td>
</tr>
<tr>
<td>100, 10</td>
<td>0, 15</td>
<td>30, 30</td>
<td>100, 0</td>
<td>5, 10</td>
<td>20, 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35, 35</th>
<th>39, 47</th>
<th>95, 40</th>
<th>21, 21</th>
<th>93, 13</th>
<th>45, 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>47, 39</td>
<td>51, 51</td>
<td>67, 15</td>
<td>13,93</td>
<td>69, 69</td>
<td>53, 53</td>
</tr>
<tr>
<td>40,95</td>
<td>15,67</td>
<td>47,47</td>
<td>29,45</td>
<td>53,53</td>
<td>61, 61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11,11</th>
<th>59,91</th>
<th>51,51</th>
<th>47,47</th>
<th>51,44</th>
<th>28,43</th>
</tr>
</thead>
<tbody>
<tr>
<td>91, 59</td>
<td>27, 27</td>
<td>51, 43</td>
<td>44,51</td>
<td>11,11</td>
<td>43,91</td>
</tr>
<tr>
<td>51, 51</td>
<td>45, 51</td>
<td>53, 53</td>
<td>43, 28</td>
<td>91, 43</td>
<td>11, 11</td>
</tr>
</tbody>
</table>

In the games reported above, the bagged decision tree algorithm correctly predicted the most frequently played action (in *italics*). The level-1 action is in **bold**.

Other Prediction Algorithms

Here we report the prediction accuracy of a 2-layer neural net, which feeds features (inputs) through a layer of nonlinear transformations, producing outputs that can be fed into the next layer. The accuracies are comparable to those of the bagged decision tree algorithm.

Robustness Check: Predicting Each Instance of Play

As a robustness check, we repeat our main analysis on the full set of games for a related prediction task. Instead of predicting the modal action, we predict a given instance of play. For this problem, a prediction rule is still a map $f : G \rightarrow A_1$ from games to row player actions, but now each observation is a pair (g_i, a_i)
where g_i is the game played in instance i and a_i is the action chosen in that instance of play. Thus we have many repetitions of each game corresponding to the different subjects we observe playing those games. Given a set of instances of play $\{(g_i, a_i)\}$, we again evaluate accuracy using the correct classification rate.

The naive rule is guessing at random, and again yields an expected accuracy of $1/3$. The ideal prediction rule assigns the observed modal action to each game (as before), but now has an accuracy far from 1, since different subjects play different actions in the same game. Table ?? reports prediction accuracies and completeness measures on our set of all games. The ranking is qualitatively unchanged from the main text.

Table E1—Hybrid models also improve predictive accuracy in predicting each instance of play.

<table>
<thead>
<tr>
<th>Model</th>
<th>Lab Games Accuracy</th>
<th>Lab Games Completeness</th>
<th>All Games Accuracy</th>
<th>All Games Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.333</td>
<td>0%</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Level-1</td>
<td>0.431</td>
<td>31%</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.449</td>
<td>37%</td>
<td>(0.00)</td>
<td></td>
</tr>
<tr>
<td>PDNE</td>
<td>0.552</td>
<td>39%</td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Decision Tree</td>
<td>0.563</td>
<td>70%</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Level-1(α) + PDNE</td>
<td>0.591</td>
<td>83%</td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Ideal prediction</td>
<td>0.645</td>
<td>100%</td>
<td>(< 0.01)</td>
<td></td>
</tr>
</tbody>
</table>
Alternative Ideal Benchmarks

In the main text we evaluated completeness relative to predicting the actual observed modal action in each game. This ideal benchmark is not attainable, and thus we under-estimate the completeness of the models we consider. Below we present completeness measures relative to two alternative ideal benchmarks. These completeness measures are not very different from the main text, but do suggest that some of the performances are closer to complete than the main text suggests. For example, the best completeness measure for predicting the modal action in the set of all games is 69% in the main text, but 78% and 92% relative to the two benchmarks we consider in this section.

F1. Bootstrapped Benchmark

We construct a bootstrapped prediction benchmark as follows. First, we assign the observed modal action a_i to each game g_i. We test this prediction rule on bootstrap-resamples of our data. That is, for each game g_i, we sample n_i times with replacement from the empirical distribution of actions observed in that game, where n_i is the number of observations we have for that game. Our test data is then \{(g_i, \hat{a}_i)\} where \hat{a}_i is the modal resampled action in game g_i. We repeated this procedure 100 times and report the average prediction accuracy, along with the standard deviation of these prediction accuracies.

<table>
<thead>
<tr>
<th></th>
<th>Lab</th>
<th>Random</th>
<th>Algo</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>C</td>
<td>Acc</td>
<td>C</td>
</tr>
<tr>
<td>Guess at random</td>
<td>0.33 0%</td>
<td>0.33 0%</td>
<td>0.33 0%</td>
<td>0.33 0%</td>
</tr>
<tr>
<td>PDNE</td>
<td>0.38 8%</td>
<td>0.55 37%</td>
<td>0.65 58%</td>
<td>0.56 39%</td>
</tr>
<tr>
<td>Uniform Nash</td>
<td>0.42 15%</td>
<td>0.57 40%</td>
<td>0.43 18%</td>
<td>0.49 27%</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.03)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Level-1</td>
<td>0.72 63%</td>
<td>0.87 79%</td>
<td>0.36 5%</td>
<td>0.63 51%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.01)</td>
<td>(0.01)</td>
<td>(0.01)</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.79 74%</td>
<td>0.92 98%</td>
<td>0.38 9%</td>
<td>0.68 59%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.02)</td>
<td>(0.05)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.77 71%</td>
<td>0.87 90%</td>
<td>0.74 75%</td>
<td>0.74 69%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Bootstrap</td>
<td>0.95 100%</td>
<td>0.93 100%</td>
<td>0.88 100%</td>
<td>0.92 100%</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.01)</td>
</tr>
</tbody>
</table>
Table F2—Compare to Table 7

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.68</td>
<td>59%</td>
</tr>
<tr>
<td>(0.02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDNE</td>
<td>0.56</td>
<td>39%</td>
</tr>
<tr>
<td>Level-1(α) + PDNE</td>
<td>0.79</td>
<td>78%</td>
</tr>
<tr>
<td>(0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap</td>
<td>0.92</td>
<td>100%</td>
</tr>
<tr>
<td>(0.01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F2. Table Lookup Benchmark

Following Kleinberg, Liang and Mullainathan (2017) we consider a “table lookup” benchmark, defined as follows: We divide the observations of play for each game g_i into three folds and randomly select two of these folds for training. Based on this data, we learn the prediction rule that assigns the modal action to each game in the training data, and use this rule to predict the modal action in the remaining fold. We report the average prediction accuracy across the three choices of test fold in Table ???. Although this approach will converge to the idealized benchmark of 1 given enough data, since we use only a limited number of observations, it is in fact possible to beat the table lookup benchmark, and indeed our model beats the benchmark for the set of randomly-generated games.
Table F3—Compare the lab game results to Table 2, the random game results to Table 4, and the final two columns to Table 5.

<table>
<thead>
<tr>
<th></th>
<th>Lab Acc</th>
<th>Lab C</th>
<th>Random Acc</th>
<th>Random C</th>
<th>Algo Acc</th>
<th>Algo C</th>
<th>All Acc</th>
<th>All C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
<td>0.33</td>
<td>0%</td>
<td>0.33</td>
<td>0%</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>PDNE</td>
<td>0.38</td>
<td>9%</td>
<td>0.55</td>
<td>42%</td>
<td>0.65</td>
<td>76%</td>
<td>0.56</td>
<td>46%</td>
</tr>
<tr>
<td>Uniform Nash</td>
<td>0.42</td>
<td>16%</td>
<td>0.57</td>
<td>46%</td>
<td>0.43</td>
<td>24%</td>
<td>0.49</td>
<td>32%</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td></td>
<td>(0.03)</td>
<td></td>
<td>(0.03)</td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Level-1</td>
<td>0.72</td>
<td>68%</td>
<td>0.87</td>
<td>104%</td>
<td>0.36</td>
<td>7%</td>
<td>0.63</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td></td>
<td>(0.01)</td>
<td></td>
<td>(0.01)</td>
<td></td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.79</td>
<td>81%</td>
<td>0.92</td>
<td>113%</td>
<td>0.38</td>
<td>9%</td>
<td>0.68</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td></td>
<td>(0.02)</td>
<td></td>
<td>(0.05)</td>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>Bagged Decision Trees</td>
<td>0.77</td>
<td>77%</td>
<td>0.87</td>
<td>103%</td>
<td>0.74</td>
<td>97%</td>
<td>0.74</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td></td>
<td>(0.01)</td>
<td></td>
<td>(0.02)</td>
<td></td>
<td>(0.06)</td>
<td></td>
</tr>
<tr>
<td>Table Lookup</td>
<td>0.90</td>
<td>100%</td>
<td>0.85</td>
<td>100%</td>
<td>0.75</td>
<td>100%</td>
<td>0.83</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
<td>(0.02)</td>
<td></td>
<td>(0.03)</td>
<td></td>
<td>(0.03)</td>
<td></td>
</tr>
</tbody>
</table>

Table F4—Compare to Table 7

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guess at random</td>
<td>0.33</td>
<td>0%</td>
</tr>
<tr>
<td>Level-1(α)</td>
<td>0.68</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td></td>
</tr>
<tr>
<td>PDNE</td>
<td>0.56</td>
<td>46%</td>
</tr>
<tr>
<td>Level-1(α) + PDNE</td>
<td>0.79</td>
<td>92%</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>Table Lookup</td>
<td>0.83</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
</tr>
</tbody>
</table>

Decision Trees

G1. Used in Hybrid Models

Supplementary Material to Section V

Below we report the trees used to predict accuracy of the level-1(α) prediction (Figure ??) and accuracy of the PDNE prediction (Figure ??) in the level-1(α) + PDNE hybrid model.
Is there a symmetric NE that achieves 75% of max possible payoffs and is not level 1?

No

Yes

0.84

Is there an action that maximizes both players' payoffs?

No

Yes

0.73

0.24

no. of obs: 308

no. of obs: 60

no. of obs: 118

Figure G1. Predicted probability that the level-1(α) prediction is correct in bold.

Is there a level 1 action that is also part of a Pareto-dominant NE?

No

Yes

Is there a symmetric NE that achieves 75% of max possible payoffs and is not level 1?

No

Yes

0.29

0.61

no. of obs: 196

no. of obs: 176

no. of obs: 114

Figure G2. Predicted probability that the PDNE prediction is correct in bold.

The first tree predicts the probability that whether the level-1(α) model will choose the modal action. For example, if the game does not have a symmetric NE with high payoffs (75% of max possible) that does not include the level-1 action, then the level-1(α) action is predicted to be modal 84% of the time. The level-1(α) model is predicted to perform worst when there is a symmetric NE that maximizes both players’ payoffs but does not contain the level-1 action: In this case, the level-1(α) action is predicted to be correct only 24% of the time.

The second tree predicts the probability that the PDNE prediction will be

48Roughly this means that in 84% of games in the training sample with this property, the level-1(α) action was modal.
correct. The model is predicted to perform well when the Pareto-dominant NE includes the level-1 action, and also when there is a symmetric NE that achieves high payoffs (this is almost always a Pareto-dominant NE in our data). We do not know whether this is true more generally or whether it is a special feature of our set of games.

G2. Lab Games Only

We report below the analogue of Figure 5—which chooses between the level-1(α) model and PDNE—for the data set consisting only of the lab games.

![Diagram](image)

Figure G3. Assignment of games to level-1(α) or PDNE (lab games only)—compare to Figure 5. The feature “is there a decoy” refers to the indicator for whether the best sum of player payoffs in the matrix exceeds—by at least 60% of the max row player payoff in the matrix—the best payoff sum when the row player chooses a level-k action.
We are researchers interested in how people play a simple kind of game.

Rules of the game

There are two players. Each player is assigned to one of two roles: orange and green. Both players move only once, and they move at the same time. The orange player’s move is to choose one of

A B C

and the green player’s move is to choose one of

D E F

Depending on which moves are chosen, each player wins a certain number of points. These points are displayed in a table like this one:

D E F
A 10,20 30,40 50,50
B 70,50 90,10 20,30
C 40,50 60,70 80,90

To read this table, look at the row marked with the orange player’s move, and the column marked with the green player’s move. This determines a pair of numbers. For example, if the orange player moves A and the green player moves E, then you should look at 30,40.
Great! You answered both questions correctly. Now let’s move on to your main task.

The challenge

Real people were asked to play games like the ones you just looked at. In each round of this HIT, we will show you the points table for one of these games, and ask you to guess which move was most frequently chosen by the *orange player*. There are fifteen total games.

The **first number** is the number of points that the orange player wins, and the **second number** is the number of points that the green player wins.

Easy? Let us ask you a few questions to make sure you got it.

Comprehension Question 1/2

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50,40</td>
<td>90,30</td>
<td>20,70</td>
</tr>
<tr>
<td>B</td>
<td>30,10</td>
<td>40,90</td>
<td>20,60</td>
</tr>
<tr>
<td>C</td>
<td>60,10</td>
<td>50,80</td>
<td>80,40</td>
</tr>
</tbody>
</table>

You are the *orange player*. If you choose **A** and your partner chooses **F**, how many points will you win?

Comprehension Question 2/2

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90,90</td>
<td>40,30</td>
<td>70,30</td>
</tr>
<tr>
<td>B</td>
<td>70,60</td>
<td>30,30</td>
<td>40,70</td>
</tr>
<tr>
<td>C</td>
<td>50,40</td>
<td>80,10</td>
<td>90,30</td>
</tr>
</tbody>
</table>

You are the *green player*. If you choose **D** and your partner chooses **B**, how many points will you win in this game?
Great! You answered both questions correctly. Now let’s move on to your main task.

Your task

We will show you fifteen games like the one described above. You will be asked to play the orange player in each of these games.

How you are paid

You will be paid a base rate of $0.35 for completing the HIT. In addition, one of the fifteen games you play will be chosen at random. We will match you with another subject who has been asked to play as the orange player, and we will use your joint moves to determine the number of points you win. You will then receive a bonus of:

$0.01 \times \text{the number of points you won in that game}$

This bonus will range from $0.10-0.90. Please allow up to a week to receive this.

We are almost ready to begin the exercise.

Please read through the following information and indicate your consent before continuing.
H2. Typical Question

Consider the following game.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50,80</td>
<td>10,20</td>
<td>50,50</td>
</tr>
<tr>
<td>B</td>
<td>50,50</td>
<td>20,30</td>
<td>90,20</td>
</tr>
<tr>
<td>C</td>
<td>40,20</td>
<td>50,70</td>
<td>10,20</td>
</tr>
</tbody>
</table>

You are the orange player. What move do you choose?

- [] A
- [] B
- [] C

Explanation of Choices in Experiments

Subjects were asked to explain how they made their choices in a (free-form) text box. We show below selected answers from our experiments in which players were asked to choose an action:

- “I chose based on mutually beneficial numbers, followed by singular beneficial [sic] numbers, and finished with whatever was left over.”
- “Except the first question. I added the orange in each row (A, B, C) Then put it in order from highest to the least. I’m hoping I did this right :o)”
- “i count each value quickly. It is easy for me. Good game”
- “I assumed Green was aquisitive [sic] and non-sharing”
- “Without knowing what sort of patterns the partner displayed it’s mostly guesswork. I assumed orange would avoid choosing rows where zero payoff was possible, and that green would similarly prefer not to bet on columns with a zero payoff. I assumed both would think the same way and be trying to achieve a good payoff, not just selecting the row or column with the highest possible payoff. Wheels within wheels.”
- “i tried to figure out if there is obvious worst of all, then eliminate it”
- “I looked at what Green would probably pick and then based on that decided what Orange would pick when thinking about what the Green letter would likely be.”