Managing Expectations: Instruments versus Targets

George-Marios Angeletos¹ and Karthik Sastry²
¹MIT and NBER, ²MIT

CSEF Conference “Frontiers in Macroeconomic Research”
Ischia, July 25-26, 2019
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about...
 - **Instruments:** “will maintain 0% interest rates”
 - **Targets:** “will do whatever it takes for 4% unemployment”

- Reason to prefer one *type* of forward guidance over the other?
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about...
 - **Instruments**: “will maintain 0% interest rates”
 - **Targets**: “will do whatever it takes for 4% unemployment”

- Reason to prefer one type of forward guidance over the other?

- **NO** in the benchmark with
 1. Full credibility
 2. No future shocks (or policy contingent on them)
 3. Rational Expectations + Common Knowledge

“Ramsey world”
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about...
 - **Instruments**: “will maintain 0% interest rates”
 - **Targets**: “will do whatever it takes for 4% unemployment”
- Reason to prefer one type of forward guidance over the other?
- **NO** in the benchmark with
 - (i) Full credibility
 - (ii) No future shocks (or policy contingent on them)
 - (iii) Rational Expectations + Common Knowledge

Our focus

Relax (iii) and explore role of bounded rationality
Set Up

- Formalize question in simple “beauty contest” game
 - stylizes NK at ZLB (and more)

- Add “bounded rationality”
 - belief inertia (lack of CK, level-k thinking)
 - other forms (belief over-reaction, animal spirits)
Main Lesson: What to do and why

What to do

- Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

Stop talking about R and start talking about Y or U when

- ✓ long ZLB
- ✓ steep Keynesian cross
- ✓ strong financial accelerator
Main Lesson: What to do and why

What to do

- Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

stop talking about R and start talking about Y or U when
- ✓ long ZLB
- ✓ steep Keynesian cross
- ✓ strong financial accelerator

Why

- Minimize agents’ need to “reason about the economy”
 (i.e., about the behavior of others/equilibrium effects)
Literature

- **Instruments vs Targets**
 Poole (1970), Weitzman (1974)

- **Micro-foundations of Beauty Contests**

- **Forward Guidance, GE Attenuation and Myopia**
 Farhi & Werning (2018), Garcia-Schmidt & Woodford (2018): Level k
 Gabaix (2018): cognitive discounting

- **Communication in Beauty Contests, Information Design**
Model
Notation and Behavior

\[K = \int_i k_i \, di = \text{average action today} \]
\[Y = \text{outcome (target) in the future} \]
\[\tau = \text{instrument in the future} \]
Notation and Behavior

\[K = \int_i k_i \, di = \text{average action today} \]
\[Y = \text{outcome (target) in the future} \]
\[\tau = \text{instrument in the future} \]

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]
\[\gamma \in (0, 1) \text{ parameterizes GE feedback} \]
Notation and Behavior

\[K = \int_{i} k_i \, di = \text{average action today} \]

\[Y = \text{outcome (target) in the future} \]

\[\tau = \text{instrument in the future} \]

\[k_i = (1 - \gamma) \mathbb{E}_i[\tau] + \gamma \mathbb{E}_i[Y] \]

\[\gamma \in (0, 1) \text{ parameterizes GE feedback} \]

Story (microfoundation in paper)

ZLB today, but not tomorrow

\[K = \text{spending today}; \ Y = \text{income today plus tomorrow} \]

\[\tau = \text{(negative of) interest rate tomorrow} \]

Forward guidance via substitution (PE) or income (GE) effect
Final outcome depends on realized behavior and policy

\[Y = (1 - \alpha)\tau + \alpha K \]

\(\alpha \in (0, 1)\) parameterizes direct policy effect
Final outcome depends on realized behavior and policy

\[Y = (1 - \alpha)\tau + \alpha K \]

\(\alpha \in (0, 1) \) parameterizes direct policy effect

Story (microfoundation in paper)

Loose policy tomorrow \(\rightarrow \) higher output tomorrow
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] \hspace{1cm} (1)
\[Y = (1 - \alpha)\tau + \alpha K \] \hspace{1cm} (2)

- **No guidance**: Agents have to forecast both \(\tau \) and \(Y \)
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] \hspace{1cm} (1)

\[Y = (1 - \alpha)\tau + \alpha K \] \hspace{1cm} (2)

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- **Instrument communication**: know \(\tau \), have to think about \(Y \)
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \] \hspace{1cm} (1)

\[Y = (1 - \alpha)\tau + \alpha K \] \hspace{1cm} (2)

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- Instrument communication: know \(\tau \), have to think about \(Y \)
- Target communication: know \(Y \), have to think about \(\tau \)
Timing

\(t = 0 \) (FOMC meeting): PM sees \(\theta \), announces \(\tau = \hat{\tau} \) or \(Y = \hat{Y} \)

\(t = 1 \) (liquidity trap): Agents form beliefs and choose \(k_i \)

\(t = 2 \) (exit): \(K, \tau \) and \(Y \) are realized
Timing

$t = 0$ (FOMC meeting): PM sees θ, announces $\tau = \hat{\tau}$ or $Y = \hat{Y}$

$t = 1$ (liquidity trap): Agents form beliefs and choose k_i

$t = 2$ (exit): K, τ and Y are realized

The Policy Problem

$$\min_{\theta \mapsto \{\text{message}, (\tau, Y)\}} \mathbb{E}[(1 - \chi)(\tau - \theta)^2 + \chi(Y - \theta)^2]$$

s.t. (τ, Y) is implementable in equil given

eq. (1)-(2) and message $\tau = \hat{\tau}$ or $Y = \hat{Y}$
Benchmarks \equiv \text{representative, rational and attentive agent} \\
(CK of both announcement and rationality) \\
\rightarrow \text{no error in predicting behavior of others:} \\
\mathbb{E}_i[K] = K
Frictionless, REE Benchmark

Benchmark ≡ representative, rational and attentive agent
(CK of both announcement and rationality)

⇒ no error in predicting behavior of others:

\[\mathbb{E}_i[K] = K \]

⇒ any equilibrium satisfies

\[k_i = K = Y = \tau \]

⇒ irrelevant whether PM announces \(\tau \) or \(Y \)

(equivalence of primal and dual problems)
Friction: Lack of CK / Anchored Beliefs

- Assumption: Lack of CK of announcement

Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$E_i[X] = X \quad E_i[\bar{E}[X]] = \lambda E_i[X]$$

- Mimics role of HOB in incomplete-info settings
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement
 Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

 $$E_i[X] = X \quad E_i[\bar{E}[X]] = \lambda E_i[X]$$

- **Mimics role of HOB in incomplete-info settings**

- **Implication:** Anchored Beliefs

 $$\bar{E}[K] = \lambda K$$
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement

 Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

 \[E_i[X] = X \quad E_i[\bar{E}[X]] = \lambda E_i[X] \]

- **Mimics role of HOB in incomplete-info settings**

- **Implication:** Anchored Beliefs

 \[\bar{E}[K] = \lambda K \]

- **Level-K Thinking:**
 - similar flavor: relaxing CK of rationality
 - identical results except for one “bug”

- **Cognitive discounting:** same, minus PE
Main Results
Game after Announcing τ

\[K = (1 - \gamma) \bar{E}[\tau] + \gamma \bar{E}[Y] \]
Game after Announcing τ

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

$= \tau \ (\text{fixed by FG})$
Game after Announcing τ

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[K]$$

$$= \tau \text{ (fixed by FG)}$$

"I expect less spending and income, so I spend less"

Friction reduces effectiveness of FG

Game after Announcing τ

$K = (1 - \gamma) \bar{E}[\tau] + \gamma \bar{E}[Y]$

(Reasoned by agents)

$= (1 - \alpha) \bar{E}[\tau] + \alpha \bar{E}[K]$}

$= \tau$ (fixed by FG)

$K = (1 - \delta_\tau) \tau + \delta_\tau \bar{E}[K]$}

\[\alpha \gamma \in (0, 1)\]
Game after Announcing τ

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[K]$$

$$= \tau \quad \text{(fixed by FG)}$$

$$K = (1 - \delta_\tau)\tau + \delta_\tau\bar{E}[K]$$

$\alpha \gamma \in (0, 1)$

- Game of **complements**

 “I expect less spending and income, so I spend less”

- Friction **reduces** effectiveness of FG

Game after Announcing \(Y \)

\[
K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]
\]
Game after Announcing Y

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= \frac{1}{1-\alpha}\bar{E}[Y] - \frac{\alpha}{1-\alpha}\bar{E}[K]$$

$$= Y \text{ (fixed by FG)}$$
Game after Announcing Y

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= \frac{1}{1-\alpha} \bar{E}[Y] - \frac{\alpha}{1-\alpha} \bar{E}[K]$$

$$= Y \text{ (fixed by FG)}$$

$$K = (1 - \delta_Y)Y + \delta_Y\bar{E}[K]$$

$$- \frac{(1-\gamma)\alpha}{1-\alpha} \leq 0$$
Game after Announcing Y

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)
$$= \frac{1}{1-\alpha}\bar{E}[Y] - \frac{\alpha}{1-\alpha}\bar{E}[K]$$

$$= Y \text{ (fixed by FG)}$$

$$K = (1 - \delta_Y)Y + \delta_Y\bar{E}[K]$$

$$- \frac{(1-\gamma)\alpha}{1-\alpha} \leq 0$$

- Game of **substitutes**

 “I expect less spending, so I expect looser policy and spend *more*”

- Friction **increases** effectiveness of FG

 Turns FG literature upside down
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_\tau(\gamma, \lambda) Y\} \quad \text{Instrument communication}
\]

\[
\{(\tau, Y) : \tau = \mu_Y(\gamma, \lambda) Y\} \quad \text{Target communication}
\]

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\[
\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)
\]

Remarks

▶ Friction \(\neq \) “everything is dampened”

▶ TC keeps powder dry: what about forward guidance puzzle?
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_\tau(\gamma, \lambda)Y\} \quad \text{and} \quad \{(\tau, Y) : \tau = \mu_Y(\gamma, \lambda)Y\}
\]

Instrument communication \hspace{2cm} Target communication

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\[\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)\]

Remarks

▶ Friction \(\neq \) “everything is dampened”
▶ TC keeps powder dry: what about forward guidance puzzle?
Implementability

Proposition: implementable sets

The implementable sets of (τ, Y) pairs for each strategy are

$$\left\{ (\tau, Y) : \tau = \mu_\tau(\gamma, \lambda)Y \right\}$$

Instrument communication

$$\left\{ (\tau, Y) : \tau = \mu_Y(\gamma, \lambda)Y \right\}$$

Target communication

For any $\gamma \in (0,1)$ and $\lambda \in (0,1)$,

$$\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)$$

attenuation \leftarrow amplification

Remarks

$\text{▶ Friction} \neq \text{"everything is dampened"}$

$\text{▶ TC keeps powder dry: what about forward guidance puzzle?}$
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_\tau(\gamma, \lambda)Y\} \quad \{(\tau, Y) : \tau = \mu_Y(\gamma, \lambda)Y\}
\]

Instrument communication \quad Target communication

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\[\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)\]

Remarks

- Friction \(\neq\) “everything is dampened”
- TC keeps powder dry: what about forward guidance puzzle?
Distortion and GE Feedback

Proposition

\[\frac{\partial \mu_\tau}{\partial \gamma} > 0 \]
\[\frac{\partial \mu_Y}{\partial \gamma} > 0 \]

Quick intuition: Distortion from reasoning about what is not announced. High \(\gamma \) is very important to figure out \(Y \), not so much \(\tau \).

Can prove these slopes up, and never cross.

Recall: \(\mu = \frac{\partial \tau}{\partial Y} \) as \(\gamma \) (GE) increases.

\[\begin{align*}
\text{distortion under IC increases} \\
\text{distortion under TC decreases}
\end{align*} \]
Distortion and GE Feedback

Proposition

\[\frac{\partial \mu_T}{\partial \gamma} > 0 \]
\[\frac{\partial \mu_Y}{\partial \gamma} > 0 \]

Quick intuition

Distortion from reasoning about what is not announced

High \(\gamma \) → very important to figure out \(Y \), not so much \(\tau \)

Can prove these slope up, and never cross

Recall: \(\mu = \frac{\partial \tau}{\partial Y} \)

as \(\gamma \) (GE) increases \(\Rightarrow \) \{ distortion under IC increases \}
\[\text{distortion under TC decreases} \]
Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0, 1)$ ("critical GE feedback") such that:
- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target

Additional results in paper:
- Precise values of optimal message and attained (τ, Y)
- Variant with Level-k Thinking
Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0, 1)$ ("critical GE feedback") such that

- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target

Additional results in paper:

precise values of optimal message and attained (τ, Y)

variant with Level-k Thinking
Application: Forward Guidance at the Zero Lower Bound
Forward Guidance at ZLB

- Angeletos & Lian (AER, 2018)
 - lack of CK attenuates GE effects of FG
 - longer horizon \Rightarrow longer GE chains \Rightarrow more distortion
Forward Guidance at ZLB

- **Angeletos & Lian (AER, 2018)**
 - lack of CK attenuates GE effects of FG
 - longer horizon ⇒ longer GE chains ⇒ more distortion

- **Farhi & Werning (2018)**
 - similar point replacing lack of CK with Level-k Thinking
 - inco markets ⇒ steeper Keynesian cross ⇒ more distortion

Forward Guidance at ZLB

- **Our paper**: bypass friction with **target communication**
 - “stop talking about R, start talking about Y or U”
 - preferable when **longer ZLB** or **steeper Keynesian cross**

- **Reminiscent of Mario Draghi’s “do whatever it takes”**
 - relies on strong GE feedback but not multiple equilibria
 - common logic: alleviate concerns about behavior of others
Broader Scope
Generalized Form of Incorrect Reasoning

Assumption: generalized form of incorrect reasoning

Let ϵ be noise orthogonal to θ.

$$\bar{E}[K] = \lambda K + \sigma \epsilon \quad \lambda, \sigma > 0$$

nests: under-reaction ($\lambda < 1$), over-reaction ($\lambda > 1$), and noise or animal spirits ($\sigma > 0$)

- Optimal policy result goes through
- Intuition: all about limiting the role of $\bar{E}[K]$
 - i.e., the “more thinking = more distortion” result extends
Policy Rules

Announce a linear policy rule: $\tau = A - BY$

Optimal (A, B) indeterminate in RE benchmark
Policy Rules

Announce a linear policy rule: \(\tau = A - BY \)

Optimal \((A, B)\) indeterminate in RE benchmark

<table>
<thead>
<tr>
<th>Proposition: optimal linear policy with distorted beliefs</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each (\gamma), there exists ((A^(\gamma), B^(\gamma))) that uniquely solves the policy problem for all ((\lambda, \sigma)). (B^*(\gamma)) increases in (\gamma).</td>
</tr>
</tbody>
</table>

- High \(\gamma \rightarrow \) tilt toward TC (“smoothed result”)
- New perspective on policy rules
 - Optimal \(= \) reduces bite of bounded rationality
 - Uniqueness in tiny deviations from frictionless case
Conclusion
Managing (Distorted) Expectations

- Goal: policy with frictional coordination or bounded rationality
- Lesson: ease the burden of reasoning about the economy
- More in the paper: unobserved shocks; relation to Poole/Weitzman; more policy options; other settings
Supplementary Material
Level-k: Similar but Less Sharp

- **Instrument comm** (games of complements): the same
 - others are less rational \approx others are less attentive

- **Target comm** (games of substitutes): a bug
 - distortion changes sign between even and odd k

- Our preferred formulation avoids the bug

- Cognitive discounting avoids it too (but confounds PE-GE)
FG: Three GE Feedbacks

1. Within Dynamic IS: Keynesian cross
2. Within NKPC: dynamic pricing complementarity
3. Across: inflation-spending feedback

- All three: intensify with length of ZLB / horizon of FG
Textbook NK model, with modest friction ($\lambda = .75$)

- Attenuation by 90% when ZLB last 5 years
- Plus, discontinuity at infinite horizons