Managing Expectations: Instruments versus Targets

George-Marios Angeletos1 and Karthik Sastry2
1MIT and NBER, 2MIT

NBER Summer Institute, July 12, 2019
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about...
 - **Instruments**: “will maintain 0% interest rates”
 - **Targets**: “will do whatever it takes for 4% unemployment”
- Reason to prefer one **type** of forward guidance over the other?
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about...
 - **Instruments**: “will maintain 0% interest rates”
 - **Targets**: “will do whatever it takes for 4% unemployment”

- Reason to prefer one type of forward guidance over the other?

- No in the benchmark with
 1. Full commitment
 2. No future shocks (or policy contingent on them)
 3. Rational Expectations + Common Knowledge

“Ramsey world”
Motivation: How to Offer Forward Guidance

- To manage expectations, can talk about . . .
 - **Instruments**: “will maintain 0% interest rates”
 - **Targets**: “will do whatever it takes for 4% unemployment”

- Reason to prefer one type of forward guidance over the other?

- No in the benchmark with
 - (i) Full commitment
 - (ii) No future shocks (or policy contingent on them)
 - (iii) Rational Expectations | Common Knowledge

Our focus

Relax (iii) and explore role of bounded rationality
Our Approach

Set-up

- Formalize question in simple “beauty contest” game
 - stylizes NK at ZLB
- Add “bounded rationality”
 - belief inertia (lack of CK, level-k thinking)
 - other forms (belief over-reaction, animal spirits)
Our Approach

Set-up

- Formalize question in simple “beauty contest” game
 - stylizes NK at ZLB
- Add “bounded rationality”
 - belief inertia (lack of CK, level-k thinking)
 - other forms (belief over-reaction, animal spirits)

Form of forward guidance

- REE = knife-edge case of instrument/target irrelevance
- Otherwise, choice determines bite of bounded rationality
Main Result

What to do and why

Minimize agents’ need to “reason about the economy” (i.e., about the behavior of others/equilibrium effects) with

- Instrument communication when GE feedback is weak
- Target communication when GE feedback is strong

e.g., talk about Y rather than R when faced with
 - steep Keynesian cross
 - long liquidity trap
Literature

- **Instruments vs Targets**
 Poole (1970), Weitzman (1974)

- **Micro-foundations of Beauty Contests**
 NK: Angeletos & Lian (2018), Farhi & Werning (2018)

- **Forward Guidance, GE Attenuation and Myopia**
 Angeletos & Lian (2016, 2018): *HOB*
 Farhi & Werning (2018), Garcia-Schmidt & Woodford (2018): *Level k*
 Gabaix (2018): *cognitive discounting*

- **Communication in Beauty Contests, Information Design**
Model
Notation and Behavior

\[K = \int_i k_i \, di = \text{average action today} \]

\[Y = \text{outcome (target) in the future} \]

\[\tau = \text{instrument in the future} \]
Notation and Behavior

\[K = \int k_i \, di = \text{average action today} \]

\[Y = \text{outcome (target) in the future} \]

\[\tau = \text{instrument in the future} \]

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]

\[\gamma \in (0, 1) \text{ parameterizes GE feedback} \]
Notation and Behavior

\[K = \int_i k_i \, di = \text{average action today} \]

\[Y = \text{outcome (target) in the future} \]

\[\tau = \text{instrument in the future} \]

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]

\[\gamma \in (0, 1) \] parameterizes GE feedback

Story (microfoundation in paper)

ZLB today, but not tomorrow

\[K = \text{spending today; } Y = \text{income today plus tomorrow} \]

\[\tau = \text{(negative of) interest rate tomorrow} \]

Forward guidance via substitution (PE) or income (GE) effect
Outcomes

Policy also has direct effect

\[Y = (1 - \alpha)\tau + \alpha K \]

\[\alpha \in (0, 1) \]
Policy also has direct effect

\[Y = (1 - \alpha)\tau + \alpha K \]

\(\alpha \in (0, 1) \)

Story (microfoundation in paper)

Loose policy tomorrow → higher output tomorrow
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]
\[Y = (1 - \alpha)\tau + \alpha K \]

- **No guidance**: Agents have to forecast both \(\tau \) and \(Y \)
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]
\[Y = (1 - \alpha)\tau + \alpha K \]

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- **Instrument communication**: know \(\tau \), have to think about \(Y \)
The Key Equations, and the Key Issue

\[k_i = (1 - \gamma)E_i[\tau] + \gamma E_i[Y] \]
\[Y = (1 - \alpha)\tau + \alpha K \]

- No guidance: Agents have to forecast both \(\tau \) and \(Y \)
- Instrument communication: know \(\tau \), have to think about \(Y \)
- Target communication: know \(Y \), have to think about \(\tau \)
Putting it Together

$$\min_{\theta \mapsto (\tau, Y)} \mathbb{E}[(1 - \chi)(\tau - \theta)^2 + \chi (Y - \theta)^2]$$

s.t. (τ, Y) is implementable in equil, given eq. (1)-(2) and announcement of τ or Y

Timing

$t = 0$ (FOMC meeting): Policymaker sees θ, makes announcement

$t = 1$ (liquidity trap): Agents form beliefs and choose k_i

$t = 2$ (exit): τ and Y are realized
Frictionless, REE Benchmark

Benchmark ≡ representative, rational and attentive agent
 (CK of both announcement and rationality)

⇒ no error in predicting behavior of others:

\[E_i[K] = K \]

⇒ any equilibrium satisfies

\[k_i = K = Y = \tau \]

⇒ irrelevant whether PM announces \(\tau \) or \(Y \)

(equivalence of primal and dual problems)
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement

 Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

 $E_i[X] = X \quad E_i[E[X]] = \lambda E_i[X]$

- Mimics role of HOB in incomplete-info settings
Friction: Lack of CK / Anchored Beliefs

- **Assumption:** Lack of CK of announcement

 Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

 $$E_i[X] = X \quad E_i[E_i[X]] = \lambda E_i[X]$$

- **Mimics role of HOB in incomplete-info settings**

- **Implication:** Anchored Beliefs

 $$\bar{E}[K] = \lambda K$$
Friction: Lack of CK / Anchored Beliefs

• **Assumption:** Lack of CK of announcement
 Let $X \in \{\tau, Y\}$ be the announcement. Agents are rational and attentive but think only fraction $\lambda \in [0, 1]$ of others is attentive:

$$E_i[X] = X \quad E_i[E[X]] = \lambda E_i[X]$$

• **Mimics role of HOB in incomplete-info settings**

• **Implication:** Anchored Beliefs

$$\bar{E}[K] = \lambda K$$

• **Level-K Thinking:**
 • similar flavor: relaxing CK of rationality
 • identical results except for one “bug”

• **Cognitive discounting:** same, minus PE
Main Results
Game after Announcing τ

\[K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y] \]
Game after Announcing τ

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$

(reasoned by agents)

$$= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[K]$$

$$= \tau \text{ (fixed by FG)}$$

• Game of complements

 "I expect less spending and income, so I spend less"

• Friction reduces effectiveness of FG

Game after Announcing τ

\[K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y] \]

(reasoned by agents)

\[= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[K] \]

\[= \tau \text{ (fixed by FG)} \]

\[K = (1 - \delta_{\tau})\tau + \delta_{\tau}\bar{E}[K] \]

\[\alpha \gamma \in (0, 1) \]

Game of complements

“I expect less spending and income, so I spend less”

Friction reduces effectiveness of FG

Game after Announcing τ

$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$

$K = (1 - \delta_\tau)\tau + \delta_\tau\bar{E}[K]$

(reasoned by agents)

$= (1 - \alpha)\bar{E}[\tau] + \alpha\bar{E}[K]$

$= \tau$ (fixed by FG)

$\alpha \gamma \in (0, 1)$

- Game of **complements**

 “I expect less spending and income, so I spend less”

- Friction **reduces** effectiveness of FG

Game after Announcing Y

$$K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]$$
Game after Announcing \(Y \)

\[
K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y]
\]

(reasoned by agents)

\[
= \frac{1}{1-\alpha}\bar{E}[Y] - \frac{\alpha}{1-\alpha}\bar{E}[K]
\]

\[
= Y \quad \text{(fixed by FG)}
\]
Game after Announcing Y

$K = (1 - \gamma) \bar{E}[\tau] + \gamma \bar{E}[Y]$

(reasoned by agents)

$= \frac{1}{1-\alpha} \bar{E}[Y] - \frac{\alpha}{1-\alpha} \bar{E}[K]$

$= Y$ (fixed by FG)

$K = (1 - \delta_Y) Y + \delta_Y \bar{E}[K]$

$- \frac{(1-\gamma)\alpha}{1-\alpha} \leq 0$
Game after Announcing Y

\[K = (1 - \gamma)\bar{E}[\tau] + \gamma\bar{E}[Y] \]

(reasoned by agents)

\[= \frac{1}{1-\alpha}\bar{E}[Y] - \frac{\alpha}{1-\alpha}\bar{E}[K] \]

\[= Y \] (fixed by FG)

\[K = (1 - \delta_Y)Y + \delta_Y\bar{E}[K] \]

\[- \frac{(1-\gamma)\alpha}{1-\alpha} \leq 0 \]

- Game of **substitutes**

 “I expect less spending, so I expect looser policy and spend *more*”

- Friction **increases** effectiveness of FG

 Turns FG literature upside down
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_{\tau}(\gamma, \lambda)Y\} \quad \text{and} \quad \{(\tau, Y) : \tau = \mu_{Y}(\gamma, \lambda)Y\}
\]

- Instrument communication
- Target communication

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\[\mu_{\tau}(\gamma, \lambda) > 1 > \mu_{Y}(\gamma, \lambda)\]

Remarks

- Friction \(\neq \) "everything is dampened"
- TC keeps powder dry: what about forward guidance puzzle?
Implementability

Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_\tau(\gamma, \lambda)Y\} \quad \{(\tau, Y) : \tau = \mu_Y(\gamma, \lambda)Y\}
\]

Instrument communication \hspace{2cm} Target communication

For any \(\gamma \in (0,1)\) and \(\lambda \in (0,1)\),

\[\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)\]

Remarks

• Friction \(\neq \text{“everything is dampened”}\)
• TC keeps powder dry: what about forward guidance puzzle?
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_\tau(\gamma, \lambda)Y\} \quad \text{and} \quad \{(\tau, Y) : \tau = \mu_Y(\gamma, \lambda)Y\}
\]

Instrument communication

Target communication

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\(\mu_\tau(\gamma, \lambda) > 1 > \mu_Y(\gamma, \lambda)\)

Remarks

- Friction \(\neq \) "everything is dampened"
- TC keeps powder dry: what about forward guidance puzzle?
Proposition: implementable sets

The implementable sets of \((\tau, Y)\) pairs for each strategy are

\[
\{(\tau, Y) : \tau = \mu_{\tau}(\gamma, \lambda)Y\} \quad \{\ (\tau, Y) : \tau = \mu_{\gamma}(\gamma, \lambda)Y\}
\]

- Instrument communication
- Target communication

For any \(\gamma \in (0, 1)\) and \(\lambda \in (0, 1)\),

\[
\mu_{\tau}(\gamma, \lambda) > 1 > \mu_{\gamma}(\gamma, \lambda)
\]

Remarks

- Friction \(\neq \) “everything is dampened”
- TC keeps powder dry: what about forward guidance puzzle?
Proposition

\[\frac{\partial \mu_\tau}{\partial \gamma} > 0 \]
\[\frac{\partial \mu_Y}{\partial \gamma} > 0 \]

Can prove these slope up, *and* never cross

Recall: \(\mu = \frac{\partial \tau}{\partial Y} \)
Distortion and GE Feedback

Proposition

\[
\frac{\partial \mu_{\tau}}{\partial \gamma} > 0 \\
\frac{\partial \mu_{Y}}{\partial \gamma} > 0
\]

Quick intuition

Distortion from reasoning about what is not announced

High $\gamma \rightarrow$ very important to figure out Y, not so much τ

Recall: $\mu = \frac{\partial \tau}{\partial Y}$

Can prove these slope up, *and* never cross

as γ (GE) increases \Rightarrow

- distortion under IC increases
- distortion under TC decreases
Theorem: optimal communication

There exists a $\hat{\gamma} \in (0, 1)$ ("critical GE feedback") such that

- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target
Main Result

Theorem: optimal communication

There exists a $\hat{\gamma} \in (0, 1)$ ("critical GE feedback") such that

- $\gamma < \hat{\gamma}$: optimal to communicate instrument
- $\gamma \geq \hat{\gamma}$: optimal to communicate target

Additional result in paper:

precise value of announced τ or \mathcal{Y}
Broader Scope
Other Frictions

Assumption: generalized form of incorrect reasoning

Let ϵ be noise orthogonal to θ.

$$\bar{E}[K] = \lambda K + \sigma \epsilon \quad \lambda, \sigma > 0$$

nests: under-reaction ($\lambda < 1$), over-reaction ($\lambda > 1$), and noise or animal spirits ($\sigma > 0$)

- Optimal policy result goes through
- Intuition: all about limiting the role of $\bar{E}[K]$
 - i.e., the “more thinking $=$ more distortion” result extends
Policy Rules

Announce a linear policy rule: \(\tau = A - BY \)

Optimal \((A, B)\) indeterminate in RE benchmark

Policy Rules

Announce a linear policy rule: $\tau = A - BY$

Optimal (A, B) indeterminate in RE benchmark

Proposition: optimal linear policy with distorted beliefs

For each γ, there exists $(A^*(\gamma), B^*(\gamma))$ that uniquely solves the policy problem for all (λ, σ). $B^*(\gamma)$ increases in γ.

- High $\gamma \rightarrow$ tilt toward TC ("smoothed result")
- New perspective on policy rules
 - Optimal \Rightarrow reduces bite of bounded rationality
 - Uniqueness in tiny deviations from frictionless case
Conclusion
Managing (Distorted) Expectations

- **Goal**: optimal policy rules and communication given frictional coordination or bounded rationality
- **Lesson**: ease the burden of reasoning about the economy
- **More in the paper**: unobserved shocks; relation to Poole/Weitzman; more policy options; other settings