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1 Introduction

In the last fifteen years, the global-games methodology has been used to study a variety of socio-

economic phenomena, including currency attacks, bank runs, debt crises, political change, and party

leadership.1 Most of the appeal of this methodology for applied work comes from the fact that it

provides a toolkit to arrive at unique-equilibrium selection in settings with coordination problems

and self-fulfilling beliefs. This selection facilitates positive and normative predictions that were

impossible to make as long as these settings were ridden with multiple equilibria.

More recent work, however, has questioned the applicability of such unique-equilibrium selection

by showing that multiple equilibria may naturally reemerge once one recognizes the endogeneity

of the information structure. Such endogeneity can result from economic mechanisms that are

often central to the applications under consideration. Examples include the signaling role of policy

interventions (e.g., Angeletos, Hellwig and Pavan, 2006); the aggregation of information through

prices (Angeletos and Werning, 2006; Hellwig, Mukherji, and Tsyvinski, 2006; Ozdenoren and

Yuan, 2008); the manipulation of information through propaganda (Edmond, 2011); and learning

in dynamic settings (Angeletos, Hellwig and Pavan, 2007; Chassang 2010).

In the present paper, we show how global-game techniques may continue to deliver tight and

useful predictions even when the endogeneity of information precludes equilibrium uniqueness. We

illustrate this possibility within a flexible family of games of regime change in which the endogeneity

of the information originates from the signaling role of the actions of a policy maker. Applications

may include a central bank trying to defend a currency peg against a speculative attack; a gov-

ernment facing a self-fulfilling debt crisis; a party leader trying to preempt a defection by party

members and donors; or a dictator seeking to prevent a revolution.

The backbone of our framework is therefore similar to that in Angeletos, Hellwig and Pavan

(2006), combining a global coordination game with a signaling game.2 The contribution, however, is

distinct. That earlier work guessed and verified the existence of a particular set of equilibria, which

sufficed for establishing equilibrium multiplicity, but did not identify any predictions that hold true

across the entire equilibrium set. By contrast, the present paper develops a novel procedure of

iterated elimination of non-equilibrium strategies, which need not help establish the existence of

1The global-games methodology was pioneered by Carlsson and van Damme (1993) and then extended by Morris
and Shin (2003) and Frankel, Morris and Pauzner (2003). Applications include Morris and Shin (1998), Corsetti,
Dasgupta, Morris and Shin, (2004), and Guimaraes and Morris (2006) for currency crises; Rochet and Vives (2004)
and Goldstein and Pauzner (2005) for bank runs; Corsetti, Guimaraes and Roubini (2006) and Zwart (2007) for
debt crises; Chamley (1999) and Dasgupta (2006) for investment dynamics; Edmond (2006) for political change; and
Dewan and Myatt (2007) for party leadership.

2To be precise, our framework is more general in that it allows for a more flexible payoff structure. This gener-
alization permits us to nest novel applications and to illustrate the broader applicability of our approach. The key
contribution of the present paper, however, is not in this generalization per se, but rather in the nature of the results,
as explained in the main text.

1



any particular equilibria, but nevertheless identifies a set of predictions that must hold true in any

candidate equilibrium.

This explains why, not only the spirit of the contribution, but also the theoretical arguments

in the present paper are closer to standard global games than to our earlier work. In particular,

the procedure we develop in this paper shares two important similarities with the iterated deletion

of dominated strategies in standard global games (e.g., Carlsson and van Damme, 1993, Morris

and Shin, 2002). First, contagion effects emerge across different states of nature because, and

only because, of the incompleteness of information. Second, these contagion effects permit one to

iteratively rule out more and more strategy profiles by showing that they are inconsistent with

equilibrium reasoning.

At the same time, there is an important difference. In standard global games, the players’

information about the state of nature—and the associated belief hierarchies—are exogenous. By

contrast, beliefs are endogenous in our setting, because of the signaling role of policy. As a result,

our procedure puts iteratively tighter bounds, not only on the strategies that can be played in the

coordination game among the agents (the receivers), but also on the strategies that can be played

by the policy maker (the sender) and thereby on the endogenous belief hierarchies that obtain in

the coordination game. This explains the complexity and the novelty of the procedure.

Once the strategy profiles that survive this procedure have been identified, the next step is to

translate the results into probabilistic statements that can guide empirical work. To this goal, we

introduce an arbitrary sunspot (correlation device) whose realization determines the equilibrium

being played. We then ask what restrictions the theory imposes on the joint distribution of fun-

damentals (which are henceforth identified with the type of the policy maker), policy choices, and

regime outcomes from the perspective of an outside observer—say, an econometrician—who is un-

certain about which equilibrium is played (that is, who does not know the realization of the sunspot

variable).

We are thus able to reach the following testable predictions that hold irrespective of equilibrium

selection (i.e., irrespective of the sunspot distribution).

(i) The probability of regime change is monotone in the fundamentals: weaker policy types face

a higher probability of regime change.

(ii) The probability of policy interventions is non-monotone in the fundamentals: the policy maker

intervenes when his type is neither too strong nor too weak.

(iii) The “need” for policy intervention vanishes as agents become better informed about the type of

the policy maker: for all positive-measure sets of types, the probability of policy intervention

vanishes as the precision of the agents’ information grows.

(iv) The possibility of multiple equilibria hinges on the possibility of policy intervention: if the
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policy maker could commit to a particular policy before observing his type, then he could also

guarantee a unique equilibrium. Nonetheless, the policy maker can prefer such commitment

over discretion only in so far he expects his type to be strong: weak types are always better off

with the option to intervene, despite the fact that this option introduces multiple equilibria.

A number of remarks are worth making regarding the predictions documented above and the

overall contribution of the paper.

Although the aforementioned predictions seem quite intuitive, none of them could have been

made on the basis of the complete-information variant of the model: that variant is ridden with so

many equilibria that “almost anything goes”. What is more, even though the equilibrium set in our

framework is not a singleton, it features a sharp discontinuity that is reminiscent of that in standard

global games: in the limit as the noise vanishes, the set of equilibrium outcomes of our framework is

a measure-zero subset of its complete-information counterpart. These points underscore how global-

game techniques retain a strong and useful selection bite in our framework despite the endogeneity

of information and the ensuing equilibrium multiplicity.

The predictions documented above are, of course, also satisfied in Angeletos, Hellwig and Pavan

(2006), for the latter is a special case of the framework considered here. This, however, does

not mean that one could have reached these predictions from that earlier work. The guess-and-

verify arguments used in that earlier work were sufficient for establishing the existence of particular

equilibria, but were inadequate to identify the set of necessary conditions that must be satisfied by

any candidate equilibrium. This explains why the theoretical arguments contained in the present are

different from those in that earlier work, and are instead closer to the type of iterative elimination

arguments used in standard global games.

Identifying necessary conditions that hold for all equilibria does not directly translate to useful

testable predictions. One must first study how these necessary conditions map into restrictions on

fictitious data generated by the model. The second step we take in this paper is therefore an integral

part of our contribution, even though it is not specific to global games.

The above point also explains why the predictions we deliver are only probabilistic: as players

can randomize across multiple equilibria, the predicted relations between exogenous fundamentals

and endogenous equilibrium outcomes is stochastic. This property, in turn, offers an interesting

contrast to unique-equilibrium models. In such models, the theory typically delivers a deterministic

relation between exogenous fundamentals and endogenous outcomes. Before taking the theory to

the data, the econometrician must therefore add some randomness in the form of a residual.3 This

residual is most often justified either as measurement error or as explanatory variables that were

left outside the theory. By contrast, our approach permits one to accommodate this residual as an

3For example, think of the theory delivering the prediction Y = βX, and the econometrician then testing the
relation Y = βX + ε, where Y are the endogenous variables, X the exogenous fundamentals, and ε the residual.
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integral part of the theory, as the empirical counterpart of random equilibrium selection.4

Equilibrium poses restrictions, not only on the relation between fundamentals, policy choices

and regime outcomes, but also on the relation of these objects to the agents’ hierarchy of beliefs.

Predictions that have to do with the structure of beliefs may be of special interest to the theorist.

Nonetheless, such predictions seem of limited value for applied purposes, since beliefs—and espe-

cially higher-order beliefs—are unlikely to be contained in the data that are typically available in

applied work. Similarly, predictions that tie the effectiveness of policy interventions to, say, 12th

order beliefs are also of little value to real-world policy makers. This explains why our analysis

concentrates on predictions about the joint distribution of a limited set of variables—fundamentals,

policy choices, and regime outcomes—that seem of interest for practical purposes.

This last point also provides a possible re-interpretation of our results. In games with exogenous

information, Weinstein and Yildiz (2007) and Penta (2012) have shown that equilibrium multiplicity

is degenerate as long as one considers a sufficiently rich topology over belief hierarchies. It is unclear

whether a variant of that result applies to the type of environments with endogenous information

that we are interested in. But even if it does, the ultimate question of interest here is not per se

the determinacy of the equilibrium, but rather the sharpness of the predictions an outside observer

can make on the basis of limited data about the belief hierarchy.

In particular, we cannot rule out the possibility that one can induce unique-equilibrium selection

in our setting by considering sufficiently rich perturbations of the information structure, including

perturbations of the signaling technology. Nonetheless, to the extent that different equilibria are

selected by different perturbations, as it is indeed the case in Weinstein and Yildiz (2007), then

the essence of our results will survive: one would only have to re-interpret the uncertainty the

econometrician faces about equilibrium selection in our setting with the uncertainty he may face

about the relevant perturbation.

Layout. The rest of the paper is organized as follows. Section 2 sets up our framework.

Section 3 constructs the aforementioned procedure of iterated deletion of non-equilibrium strategies

and shows how this procedure identifies a set of tight necessary conditions for the entire equilibrium

set. Section 4 translates these conditions into probabilistic predictions about the relation between

fundamentals, policy choices and regime outcomes. Section 5 studies the equilibrium value of the

option to intervene. Section 6 contrasts the incomplete-information game to its common-knowledge

counterpart. Section 7 concludes. All proofs are in the Appendix.

4The spirit of this point is similar to that in Chari and Kehoe (2003). That paper consider a setting with a unique
equilibrium and herding dynamics. In that setting, the econometrician could face significant uncertainty about the
relevant economic outcomes (the occurrence of a crisis) conditional on the observable fundamentals (the strength of
the regime), not because of equilibrium multiplicity, but because he could not observe the precise signals observed
by the agents and the precise sequence in which agents move.
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2 Model

The economy is populated by a big player, who seeks to influence the fate of a regime, and a

continuum of small atomistic players, who must choose whether or not to attack the regime (i.e.,

to take actions that favor the status quo or that favor regime change). To fix ideas, we think of the

big player as a “policy maker,” and refer to the small players as to the “agents”. We index the latter

by i, assume that they are distributed uniformly over [0, 1], and denote by A ∈ [0, 1] the measure

of the agents attacking the regime (the aggregate size of the “attack”).

Depending on the application of interest, the policy maker could be a central bank trying to

avoid the devaluation of a currency (Obstfeld, 1996; Morris and Shin, 1998), a debtor trying to

convince creditors to roll over their loans (Calvo, 1988; Corsetti, Guimaraes and Roubini, 2006,

Zwart, 2007); a dictator trying to prevent political unrest (Edmond, 2006); or a party leader trying

to keep the party united (Dewan and Myatt, 2007). As we explain below, the payoff structure we

assume is sufficiently flexible to permit any of these possible interpretations of our framework.5

Fundamentals, policy actions, and regime outcome. The payoff structure is parametrized

by an exogenous random variable θ ∈ R. This variable may affect the strength of the status quo, the

policy maker’s preferences, or the agents’ costs and benefits from regime change. The realization of

this variable is known to the policy maker, but is only imperfectly observed by the agents. As in

the related literature, hereafter we refer to θ interchangeably as to the underlying “fundamentals”

and the policy maker’s “type.”

Before agents move, the policy maker can take a costly action in an attempt to influence the

agents’ behavior and the fate of the regime. In the context of speculative currency attacks, think

of capital controls and monetary interventions that raise domestic interest rates. In the context of

debt crises, think of fiscal austerity measures and structural reforms. In the context of a dictatorial

regime, think of measures that strengthen the militia, increase the stakes for the supporters of the

regime, suppress dissent, or appease the general public with pro-democratic reforms. Finally, in the

context of party leadership, think of various concessions and promises made by a party leader in

order to discourage his fellow party members (or donors) from defecting.

We capture the action of the policy maker by a variable r ∈ [r,+∞), which is under the direct

control of the policy maker. The regime outcome need not be under his direct control, but can

be influenced by his policy choice. We assume that regime change occurs if R (θ, r, A) ≤ 0, and

does not occur if R (θ, r, A) > 0, where R is a continuous function, strictly increasing in θ, strictly

decreasing in A, and nondecreasing in r. These monotonicities—which mean that the chances

the status quo survives increase with the fundamentals, decrease with the size of the attack, and

5Our framework is flexible but, of course, too abstract to accommodate the institutional details of any particular
application. Adding such details may complicate the analysis. However, it may also tighten the predictions, for
specific applications can justify tighter assumptions on the payoff structure.
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(weakly) increases with the policy maker’s action—are quite natural given the class of applications

we have in mind. For example, in the context of currency crises, the above assumptions capture the

idea that devaluation is more likely when the size of the speculative attack is larger and less likely

when the policy maker succeeds in securing a larger amount of reserves. In the context of political

unrest, they capture the idea that the regime’s probability of survival decreases with the size of the

insurgent group and increase with the amount of resources the regime spends on strengthening its

police and militias.6

Policy maker’s payoff. The policy maker’s payoff is given by the function

U(θ, r, A) =

{
W (θ, r, A) if R(θ, r, A) > 0

L(θ, r) if R(θ, r, A) ≤ 0.

We assume that the functions W and L are continuously differentiable and satisfy the following

conditions:7

1. Wr(θ, r, A) < 0 and Lr(θ, r) < 0;

2. WA(θ, r, A) ≤ 0;

3. there exists a threshold θ, defined below, such that W (θ, r, 0) − L(r, θ) is strictly increasing

in θ for all θ ≥ θ and all r > r.

4. W (θ, r, A)− L(θ, r) > 0 if R(θ, r, A) > 0.

The first assumption simply means that policy interventions are costly, both in case the status

quo survives and in case of regime change. Depending on the application of interest, this assumption

may reflect the distortionary effects of higher domestic interest rates (in the context of currency

crises), or the economic and political costs of fiscal austerity (in the context of sovereign debt crises).

The second assumption means that, conditional on the regime surviving, the policy maker

(weakly) prefers a smaller attack. The case where W is independent of A corresponds to a situation

where the policy maker cares about the size of the attack A only in so far the latter affects the fate

of the regime, as in the case of a political candidate whose payoff is only determined by whether or

not he wins an election or, more generally, of whether or not he retains power.

The third assumption is an increasing-difference condition akin to the role played by familiar

single-crossing conditions in signaling games: if setting the minimal-cost policy r leads to regime

change while raising the policy to some level r > r spares the status quo from an attack and results
6Note that the regime outcome is a deterministic function of (θ, r, A), implying that in equilibrium the policy

maker faces no uncertainty about regime outcomes. We expect, however, our results to extend to a setting where,
with a small probability, the regime collapses for exogenous reasons—e.g., think of devaluation occurring as a result
of a large attack by noise traders.

7Throughout, for any function f : Rn → R we let fx denote its partial derivative with respect to argument x.
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in the status quo being preserved, higher types have a stronger incentive to raise the policy than

lower types.

The fourth assumption means that the policy maker would not prefer to see the regime collapse

when it survives. This assumption is trivially satisfied when the fate of the regime is directly

controlled by the policy maker, as typically assumed in models of currency attacks.8 To capture a

richer set of applications, such as political change, we are allowing the regime outcome to be beyond

the direct control of the policy maker; to get sharper predictions, we are ruling out the possibility

that the policy maker’s preferences for the fate of the regime are negatively correlated with the

regime’s strength.

Finally, note that L is not allowed to depend on A: conditional on regime change, the policy

maker’s payoff is assumed to be independent of the size of the attack. This assumption is more

restrictive than the preceding ones, but need not be unnatural. For example, once a dictator has

been thrown out power, he might not care anymore about the exact size of the revolt that overthrew

him–in fact, he might actually be dead! In the context of currency crises, on the other hand, this

assumption may be motivated by the idea that the cost of defending the peg against a speculative

attack are largely waived if the central bank decides not to defend. Putting aside these possible

justifications, the reason we impose this assumption is that it facilitates an important step in our

characterization procedure: it guarantees that, along any equilibrium, policy interventions signal

the policy maker’s confidence that regime change will not occur in equilibrium.9

The agents’ payoff. As standard in coordination games, what matters for the agents is the

payoff differential between attacking and not attacking. Consequently, we normalize the payoff from

not attacking to zero and let the payoff that each agent obtains in case he attacks be given by

u(θ, r, A) =

{
−Q(r) if R(θ, r, A) > 0

Z(θ, r)−Q(r) if R(θ, r, A) ≤ 0.

The term Q(r) > 0 captures the various costs of attacking in case the attack fails and the regime

is maintained, while the term Z(θ, r) > 0 captures the gross benefit of attacking when the at-

tack is successful.10 The functions Z and Q are bounded, continuously differentiable, and satisfy

Zθ, Zr ≤ 0 ≤ Qr, for all (θ, r). In the context of a currency attack, for example, Q(r) represents the

transaction and other costs that a speculator has to bear in order to attack, while Z(θ, r) represents
8To capture the possibility that the fate of the regime is directly controlled by the policy maker, we can add a

final stage during which the policy maker decides whether or not to abandon the status quo after observing the size
of attack A. The policy maker would then decide to abandon the status quo if and only if it is in his interest to do
so; that is, R (θ, r, A) > 0 if and only if W (θ, r, A) > L(θ, r).

9This assumption can thus readily be replaced with the weaker assumption that, conditional on regime change,
the policy maker’s optimal choice is r = r.

10Our results extend to the case where Z also depends on the size of the attack A, to the extent that this dependence
preserves strategic complementarity in the agents’ actions. However, because the exposition is heavier in that case,
we restrict attention here to the case where Z depends only on (θ, r).
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the devaluation premium; the dependence of Q on r then captures the ability of the government

to manipulate these costs, while the dependence of Z on θ and r captures the possibility that

the shadow value of the peg increases with either the quality of the fundamentals or various fiscal

reforms that can be undertaken by the government.

Timing and information. The game evolves through two phases. In the first phase, the policy

maker sets the policy r after learning θ. In the second phase, agents decide simultaneously whether

or not to attack, after observing the policy r, and after receiving private signals xi = θ+ σξi about

θ; the scalar σ ∈ (0,∞) parameterizes the quality of the agents’ information, while ξi is noise, i.i.d.

across agents and independent of θ, with a continuous probability density function ψ strictly positive

and differentiable over the entire real line, with corresponding cumulative distribution function Ψ.

The common prior about θ is uniform over the entire real line.11

Dominance regions. As in all global games, the selection power of incomplete information

hinges on the introduction of dominance regions. The ones we assume here are based on two intuitive

properties. When the fundamentals are sufficiently weak (low θ), regime change is inevitable,

irrespective of the size of the attack and of the level of policy intervention. Likewise, when the

fundamentals are sufficiently strong (high θ), the status quo survives irrespective of the size of the

attack and of policy interventions. In either case, the policy maker refrains from intervening. These

properties are embedded in our model as follows.

First, we assume that there exist finite thresholds θ and θ̄, with θ < θ̄, such that R (θ, r, 0) =

0 = R
(
θ̄, r, 1

)
for any r. This assumption identifies the interval (θ, θ̄] with the “critical region” of

fundamentals over which the regime outcome hinges on the size of the attack,12 and guarantees that

it is dominant for the policy maker to set r = r whenever θ ≤ θ (in which case regime change is

inevitable). Next, we assume that limθ→+∞ ρ(θ) = r, where ρ(θ) is defined as the maximal level of

r that is not strictly dominated by r for a policy maker of type θ.13 This assumption guarantees

that any policy action r > r is dominated by inaction (r = r) for sufficiently high fundamentals.14

11As in the rest of the literature, this improper prior is used only for convenience; the results generalize to any
bounded smooth prior as long as σ, the noise in the agents’ private signals, is small enough.

12The assumption that this region is invariant to r is only for expositional simplicity.
13To understand whether raising the policy to some level r > r is strictly dominated by leaving the policy at r,

recall thatW (θ, r, A) is non-increasing in A and that L(θ, r) is independent of A. It follows that the best-case scenario
following the former choice is that no agent attacks (A = 0), while the worst-case scenario following the latter choice
is that all agents attack (A = 1). Furthermore, because regime change is inevitable for θ ≤ θ and because the payoff
L(θ, r) in case of regime change is independent of A and decreasing in r, it follows that ρ(θ) = r for all θ ≤ θ. In
contrast, for any θ ∈ (θ, θ̄], any r, regime change occurs if all agents attack and does not occur if all agents refrain
from attacking, implying that ρ(θ) = sup{r ≥ r : W (θ, r, 0) ≥ L(θ, r)}. Lastly, for any θ > θ̄, regime change never
occurs, irrespective of the size of the attack, which means that ρ(θ) = sup{r ≥ r : W (θ, r, 0) ≥W (θ, r, 1)}.

14The role of this condition is to rule out equilibria where interventions occur also for arbitrarily high types. These
equilibria seem unrealistic and are not robust, for example, to the possibility that the noise in the agents’ signals has
bounded support. Instead of invoking the assumption of bounded noise, in the sequel we assume directly that policy
intervention is dominated for sufficiently high types.
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Finally, we assume that Z(θ, r) > Q(θ, r) for all (θ, r) such that θ ≤ θ̄ and r ≤ ρ(θ). This assumption

simply means that an agent who expects regime change finds it optimal to attack at least in so far

the policy maker does not play a dominated action.

3 Equilibrium

Our equilibrium concept is Perfect Bayesian Equilibrium. Let r (θ) denote the policy chosen by type

θ, µ(θ|x, r) the cumulative distribution function of the posterior belief of an agent who receives a

signal x and observes a policy r, a (x, r) the action of that agent, A(θ, r) the corresponding aggregate

size of attack, and D(θ, r) the resulting regime outcome, with D(θ, r) = 0 if R(θ, r, A(θ, r)) > 0,

that is, if the status quo is maintained, and D(θ, r) = 1 if R(θ, r, A(θ, r)) ≤ 0, that is, if regime

change occurs.15 The equilibrium definition can then be stated as follows.

Definition. An equilibrium consists of a strategy for the policy maker, r : R→ [r,+∞), a posterior

belief for the agents, µ : R2 × [r,+∞) → [0, 1], a strategy for the agents, a : R× [r,+∞) → {0, 1},
and an aggregate attack function, A : R× [r,+∞)→ [0, 1], such that

r(θ) ∈ arg max
r
U(θ, r, A (θ, r)) ∀θ (1)

µ (θ|x, r) is obtained from Bayes’ rule using r(·) for any x ∈ R and any r ∈ r(R) (2)

a(x, r) ∈ arg max
a∈{0,1}

a
[∫ +∞
−∞ Z(θ, r)D(θ, r)dµ (θ|x, r)−Q(r)

]
∀(x, r) (3)

A(θ, r) =
∫ +∞
−∞ a(x, r) 1

σψ
(
x−θ
σ

)
dx ∀(θ, r) (4)

where r(R) ≡ {r : r = r(θ), θ ∈ R} is the set of policy interventions that are played in equilibrium.

The equilibrium regime outcome is given by

D (θ) ≡ D(θ, r(θ)) =

{
0 if R (θ, r(θ), A(θ, r(θ))) > 0

1 otherwise.

Conditions (1) and (3) require that the policy maker’s and the agents’ actions be sequentially

rational. Condition (4) requires that the aggregate size of attack is the one that obtains by aggre-

gating the strategy of the agents. Finally, condition (2) requires that, on the equilibrium path, the

agents’ beliefs be pinned down by Bayes’ rule.16

Before proceeding to the characterization of the equilibrium set, we introduce some additional

notation. Let E(σ) denote the set of all possible equilibria in the game with quality of information

σ. Next, for any s ≥ r, let E(s;σ) denote the set of equilibria in which r(θ) ∈ {r, s} for all θ,

15All equilibrium objects depend on σ, the level of noise, but this dependence is left implicit unless otherwise stated.
16Note that the equilibrium definition restricts attention to symmetric pure-strategy profiles; as discussed at the

end of this section, this is without loss of generality.
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meaning that the policy takes either the cost-minimizing value r or the value s. For any (θ1, θ2)

with θ2 ≥ θ1, let X(θ1, θ2;σ) be the unique solution to17

∫ θ1
−∞ Z(θ̃, r) 1

σψ
(
x−θ̃
σ

)
dθ̃

1−Ψ(x−θ1σ ) + Ψ(x−θ2σ )
= Q(r). (5)

This threshold identifies the unique signal x at which an agent who believes that θ /∈ [θ1, θ2] and

that regime change occurs if and only if θ ≤ θ1 is indifferent between attacking and not attacking

when observing r = r. Finally, let

B(θ1, θ2;σ) ≡ Ψ

(
X(θ1, θ2;σ)− θ2

σ

)
(6)

denote the aggregate size of attack that obtains when the policy maker’s type is θ2 and agents attack

if and only if x < X(θ1, θ2;σ).

3.1 Characterization

We now proceed to state our key two characterization results. The first one uses a novel procedure of

iterated deletion of strategy profiles that cannot be part of an equilibrium in order to obtain tighter

and tighter bounds on the equilibrium set. These bounds, which are presented in Proposition 1

and formally derived in subsection 3.2 below, play a central role in our analysis: they contain the

equilibrium set; they rule out a large set of strategy profiles, including many of those that could

have been equilibrium profiles under complete information; and they drive the core predictions we

present in Section 4. Yet, these bounds need not always be the sharpest: in general, we cannot

rule out the possibility that the equilibrium set is strictly smaller than the set identified by these

bounds. We eliminate this ambiguity in Proposition 2 for the case that the policy maker’s payoff

satisfies a natural single-crossing property.

Proposition 1 (necessary conditions). The following properties are true for any σ > 0.

(i) The equilibrium set is given by E(σ) = ∪s≥rE (s;σ).

(ii) If E (r;σ) 6= ∅, then any equilibrium in E (r;σ) is such that

D (θ) = 1 if and only if θ ≤ θ#,

where θ# = θ#(σ) is the unique solution to

R
(
θ#, r, B(θ#, θ#;σ)

)
= 0. (7)

17The fact that equation (5) admits a unique solution is established in Appendix B: see the proof of Property 3
inside the proof of Proposition 9.
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(iii) For any s > r, if E (s;σ) 6= ∅, then there exists a pair of thresholds (θ∗s , θ
′′
s ) with θ′′s ≥ θ∗s

such that18

θ∗s = inf{θ ≥ θ : W (θ, s, 0) ≥ L (θ, r)} (8)

and either

W
(
θ′′s , s, 0

)
= W

(
θ′′s , r, B(θ∗s , θ

′′
s ;σ)

)
and R(θ′′s , r, B(θ∗s , θ

′′
s ;σ)) > 0 (9)

or

R(θ′′s , r, B(θ∗s , θ
′′
s ;σ)) = 0. (10)

(iv) For any s > r, if E (s;σ) 6= ∅, then any equilibrium in E (s;σ) is such that

r(θ) = s only if θ ∈ [θ∗s , θ
∗∗
s ] and D (θ) =

{
1 for θ < min{θ∗s , θ#}
0 for θ > θ∗s

where

θ∗∗s = θ∗∗s (σ) ≡ sup
{
θ′′s ≥ θ∗s : θ′′s satisfies condition (9) or (10)

}
. (11)

Furthermore, θ∗s < θ#(σ) if and only if s < r#, where r# = r#(σ) is the unique solution to

W
(
θ#(σ), r#, 0

)
= L

(
θ#, r

)
. (12)

Part (i) establishes that, in any equilibrium, either the policy is left at r by all θ, or it is raised

to the same level s > r by all types who raise the policy above r. Parts (ii) characterizes the subset

of equilibria in which all types pool on r = r. It identifies a unique threshold θ# such that, in any

such equilibrium, regime change occurs if and only if θ ≤ θ#.19 As implied by Condition (7), this

threshold is the lowest threshold θ′ for which the regime survives when each agent expects no type

of the policy maker to raise the policy above r and regime change to occur if and only if θ < θ′, in

which case each agent attacks if and only if he receives a signal x < X(θ′, θ′;σ), which implies that

the size of the attack at θ′ is given by B(θ′, θ′;σ).20

Next, consider the subset of equilibria in which some type raises the policy to s, for some s > r.

Part (iii) identifies necessary conditions for such an equilibrium to exist. Part (iv) in turn establishes

that, in any such equilibrium, there exists a pair of thresholds θ∗s and θ∗∗s such that (a) the policy

is raised to s only if θ ∈ [θ∗s , θ
∗∗
s ], (b) regime change never occurs for θ > θ∗s and (c) regime change

18When we say that there exists a threshold θ∗s satisfying (8), we mean that the set {θ ≥ θ : W (θ, s, 0) ≥ L (θ, r)}
is non-empty.

19Our discussion in the main text suppresses the dependence of θ#, r#, and θ∗∗ on σ to simplify the exposition,
although this dependence remains explicit in the statement of the formal results.

20Not surprisingly, this threshold coincides with the one that obtains in a variant of our game that restricts the
policy to r ∈ {r} for all θ, which is the case typically studied in global games with exogenous information – see e.g.,
Morris and Shin (1998) for an application to currency crises.
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always occurs for θ < min{θ∗s , θ#}.21 The threshold θ∗s identifies the lowest type of the policy maker

who prefers raising the policy to s to leaving the policy at r, when the former choice discourages

each agent from attacking and spares the policy maker from regime change, whereas the latter

choice leads to regime change. As evident from Conditions (9) and (10), θ∗∗s in turn identifies the

highest type θ′′s ≥ θ∗s who finds it optimal to raise the policy to s when leaving the policy at r

leads to an attack of size A = B(θ∗s , θ
′′
s ;σ). Recall that B(θ∗s , θ

′′
s ;σ) is the size of the attack that

obtains at θ = θ′′s when, after observing r, each agent attacks if and only if he receives a signal

x ≤ X(θ∗s , θ
′′
s ;σ). In the proof below, we will show that, when θ′′s is the highest type to raise the

policy to s, then it is iteratively dominated for each agent to attack for any x > X(θ∗s , θ
′′
s ;σ), which

implies that B(θ∗s , θ
′′
s ;σ) is the largest attack that type θ′′s can expect to face in case he decides to

leave the policy at r. It follows that, for type θ′′s to prefer raising the policy to s than leaving the

policy at r, it must be that that the largest attack B(θ∗s , θ
′′
s ;σ) that type θ′′s can possibly expect

in case he leaves the policy at r either leads to regime change or to a payoff W (θ′′s , r, B(θ∗s , θ
′′
s ;σ))

that is lower than the payoff W (θ′′s , s, 0) that type θ′′s could obtain by raising the policy to s and

guaranteeing that no agent attacks.

Note that, while Proposition 1 identifies properties that any equilibrium must satisfy, it does

not guarantee existence of equilibria satisfying such properties. This incompleteness, however,

disappears once we impose the following single-crossing restriction on the policy maker’s payoff.

Let ∆W (θ; r,A) ≡ W (θ, r, 0)−W (θ, r, A) denote the payoff differential between raising the policy

to r > r and facing no attack and leaving the policy at r and suffering an attack of size A, when

the policy maker’s type is θ and both choices lead to no regime change.

Single-Crossing Condition (SCC). The differential ∆W (θ; r,A) changes sign at most once as

θ increases from θ to +∞: for any A > 0 and r > r, either ∆W (θ; r,A) < 0 for all θ ≥ θ, or

there exists a θ+(r,A) > θ such that ∆W (θ; r,A) > 0 if θ < θ+(A, r) and ∆W (θ; r,A) < 0 for

θ > θ+(A, r).

The SCC thus requires that, in the absence of regime change, the net benefit of reducing the size

of the attack from A to zero by raising the policy from r to r changes sign only once. Obviously,

this condition is trivially satisfied when the policy maker cares about the size of the attack only

in so far it affects the regime outcome (i.e., when WA(θ, r, A) = 0 for all (θ, r, A), in which case

∆W (θ; r,A) < 0 for all θ), an assumption that is often made in games of political change that are

modeled as a “winner-takes-all election.”)

21When θ∗s > θ#, our procedure of iterated deletion of non-equilibrium strategies does not permit us to pin down
the equilibrium regime outcome for θ ∈ [θ#, θ∗s ]. What we know is that, if equilibria exist where θ∗s > θ#, then no
type θ ∈ [θ#, θ∗s ] would raise the policy to s. As explained below, this indeterminacy vanishes if one assumes that the
policy maker’s payoff satisfies the single-crossing condition SCC (see Proposition 2 below), or if one assumes that σ
is small (see Proposition 9 in Appendix A).
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Proposition 2 (complete characterization). Suppose SCC holds. Then, the following properties

are true for any σ > 0:

(i) E (s;σ) 6= ∅ if and only if s ≤ r#(σ), where r#(σ) is the threshold defined in Proposition 1.

(ii) For any s ∈ (r, r#(σ)], there exists an equilibrium in E (s;σ) in which r(θ) = s for all

θ ∈ (θ∗s , θ
∗∗
s (σ)] (for all θ ∈ [θ∗s , θ

∗∗
s (σ)] if θ∗s > θ).

These results complement Proposition 1 in three ways. First, they rule out the possibility of

equilibria in which the policy is raised to s > r#. Second, for any s ≤ r#, they guarantee existence

of equilibria in which some type of the policy maker raises the policy to s. Finally, they establish

that the thresholds θ∗s and θ∗∗s are the sharpest bounds for the set of types who possibly raise the

policy to s, in the sense that there always exists an equilibrium in which the policy is raised to s

for the entire interval (θ∗s , θ
∗∗
s ].22

As the name indicates, the role played by SCC in these results is to guarantee that the policy

maker’s preferences (and hence his incentives) satisfy a natural ordering condition; when leaving

the policy at r leads to an attack that is non-increasing in θ, then if type θ∗∗s prefers raising the

policy to s than leaving the policy at r, so does any type θ ∈ (θ∗s , θ
∗∗
s ].

Remark 1. Proposition 2 can be viewed as a generalization of the results in Propositions

1, 2, and 5 of Angeletos, Hellwig and Pavan (2006): that paper considered a more restrictive

payoff specification, which happened to satisfy SCC, and established existence of a particular set

of equilibria in which the policy maker intervenes for intermediate types. None of the results in

that paper, however, permits one to identify properties that hold true across all equilibria. Apart

from the more flexible payoff specification, the key contribution here is thus not Proposition 2 but

Proposition 1. It is this novel result, and only this one, that permits one to identify predictions that

are robust across the entire equilibrium set, whatever that might be.

Remark 2. In Section 4 below, we show how the properties identified above can be translated

into stochastic predictions about policy interventions and regime outcomes as well as into predic-

tions for how the bounds on these variables change with the fundamentals and with the quality

of the agents’ information. These results hinge on parts (iii)-(iv) of Proposition 1, but depend on

Proposition 2 only in so far the results in Proposition 2 rule out the possibility of equilibria in

which s > r#. This possibility is problematic for our purposes because Proposition 1 guarantees

monotonicity of the regime outcome for s ≤ r# but not for s > r#. The role of SCC is precisely to

rule out this possibility for any σ > 0. When SCC fails to hold, it is unclear whether equilibria with

s > r# exist. Even if such equilibria exist, they would not interfere with our predictions as long as

22The result in Proposition 2 leaves open the possibility that there also exist equilibria in which the policy is raised
only for a strict subset of (θ∗s , θ

∗∗
s ]. These equilibria are sustained by the agents following a strategy, after observing

the policy maker’s choice of not intervening, that is non-monotone in their signals. Although this possibility does not
interfere with the predictions we deliver in the sequel, it can be ruled out if one assumes that the noise distribution
is log-concave, an assumption which is often made in applications—see Proposition 10 in Appendix A.
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they maintain monotonicity of regime outcomes. Furthermore, one can show that, irrespective of

whether or not SCC holds, equilibria with s > r# cannot exist in the limit as σ → 0 (see Propo-

sition 9 in Appendix A). We conclude that the predictions we deliver in the sequel are unlikely to

hinge on SCC.

3.2 Characterization procedure

We now expand on the series of arguments that lead to Proposition 1. As anticipated, this series of

arguments deals with the interaction of two kinds of forces. On the one hand, the incompleteness of

information, coupled with the existence of dominance regions, induces a series of contagion effects

across different types of the policy maker, as well as across different signals for the agents. On

the other hand, the signaling role of policy implies that the information, and the belief hierarchy,

in the continuation game that follows any particular policy choice is endogenous to equilibrium

play. The contagion effects are reminiscent of those in standard global games, but the endogeneity

of information invalidates standard global-game arguments. The interaction of these two forces

therefore explains the novelty and complexity of some of the arguments that follow.

We start by considering the subset of equilibria in which all types pool on r. When this is

the case, the observation of r conveys no information, and the coordination game that follows this

observation is essentially a standard global game. The next lemma then follows from the same

kind of arguments as in Morris and Shin (1998, 2003), adapted to the more general environment

considered here. (Remark: in all lemmas that follow, the variables θ#, r#, θ∗s , and θ∗∗s are those

defined in Proposition 1.)

Lemma 1. In any equilibrium in which no type intervenes, D (θ) = 1 if and only if θ ≤ θ#.

The above lemma establishes part (ii) of Proposition 1. The next two lemmas shift attention to

equilibria in which some types raise the policy above r and help establish part (i) of the proposition.

Lemma 2. In any equilibrium in which some type intervenes, there exists a single s > r such that

r (θ) = s whenever r (θ) 6= r. Furthermore, for that s, A(θ, s) = 0 for all θ.

Lemma 3. For any s > r, if E(s;σ) 6= ∅, then there exists a θ ≥ θ such that W (θ, s, 0) ≥ L (θ, r) .

Furthermore, any equilibrium in E(s;σ) is such that D(θ) = 0 for all θ > θ∗s .

The key insights behind these two lemmas are simple. First, a type finds it optimal to intervene

only if he expects that, by doing so, he will reduce the size of the attack and/or reduce the chances

of regime change by strengthening the status quo. Second, if a certain type avoids regime change by

raising the policy to r, then any higher type must also be avoiding regime change in equilibrium—for

any higher type can always “imitate” any lower type and do at least as well.

These properties are intuitive. Clearly, there must be some benefit, in the form of a reduction in

the size of the attack and/or a reduction in the probability of regime change, to justify the cost of
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intervention. Our model captures this benefit in a stark way, by guaranteeing that no attack takes

place with probability one following any (equilibrium) intervention. This is because we have ruled

out any source of aggregate uncertainty in the size of the attack and in the regime outcome beyond

the one introduced by the random type of the policy maker. In the absence of such aggregate

uncertainty, equilibrium policy interventions necessarily signal that regime change will not occur

(for, otherwise, the policy maker would be better off by not intervening). This in turn implies that,

in equilibrium, any type who intervenes does so by selecting the least costly policy among those

that are conducive to no regime change, as stated in Lemma 2.

One should not, however, misinterpret Lemma 2 as saying that a single level of policy intervention

is consistent with equilibrium behavior. Rather, as established in Proposition 2, there is a continuum

of policy levels s > r that can be played in some equilibrium. Furthermore, the same type θ may

be playing different r in different equilibria, just as the same r may be played by different θ. This

point underscores that Lemma 2 has very little positive content on its own right, and anticipates

the necessity of the additional arguments we make in Section 4.

Lemma 2 nevertheless helps us index the equilibrium set in a convenient way: any equilibrium

that does not belong to E(r;σ) necessarily belongs to E(s;σ) for some s > r. Together with Lemma

1, this lemma therefore establish part (i) of Proposition 1.

Finally, Lemma 3 guarantees that the threshold θ∗s is an upper bound for the set of types for

whom regime change occurs, across all equilibria in E(s;σ). This is because any type above this

threshold can always save the regime (and then obtain a payoff higher than in case of regime change)

by raising the policy to s and then face no attack. Any type θ > θ∗s who, in equilibrium, leaves the

policy at r must thus necessarily expect a small attack that does not trigger regime change. Clearly,

θ∗s is also a lower bound on the set of types who possibly raise the policy to s: For any type below

this threshold, raising the policy to r = s is dominated by leaving the policy at r.

Moving on, the next lemma uses a contagion argument to establish that the threshold θ∗∗s defined

in Proposition 1 is an upper bound to the set of types who potentially raise the policy to r = s.

Lemma 4. For any s > r, if E(s;σ) 6= ∅, then there exists a θ′′s ≥ θ∗s that satisfies either condition

(9) or condition (10) in Proposition 1. Furthermore, any equilibrium in E(s;σ) is such that r (θ) = s

only if θ ∈ [θ∗s , θ
∗∗
s ].

The proof of Lemma 4 encapsulates contagion effects from very high types, for whom raising the

policy is dominated, to lower types, who are spared from the need to raise the policy thanks, and

only thanks, to the incompleteness and dispersion of information among the agents. In particular,

the fact that raising the policy is dominated for sufficiently high types implies that agents, on their

part, find it iteratively dominant to not attack for sufficiently high signals, conditional on observing

no policy intervention.23 The dispersion of information then initiates a contagion effect that triggers
23That raising the policy to r = s is dominated for arbitrarily high types follows from the assumption that
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agents not to attack for lower and lower signals and hence spares the policy maker from the need

to raise the policy for lower and lower θ. In the limit, this contagion converges to θ∗∗s , guaranteeing

that all types above this threshold (i) are able to avoid regime change without intervening, and (ii)

obtain a higher payoff by leaving the policy at r and facing a small attack than by raising the policy

to s and face no attack.

Underscoring the power of this contagion effect, the limit threshold θ∗∗s is arbitrarily close to θ∗s
when σ is small enough (See Proposition 9 in Appendix A) meaning that almost all types for whom

policy intervention is not dominated succeed to avoid regime change without the need for costly

policy interventions. This is despite the fact that the aforementioned contagion effect is initiated

with types that can be arbitrarily high.

Lemma 4 used a contagion argument “from above” to identify a necessary condition for existence

of equilibria in which the policy is raised to r = s > r by some type and identified an upper

bound θ∗∗s for the set of types who possibly raise the policy to r = s. The next lemma uses an

alternative contagion argument “from below” to establish that regime change necessarily occurs for

any θ < min{θ∗s , θ#}.

Lemma 5. Take any s > r and suppose that E (s;σ) 6= ∅. Then any equilibrium in E(s;σ) is such

that D(θ) = 1 for any θ < min{θ∗s , θ#}. Furthermore, θ∗s > θ# if and only if s > r#.

As explain in the Appendix, the contagion effect behind the above result is also present because,

and only because, of the dispersion of information. In particular, the fact that, for sufficiently

low types, raising the policy is dominated along with the fact that, for these types, regime change

is inevitable, implies that agents find it iteratively dominant to attack for sufficiently low signals

as long as they do not observe policy intervention. The dispersion of information then initiates a

contagion effect such that, conditional on seeing no intervention, agents find it iteratively dominant

to attack for higher and higher signals, in which case regime change occurs for higher and higher

θ. In the limit, this contagion effect guarantees that regime change occurs for all types below

min{θ∗s , θ#} in any equilibrium in which the policy is raised to s. This last result is obtained by

comparing the agents’ incentives to attack after observing r with the corresponding incentives when

they expect r(θ) = r for all θ. Because the observation of r is most informative of regime change

when all types who experience regime change set r = r, while some of the types who are spared

limθ→+∞[W (θ, s, 0) −W (θ, r, 1)] < 0. Without an assumption of this sort, there may exist equilibria in which the
policy maker intervenes even for arbitrarily high types. These equilibria are sustained either by the assumption that
the cost of intervention vanishes for sufficiently high types, or by the agents threatening to attack no matter how
favorable their signal is when the policy maker fails to intervene. We find either property implausible. Also note that
equilibria in which the agents attack no matter their signal when r = r are not robust to the following perturbation.
Pick any K > θ̄ and any δ > 0 and suppose that with probability δ types θ > K are forced to set r and assume
that this event is not observed by the agents. The aforementioned equilibria are not robust to this perturbation, no
matter how unlikely this event is (i.e. no matter δ) and no matter how big K is.
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from regime change raise the policy above r, the size of attack when setting r = r is necessarily

larger in any of the equilibria in which some types are expected to raise the policy to r = s than

in the pooling equilibria where all types are expected to set r = r. Hence any type θ < θ# who

does not raise the policy to r = s necessarily experiences regime change in equilibrium. Because

raising the policy to r = s is dominated for all θ < θ∗s , this implies that regime change occurs for

any θ < min{θ∗s , θ#} in any equilibrium in which the range of the policy is {r, s}.24

The combination of Lemmas 1 through 5 establishes the results in Proposition 1.

Remark 3. As noted before, Lemma 2, which guarantees that no agent attacks following the

observation of an equilibrium policy intervention, hinges on the absence of exogenous aggregate

uncertainty. Exogenous aggregate uncertainty could originate in shocks to fundamentals and/or

unpredictable shifts in the “sentiment” of some irrational agents that occur after the policy maker

has set the policy. While the introduction of such additional uncertainty may deliver a smoother

relationship between the probability of regime change and the level of policy intervention, we do

not expect our results to be unduly sensitive to our choice of abstracting from such additional

uncertainty. For example, it is easy to show that all our results are robust to the introduction of

an exogenous random event that triggers regime change independently of r, which one could then

interpret either as the result of unfavorable changes in the fundamentals or as the impact of a severe

attack by “irrational agents”. Clearly, the same remains true if the probability of this “exogenous”

event is decreasing in θ.25 While it could be worthwhile to extend the analysis to more general, and

more realistic, sources of aggregate uncertainty, this is beyond the scope of the present paper.

Remark 4. The equilibrium definition we have used rules out mixed strategies for either the

policy maker or the agents; it also imposes symmetry on the agents’ strategies. However, from the

arguments in the proofs of Lemmas 1-5, it should be clear that none of the conditions identified

in these lemmas depends on these restrictions. Indeed, the policy maker can find it optimal to

randomize over r only for a zero-measure subset of θ; because this does not have any effect on the

agents’ posterior beliefs about policy and regime outcomes, it cannot affect their best-responses.

Similarly, for any r, the agents can find it optimal to randomize over their decision to attack, or

to play asymmetrically, only for a zero-measure subset of their signal space; because this does not

have any effect on the aggregate size of attack, it does not impact the policy maker’s incentives.

Propositions 1 and 2 thus identify properties of all equilibrium outcomes, including those sustained

by mixed-strategy or asymmetric-strategy profiles.

24That θ∗s < θ# if and only if s < r# follows from the monotonicity of W (θ, s, 0)−L(θ, r) in θ along with Wr < 0.
25Obviously, all relevant thresholds must be adjusted to accommodate the probability of this exogenous event. It

is also immediate to see that the probability of such event must not be too high, for otherwise each agent may find it
optimal to attack irrespective of his beliefs about the policy maker’s strategy and the behavior of the other agents.
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4 Predictions about policy and regime outcomes

We now show how the equilibrium properties identified in the previous section can be translated to

meaningful predictions that an outside observer, say an “econometrician”, can make without knowing

which particular equilibrium is played. To this goal, we consider two complementary approaches.

The first approach formalizes the econometrician’s uncertainty about the equilibrium being played

by means of a generic distribution over the set of all possible equilibria, and then proceeds to study

the implied distribution of equilibrium outcomes. The second approach studies the extrema of all

such possible distributions.

4.1 Probabilistic predictions for arbitrary equilibrium selections

Notwithstanding our earlier remark that SCC might not be strictly needed, we henceforth impose

SCC. We then have that, for any σ > 0, the equilibrium set is given by E(σ) = ∪s∈[r,r#(σ)]E(s;σ),

where E(s;σ) denotes the set of equilibria in which the range of the policy is {r, s}. Different

equilibria within the set E (s;σ) are associated with different out-of-equilibrium strategies by the

agents. They may also differ in the shape of the policy within the interval [θ∗s , θ
∗∗
s ], but only if the

distribution of the noise in the agents’ information is not log-concave (see the result in Proposition

10 in Appendix A). Nevertheless, all equilibria within the set E (s;σ) are characterized by the same

bounds θ∗s and θ∗∗s on the set of types who possibly raise the policy, as well as by the same regime

outcomes.26 Given the type of predictions we are interested in, from the econometrician’s viewpoint,

any distribution over outcomes generated by a random selection over the equilibrium set E (σ) can

then be replicated by a random variable s̃ with cumulative distribution function F and support

Supp[F ] ⊆ [r, r#] such that one of the pooling equilibria is played when s = r, while one of the

semi-separating equilibria with range {r, s} is played when s ∈ (r, r#]. For any σ, we then denote

by F(σ) the set of the c.d.f.s. with support Supp[F ] ⊆ [r, r#(σ)] that describe the possible beliefs

that the external observer may have about the equilibrium being played.27 (Note that the reason

why this set depends on the quality σ of the agents’ information is that the upper bound r#(σ) for

the set of possible equilibrium policy interventions depends on σ).

26To be precise, the last statement is true only up to a zero-measure set of types: if the type is exactly equal
to the threshold θ∗s , there is both an equilibrium in E (s;σ) for which the status quo survives and one for which
regime change occurs. However, this kind of indeterminacy is irrelevant as long as one forms probabilistic statements
over positive-measure sets of fundamentals. To simplify the exposition, in the sequel we impose that the status quo
survives when θ = θ∗s . Relaxing this assumption does not affect the essence of any of the results; it only complicates
the exposition by requiring that Propositions 3 and 5 be restated in terms of probabilistic statements conditional on
θ belonging to positive-measure sets rather that conditional on θ taking a specific value. Propositions 4 and 6, on
the other hand, are not affected at all.

27As a technical restriction, we assume that F(σ) is compact with respect to the metric d(·) defined, for any pair
F1, F2 ∈ F , by d(F1, F2) ≡ sup {|F1(A)− F2(A)| : A ∈ Σ} , where Σ is the Borel sigma algebra associated with the
interval [r, ρ(θ̄)].
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Importantly, note that, because θ is the policy maker’s private information, the equilibrium

being played cannot be a function of θ. This also means that the external observer cannot expect

the realization of the random variable s̃ with distribution F to depend of θ. On the other hand,

the external observer may be able to observe the policy maker’s type θ at the time he/she performs

her investigations (for example, the underlying economic fundamentals that parametrize the policy

maker’s type may become observable ex-post).

Now, for any σ > 0 and any s ∈ [r, r#], let Ds (θ;σ) denote the regime outcome in any of the

equilibria in E (s;σ) , while, for any s ∈ (r, r#], let ∆s ≡ θ∗∗s − θ∗s denote the (Lebesgue) measure

of the set of types who potentially raise the policy to r = s in any of the equilibria in E (s;σ).28

Recall that there is no equilibrium in which some type outside the interval [θ∗s , θ
∗∗
s ] raises the policy

to s, while there is an equilibrium in which all types in [θ∗s , θ
∗∗
s ] raise the policy to r = s. Given the

uniform prior, ∆s can thus also be read as (a rescaling of a sharp) bound on the probability that

the policy is raised to r = s across all equilibria in E (s;σ) .

Next, let Ipremise denote the indicator function assuming value one if premise is true and zero

otherwise. For any selection (equivalently, for any belief) F ∈ F(σ), and any r > r, then let

D(θ;F, σ) ≡
∫
Ds(θ;σ)dF (s) and P (r, θ;F, σ) ≡

∫
s≥r

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s)

denote, respectively, the probability that regime change occurs for type θ and the (maximal) prob-

ability that type θ raises the policy to or above r, when the selection is F .29 For any r > r, any

F ∈ F(σ), then let ∆(r;F, σ) denote the expected Lebesgue measure of the set of types who possibly

raise the policy to or above r. Once again, ∆(r;F, σ) can be read as a (rescaling of) the maximal

probability that the policy is raised to or above r, when the selection is F. Given two selections

F, F ′ ∈ F(σ), then let F ′ � F if and only if F ′(s) ≤ F (s) for all s, with strict inequality for

s ∈ (r, r#) and equality for s ∈ {r, r#}.
The key predictions about the probability of regime change and of policy interventions that the

theory delivers to an external observer who is (potentially) uncertain about which equilibrium is

played are summarized in the following proposition.30

Proposition 3 (stochastic predictions). Equilibrium policies and regime outcomes satisfy the

following properties.

(i) Non-monotonic policy. For any σ > 0, any r > r and any F ∈ F(σ), there exist

thresholds θ◦ = θ◦(r;F, σ) and θ◦◦ = θ◦◦(r;F, σ), with θ < θ◦ ≤ θ◦◦, such that P (r, θ;F, σ) > 0 only

if r ≤ r#(σ) and θ ∈ [θ◦, θ◦◦].
28Recall that θ∗s is independent of σ.
29Recall that any equilibrium in E (s;σ) is such that r(θ) = s only if θ ∈ [θ∗s , θ

∗∗
s (σ)] so that P (r, θ;F, σ) is an upper

bound on the probability that type θ raises the policy to or above r.
30The predictions that the theory delivers to an observer who knows which equilibrium is played can be read by

looking at the special case where the distribution F has a measure-1 mass point at a particular s ∈ [r, r#(σ)].
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(ii) Monotonic regime outcome. For any σ > 0 and any F ∈ F(σ), D(θ;F, σ) is non-

increasing in θ, with D(θ;F, σ) = 1 for θ ≤ θ and D(θ;F, σ) = 0 for θ > θ#(σ).

(iii) Impact of “aggressiveness”. For any σ > 0 and any F, F ′ ∈ F(σ), F ′ � F implies

D(θ;F ′, σ) > D(θ;F, σ) for any θ ∈ (θ, θ#(σ)) such that D(θ;F, σ) < 1. Moreover, if F, F ′ ∈ F(σ)

are such that F ′(r) = F (r) and F ′(s) < F (s) for all s ∈ (r, r#(σ)), then ∆(r;F ′, σ) ≤ ∆(r;F, σ).

(iv) Impact of noise. Take any F such that Supp[F ] ⊂ (r, limσ→0+ r#(σ)). For any r >

r, limσ→0+ ∆(r;F, σ) = 0 whereas, for any θ, any σ, σ′ > 0 such that F ∈ F(σ) ∩ F(σ′), then

D(θ;F, σ) = D(θ;F, σ′). Finally, for any σ, σ′ > 0 such that F ∈ F(σ) ∩ F(σ′), σ′ > σ > 0 implies

∆(r;F, σ′) ≥ ∆(r;F, σ) for all r ∈ (r,min
{
r#(σ), r#(σ′)

}
).

Parts (i) and (ii) say that, for any given quality of information σ > 0 and any selection F ∈ F(σ),

the probability of observing the policy maker raising the policy above r is positive only if r ≤ r#(σ)

and θ is intermediate, whereas the probability of regime change is non-increasing in θ and equal

to zero for all θ > θ#(σ). These results follow directly from the fact that these properties hold

in any of the equilibria of the game (as established in Proposition 1) and hence are preserved in

expectation.

Property (iii), on the other hand, can be interpreted as the impact of the “aggressiveness of

market expectations”: the higher the level of policy intervention s at which the agents switch to

lenient behavior (i.e., refrain from attacking), the higher the cost of policy intervention necessary to

prevent an attack, and the smaller the set of types who find it optimal to intervene in equilibrium.

Of course, since the level of “aggressiveness” (equivalently, the distribution F ) is not necessarily

observed by the econometrician, this prediction is hard to test. Yet, it could help the econometrician

identify, or estimate, the underlying equilibrium selection, F , from observed data.

Part (iv) says that, holding constant the econometrician’s beliefs F about which equilibrium

is played, an increase in the quality of the agents’ information need not have any effect on the

probability of regime change, whereas it reduces the probability of observing a policy above r, for

any r > r, with such a probability vanishing in the limit, when information becomes infinitely

precise. This result follows from the fact that, for any s > r, the threshold θ∗s below which regime

change occurs and above which it does not occur is independent of the quality of the agents’

information (recall that this threshold is determined by the comparison between the policy maker’s

payoff when, by raising the policy to s, he saves the regime by inducing no agent to attack, and his

payoff when, by leaving the policy at r = r, he induces regime change). In contrast, the threshold

θ∗∗s (σ) above which no type raises the policy to s in any of the equilibria where the range of the

policy is {r, s} is nondecreasing in σ and converges to θ∗s as σ → 0. The reason is that, as the agents’

information becomes more precise, the size of the attack that the policy maker expects by leaving

the policy at r converges to zero for all θ > θ∗s (reflecting the fact that all agents correctly realize

that regime change will not occur). As a result, in the limit as σ → 0, no type above θ∗s finds it

optimal to raise the policy to s. Along with the fact that there is no equilibrium where some type
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below θ∗s raises the policy to s, independently of the quality of information (recall that raising the

policy to s is strictly dominated by leaving the policy to r for any θ < θ∗s), this means that the

measure of types who raise the policy to s vanishes as the quality of the agents’ information grows

large enough. By implication, a similar result obtains when the econometrician integrates across

different equilibria using the selection F.

This last result is interesting because it suggests that the precision of the agents’ information

need not be important for whether or not regime change occurs in equilibrium31, but it may be

crucial for whether or not the status quo is maintained with or without policy intervention. Note,

however, that this result presumes that the econometrician’s beliefs F do not vary with σ. Because

the model imposes no relation between F and σ, this is possible, although not necessary.

Remark 5. The result in part (ii) of Proposition 3 delivers a monotonic relation between

fundamentals (the policy maker’s type) and the regime outcome, while at the same time allowing

for some “randomness” in this relation corresponding to the econometrician’s uncertainty about the

equilibrium being played. This is akin to the predictions one often gets from unique-equilibrium

models, except for the following feature. In unique-equilibrium models, the theory typically restricts

the residual in the relation between the dependent and the independent variables to be zero; the

randomness is then superimposed by the econometrician on the basis of the presumption that there

is measurement error or omitted variables that nonetheless do not bias the results. Here, instead,

the theory itself allows for a random residual: the residual simply captures the econometrician’s

uncertainty over the equilibrium being played.32

4.2 Bounds across all selections

As anticipated above, the theory also delivers useful predictions to an econometrician interested

in testing, or estimating, the model, but who is not willing to assume (or let the data identify) a

particular distribution over the equilibrium being played. This can be done by considering bounds on

the probability of regime change and on the probability of intervention across all possible equilibria

and then investigating how these bounds change with the fundamentals θ (which may be observable

ex-post) and/or with the quality of the agents’ information σ.

To illustrate, let D(θ1, θ2;F, σ) ≡ 1
θ2−θ1

∫ θ2
θ1
D(θ;F, σ)dθ denote the probability of regime change

conditional on the event that θ ∈ [θ1, θ2], for given selection F ∈ F(σ), and D̄(θ1, θ2;σ) ≡
supF∈F(σ)D(θ1, θ2;F, σ) andD(θ1, θ2;σ) ≡ infF∈F(σ)D(θ1, θ2;F, σ) the corresponding bounds across

31It may be important only for types θ ∈ (θ#(σ), θ#(σ′)) in case one of the pooling equilibria is played, a possibility
that is ruled out in the proposition by the assumption that Supp[F ] ⊂ (r, limσ→0+ r#(σ)).

32Of course, additional randomness can also be superimposed in our model. As anticipated above, all the results
in Proposition 3 extend to the case where the regime outcome is affected by random shocks that are exogenous to
the interaction between the policy maker and the agents and whose probability is non-increasing in the quality of the
fundamentals. The introduction of such shocks makes the relation between the fundamentals and the probability of
regime change possibly smoother, without however affecting the qualitative nature of the conclusions.
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all selections. Similarly, let P (r, θ1, θ2;F, σ) ≡ 1
θ2−θ1

∫ θ2
θ1
P (r, θ;F, σ)dθ denote the probability that

the policy is raised to or above r, conditional on the event that θ ∈ [θ1, θ2], for given selection F ∈
F(σ), and P̄ (r, θ1, θ2;σ) ≡ supF∈F(σ) P (r, θ1, θ2;F, σ) and P (r, θ1, θ2;σ) ≡ infF∈F(σ) P (r, θ1, θ2;F, σ) =

0 the corresponding bounds. Clearly, D̄(θ1, θ2;σ) ≥ D(θ1, θ2;σ) and P̄ (r, θ1, θ2;σ) ≥ P (r, θ1, θ2;σ),

with strict inequalities when θ ≤ θ1 < θ2 ≤ θ# and r < r < r#. That these bounds do not coincide

over a subset of the critical region reflects the equilibrium indeterminacy. The next proposition

examines how these bounds depend on the fundamentals θ and the quality of information σ.

Proposition 4 (bounds). (i) Fix σ > 0 and r ∈ (r, r#(σ)). The bounds D(θ1, θ2;σ) and

D̄(θ1, θ2;σ) are non-increasing in (θ1, θ2), while the bounds P (r, θ1, θ2;σ) and P̄ (r, θ1, θ2;σ) are

non-monotone in (θ1, θ2), in the partial-order sense.

(ii) Fix (θ1, θ2). D(θ1, θ2;σ)and P (r, θ1, θ2;σ) are independent of σ. For any (θ1, θ2) any σ, σ′ >

0, θ2 < min{θ#(σ′), θ#(σ)} or θ1 > max{θ#(σ′), θ#(σ)} imply D̄(θ1, θ2;σ) = D̄(θ1, θ2;σ′). In

contrast, limσ→0+ P̄ (r, θ1, θ2;σ) = 0 for any r > r and any θ1, θ2 ∈ R. In the special case where the

agents’ gross payoff in case of regime change is fixed (i.e., Z(θ, r) = z > r for all θ), then the bound

D̄(θ1, θ2;σ) is independent of σ whereas the bound P̄ (r, θ1, θ2;σ) is a nondecreasing function of σ.

The results for how the bounds are affected by the fundamentals follow from Proposition 1. Thus

consider the effect of information on the bounds. While more precise information need not affect the

bounds on the probability of regime change, it affects the bounds on the probability of intervention.

In particular, in the limit as σ → 0, the probability of observing policy interventions above r, for

any r > r, vanishes for all measurable sets of θ, whereas the probability of regime change can take

any value for any subset of (θ, θ#(0+)), where θ#(0+) ≡ limσ→0+ θ#(σ). The intuition for these

results parallels that for the results in part (iv) of Proposition 3. The key difficulty in establishing

these results comes from the need to establish that the equilibrium set converges to its limit-version

uniformly across types and selections, as we show in the Appendix.

These properties are particularly sharp when the payoff the agents obtain in case of regime

change is independent θ. In this case, both the lower and and the upper bound on the probability

of regime change are independent of σ,33 whereas the upper bound on the probability of policy

interventions is decreasing in the quality of information σ−1 and vanishes in the limit as σ → 0+.

More generally, what the theory predicts is that policy choices are essentially uniquely determined

in the limit, whereas the regime outcomes remain largely indeterminate. We will return to these

33This follows from the fact that, in this case, the threshold θ# below which regime change occurs and above which
it does not occur in any of the pooling equilibria, is independent of σ. If follows that, for any θ ∈ (θ, θ#], any σ > 0,
there exist equilibria in which regime change occurs (these are the equilibria that select θ∗s > θ) as well as equilibria in
which regime change does not occur (these are the equilibria that select θ∗s < θ). Hence, the regime outcome remains
indeterminate for all θ ∈ (θ, θ#]. In contrast, as shown in Proposition 3, the probability that the policy is raised to or
above any r > r vanishes for all positive-measure set of types, a property which is then inherited by the supremum
across all selections, using the uniform convergence result mentioned in the main text.
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predictions and contrast them to their counterparts under common knowledge in Section 6.

5 Predictions about payoffs

We now turn to the predictions that the theory delivers for the payoff of the policy maker. In

contrast to predictions about policy choices and regime outcomes, predictions about payoffs need

not be directly testable (the econometrician may not be able to directly observe the policy maker’s

payoff). Nevertheless, these predictions are important for their policy implications. For example,

they permit one to study the ex-ante value that the policy maker may attach to the option to

intervene once θ is realized.

For any s ∈ [r, r#], let Us (θ;σ) denote the lowest payoff that type θ obtains across all the

equilibria in E (s;σ) . Next, consider the variant of our model in which r is exogenously fixed at r

for all θ, interpret this as the game in which the option to intervene is absent, and let Uo (θ;σ) denote

the payoff that type θ obtains in the unique equilibrium of this game. Clearly, when s ∈ {r, r#(σ)},
any equilibrium in E (s;σ) is such that Us (θ;σ) = Uo (θ;σ) for all θ.34 Thus consider equilibria in

which s ∈ (r, r#).

Proposition 5 (payoffs). For any s ∈ (r, r#(σ)), either Us (θ;σ) ≥ Uo (θ;σ) for all θ, with strict

inequality for some θ, or there exists a threshold θ†s(σ) ≥ θ#(σ) such that Us(θ;σ) < Uo (θ;σ) only

if θ > θ†s(σ), in which case necessarily Us (θ;σ) ≥ Uo (θ;σ) for all θ ≤ θ†s(σ) (with strict inequality

if θ ∈ (θ∗s , θ
†
s(σ)]). Moreover, σ small enough ensures that the first case holds.

To understand this result, note first that types below θ# cannot be worse off with the option

to intervene: without this option, they would necessarily experience regime change, whereas with

this option they can avoid regime change in some equilibria. Next, consider types above θ#. These

types can be worse off with the option to intervene only if the size of the attack that they face

when they opt for not raising the policy exceeds the one they would have faced absent the option

to intervene. In general, this may be possible for some equilibria. However, this possibility vanishes

as the precision of information increases. This is because the regime threshold θ∗s in any of the

equilibria with intervention is necessarily lower than θ#, the regime threshold in any of the pooling

equilibria. Together with the fact that θ∗∗s → θ∗s as σ → 0 guarantees that the size of the attack is

also lower, as long as σ is small enough.

The results in Proposition 5 extend to random equilibrium selections. Indeed, fix an arbitrary

set of types [θ1, θ2] ⊂ R and an arbitrary selection F ∈ F(σ) and consider the implied probability

that, conditional on θ ∈ [θ1, θ2], the policy maker is strictly worse off with the option to intervene.

This probability is zero either for all σ, or at least for σ small enough. Notwithstanding the fact

34The result is immediate when s = r. For s = r#(σ), the result follows from the fact that θ∗s = θ∗∗s (σ) = θ#(σ)

and Xs(θ∗s , θ∗∗s (σ);σ) = x#(σ).
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that, in general, the selection F may also depend on σ, this property suggests that the risk of being

worse off with the option to intervene vanishes as the agents’ information becomes highly precise.

We can also accommodate the case that the selection F changes with σ by considering bounds on

equilibrium payoffs across all possible equilibria. Let U (θ;σ) and U (θ;σ) denote, respectively, the

supremum and infimum of the set of equilibrium payoffs that type θ can obtain in the game with the

option to intervene, when the quality of information is σ. The following proposition characterizes

the relation between these bounds and the payoff obtained in the game in which the option to

intervene is absent.

Proposition 6 (payoff bounds). U (θ;σ) ≥ Uo (θ;σ) for all θ > θ, with strict inequality for

θ ∈ (θ, θ#(σ)] and with limθ→+∞ |U (θ;σ)−Uo (θ;σ) | = 0. On the other hand, there exists a threshold

θ† (σ) ≥ θ#(σ) such that U (θ;σ) < Uo (θ;σ) only if θ > θ† (σ) . Finally, limσ→0+ U (θ;σ) =

limσ→0+ Uo (θ;σ) for all θ.

The result that U (θ;σ) ≥ Uo (θ;σ) follows from the fact that, in the game with the option

to intervene, there always exist equilibria where each type above θ > θ can induce all agents to

not attack by raising the policy infinitesimally above r thus obtaining a payoff arbitrarily close to

the highest feasible payoff W (θ, r, 0). In contrast, in the game without the option to intervene,

the highest feasible payoff W (θ, r, 0) may be attainable only by sufficiently high types (for whom

A(θ, r) becomes arbitrary small). These observations explain the results in the proposition that

pertain to the upper bound on the equilibrium payoff. The results for the lower bounds follow from

essentially the same arguments discussed above in relation to Proposition 5—very high types can

be worse off with the option to intervene only if there exist equilibria in which the size attack that

each type faces when he does not raise the policy above r is larger than in the game without the

option to intervene. However, even if such equilibria exist, low types continue to be (weakly) better

off with the option to intervene, no matter the equilibrium being played, for these types would have

experienced regime change without the option to intervene. Finally, the result that, as σ → 0,

U (θ;σ) converges to Uo (θ;σ) for all θ follows from the fact that, as σ → 0, the lower bound on the

equilibrium payoffs in the game with the option to intervene is attained under any of the pooling

equilibria, which is clearly the same payoff as in the game in which the option to intervene is absent.

Now imagine that, before knowing his type, the policy maker decides whether to maintain or to

give up the option to intervene after learning θ. The aforementioned results suggest that, in general,

the policy maker need not be able to ensure that he will be better off with the option to intervene

no matter the realized θ: he may get “trapped” in an equilibrium in which he is worse off when

θ turns out to be sufficiently high. Even then, however, the policy maker is better off for low θ.

Therefore, the option to intervene either is beneficial for all θ, or it implements a form of ex-ante

insurance across types.
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6 Contrast to common knowledge

We now contrast the predictions that the theory delivers for the incomplete-information game with

those for its common-knowledge counterpart. We further show that, while multiplicity obtains in

our model for any level of noise, the set of equilibrium outcomes becomes smaller and smaller (in

an appropriate sense) as the quality of information improves—but it explodes when the noise is

zero. The purpose of these exercises is two-fold: (i) to highlight that the selection power of global

games retains significant bite also in games like ours where the endogeneity of information leads to

multiple equilibria; and (ii) to establish that the predictions that we have identified, albeit intuitive,

would not have been possible with complete information.

Recalling that ρ(θ) denotes the maximal level of r that is not strictly dominated by r for a policy

maker of type θ, we have the following result.

Proposition 7 (common knowledge). Consider the game with σ = 0.

(i) A policy r(·) can be part of a subgame-perfect equilibrium if and only if r(θ) ≤ ρ (θ) for

θ ∈ (θ, θ̄] and r(θ) = r for θ /∈ (θ, θ̄].

(ii) A regime outcome D(·) can be part of a subgame-perfect equilibrium if and only if D (θ) = 1

for θ ≤ θ, D (θ) ∈ {0, 1} for θ ∈ (θ, θ̄], and D (θ) = 0 for θ > θ̄.

This result contrasts sharply with the results in Propositions 1-4. None of the predictions in the

game with incomplete information are valid in the game with common knowledge. In particular,

the policy can now take any shape in the critical region (θ, θ̄]. Similarly, the probability of regime

change can take any value within the critical region and need not be monotone in θ. In essence,

“almost anything goes” within the critical region under complete information. In particular, the only

policy choices and regime outcomes that are ruled out by equilibrium reasoning under complete-

information are those that are ruled out by strict dominance. A similar “anything-goes” result holds

if one looks at the policy maker’s payoff.

The contrast between the complete- and incomplete-information versions of our model is most

evident in the limit as σ → 0+. Let G(σ) denote the set of pairs (θ, r) such that, in the game

with noise σ ≥ 0, there is an equilibrium in which type θ sets the policy at r. Next, let ρ+ ≡
limθ→θ+ ρ(θ).35 We then have the following result.

Proposition 8 (limit outcomes). Under complete information,

G(0) =
{

(θ, r) : either θ ∈ (θ, θ̄] and r ≤ r ≤ ρ(θ), or θ /∈ (θ, θ̄] and r = r
}
.

In contrast, under incomplete information,

lim
σ→0+

G(σ) =
{

(θ, r): either r = r and θ ∈ R, or r ∈ (ρ+, r#(0+)] and θ = ρ−1(θ)
}
,

which is a zero-measure subset of G(0).
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Figure 1: Pairs (θ, r) that can be observed as equilibrium outcomes.

This result, which follows from the fact that, as σ → 0+, θ∗∗s → θ∗s for all s > r, is illustrated

in Figure 1 for an example in which Z(θ, r) = z, W (θ, r, A) = V (θ,A) − r and L(θ, r) = −r
and R(θ, r, A) = V (θ,A). The common-knowledge set, G(0), is given by the large triangular area.

The incomplete-information set, G(σ) for σ > 0 is given by the dashed blue area. In this case,

as long as σ > 0, the lower σ, the smaller the set of policies that can be played by any given θ,

and hence the smaller the dashed area in Figure 1 (i.e., σ′ > σ > 0 implies G(σ′) ⊃ G(σ)). The

monotonicity of G(σ) in σ does not necessarily hold in the case where the agents’ payoff in case

of regime change depends θ. However, as the proposition makes clear, what is true more generally

is that, in the limit, as the noise in information vanishes, the set of policies that can be sustained

in equilibrium for almost any given θ is a zero measure subset of the set of policies that can be

sustained under common knowledge. More precisely, the set G(σ) converges to the boundary points

of the set of policies that would have been possible under complete information for almost any

θ ≤ θ#(0+) ≡ limσ→0+ θ#(σ), and to the cost-minimizing policy r for θ > θ#(0+).

7 Concluding Remarks

The approach followed in most applications of global games is to use incomplete information as

a tool to select a unique equilibrium in coordination settings that admit multiple equilibria under

common knowledge—to assume certain exogenous information structures that ensure uniqueness,

without investigating what determines information in the first place. For certain questions, however,

the endogeneity of information is central to the phenomenon under examination and often brings

35Note that, in general, ρ+ can be strictly higher than ρ(θ) = r.
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back multiple equilibria. The broader methodological contribution of this paper is to illustrate that

this multiplicity may be very different from the one that obtains under common knowledge and,

more importantly, that it need not preclude concrete, intuitive, and testable predictions.

These predictions typically take the form of stochastic non-linear relations between the endoge-

nous variables of interest (e.g., the probability of regime change and of policy interventions) and the

primitives of the model (e.g., the underlying fundamentals) with the randomness originating in the

econometrician’s uncertainty over the equilibrium being played as opposed to measurement error

(as in unique-equilibrium models). Clearly, confronting these predictions with the data remains

more challenging than in unique-equilibrium models. Yet, recent advances in structural estimation

of multiple-equilibria models (e.g., Tamer, 2003, Ciliberto and Tamer, 2009, Grieco, 2010) may help

in this direction.

The procedure of iterated deletion of non-equilibrium strategies we used in the present paper

to identify sharp predictions rests, of course, on the specific channel of information endogeneity

we considered (signaling). In future work, it would be interesting to investigate how analogous

procedures can be used to deliver tight predictions in games where the endogeneity of information

comes from alternative channels, such as the aggregation of information through prices, or social

learning in dynamic settings.36

36Complementary in this respect is the recent paper by Chassang (2010). That paper applies global-game techniques
in a dynamic exit game in which repeated play sustains multiple equilibria despite the incompleteness of information.
The origin of multiplicity in that paper is therefore very different from the one that is the focus of our paper. The
two papers are nevertheless complementary in the sense that they both show how global-game techniques can retain
significant selection power even when they fail to deliver a unique equilibrium.
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Appendix A: Additional results

Proposition 1 in the main text left open the possibility of equilibria in which the policy is raised

to some s > r#. This possibility was ruled out in Proposition 2 by imposing SCC. Part (i) in the

next proposition shows that this possibility vanishes in the limit as σ → 0 even when SCC does

not hold, while parts (ii) and (iii) study the limit behavior of the range of policy intervention.

Proposition 9 (necessary conditions for small σ). For any ε > 0, there exists σ̄ > 0 such that

the following results hold for any σ < σ̄:

(i) E (s;σ) 6= ∅ only if s ≤ r#(σ) + ε;

(ii) whenever E (s;σ) 6= ∅ then θ∗s ≤ θ#(σ) + ε;

(iii) whenever E (s;σ) 6= ∅ and s ≥ r + ε then θ∗∗s (σ) ≤ θ∗s + ε.

Proposition 2 also left open the possibility of equilibria with s > r in which the policy is raised

for only a strict subset of the interval (θ∗s , θ
∗∗
s ). With SCC, this possibility rests on the agents

following a non-monotone strategy. This possibility can be ruled out by letting the distribution

of the noise be log-concave—a restriction that helps guaranteeing that, along any equilibrium, the

agents’ posteriors about θ, and hence their strategies, are monotone in their signals.

Proposition 10 (monotonicity of speculators’ behavior). (i) Suppose the noise distribution

ψ is log-concave. Then, for any σ > 0, any s ∈ (r, r#(σ)], E (s;σ) 6= ∅.

(ii) Suppose SCC holds and ψ is log-concave. Then for any σ > 0 and any s ∈ (r, r#(σ)], any

equilibrium in E (s;σ) is such that r(θ) = s for all θ ∈ (θ∗s , θ
∗∗
s ).

Part (i) in the above proposition establishes that log-concavity of ψ is, by itself, another sufficient

condition for the existence of equilibria in which the policy maker raises the policy to s, for any

s ∈ (r, r#(σ)].37 Part (ii) then establishes that the combination of log-concavity of ψ with SSC

suffices for ruling out equilibria in which the policy is raised for only a subset of the interval (θ∗s , θ
∗∗
s ),

which further sharpens the interpretation of (θ∗s , θ
∗∗
s ).

Appendix B: Omitted proofs

Proof of Lemma 1. Considers the continuation game that follows the observation of r. Because

the observation of r conveys no information, this game is essentially a standard global game (e.g.,

Morris and Shin, 1998, 2003). The proof below shows that this game admits a unique continuation

37The role of log-concavity is to guarantee that, irrespective of the shape of the policy r in the region [θ∗s , θ
∗∗
s ],

the probability that each agent assigns to regime change when observing no intervention is necessarily decreasing in
the signal x. This in turn implies that the size of the attack A(θ, r) that the policy maker expects when he does not
intervene is necessarily decreasing in θ. As we show in the proof in Appendix B, under such monotonicities, one can
construct equilibria in which intervention occurs for a (possibly non-connected) subset of [θ∗s , θ

∗∗
s ].
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equilibrium in monotone strategies. Standard results from global games (based on iterated deletion

of strictly dominated strategies) then imply that this equilibrium is the unique equilibrium of the

continuation game.

Clearly any monotone continuation equilibrium must be characterized by thresholds x#(σ) and

θ#(σ) such that all agents attack if x < x#(σ) and not attack if x > x#(σ) in which case regime

change occurs if θ ≤ θ#(σ) and does not occur if θ > θ#(σ). Hereafter, we show that such a

continuation equilibrium exists and is unique. To simplify the notation, we momentarily drop the

dependence of the thresholds x#(σ) and θ#(σ) on σ.

First, note that an agent with signal x who expects regime change to occur if and only if θ ≤ θ#

finds it optimal to attack if and only if∫ θ#

−∞
Z(θ̃, r)

1

σ
ψ
(
x−θ̃
σ

)
dθ̃ −Q(r) ≥ 0. (13)

Because Z(·, r) is non-increasing, the left-hand-side of (13) is continuously strictly decreasing in x.38

Furthermore, it is strictly positive for x small enough and strictly negative for x large enough. It

follows that the inequality in (13) holds if and only if x ≤ x# where x# is the unique solution to∫ θ#

−∞
Z(θ̃, r)

1

σ
ψ
(
x#−θ̃
σ

)
dθ̃ = Q(r). (14)

Next, consider the fate of the regime. Because A(θ, r) = Ψ((x#−θ)/σ) is decreasing in θ, regime

change occurs if and only if θ ≤ θ# where the threshold θ# is the unique solution to

R
(
θ#, r,Ψ

(
x#−θ#)

σ

))
= 0. (15)

Thus any monotone equilibrium is identified by a solution (x#, θ#) to conditions (14) and (15).

Below, we show that a solution to these conditions exists and is unique.

To this aim, let θ#(x#) be the implicit function defined by (15). By the Implicit Function

Theorem,

dθ#(x#)

dx#
=

−RA
(
θ#, r,Ψ

(
x#−θ#

σ

))
ψ
(
x#−θ#

σ

)
−RA

(
θ#, r,Ψ

(
x#−θ#

σ

))
ψ
(
x#−θ#

σ

)
+ σRθ

(
θ#, r,Ψ

(
x#−θ#

σ

)) ∈ (0, 1).

Next, let LHS(x#) denote the function of x# that is defined by the left-hand side of (14) once we

replace θ# with θ#(x#). Differentiating with respect to x# gives the following expression:

∂LHS(x#)

∂x#
=

dθ#(x#)

dx#
Z
(
θ#(x#), r

) 1

σ
ψ
(
x#−θ#(x#)

σ

)
+ (16)

+

∫ θ#(x#)

−∞
Z(θ̃, r)

1

σ2
ψ′
(
x#−θ̃
σ

)
dθ̃.

38Note that, in any pooling equilibrium, after observing r = r, the agents’ posteriors beliefs that θ̃ < θ are given by
1−Ψ((x− θ)/σ). These beliefs can be ranked according to FOSD, implying that, given any non-increasing function
f(θ), the expected value of f given x is decreasing in x.
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Integrating by parts, the last term in (16) can be rewritten as

−Z
(
θ#(x#), r

) 1

σ
ψ
(
x#−θ#(x#)

σ

)
+ lim
θ̃→−∞

Z(θ̃, r)
1

σ
ψ
(
x#−θ̃
σ

)
+

∫ θ#(x#)

−∞
Zθ

(
θ̃, r
) 1

σ
ψ
(
x#−θ̃
σ

)
dθ̃.

It follows that (16) reduces to

∂LHS(x#)

∂x#
=

(
dθ#(x#)

dx#
− 1

)
Z
(
θ#(x#), r

) 1

σ
ψ
(
x#−θ#(x#)

σ

)
+

∫ θ#(x#)

−∞
Zθ

(
θ̃, r
) 1

σ
ψ
(
x#−θ̃
σ

)
dθ̃

which is clearly negative. Lastly, note that

lim
x#→−∞

LHS(x#) > Q(r) > 0 = lim
x#→+∞

LHS(x#)

By the Intermediate Value Theorem, it then follows that there exists a unique x# such that

LHS(x#) = Q(r). Given the uniqueness of x#, the uniqueness of θ# follows immediately from

(15). This establishes existence and uniqueness of a monotone continuation equilibrium. Q.E.D.

Proof of Lemma 2. Because the policy maker faces no uncertainty about the size of the attack,

he can predict the fate of the regime with certainty. The assumption that the payoff L in case of

regime change is independent of A then implies that raising the policy above r and experiencing

regime change yields a lower payoff than leaving the policy at r.39 It follows that any type who in

equilibrium raises the policy above r must be spared from regime change, for otherwise he would be

strictly better off by setting r = r. By implication, the observation of any equilibrium policy r > r

necessarily signals to the agents that the status quo will be maintained and thus induces each agent

to not attack no matter his signal x. But then any type of the policy maker can always save on the

cost of intervention by setting the lowest r > r among those that are played in equilibrium. Hence

in any equilibrium in which some type intervenes, there exists a single s > r such that r (θ) = s

whenever r (θ) 6= r. Furthermore, no speculator attacks following the observation of r = s which

means that A(θ, s) = 0 for all θ. Q.E.D.

Proof of Lemma 3. That E(s;σ) = ∅ for any s > r for which W (θ, s, 0) < L (θ, r) for all θ

follows directly from the fact that, in this case, the net payoff that each type θ obtains by raising

the policy to s is strictly less than the payoff that the same type obtains by leaving the policy at r
39When leaving the policy at r leads to regime change, it follows from the assumption that L(θ, r) is strictly

decreasing in r; when, instead, it leads to no regime change, it follows from the assumption that W (θ, r, A) > L(θ, r)

when R(θ, r, A) > 0.
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(this is, irrespective of the agents’ behavior and of whether or not leaving the policy at r leads to

regime change). Thus consider s for which there exists a θ ≥ θ such that

W (θ, s, 0) ≥ L (θ, r) .

The assumption thatW (θ, s, 0)−L (θ, r) is strictly increasing in θ then implies that any type θ > θ∗s ,

by setting r = s, can guarantee himself a payoff strictly higher than the payoff that the same type

obtains by setting r = r and experiencing regime change (recall that, from Lemma 2, A(θ, s) = 0

for any θ). But then, in equilibrium, no type above θ∗s experiences regime change. Q.E.D.

Proof of Lemma 4. Consider the sequence {θn}∞n=0 constructed as follows. First, let

θ0 ≡ inf {θ ≥ θ∗s : W (θ, s, 0) < W (θ, r, 1) and R(θ, r, 1) > 0} .

That θ0 < +∞ follows from the assumption that limθ→+∞ {W (θ, s, 0)−W (θ, r, 1)} < 0, which

simply imposes that raising the policy is dominated for sufficiently high types. Next, for any n ≥ 1,

let

θn ≡ inf{θ ≥ θ∗s : g
(
θ; θ∗s , θ

n−1, σ
)
< 0}

where, for any θ ≥ θ, any (θ∗s , θ
′) with θ′ ≥ θ∗s , and any σ > 0, the function g is defined by

g
(
θ; θ∗s , θ

′, σ
)
≡ U(θ, s, 0)− U

(
θ, r, Ā(θ; θ∗s , θ

′)
)

where Ā(θ; θ∗s , θ
′) ≡ Ψ

(
X(θ∗s ,θ

′;σ)−θ
σ

)
and where X(θ∗s , θ

′;σ) is the unique solution to (5). The

function g (θ; θ∗, θ′, σ) thus identifies the differential between the payoff that type θ obtains by

raising the policy to r = s, facing no attack and avoiding regime change, and the payoff that the

same type obtains by leaving the policy at r = r, facing an attack of size Ā(θ; θ∗s , θ
′)—that is, the

attack implied by the agents play according to the threshold strategy with cutoff X(θ∗s , θ
′;σ)—and

then facing regime change if and only if R
(
θ, r,Ψ

(
X(θ∗s ,θ

′;σ)−θ
σ

))
≤ 0. Note that, because θ∗s ≥ θ,

U(θ, s, 0) = W (θ, s, 0) for all θ > θ∗s . Furthermore, because W (θ, s, 0) > L(θ, r) for all θ > θ∗s , then

g (θ; θ∗s , θ
′, σ) < 0 only if R

(
θ, r, Ā(θ; θ∗s , θ

′)
)
> 0; that is, for any type above θ∗s to be better off by

leaving the policy at r = r, it must be that the size of the attack Ā(θ; θ∗s , θ
′) triggered by leaving

the policy at r does not lead to regime change.

This sequence has a simple interpretation. In any equilibrium in which the range of the policy

is r(R) = {r, s}, no type θ /∈ [θ∗s , θ
0] raises the policy to r = s. Given so, an agent who expects

regime change to occur if and only if θ < θ∗s and r (θ) = r if and only if θ /∈ [θ∗s , θ
0] finds it optimal

to attack, when observing r, if and only if he receives a signal x ≤ X(θ∗s , θ
0;σ). To see this, recall

that X(θ∗s , θ
0;σ) is the unique solution to∫ θ∗s

−∞ Z(θ̃, r) 1
σψ
(
x−θ̃
σ

)
dθ̃

1−Ψ(x−θ
∗
s

σ ) + Ψ(x−θ
0

σ )
−Q(r) = 0 (17)
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Along with the fact that the expected payoff from attacking (the left hand side of (17)) is positive

for sufficiently low x and negative for sufficiently high x, this gives the result.

But then, by implication, an agent who expects the status quo to be maintained for all θ ≥ θ∗s

(but possibly also for some θ < θ∗s) and r (θ) = r for all θ /∈ [θ∗s , θ
0] (but possibly also for some

θ ∈ [θ∗s , θ
0]) never finds it optimal to attack for x > X(θ∗s , θ

0;σ). To see this, note that when the

status quo is maintained also for some θ < θ∗s , the payoff that the agent expects from attacking

when he observes r is smaller than when regime change occurs for all θ < θ∗s . Similarly, when the

policy maker leaves the policy at r also for some θ ∈ [θ∗s , θ
0], the observation r = r maps to a lower

posterior probability of regime change than when r = s for all θ ∈ [θ∗s , θ
0]. Hence, the incentives

to attack after observing r are maximal when regime change occurs for all θ < θ∗s and r(θ) = s for

all θ ∈ [θ∗s , θ
0], which explains why no agent ever finds it optimal to attack for x > X(θ∗s , θ

0;σ).

Knowing this, a policy maker who expects no agent to attack for x > X(θ∗s , θ
0;σ) never finds it

optimal to raise the policy to r = s for any θ > θ1. Knowing this, no agent finds it optimal to attack

for any x > X(θ∗s , θ
1;σ) when observing r, and so on.

Below, we conclude the proof by establishing that the sequence {θn}∞n=0 is non-increasing. Be-

cause it is also bounded from below by θ∗s , it has to converge. Now the limit is θ∗∗s = max{θ̂s, θ̇s}
where

θ̇s = sup{θ ≥ θ∗s : W (θ, s, 0) = W (θ, r, B(θ∗s , θ;σ)) and R(θ, r, B(θ∗s , θ;σ)) > 0}.

θ̂s ≡ sup{θ ≥ θ∗s : R(θ, r, B(θ∗s , θ;σ)) = 0}

if at least one of the above two sets is non-empty. Else, the limit is θ∗s . In the latter case, by

the definition of the sequence {θn}∞n=0, no type above θ∗s is willing to raise the policy to r = s.

Together with the fact that W (θ, s, 0) < L (θ, r) for any θ < θ∗s , meaning that no type below

θ∗s is also willing to raise the policy, then this means that E(s;σ) = ∅. We conclude that, if

E(s;σ) 6= ∅, there must exists a θ′′s ≥ θ∗s such that (i) either W (θ′′s , s, 0) = W (θ′′s , r, B(θ∗s , θ
′′
s ;σ))

and R(θ′′s , r, B(θ∗s , θ
′′
s ;σ)) > 0, or (ii) R(θ′′s , r, B(θ∗s , θ

′′
s ;σ)) = 0.

We conclude the proof by showing that the sequence {θn}∞n=0 defined above is indeed non-

increasing. To see this, fix any s > r for which there exists a θ ≥ θ such that W (θ, s, 0) ≥ L (θ, r)

and let θ∗s = inf{θ ≥ θ : W (θ, s, 0) ≥ L (θ, r)}. Towards a contradiction, suppose that there exists

an n ≥ 1 such that θn > θn−1. Without loss of generality, then let n ≥ 1 be the first step in the

sequence for which θn > θn−1 (i.e., θj ≤ θj−1 for all j ≤ n− 1). By the definition of θn−1, then for

any θ > θn−1,

g
(
θ; θ∗s , θ

n−2, σ
)
< 0.

Because W (θ, s, 0) > L(θ, r) for any θ > θ∗s , this means that, for any θ > θn−1, necessarily

R
(
θ, r,Ψ

(
X(θ∗s ,θ

n−2)−θ
σ

))
> 0, meaning that the policy maker can avoid regime change by leaving
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the policy at r. This in turn implies that, for any θ > θn−1, the payoff by not raising the policy is

W
(
θ, r,Ψ

(
X(θ∗s ,θ

n−2)−θ
σ

))
Because θn−1 ≤ θn−2 and becauseX(θ∗s , ·;σ) is increasing, this in turn implies that, for any θ > θn−1,

g
(
θ; θ∗s , θ

n−1, σ
)
< 0.

By the definition of θn, this means that θn ≤ θn−1, which proves that the sequence {θn}∞n=0 is

non-increasing. Q.E.D.

Proof of Lemma 5. That D(θ) = 1 for any θ < θ∗s is trivial when θ∗s = θ. Thus assume θ∗s > θ.

The result that D(θ) = 1 for any θ < min{θ∗s , θ#(σ)} is then established by comparing the agents’

incentives to attack after observing r with the corresponding incentives when they expect r(θ) = r

for all θ.

Let {θn, xn}∞n=0 be the following sequence. First, let θ0 ≡ θ and let x0 be implicitly defined by∫ θ

−∞
Z(θ̃, r)

1

σ
ψ
(
x0−θ̃
σ

)
dθ̃ = Q(r).

Next, for any n ≥ 1, let θn ≡ min{θ∗s , θ′n}, where θ′n solves R(θ′n, r,Ψ(xn−1−θ′n
σ )) = 0, and let xn be

implicitly defined by ∫ θ′n

−∞
Z(θ̃, r)

1

σ
ψ
(
xn−θ̃
σ

)
dθ̃ = Q(r).

This sequence also has a simple interpretation. An agent who observes r = r and believes that

r(θ) = r for all θ and that no other agent attacks (in which case regime change occurs if and only

if θ ≤ θ), finds it optimal to attack if and only if x ≤ x0. By implication, an agent who expects no

other agent to attack and r(θ) = r for all θ < θ∗s (but possibly r(θ) > r for some θ > θ∗s) necessarily

finds it optimal to attack for any x < x0. This simply follows from the fact that the observation of

r is most informative of regime change when all types for whom regime change occurs set r = r,

while some of the types who save the regime raise the policy above r. However, if all agents attack

whenever x < x0, regime change occurs for all θ < θ1. This in turn implies that there exists an

x1 > x0 such that an agent who expects all other agents to attack if x < x0 (and hence regime

change to occur for all θ ≤ θ1) and who believes that r(θ) = r for all θ, necessarily finds it optimal

to attack for all x < x1. By implication, an agent who expects r(θ) = r for all θ < θ∗s but possibly

r(θ) > r for some θ > θ∗s , necessarily finds it optimal to attack for any x < x1, and so on.

Because {θn}∞n=0 is increasing and bounded from above it necessarily converges. Note that R

and Ψ are continuous and that the unique solution (x, θ′) to R(θ′, r,Ψ(x−θ
′

σ )) = 0 and∫ θ′

−∞
Z(θ̃, r)

1

σ
ψ
(
x−θ̃
σ

)
dθ̃ = Q(r)
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is attained at θ′ = θ#(σ) and x = x#(σ) (by uniqueness of the monotone equilibrium established

in Lemma 1). It follows that limn→+∞ θn = θ∗s if θ∗s ≤ θ#(σ) and limn→+∞ θn = θ#(σ) otherwise.

By implication, D(θ) = 1 for all θ < min{θ∗s , θ#(σ)}. This establishes the first part of the Lemma.

That θ∗s > θ#(σ) if and only if s > r#(σ) follows from the fact that, for any θ, W (θ, ·, 0)−L (θ, r)

is continuous and strictly decreasing in s, while for any s > r, W (·, s, 0)−L (·, r) is continuous and

strictly increasing in θ. This establishes the second part of the lemma. Q.E.D.

Proof of Proposition 2. We start by establishing existence of pooling equilibria.

Lemma A0. For any σ > 0, E(r;σ) 6= ∅.

Proof of Lemma A0. Fix σ > 0. We establish the result by proving existence of a strategy

profile for the agents, along with a system of supporting beliefs, such that, given this profile, no

type of the policy maker finds it optimal to raise the policy above r. Consider the following strategy

profile for the agents: (i) for r = r, a (x, r) = 1 if and only if x < x#(σ) where x#(σ) is the unique

threshold defined in the proof of Lemma 1; for any r ∈ (r, ρ(θ̄)], a (x, r) = 1 irrespective of x; for

any r > ρ(θ̄), a (x, r) = 0 irrespective of x.

Given this profile, no type of the policy maker finds it optimal to raise the policy. This is

immediate for any θ ≤ θ̄: for these types, raising the policy to r ∈ (r, ρ(θ̄)] leads to regime change

(with payoff L(θ, r) < L(θ, r)) whereas raising the policy above ρ(θ̄) is strictly dominated by leaving

the policy to r. Thus consider a type θ > θ̄. Clearly, raising the policy to r ∈ (r, ρ(θ̄)] yields a lower

payoff than leaving the policy at r, for it is costly and it increases the measure of agents attacking.

That raising the policy to r > ρ(θ̄) also yields a lower payoff than leaving the policy at r follows

from the fact that

W (θ, r, 0) < W (θ, ρ(θ̄), 0) < W

(
θ, r,Ψ

(
x#(σ)− θ̄

σ

))
≤W

(
θ, r,Ψ

(
x#(σ)− θ

σ

))
where the first inequality follows from Wr < 0, the second inequality from SCC along with the fact

that

W (θ̄, ρ(θ̄), 0) = L(θ̄, r) ≤W
(
θ̄, r,Ψ

(
x#(σ)− θ̄

σ

))
and the last inequality from the monotonicity of the size of attack Ψ

(
x#(σ)−θ

σ

)
in θ along with the

fact that WA ≤ 0. We thus conclude that, given the agents’ strategy, no type of the policy maker

has an incentive to raise the policy above r.

To complete the proof, it then suffices to show that the above strategy profile for the agents can

be supported by an appropriate system of beliefs. When r = r, Bayes’ rule imposes that, for any

θ, µ (θ|x, r) = 1 − Ψ(x−θσ ). From the construction in the proof of Lemma 1, it is then immediate

to see that, given these beliefs, attacking if and only if x < x#(σ) is sequentially optimal for the
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agents. Next, consider r ∈ (r, ρ(θ̄)]. Then let θ∗r = inf{θ ≥ θ : W (θ, r, 0) ≥ L(θ, r)}. Because for

any θ ∈ [θ∗r , θ̄], r ≤ ρ(θ), it then follows that, for any θ ∈ [θ∗r , θ̄], Z(θ, r) ≥ Q(r). Then let µ(·|x, r)
be any beliefs that assign probability one to the event that θ ∈ [θ∗r , θ̄], irrespective of x. Because for

any θ ∈ [θ∗r , θ̄], D (θ, r) = 1, it then follows that these beliefs satisfy∫ θ̄

θ∗r

Z(θ̃, r)dµ(θ̃|x, r) ≥ Q(r) for all x (18)

which guarantees that any agent who expects all other agents to attack finds it optimal to do the

same, irrespective of his signal. Finally, for any r > ρ(θ̄), let µ(·|x, r) be any beliefs that assign

probability one to θ > θ irrespective of x. Under such beliefs, any agent who expects no other agent

to attack finds it optimal to refrain from attacking. Q.E.D.

Next, consider s > r. We start by establishing the following preliminary result.

Lemma A1. For any σ > 0 any s ∈ (r, r#(σ)], there exists at least one pair (θ∗s , θ
′′
s ), with

θ′′s ≥ θ∗s such that θ∗s satisfies condition (8) and θ′′s satisfies condition (10). Furthermore, θ′′s > θ∗s if

s < r#(σ).

Proof of Lemma A1. Fix σ > 0. By definition, r#(σ) solvesW
(
θ#(σ), r#(σ), 0

)
= L

(
θ#(σ), r

)
,

where θ#(σ) ∈ (θ, θ̄) is the unique threshold that corresponds to the pooling equilibria of parts (ii)

and in Proposition (1). Because, for any θ, W (θ, ·, 0) is continuous and strictly decreasing in s

and because, for any s, W (·, s, 0)− L (·, r) is continuous and strictly increasing in θ, we have that,

for any s ∈ (r, r#(σ)], {θ ≥ θ : W (θ, s, 0) ≥ L(θ, r} 6= ∅. Furthermore, θ∗s ≤ θ#(σ) with strict

inequality if and only if s < r#(σ). Next note that X(θ, θ;σ) coincides with the unique solution to∫ θ

−∞
Z(θ̃, r)

1

σ
ψ
(
x−θ̃
σ

)
dθ̃ = Q(r)

From the results established in the proof of Lemma 1, one can then verify that R(θ, r, B(θ, θ;σ)) ≤ 0

for all θ ≤ θ#(σ) with strict inequality for θ < θ#(σ) and R(θ, r, B(θ, θ;σ)) > 0 for all θ > θ#(σ).

Because R(·, r, B(θ∗s , ·;σ)) is continuous in θ and R(θ̄, r, B(θ∗s , θ̄;σ)) > 0, this means that there

always exists a θ′′s ≥ θ∗s (with strict inequality if θ∗s < θ#(σ), that is if s < r#(σ)) that satisfies

condition (10). �

Next, we show that, when SCC holds, then for any σ > 0, any s > r#(σ), E(s;σ) = ∅. To see

this, note that, when s > r#(σ), then either {θ ≥ θ : W (θ, s, 0) ≥ L(θ, r} = ∅ or, if the set is not

empty, in which case its greatest lower bound is θ∗s > θ#(σ), then R(θ∗s , r, B(θ∗s , θ
∗
s ;σ)) > 0. Next

observe that, because the function

B(θ∗s , θ;σ) ≡ Ψ

(
X(θ∗s , θ;σ)− θ

σ

)
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is decreasing in θ over [θ∗s ,+∞) (to see this, use the representation given in (28) in the proof of

Proposition 9 below), then R(θ, r, B(θ∗s , θ;σ)) > 0 for all θ ≥ θ∗s . This means that there is no θ′′s ≥ θ∗s
that satisfies condition (10). To conclude that E(s;σ) = ∅, it then suffices to show that there is

also no type θ′′s ≥ θ∗s that satisfies condition (9). To see this, note that, for any θ ≥ θ∗s ,

G(θ; θ∗s , σ) ≡ W (θ, s, 0)−W (θ, r, B(θ∗s , θ;σ))

≤ W (θ, s, 0)−W (θ, r, B(θ∗s , θ
∗
s ;σ))

< 0

where the first inequality follows again from the fact that B(θ∗s , θ;σ) is decreasing in θ, while

the second inequality follows from SCC. We conclude that condition (9) admits no solution for

s > r#(σ). From Proposition 1, this means that E(s;σ) = ∅.

Thus consider s ∈ (r, r#(σ)]. That, for any s ∈ (r, r#(σ)], E (s;σ) 6= ∅, as well as the existence

of equilibria satisfying the properties of part (ii) in the proposition follows from Lemma A2 below.

Lemma A2. Assume SCC holds. For any σ > 0, any s ∈ (r, r#(σ)], there exists an equilibrium

in which r (θ) = s if θ ∈ (θ∗s , θ
∗∗
s (σ)] and r (θ) = r otherwise. The equilibrium is sustained by the

following strategy for the agents: (i) for r = r, a (x, r) = 1 if and only if x < x∗s = X(θ∗s , θ
∗∗
s (σ);σ);

for any r ∈ (r, s), a (x, r) = 1 irrespective of x; for any r ≥ s, a (x, r) = 0 irrespective of x.

Proof of Lemma A2. From Lemma A1, for any σ > 0 any s ∈ (r, r#(σ)], there always exists

a pair (θ∗s , θ
′′
s ) such that θ∗s satisfies condition (8) and θ′′s ≥ θ∗s satisfies condition (10). Thus let

θ∗∗s (σ) = sup{θ′′s ≥ θ∗s : θ′′s satisfies condition (9) or condition (10)}. We then have that, for any

θ ∈ (θ∗s , θ
∗∗
s (σ)],

U (θ, s, 0)− U
(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
= W (θ, s, 0)− U

(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
≥ 0

To see this, note that the inequality trivially holds if R
(
θ, r,Ψ

(
X(θ∗s ,θ

∗∗
s (σ);σ)−θ
σ

))
≤ 0, that is, if by

not raising the policy, type θ experiences regime change, in which case U
(
θ, r,Ψ

(
X(θ∗s ,θ

∗∗
s (σ);σ)−θ
σ

))
=

L(θ, r) < W (θ, s, 0) . Thus suppose that R
(
θ, r,Ψ

(
X(θ∗s ,θ

∗∗
s (σ);σ)−θ
σ

))
> 0, which means that θ∗∗s (σ)
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satisfies condition (9). In this case,

U (θ, s, 0)− U
(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
= W (θ, s, 0)−W

(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
≥ W (θ, s, 0)−W

(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ∗∗s (σ)

σ

))
≥ W (θ∗∗s (σ), s, 0)−W

(
θ∗∗s (σ), r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ∗∗s (σ)

σ

))
= 0

where the first inequality follows from the fact that W is non-increasing in A, the second inequality

from SCC, and the last equality from the fact that θ∗∗s (σ) satisfies condition (9). Similar arguments

imply that for any θ > θ∗∗s (σ),

U (θ, s, 0)− U
(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
= W (θ, s, 0)−W

(
θ, r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ
σ

))
≤ 0.

To see this, note that if θ∗∗s (σ) satisfies condition (9), then the result follows from SCC along with

the monotonicity of W (θ, r, A) in A and the strict monotonicity of Ψ
(
X(θ∗s ,θ

∗∗
s (σ);σ)−θ
σ

)
in θ. If,

instead,

θ∗∗s (σ) = sup

{
θ ≥ θ∗s : R

(
θ, r,Ψ

(
X(θ∗s , θ;σ)− θ

σ

))
= 0

}
then necessarily

W (θ∗∗s (σ), s, 0)−W
(
θ∗∗s (σ), r,Ψ

(
X(θ∗s , θ

∗∗
s (σ);σ)− θ∗∗s (σ)

σ

))
≤ 0

But then, by the same arguments as above, for any θ > θ∗∗s (σ), U (θ, s, 0)−U
(
θ, r,Ψ

(
X(θ∗s ,θ

∗∗
s (σ);σ)−θ
σ

))
≤

0.

We are now ready to establish the result in the lemma. BecauseA (θ, r) = 1 > A (θ, r) = Ψ(x
∗
s−θ
σ )

for any r ∈ (r, s) and A (θ, r) = A (θ, s) = 0 for any r ≥ s, the policy maker strictly prefers r to

any r ∈ (r, s) and s to any r > s. Indeed, for any type θ ≤ θ̄, raising the policy to r ∈ (r, s) leads

to regime change (with payoff L(θ, r) < L(θ, r)) whereas, for any type θ > θ̄, raising the policy to

r ∈ (r, s) yields a payoff W (θ, r, 1) < W (1, r, A (θ, r)). Likewise, raising the policy to r > s leads to

a lower payoff than raising the policy to s for any θ. Furthermore, r is dominant for any θ ≤ θ. For
θ > θ, on the other hand, the payoff from raising the policy to r = s is W (θ, s, 0) , while the payoff

from leaving the policy at r = r is U (θ, r, A(θ, r)) . From the definition of the thresholds θ∗s and

θ∗∗s (σ) and the properties established above, we then have that raising the policy to r = s is optimal

if and only if θ ∈ [θ∗s , θ
∗∗
s (σ)], which establishes the optimality of the policy maker’s strategy.
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Next, consider the agents. When r = r, D(θ, r) = 1 occurs if and only if θ ≤ θ̂s, where θ̂s is the
unique solution to

R(θ̂s, r, A(θ̂s, r)) = 0.

When, instead, r ∈ (r, s), D(θ, r) = 1 if and only if θ ≤ θ̄. Finally, for any r ≥ s, D(θ, r) = 1 if and

only if θ ≤ θ. An agent thus finds it optimal to follow the equilibrium strategy if and only if his

beliefs satisfy the following conditions:

when r = r,
∫ θ̂s
−∞ Z(θ̃, r)dµ(θ̃|x, r) ≥ Q(r) if x < x∗s

and
∫ θ̂s
−∞ Z(θ̃, r)dµ(θ̃|x, r) ≤ Q(r) if x ≥ x∗s;

(19)

when r ∈ (r, s),

∫ θ̄

−∞
Z(θ̃, r)dµ(θ̃|x, r) ≥ Q(r) for all x; (20)

when r ≥ s,
∫ θ

−∞
Z(θ̃, r)dµ(θ̃|x, r) ≤ Q(r) for all x. (21)

Beliefs are pinned down by Bayes’ rule when either r = r or r = s. In the first case (r = r), for any

θ ≤ θ∗s

µ(θ|x, r) =
1−Ψ

(
x−θ
σ

)
1−Ψ(x−θ

∗
s

σ ) + Ψ(x−θ
∗∗
s (σ)
σ )

,

while for any θ ∈ (θ∗s , θ̂s),

µ(θ|x, r) =
1−Ψ

(
x−θ∗s
σ

)
1−Ψ(x−θ

∗
s

σ ) + Ψ(x−θ
∗∗
s (σ)
σ )

.

That these beliefs satisfy condition (19) follows from the uniqueness of the thresholdX(θ∗s , θ
∗∗
s (σ);σ)

which implies that the expected payoff from attacking changes sign only once at x = x∗s =

X(θ∗s , θ
∗∗
s (σ);σ). In the second case (r = s), µ(θ|x, s) = 0, in which case condition (21) is clearly

satisfied. Finally, whenever r /∈ {r, s}, there exist an arbitrarily large set of out-of-equilibrium

beliefs that satisfy (20) and (21) — see the construction in the proof of Lemma A0 for an example.

Combining the optimality of the agents’ strategies with the optimality of the policy maker’s

strategy gives the result. Q.E.D.

Proof of Proposition 3. Most of the results in the proposition follow from Propositions 1 and 2

along with properties (1)-(2) below. To save on notation, hereafter we let θ∗r(σ) ≡ θ∗∗r (σ) ≡ θ#(σ)

denote the unique thresholds corresponding to any of the pooling equilibria of E (r;σ) .

Property 1. For any σ > 0 any s′, s′′ ∈ (r, r#(σ)], s′′ > s′ implies that ∆s′′(σ) ≤ ∆s′(σ).

To see this, note that, for any s ∈ (r, r#(σ)],

∆s(σ) ≡ θ∗∗s (σ)− θ∗s =

{
∆̂s(σ) if Ĝ (∆; s, σ) < 0 all ∆ ≥ ∆̂s(σ)

sup{∆ ≥ ∆̂s(σ) : Ĝ (∆; s, σ) = 0} otherwise
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where ∆̂s(σ) is the unique40 ∆ ≥ 0 that solves R
(
θ∗s + ∆, r,Ψ

(
X(θ∗s ,θ

∗
s+∆;σ)−(θ∗s+∆)

σ

))
= 0 and

where

Ĝ (∆; s, σ) ≡ G (θ∗s + ∆; θ∗s , σ) ≡W (θ∗s + ∆, s, 0)−W
(
θ∗s + ∆, r,Ψ

(
X(θ∗s ,θ

∗
s+∆;σ)−(θ∗s+∆)

σ

))
.

Now, for any s ∈ (r, r#(σ)], ∆ ≥ 0, and σ > 0, let B̂(∆; s, σ) ≡ Ψ
(
X(θ∗s ,θ

∗
s+∆;σ)−(θ∗s+∆)

σ

)
and note

that B̂(∆; s, σ) is implicitly defined by∫ θ∗s

−∞
Z(θ̃, r)

1

σ
ψ
(
X(θ∗s ,θ

∗
s+∆;σ)−θ̃
σ

)
dθ̃ −Q(r)

[
1−Ψ

(
X(θ∗s , θ

∗
s + ∆;σ)− θ∗s
σ

)
+ B̂(∆; s, σ)

]
= 0.

Integrating by parts and using the definition of B̂(∆; s, σ) we then have that B̂(∆; s, σ) is implicitly

defined by

(Z (θ∗s , r)−Q(r))

(
1−Ψ

(
Ψ−1(B̂) +

∆

σ

))
(22)

−
∫ θ∗s

−∞

∂Z(θ̃, r)

∂θ̃

(
1−Ψ

(
Ψ−1(B̂) +

θ∗s + ∆− θ̃
σ

))
dθ̃ = Q(r)B̂

from which we obtain that, for any s ∈ (r, r#(σ)), ∆ ≥ 0, and σ > 0

∂B̂(∆; s, σ)

∂s
= −

∫ θ∗s
−∞

∂Z(θ̃,r)

∂θ̃
1
σψ
(

Ψ−1(B̂) + θ∗s+∆−θ̃
σ

)
dθ∗s
ds dθ̃ − (Z (θ∗s , r)−Q(r))ψ

(
Ψ−1(B̂) + ∆

σ

)
dΨ−1(B̂)

dx

+
∫ θ∗s
−∞

∂Z(θ̃,r)

∂θ̃
ψ
(

Ψ−1(B̂) + θ∗s+∆−θ̃
σ

)
dΨ−1(B̂)

dx dθ̃ −Q(r)


≤ 0.

The result that B̂(∆; ·, σ) ≡ Ψ
(
X(θ∗s ,θ

∗
s+∆;σ)−(θ∗s+∆)

σ

)
is non-increasing in s along with the fact that

R (θ, r, A) is increasing in θ and decreasing in A in turn imply that ∆̂s(σ) is non-increasing in s

over (r, r#(σ)].

Next, consider the function Ĝ (∆; s, σ) and observe that, for any σ > 0, Ĝ (·; ·, σ) is continuous

in (s,∆). Now fix s ∈ (r, r#(σ)) and σ > 0 and suppose that Ĝ (∆; s, σ) < 0 for all ∆ ≥ ∆̂s(σ), in

which case ∆s(σ) = ∆̂s(σ). Because Ĝ (∆; s, σ) is continuous in (s,∆), there exists a δ > 0 such

that, for any ŝ ∈ (s− δ, s+ δ), any ∆ ≥ ∆̂s(σ)− δ, Ĝ (∆; ŝ, σ) < 0. Together with the monotonicity

of ∆̂s(σ) in s, this means that ∂∆s(σ)/∂s ≤ 0.

Finally, consider the case where, given s ∈ (r, r#(σ)) and σ > 0 , {∆ ≥ ∆̂s(σ) : Ĝ (∆; s, σ) =

0} 6= ∅ in which case ∆s(σ) = sup{∆ ≥ ∆̂s(σ) : Ĝ (∆; s, σ) = 0}. The property that lim∆→+∞ Ĝ (∆; s, σ) <

0 implies that Ĝ (·; s, σ) must be locally strictly decreasing in ∆ at ∆ = ∆s(σ); that is,

∂Ĝ (∆s(σ); s, σ)

∂∆
< 0. (23)

40That such a solution exists follows from the fact that s ≤ r#(σ) along with the fact that

R

(
θ, r,Ψ

(
X(θ∗s ,θ;σ)−θ

σ

))
is strictly increasing in θ, with limθ→θ∗s R

(
θ, r,Ψ

(
X(θ∗s ,θ;σ)−θ

σ

))
< 0 <

limθ→θ̄ R

(
θ, r,Ψ

(
X(θ∗s ,θ;σ)−θ

σ

))
.
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Furthermore,

∂Ĝ (∆s(σ); s, σ)

∂s
=

[
Wθ (θ∗s + ∆s(σ), s, 0)−Wθ

(
θ∗s + ∆s(σ), r, B̂(∆s(σ); θ∗s , σ)

)]
× dθ∗s

ds
(24)

+Wr (θ∗s + ∆s(σ), s, 0)−WA

(
θ∗s + ∆s(σ), r, B̂(∆s(σ); s, σ)

) ∂B̂(∆s(σ); s, σ)

∂s
≤ 0

That the second and third terms of (24) are nonpositive follows from the fact that W is decreasing

in r and in A along with the fact that ∂B̂(∆s(σ);s,σ)
∂s ≤ 0 as shown above. That the first term of (24) is

also non-positive follows from the fact thatW (θ∗s + ∆s(σ), s, 0)−W
(
θ∗s + ∆s(σ), r, B̂(∆s(σ); θ∗s , σ)

)
=

0. The SCC along with the fact that θ∗s is locally nondecreasing then imply that the first term of

(24) is nonpositive. From the Implicit Function Theorem, we then have that (23) together with 24)

imply that ∂∆s(σ)/∂s ≤ 0.

Combining the results above, then implies that, for any σ > 0 any s′, s′′ ∈ (r, r#(σ)], s′′ > s′

implies that ∆s′′(σ) ≤ ∆s′(σ).

Property 2. For any σ, σ′ > 0, any s ∈ (r,min{r#(σ), r#(σ′)}), σ′ > σ implies ∆s(σ
′) ≥

∆s(σ).

This follows from the proof of part (iii) of Proposition 9 below, where it is shown that ∆s(σ) is

increasing in σ.

Given the aforementioned properties, the results in the proposition can be established as follows.

First, note that, for any σ > 0, any F ∈ F(σ), any θ, any r > r,

P (r, θ;F, σ) =

{ ∫
s∈[r,r#(σ)] I{θ∈[θ∗s ,θ

∗∗
s (σ)]}dF (s) if r ∈ (r, r#(σ)]

0 if r > r#(σ)

∆(r;F, σ) =

{ ∫
s∈[r,r#(σ)] ∆s(σ)dF (s) if r ∈ (r, r#(σ)]

0 if r > r#(σ).

Part (i). Fix σ > 0 and F ∈ F(σ), take any r ∈ (r, r#(σ)] and let θ◦(r;F, σ) = θ∗r and

θ◦◦(r;F, σ) = sup{θ∗∗s (σ) : s ∈ [r, r#(σ)]}. From Proposition 1, we then have that P (r, θ;F, σ) > 0

only if θ ∈ [θ◦(r;F, σ), θ◦◦(r;F, σ)].

Part (ii). Again, fix σ > 0 and take any F ∈ F(σ). That D(θ;F, σ) is non-increasing in θ, with

D(θ;F, σ) = 1 for θ < θ and D(θ;F, σ) = 0 for θ > θ#(σ) follows directly from Proposition 1.

Part (iii). Fix σ > 0 and take any pair F, F ′ ∈ F(σ). For any θ ∈ (θ, θ#(σ)),

D(θ;F, σ) = F (r) + 1− F (ρ(θ))

and similarly for F ′. Because F ′(s) = F (s) for s ∈ {r, r#(σ)} and F ′(s) < F (s) for all s ∈ (r, r#),

then D(θ;F ′, σ) > D(θ;F, σ), unless D(θ;F, σ) = 1.
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Next, consider the probability of intervention. From Property 1 above, ∆s(σ) is a positive,

(weakly) decreasing, and differentiable function of s, for any s ∈ (r, r#(σ)). Now fix r ∈ (r, r#(σ)).

That F (r) = F ′(r) along with F ′(s) < F (s) for all s ∈ (r, r#(σ)) then imply that

∆(r;F, σ)−∆(r, F ′, σ) =

∫
s∈[r,r#(σ)]

∆s(σ)dF (s)−
∫
s∈[r,r#(σ)]

∆s(σ)dF ′ (s)

= −∆r(σ)[F (r)− F ′(r)] +

−
∫
s∈[r,r#(σ)]

d∆s(σ)

ds
[F (s)− F ′ (s)]ds

≥ 0.

Part (iv). Take any c.d.f. F with support Supp[F ] such that F (s) = 0 for all s ≤ r1 and

F (s) = 1 for all s ≥ r2 for some r1, r2 ∈ R with r < r1 < r2 < limσ→0+ r#(σ). Note that this

implies that there exists σ̄ > 0, such that, for any σ < σ̄, Supp[F ] ⊂ [r, r#(σ)]. That, for any

r > r, limσ→0+ ∆(r, F, σ) = 0 follows from the Dominated Convergence Theorem. To see this, let

H : R→ R be the function whose domain is Supp[F ] and that is given by

H(s) = sup{θ : U(θ, s, 0)− U(θ, r, 1) ≥ 0} − θ∗s

for all s ∈ Supp[F ]. It is immediate that H(s) ≥ 0, that H(·) is decreasing and that
∫
H(s)dF (s) <

∞. Furthermore, for any σ < σ̄ and any s ∈ Supp[F ], ∆s(σ) ≤ H(s). These properties, together

with the result in Proposition 9 in Appendix A, then imply that

lim
σ→0+

∆(r, F, σ) = lim
σ→0+

∫
s≥r

∆s(σ)dF (s) =

∫
s≥r

lim
σ→0+

∆s(σ)dF (s) = 0.

That, for any θ, any σ, σ′ > 0, any F ∈ F(σ) ∩ F(σ′), D(θ;F, σ) = D(θ;F, σ′) follows from

Proposition 1.

Lastly, that σ′ > σ > 0 implies ∆(r, F, σ′) ≥ ∆(r, F, σ) for all r ∈ (r,min
{
r#(σ), r#(σ′)

}
) all

F ∈ F(σ) ∩ F(σ′), follows from Property 2 above. Q.E.D.

Proof of Proposition 4. Part (i). To see that D(θ1, θ2;σ) and D̄(θ1, θ2;σ) are both non-

increasing in (θ1, θ2), in the weak-order sense, consider any pair (θ1, θ2), (θ′1, θ
′
2) such that θ1 ≤ θ′1

and θ2 ≤ θ′2. Clearly, the distribution of θ̃ conditional on the event that θ ∈ (θ′1, θ
′
2) first-order-

stochastically dominates the distribution of θ̃ conditional on the event that θ ∈ (θ1, θ2). Along

with the fact that, for any F ∈ F(σ), D(·;F, σ) is non-increasing in θ, this means that, for any

F ∈ F(σ), D(θ1, θ2;F, σ) ≥ D(θ′1, θ
′
2;F, σ). Standard envelope arguments, then imply that the same

monotonicities apply to D(θ1, θ2;σ) and D̄(θ1, θ2;σ). The result for P (r, θ1, θ2;σ) and P̄ (r, θ1, θ2;σ)

follows directly from Proposition 3.

Part (ii). That P (r, θ1, θ2;σ) is independent of σ is immediate. That also D(θ1, θ2;σ) is

independent of σ follows from the fact that, for any σ > 0, lims→r+ θ∗s = θ along with the fact that
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Ds(θ;σ) = 0 for any θ > θ∗s in any equilibrium in E(s;σ). That, for any (θ1, θ2), any σ, σ′ > 0,

θ2 < min{θ#(σ′), θ#(σ)} or θ1 > max{θ#(σ′), θ#(σ)} imply D̄(θ1, θ2;σ) = D̄(θ1, θ2;σ′) follows from

the fact that, for any σ > 0, any θ, Ds(θ;σ) ≤ Dr(θ;σ) together with the fact that Dr(θ;σ) = 1 for

all θ ≤ θ#(σ) while Dr(θ;σ) = 0 for all θ > θ#(σ).

Next, consider the claim that limσ→0+ P̄ (r, θ1, θ2;σ) = 0 for any r > r and any θ1, θ2 ∈ R.
Clearly, the result is true if r > r#(0+) ≡ limσ→0+ r#(σ). Thus take r ∈ (r, r#(0+)]. Let F denote

an arbitrary set of c.d.f.s F with support Supp[F ] ⊂ [r, ρ(θ̄)] with the following properties: (i)

F(σ) ⊂ F for any σ > 0; (ii) F is compact with respect to the metric d(·) defined, for any pair

F1, F2 ∈ F , by d(F1, F2) ≡ sup {|F1(A)− F2(A)| : A ∈ Σ} , where Σ is the Borel sigma algebra

associated with the interval [r, ρ(θ̄)]. For any σ > 0, any c.d.f. F ∈ F , any θ1 < θ2, and any r > r,

then let

P̂ (r, θ1, θ2;F, σ) ≡ 1

θ2 − θ1

∫ θ2

θ1

∫
s∈[r,ρ(θ̄)]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s) dθ

with the convention that, given any s ∈ [r, ρ(θ̄)], I{θ∈[θ∗s ,θ
∗∗
s (σ)]} = 0 if there is no θ′′s ≥ θ∗s that

satisfies condition (9) or condition (10). Note that

P̂ (r, θ1, θ2;F, σ) = P (r, θ1, θ2;F, σ) ≡ 1

θ2 − θ1

∫ θ2

θ1

P (r, θ;F, σ)dθ

if F ∈ F(σ), that is, if, given σ > 0, one restricts F to have support Supp[F ] ⊂ [r, r#(σ)].

By Proposition 9 in Appendix A, for any s ≤ r#(0+), limσ→0+ ∆s(σ) = 0 . This implies that,

for any θ ∈ [θ1, θ2], any s ∈ [r, ρ(θ̄)] with θ∗s 6= θ,

lim
σ→0+

I{θ∈[θ∗s ,θ
∗∗
s (σ)]} = 0.

By the Lebesgue Dominated Convergence Theorem, we then have that, for any θ ∈ [θ1, θ2]

lim
σ→0+

∫
s∈[r,ρ(θ̄)]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s) =

∫
s∈[r,ρ(θ̄)]

lim
σ→0+

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s)

where the last integral is equal to zero, unless F has a mass point at an s such that θ∗s = θ. It

follows that

lim
σ→0+

∫ θ2

θ1

{∫
s∈[r,ρ(θ̄)]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s)

}
dθ =

∫ θ2

θ1

{
lim
σ→0+

∫
s∈[r,ρ(θ̄)]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s)

}
dθ = 0,

(25)

where the first equality is again by the Dominated Convergence Theorem, while the second equality

follows from the following property. Given any c.d.f. F with support Supp[F ] ⊂ [r, ρ(θ̄)], there does

not exist a Lebesgue positive-measure set E ⊂ [θ1, θ2] such that, for any θ ∈ E, θ∗s = θ with strictly

positive probability. Formally, the set

S ≡
{
s ∈ [r, ρ(θ̄)] : F (s) > lim

x→s−
F (x)

}
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has zero Lebesgue measure, which in turn implies that the set

Θ+ ≡
{
θ ∈ [θ1, θ2] : θ∗s = θ with F (s) > lim

x→s−
F (x)

}
also has zero Lebesgue measure. This means that the set of points θ ∈ [θ1, θ2] such that

lim
σ→0+

∫
s∈[r,ρ(θ̄)]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s) > 0

has zero Lebesgue measure, which implies the result in (25).

Having established that, for any c.d.f. F ∈ F , limσ→0+ P̂ (r, θ1, θ2;F, σ) = 0, we now show that

this property also implies that

lim
σ→0+

{
sup

F∈F(σ)
P (r, θ1, θ2;F, σ)

}
= 0.

First note that, by definition, for any σ > 0,

sup
F∈F(σ)

P (r, θ1, θ2;F, σ) ≤ sup
F∈F

P̂ (r, θ1, θ2;F, σ)

which implies that

lim
σ→0+

{
sup

F∈F(σ)
P (r, θ1, θ2;F, σ)

}
≤ lim

σ→0+

{
sup
F∈F

P̂ (r, θ1, θ2;F, σ)

}
. (26)

To establish the result, it thus suffices to show that the right hand side of (26) is zero. This is

established as follows. First, recall that, by assumption, F is compact in the metric d(F1, F2) ≡
sup {|F1(A)− F2(A)| : A ∈ Σ} . Because it is metric, then F is also Hausdorff. Next, note that,

for any σ̄ > 0, the function family
{
P̂ (r, θ1, θ2; ·, σ)

}
σ∈(0,σ̄]

with domain F and range in [0, 1] is

uniform equicontinuous in the metric d(·) defined above. This means that for any ε > 0, there exists

a δ > 0 (which may depend on ε only) such that for any σ ∈ (0, σ̄] (i.e., for any family member

P̂ (r, θ1, θ2; ·, σ)), any F1, F2 ∈ F such that d(F1, F2) < δ,

|P̂ (r, θ1, θ2;F1, σ)− P̂ (r, θ1, θ2;F2, σ)| < ε.

To see that this is true, note that

|P̂ (r, θ1, θ2;F1, σ)− P̂ (r, θ1, θ2;F2, σ)|
= 1

θ2−θ1

∣∣∣∫ θ2θ1 [∫s∈[r,ρ(θ̄)] I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF1 (s)−

∫
s∈[r,ρ(θ̄)] I{θ∈[θ∗s ,θ

∗∗
s (σ)]}dF2 (s)

]
dθ
∣∣∣

= 1
θ2−θ1

∣∣∣∫ θ2θ1 [F1(A(θ, σ))− F2(A(θ, σ))] dθ
∣∣∣

where A(θ, σ) ≡
{
s ∈ [r, ρ(θ̄)] : θ ∈ [θ∗s , θ

∗∗
s (σ)]

}
. It is then easy to see that, for any σ ∈ (0, σ̄], the

result follows by letting δ = ε. It is also easy to see that the function family
{
P̂ (r, θ1, θ2; ·, σ)

}
σ∈(0,σ̄]

is uniformly bounded, i.e., that there exists M > 0 such that |P̂ (r, θ1, θ2;F, σ)| < M all F ∈ F , all
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σ ∈ (0, σ̄]. From the Ascoli-Arzela Theorem, any sequence of equicontinuous, uniformly bounded,

functions defined on a compact Haurdorff space has a uniformly convergent subsequence (i.e., a sub-

sequence that is convergent in the sup-norm). This implies limσ→0+

{
supF∈F P̂ (r, θ1, θ2;F, σ)

}
= 0.

Lastly, we show that when Z(θ, r) = z > r for all θ, then the bound D̄ is independent of σ

whereas the bound P̄ (r, θ1, θ2;σ) is a nondecreasing function of σ. The first property follows directly

from the fact that, in this case, θ#(σ) and hence r#(σ) are independent of σ > 0, together with

the fact that, for any θ > θ#, Ds(θ;σ) = 0 for all s, while for any θ ≤ θ# Dr(θ, σ) = 1 for all

σ > 0. The second property follows from the fact that, given any distribution F with support41

Supp[F ] ⊂ [r, r#],

P (r, θ1, θ2;F, σ) =
1

θ2 − θ1

∫ θ2

θ1

∫
s∈[r,r#]

I{θ∈[θ∗s ,θ
∗∗
s (σ)]}dF (s) dθ

That P (r, θ1, θ2;F, σ) is increasing in σ then follows from the fact that θ∗∗s (σ) is increasing in σ. By

the envelope theorem, that each P (r, θ1, θ2;F, σ) is weakly increasing in σ, then implies that the

upper bound P̄ (r, θ1, θ2;σ) is also weakly increasing in σ, which establishes the result. Q.E.D.

Proof of Proposition 5. For any θ, let

∆Πs(θ;σ) ≡W (θ, s, 0)− U
(
θ, r,Ψ

(
(x#(σ)− θ)/σ

))
denote the difference between the payoffW (θ, s, 0) that type θ obtains by raising the policy to r = s

in case regime change does not occur and no agent attacks in the game in which policy interventions

are possible and the equilibrium payoff Uo (θ;σ) = U
(
θ, r,Ψ

(
(x#(σ)− θ)/σ

))
that the same type

obtains in the game in which the option to intervene is absent. The fact that s < r#(σ) implies that,

for any type θ ∈ (θ∗s , θ
#(σ)], ∆Πs(θ;σ) = W (θ, s, 0)−L(θ, r) > 0,; indeed any such type, by raising

the policy to r = s, can guarantee himself a payoff W (θ, s, 0) that is strictly higher than the payoff

Uo (θ;σ) = L(θ, r) that the same type would obtain absent the possibility to intervene. Furthermore,

for any θ > θ#(σ), ∆Πs(θ;σ) = W (θ, s, 0) −W (θ, r,Ψ
(
(x#(σ)− θ)/σ

)
). The fact that ∆Πs(θ;σ)

is continuous over (θ#(σ),+∞) together with SCC and the limit condition that limθ→∞ ρ(θ) = r

(which, recall, is equivalent to limθ→+∞W (θ, s, 0)−W (θ, r, 1) < 0), imply that there exists a unique

θ†s(σ) ≥ θ#(σ) such that ∆Πs(θ;σ) > 0 for θ ∈ [θ#(σ), θ†s(σ)] and ∆Πs(θ;σ) < 0 for θ > θ†s(σ).

Hence, no matter which particular equilibrium in E (s;σ) is played, any type θ ∈ (θ∗s , θ
†
s(σ)] is

necessarily strictly better off with the option to intervene, whereas any type θ ≤ θ∗s is just as well

off.

Next note that any type θ > θ†s(σ) can be strictly worse off with the option to intervene only if the

attack he expects when leaving the policy at r = r is strictly greater than the attack he would have

41Recall that in this case F(σ)= F(σ′) all σ, σ′ > 0.
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faced without the option to intervene, which is possible if and only if X(θ∗s , θ
∗∗
s (σ);σ) > x#(σ).42

However, σ small enough ensures that X(θ∗s , θ
∗∗
s (σ);σ) < x#(σ) and hence that the policy maker

is always better off with the option to intervene, no matter his type. This follows from the fact

that, when σ → 0+, θ∗∗s (σ)→ θ∗s and X(θ∗s , θ
∗∗
s (σ);σ)→ θ∗s in the game with policy intervention,43

whereas x#(σ)→ θ#(σ) in the game in which the option to intervene is absent. Together with the

fact that θ∗s < θ#(σ) then gives the result. Q.E.D.

Proof of Proposition 6. First, consider the supremum of the equilibrium payoffs. For any

θ > θ, the highest feasible payoff is W (θ, r, 0), the payoff enjoyed when regime change is avoided

without facing any attack and without incurring any cost of policy intervention. This payoff can be

approximated arbitrarily well in the game in which intervention is possible (it suffices to take any

equilibrium in which s is sufficiently close to r), which implies that U (θ;σ) ≥ Uo (θ;σ) for all θ > θ.

That U (θ;σ) > Uo (θ;σ) for θ ∈ (θ, θ#(σ)] follows directly from the fact that, without the option

to intervene, these types experience regime change. That limθ→+∞ |U (θ;σ)−Uo (θ;σ) | = 0 follows

from the fact, in the game without the option to intervene, limθ→+∞A(θ, r) = 0. This establishes

the first part of the proposition.

Next consider the infimum of the equilibrium payoffs. As explained in the proof of Proposition

5, type θ can be worse off with the option to intervene only if there exists an s ∈ (r, r#(σ)] such

that X(θ∗s , θ
∗∗
s (σ);σ) > x#(σ); recall that this means that there exists an equilibrium in which the

attack that type θ faces when he does not raise the policy above r is larger than in the game without

the option to intervene. Now suppose that such an s exists. From the result in Proposition 5, in this

case any type θ ≤ θ†s(σ) is still weakly better off (strictly for θ ∈ (θ∗s , θ
†
s(σ)]). However, by taking

the equilibrium in E (s;σ) in which all agents attack when r = r if and only if x < X(θ∗s , θ
∗∗
s (σ);σ)

ensures that, for all θ > θ†s(σ), the payoff

max {W (θ, s, 0) ;U (θ, r,Ψ ((X(θ∗s , θ
∗∗
s (σ);σ)− θ)/σ))}

that type θ obtains with the option to intervene is (weakly) lower than his payoff in the game in which

the option to intervene is absent.44 This means that there exists θ†(σ) such that U (θ;σ) < Uo (θ;σ)

42Recall from the analysis in Section 3, that (i) in any equilibrium in E(s;σ) no agent attacks when, after observing
r = r, he receives a signal x > X(θ∗s , θ

∗∗
s (σ);σ), and (ii) that there always exists one equilibrium in E(s;σ) such that,

after observing r = r, each agent attacks if and only if he receives a signal x < X(θ∗s , θ
∗∗
s (σ);σ).

43The first property follows directly from Proposition 9 in Appendix A. To see that the second property also holds,
note that, if this were not true, then the size of attack A(θ∗∗s (σ), r) at θ = θ∗∗s (σ) would converge to either zero or
one, making it impossible for type θ∗∗s (σ) to be indifferent between raising the policy to r = s and setting r = r.

44To see this, note that if W (θ, s, 0) > U (θ, r,Ψ ((X(θ∗s , θ
∗∗
s (σ);σ)− θ)/σ)) the result follows from the definition

of θ†s(σ). If, instead, the inequality is reversed, the result follows from the fact that, by not raising the policy, type θ
faces an attack Ψ ((X(θ∗s , θ

∗∗
s (σ);σ)− θ)/σ) greater than the attack Ψ

(
(x#(σ)− θ)/σ

)
he would have faced without

the option to intervene.
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only if θ > θ†(σ). That θ†(σ) > θ#(σ) is immediate given that there is no equilibrium in which a

type θ ≤ θ#(σ) can be made worse off.

Finally, to see why, for any θ, the difference between U (θ;σ) and Uo (θ;σ) vanishes as σ → 0+,

note that, for any θ ≤ θ#(0+) ≡ limσ→0+ θ#(σ), this difference is clearly zero because the lower

bound is simply the payoff obtained in any equilibrium in which type θ is forced to experience

regime change. For types θ > θ#(0+), on the other hand, the result follows from the fact that for

any s ∈ (r, r#(0+)], limσ→0+ ∆s(σ) = 0 and

lim
σ→0+

X(θ∗s , θ
∗∗
s (σ);σ) = θ∗s ≤ lim

σ→0+
x#(σ)

This implies that the lowest bound on the payoff for each θ > θ#(0+) is attained under any of the

pooling equilibria, which is clearly the same payoff as in the game in which the option to intervene

is absent. Q.E.D.

Proof of Proposition 7. For θ ≤ θ, it is dominant for the policy maker to set r. Similarly, for

θ > θ̄, it is dominant for the agents not to attack, which makes it iteratively dominant for the policy

maker to set r = r. Finally, take any θ ∈ (θ, θ̄]. Clearly, there is no subgame-perfect equilibrium in

which r(θ) > ρ(θ). On the other hand, for any r ≤ ρ(θ), the assumption that Z(θ, r) ≥ r implies

that the continuation game among the agents is a coordination game with two Nash equilibria—one

where nobody attacks and the status quo is maintained and another where everybody attacks and

the status quo is abandoned. This implies that, for any r′ ≤ ρ(θ), there exists a subgame-perfect

equilibrium in which the agents attack if and only if r < r′ and the policy maker raises the policy at

r(θ) = r′. This establishes part (i). Part (ii) follows from the properties above along with the fact

that, for any θ ∈ (θ, θ̄] there always exists a subgame-perfect equilibrium where all agents attack if

and only if r ≤ ρ(θ) in which case the policy maker optimally chooses not to intervene and hence

D(θ) = 1. Q.E.D.

Proof of Proposition 8. The characterization of G(0) follows directly from Proposition 7. Thus

consider G(σ) for σ > 0 and note that this set is given by

G(σ) =


(θ, r): either r = r and θ ∈ R,

or r ∈ (r, ρ+] and θ ∈ (θ∗r , θ
∗∗
r ], where θ∗r = θ,

or r ∈ (ρ+, r#(σ)] and θ ∈ [θ∗r , θ
∗∗
r ], where θ∗r > θ.


Next, pick an arbitrary ε̄ ∈ (0, ρ(θ̄)− r#(0+)) if ρ+ = r and some ε̄ ∈ (0, ρ+ − r) if ρ+ > r, and for

any ε < ε̄ define the set H(ε) as follows: if ρ+ = r, then

H(ε) ≡


(θ, r): either r = r and θ ∈ R,

or r ∈ (r, r + ε) and θ > θ

or r ∈ [r + ε, r#(0+) + ε] and θ ∈ [ρ−1(r), ρ−1(r) + ε]

 ;

46



whereas, if ρ+ > r, then

H(ε) ≡


(θ, r): either r = r and θ ∈ R,

or r ∈ (r, r + ε) and θ > θ

or r ∈ [r + ε, ρ+]and θ ∈ (θ, θ + ε)

or r ∈ [ρ+, r#(0+) + ε] and θ ∈ [ρ−1(r), ρ−1(r) + ε]

 .

Note that, in either case, the results in Proposition 9 in Appendix A guarantee that, for any

ε ∈ (0, ε̄), there exists σ̄ > 0 such that

G(σ) ⊂ H(ε)

for all σ ∈ (0, σ̄). Finally, note that, for all σ > 0,

G(σ) ⊃

{
(θ, r): either r = r and θ ∈ R,

or r ∈ (ρ+, r# (σ)] and θ = ρ−1(r)

}

Combining the above two properties gives the result. Q.E.D.

Proof of Proposition 9. Fix ε > 0 and let

θ#(0+) ≡ lim
σ→0+

θ#(σ) and r#(0+) ≡ lim
σ→0+

r#(σ) = lim
σ→0+

r̂(θ#(σ))

where, for any θ ≥ θ, r̂(θ) is implicitly defined by W (θ, r̂(θ), 0) = L(θ, r).

Part (i). Clearly, irrespective of σ, E (s;σ) = ∅ whenever {θ ≥ θ : W (θ, s, 0) ≥ L(θ, r)} = ∅.

Thus assume that this set is non-empty and denote by θ∗s its largest lower bound. We establish the

result using the properties below.

Property 1. There exist δ > 0 and σ̂ > 0 such that for any σ < σ̂, θ∗s > θ#(0+) + δ whenever

s > r#(σ) + ε.

To see this, take ε′ < ε/2. By continuity of r̂(θ) and θ#(σ) and the fact that r#(σ) = r̂(θ#(σ)),

there exists σ̂ > 0 such that, whenever σ < σ̂, |r#(σ) − r#(0+)| < ε′. Hence, for any σ < σ̂,

s > r#(σ) + ε implies that s > r#(0+) − ε′ + ε > r#(0+) + ε′. Furthermore, by the continuity

of r̂(θ), there exists δ > 0 such that |r̂(θ) − r#(0+)| < ε′ whenever |θ − θ#(0+)| < δ. By the

monotonicity of r̂(θ), we then have that r̂(θ) < s for any θ < θ#(0+) + δ which means that

θ∗s ≥ θ#(0+) + δ.

Property 2. Let σ̂ be the threshold in property 1. There exist 0 < σ′ < σ̂ and θ > θ such that,

for any σ < σ′, any s > r#(σ) + ε, any A, any θ > θ, R(θ, r, A) > 0 and W (θ, s, 0) < W (θ, r, A).

This follows from the limit condition that, for any s > r, limθ→+∞[W (θ, s, 0)−W (θ, r, 1)] < 0.

Property 3. For any (θ∗, θ), with θ ≥ θ∗ ≥ θ, B(θ∗, θ; ·) is increasing in σ with

lim
σ→0+

B(θ∗, θ;σ) =

{
0 if θ > θ∗

(Z (θ∗)−Q(r)) /Z(θ∗) if θ = θ∗
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Recall that B(θ∗, θ;σ) is defined as

B(θ∗, θ;σ) ≡ Ψ

(
X(θ∗, θ;σ)− θ

σ

)
, (27)

where X(θ∗, θ;σ) is implicitly defined by condition (5). To simplify the exposition, let us momen-

tarily use X and B as short-cuts for, respectively, X(θ∗, θ;σ) and B(θ∗, θ;σ). Condition (5) can

then be restated as∫ θ∗

−∞
Z(θ̃, r)

1

σ
ψ

(
X − θ̃
σ

)
dθ̃ −Q(r)

[
1−Ψ

(
X − θ∗

σ

)
+ Ψ

(
X − θ
σ

)]
= 0.

From (27), X = σΨ−1(B) + θ. Replacing this into the above, and integrating the first term by

parts, we conclude that condition (5) can be restated as follows:

(Z (θ∗, r)−Q(r))

(
1−Ψ

(
Ψ−1(B) +

θ − θ∗

σ

))
(28)

+

∫ θ∗

−∞

(
−dZ(θ̃, r)

dθ̃

)(
1−Ψ

(
Ψ−1(B) +

θ − θ̃
σ

))
dθ̃ −Q(r)B = 0.

Note that the left-hand side of the above equation is decreasing in B. This guarantees that the

above equation admits a unique solution for B—and therefore that (5) admits a unique solution, as

stated in the main text. Next, noting that the left-hand side of the above equation is increasing in σ.

It then follows from the implicit function theorem that B is also increasing in σ, as claimed above.

Finally, one can also use the above formula to verify that, for any θ > θ∗, limσ→0+ B(θ∗, θ;σ) = 0,

while for θ = θ∗, limσ→0+ B(θ∗, θ;σ) = (Z (θ∗, r)−Q(r)) /Z(θ∗, r), which completes the proof of

Property 3.

Property 4. Let δ > 0 be the threshold in property 1 and σ′ be the threshold in property 2.

Define

Θ̂ ≡ {(θ∗, θ) : θ∗ ∈ [θ#(0+) + δ, θ], θ ∈ [θ∗, θ]}.

There exists 0 < σ1 < σ′ such that, for any σ < σ1, any (θ∗, θ) ∈ Θ̂,

G(θ; θ∗, σ) < 0 < R(θ, r, B(θ∗, θ;σ))

where, for any σ > 0, any (θ∗, θ) with θ ≥ θ∗ ≥ θ,

G(θ; θ∗, σ) ≡W (θ, r̂(θ∗), 0)−W (θ, r, B(θ∗, θ;σ)) .

Using property 3, for any (θ∗, θ) ∈ Θ̂,

lim
σ→0+

R(θ, r, B(θ∗, θ;σ)) =

{
R(θ, r, 0) > 0 if θ > θ∗

R (θ∗, r, (Z (θ∗, r)−Q(r)) /Z(θ∗, r)) > 0 if θ = θ∗
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where the second inequality follows from the fact that the functionR (θ∗, r, (Z (θ∗, r)−Q(r)) /Z(θ∗, r))

is strictly increasing in θ∗ and equal to zero at θ∗ = θ#(0+) (this follows from Lemma 1) along with

the fact that θ∗ > θ#(0+) + δ.

Likewise, for any (θ∗, θ) ∈ Θ̂,

lim
σ→0+

G(θ; θ∗, σ) =

{
W (θ, r̂(θ∗), 0)−W (θ, r, 0) < 0 if θ > θ∗

L(θ∗, r)−W (θ∗, r, (Z (θ∗, r)−Q(r)) /Z(θ∗, r)) < 0 if θ = θ∗

where the second inequality follows from the fact that R (θ∗, r, (Z (θ∗, r)−Q(r)) /Z(θ∗, r)) > 0

implies W (θ∗, r, (Z (θ∗, r)−Q(r)) /Z(θ∗, r)) > L(θ∗, r).

Next, note that, for any σ > 0, the functions R(·, r, B(·, ·;σ)) and G(·; ·, σ) are continuous on Θ̂

and that, for any (θ∗, θ) ∈ Θ̂, they are monotone in σ (by the monotonicity of B in σ). Because Θ̂

is compact, the result then follows from Dini’s theorem.

Property 5. Let δ > 0 be the threshold in property 1 and σ1 > 0 the threshold in property 4.

For any σ < σ1,

G(θ; θ∗, σ) < 0 < R(θ, r, B(θ∗, θ;σ))

for any (θ∗, θ) such that either (a) θ∗ ∈ [θ#(0+) + δ, θ] and θ > θ, or (b) θ∗ > θ and θ ≥ θ∗.
The result follows directly from properties 2 and 4.

Together, the above properties imply that for any σ < σ1, s > r#(σ) + ε, there exists no pair

(θ∗s , θ
′′
s ) such that θ∗s satisfies conditions (8) and θ′′s ≥ θ∗s satisfies either condition (9) or condition

(10). From Proposition (1) this means that, for any σ < σ1, E (s;σ) = ∅ for any s > r#(σ) + ε.

Part (ii). Let ε > 0 be the same as in part (i). By the continuity and strict monotonicity of the

function r̂(θ) over [θ,+∞), together with the continuity of the θ#(σ) function, there exist σ+ > 0

and ε+ ∈ (0, ε) such that, for any σ < σ+ θ∗s > θ#(σ) + ε implies that s > r#(σ) + ε+. The result

in part (i) then implies that there exists a σ2 ∈ (0, σ+) such that, for any σ < σ2, E (s;σ) 6= ∅ only

if θ∗s ≤ θ#(σ) + ε.

Part (iii). Take the same ε > 0 as in parts (i) and (ii) and let r = r+ ε. By the limit condition

that limθ→+∞[W (θ, r, 0) −W (θ, r, 1)] < 0, there exists a θ > θ̄ such that, for any θ > θ, any A,

any s ≥ r + ε, R(θ, r, A) > 0 and W (θ, s, 0) < W (θ, r, A). This means that, for any s ≥ r + ε,

if a pair (θ∗s , θ
′′
s ) exists such that θ∗s satisfies condition (8) and θ′′s ≥ θ∗s satisfies either condition

(9) or condition (10), then necessarily θ∗s , θ′′s ≤ θ. In turn, this also means that, for any s ≥ r + ε,

E (s;σ) 6= ∅ only if s ≤ r̂(θ). Thus assume r̂(θ) ≥ r + ε. For any s ∈ [r + ε, r̂(θ)], then let θ∗s
be the threshold corresponding to s, as defined in (8) and take any arbitrary θ > θ∗s . Because

limσ→0+ B(θ∗s , θ;σ) = 0, and because B(θ∗s , ·;σ) is decreasing in θ (this can be seen from (28)), we

then have that, for any s ∈ [r+ ε, r̂(θ)], either there exists no θ′′s ≥ θ∗s that satisfies condition (9) or

condition (10) when σ is small enough, in which case E (s;σ) 6= ∅. Else, if such a θ′′s exists, then the
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highest θ′′s ≥ θ∗s that satisfies either condition (9) or condition (10, which is θ∗∗(σ), must converge

to θ∗s as σ → 0.

For any s ∈ [r + ε, r̂(θ)] any σ, then let ∆s(σ) = θ∗∗(σ) − θ∗s if a θ′′s ≥ θ∗s that satisfies either

condition (9) or condition (10) exists and ∆s(σ) = 0 otherwise. Because for any θ∗, θ, θ ≥ θ∗,

B(θ∗θ; ·) is increasing in σ, we then have that, for any s ∈ [r+ ε, r̂(θ)], ∆s(σ) is increasing in σ with

limσ→0+ ∆(σ) = 0. Because, for any σ > 0, ∆s(σ) is clearly continuous in s over [r + ε, r̂(θ)], from

Dini’s theorem we then have that there exists a σ3 > 0 such that, for σ < σ3, any s ∈ [r + ε, r̂(θ)],

either E (s;σ) = ∅, or θ∗∗s (σ) ≤ θ∗s + ε, which establish the result.

Combining the proofs of parts (i)-(iii), the result in the proposition then follows by letting

σ̄ = min{σ1, σ2, σ3}. Q.E.D.

Proof of Proposition 10. Part (i) follows from Lemma A3 below, whose proof is similar to that

of Proposition 5 in Angeletos, Hellwig and Pavan (2006), adapted to the payoff structure considered

here. Part (ii) follows from Lemma A4.

Lemma A3. Assume ψ is log-concave. For any σ > 0, any s ∈ (r, r#(σ)], there exists a nonempty

set of types Θs(σ) ⊂ [θ∗s , θ
∗∗
s (σ)], with inf Θs(σ) = θ∗s , a threshold x∗s, and an equilibrium in which

r (θ) =

{
s if θ ∈ Θs(σ)

r otherwise
and D(θ) =

{
1 if θ < θ∗s

0 if θ > θ∗s

The equilibrium is sustained by the following strategy for the agents: (i) for r = r, a (x, r) = 1 if

and only if x < x∗s; for any r ∈ (r, s), a (x, r) = 1 irrespective of x; for any r ≥ s, a (x, r) = 0

irrespective of x.

Proof of Lemma A3. The proof is in three steps. Steps 1 and 2 construct the set Θs(σ) and

establish properties that are useful for step 3. Step 3 shows that there exists a system of beliefs

that support the proposed strategies as part of an equilibrium.

Step 1. Fix s ∈ (r, r#(σ)] and let θ∗s = inf{θ ≥ θ : W (θ, s, 0) ≥ L(θ, r)}. Next, let S : R → 2R

and m : R2 → [0, 1] denote, respectively, the correspondence and the function defined as follows:

S (x) ≡
{
θ > θ : W (θ, s, 0) ≥ U

(
θ, r,Ψ

(
x−θ
σ

))}
,

m
(
x, x′

)
≡

∫ θ∗s
−∞ Z(θ̃, r) 1

σψ(x
′−θ̃
σ )dθ̃

1−
∫
S(x)

1
σψ(x

′−θ̃
σ )dθ̃

−Q(r)

The set S (x) represents the set of types who prefer raising the policy to r = s and then facing no

attack to leaving the policy at r, facing an attack of size Ψ
(
x−θ
σ

)
, and then obtaining a payoff

U
(
θ, r,Ψ

(
x−θ
σ

))
=

{
W
(
θ, r,Ψ

(
x−θ
σ

))
if R

(
θ, r,Ψ

(
x−θ
σ

))
> 0

L(θ, r) if R
(
θ, r,Ψ

(
x−θ
σ

))
≤ 0

50



By definition, any type below θ∗s prefers leaving the policy at r = r to raising the policy to r = s,

irrespective of the size of the attack. It follows that θ∗s ≤ inf S(x) for any x. In turn, m (x, x′) is

the expected payoff from attacking for an agent with signal x′ when he observes r and believes that

regime change will occur if and only if θ < θ∗s and that the policy is r (θ) = r if and only if θ /∈ S (x) .

Step 2 below shows that, when ψ is log-concave, then for any x, the function m (x, ·) is non-

increasing in x′. It then uses this property to show that either (i) there exists an x∗s ∈ R such that

m (x∗s, x
∗
s) = 0, or (ii) m (x, x) > 0 for all x, in which case we let x∗s = +∞. In either case, the

triple (x∗s, θ
∗
s ,Θs(σ)) with Θs(σ) = S (x∗s) identifies an equilibrium for the fictitious game in which

the policy maker is restricted to set r ∈ {r, s} and the agents are restricted not to attack when

r = s. Step 3 concludes the proof by showing that the same triple identifies an equilibrium for the

unrestricted game.

Step 2. Note that S (x) is continuous in x, with S (x1) ⊆ S (x2) for any x1 ≤ x2 (this follows from

the fact that the policy maker’s payoff from not raising the policy declines with the aggressiveness

of the agents’ behavior). Also note that m (x, x′) is continuous in (x, x′) and nondecreasing in x

(by the monotonicity of S(x)). Below we show that, when ψ is log-concave, m (x, x′) is also non-

increasing in x′. To see this, note that, for any θ′ ≤ θ∗s , the probability that an agent with signal x′

assigns to θ̃ < θ′ when observing r = r is µ(θ′|x′, r) = (1 + 1/M (x′))−1 , where

M(x′) ≡
1−Ψ(x

′−θ′
σ )∫∞

θ′

[
1− Ix

(
θ̃
)]

1
σψ(x

′−θ̃
σ )dθ̃

with Ix(θ̃) = 1 when θ̃ ∈ S(x) and Ix(θ̃) = 0 otherwise. It follows that µ(θ′|x′, r) is decreasing in

x′ if d lnM (x′) /dx′ < 0 or, equivalently, if

∫ θ′
−∞

1
σ2ψ

′
(
x′−θ̃
σ

)
dθ̃∫ θ′

−∞
1
σψ
(
x′−θ̃
σ

)
dθ̃
−

∫∞
θ′

[
1− Ix

(
θ̃
)]

1
σ2ψ

′
(
x′−θ̃
σ

)
dθ̃∫∞

θ′

[
1− Ix

(
θ̃
)]

1
σψ
(
x′−θ̃
σ

)
dθ̃

< 0. (29)

Using the fact that Ix(θ̃) = 0 for all θ̃ ≤ θ′, (29) is equivalent to

Eθ̃

 ψ′
(
x′−θ̃
σ

)
ψ
(
x′−θ̃
σ

)
∣∣∣∣∣∣ θ̃ ≤ θ′, x′, r

− Eθ̃

 ψ′
(
x′−θ̃
σ

)
ψ
(
x′−θ̃
σ

)
∣∣∣∣∣∣ θ̃ > θ′, x′, r

 < 0,

which holds true when ψ′/ψ is decreasing, i.e. when ψ is log-concave. That Z(·, r) is non-increasing
together with the fact that µ(θ′|x′, r) is decreasing in x′ for any θ′ ≤ θ∗s then implies that the

expected payoff from attacking

m(x, x′) =

∫ θ∗s
−∞ Z(θ̃, r) 1

σψ
(
x′−θ̃
σ

)
dθ̃

1−Ψ(x
′−θ∗s
σ ) +

∫∞
θ∗s

[
1− Ix

(
θ̃
)]

1
σψ(x

′−θ̃
σ )dθ̃

− r
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is non-increasing in x′.45 For future reference, also note that limx′→+∞m(x, x′) < 0.

Having established that the expected payoff from attacking m (x, x′) is continuous in (x, x′),

nondecreasing in x and non-increasing in x′, next note that

S (x) ⊆ S̄ ≡ {θ : W (θ, s, 0) ≥ U (θ, r, 1)}

which in turn implies that, for any (x, x′) ∈ R2,∫ θ∗s
−∞ Z(θ̃, r) 1

σψ(x
′−θ̃
σ )dθ̃

1−
∫
S̄

1
σψ(x

′−θ̃
σ )dθ̃

−Q(r) ≥ m
(
x, x′

)
≥
∫ θ∗s

−∞
Z(θ̃, r)

1

σ
ψ
(
x′−θ̃
σ

)
dθ̃ −Q(r).

It follows that, for any x, m (x, x′) ≥ 0 for all x′ ≤ x̂, where x̂ ∈ R is the unique solution to∫ θ∗s

−∞
Z(θ̃, r)

1

σ
ψ
(
x̂−θ̃
σ

)
dθ̃ = Q(r)

Now define the sequence {xk}∞k=0 , with xk ∈ R ∪ {+∞}, as follows. For k = 0, let x0 ≡ x̂.

For k ≥ 1, let xk be the solution to m (xk−1, xk) = 0 if xk−1 < +∞; if, instead, xk−1 = +∞, let
xk ≡ inf {x′ : m (xk−1, x

′) ≤ 0} if {x′ : m (xk−1, x
′) ≤ 0} 6= ∅ and xk ≡ +∞ otherwise. The fact

that

m (x̂, x̂) ≥
∫ θ∗s

−∞
Z(θ̃, r)

1

σ
ψ
(
x̂−θ̃
σ

)
dθ̃ −Q(r) = 0

together with the continuity and monotonicities of m, ensures that this sequence is well defined and

nondecreasing. It follows that either limk→∞ xk ∈ [x̂,+∞), or limk→∞ xk = +∞. In the former

case, let x∗s = limk→∞ xk and Θs(σ) = S (x∗s) ; in the latter, let x∗s = +∞ and Θs(σ) = S (∞) ≡ S̄.
Finally, to see that inf Θs(σ) = θ∗s note that the threshold x̂ defined above coincides with

X(θ∗s , θ
∗
s ;σ). Because θ∗s ≤ θ#(σ), from the results in the proof of Lemma A1 above, we then

have that R(θ∗s , r,Ψ((X (θ∗s , θ
∗
s ;σ)− θ∗s)/σ) ≤ 0. Because x∗s ≥ x̂, we then have that R(θ∗s , r,Ψ((x∗s−

θ∗s)/σ)) ≤ 0. Because R(θ, r,A) is increasing in θ and decreasing in A and because A (θ, r) = Ψ(x
∗
s−θ
σ )

is decreasing in θ, this in turn implies that there exits θ̂s ∈ [θ∗s , θ
∗∗
s (σ)] such that R(θ̂s, r,Ψ((x∗s −

θ̂s)/σ)) ≤ 0 if and only if θ ≤ θ̂s. It follows that necessarily r(θ) = s for all θ ∈ (θ∗s , θ̂s], thus

establishing that inf Θs(σ) = θ∗s .

We conclude that the triple (x∗s, θ
∗
s ,Θs(σ)) identifies an equilibrium for the fictitious game in

which the policy maker is restricted to set r ∈ {r, s} and the agents are restricted not to attack

when r = s.

Step 3. We now show how the triple (x∗s, θ
∗
s ,Θs(σ)) of Step 2 also identifies an equilibrium for

the unrestricted game. The proof here parallels that of Lemma A2. Below we simply show existence

of beliefs for the agents satisfying conditions (19), (20) and (21).
45To see this, note that, given any two absolutely continuous c.d.f.s F1 and F2 with F1(θ) ≤ F2(θ) for all θ < θ∗s ,

and any non-increasing differentiable positive function h : R→ R+,
∫ θ∗s
−∞ h(θ̃)dF1(θ̃) ≤

∫ θ∗s
−∞ h(θ̃)dF2(θ̃). Interpreting

h as the payoff Z from regime change and F1 and F2 as the agent’s posterior for two different signals x1 and x2, with
x1 ≥ x2, gives the result.
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When r = r, beliefs are pinned down by Bayes rule and such that, for any θ ≤ θ∗s ,

µ(θ|x, r) =
1−Ψ(x−θσ )

1−
∫

Θs(σ)
1
σψ(x−θ̃σ )dθ̃

,

while for any θ ∈ (θ∗s , θ̂s),
46

µ(θ|x, r) =
1−Ψ(x−θ

∗
s

σ )

1−
∫

Θs(σ)
1
σψ(x−θ̃σ )dθ̃

.

As shown above, these beliefs are decreasing in x. By the definition of x∗s, it then follows that

condition (19) is satisfied when r = r. Next consider r = s. Again, in this case beliefs are pinned

down by Bayes rule and such that µ(θ|x, s) = 0, all x, in which case condition (21) is clearly satisfied.

Finally, whenever r /∈ {r, s}, there exist an arbitrarily large set of out-of-equilibrium beliefs that

satisfy (20) and (21) — see the construction in Lemmas A0 and A2 above. �

Lemma A4. Suppose SCC holds and ψ is log-concave. Then for any σ > 0, any s ∈ (r, r#(σ)],

any equilibrium in E(s;σ) is such that r (θ) = s for all θ ∈ (θ∗s , θ
∗∗
s (σ)).

Proof of Lemma A4. The result for s = r#(σ) follows directly from the fact that, when SCC

holds, then θ∗s = θ#(σ) = θ∗∗s (σ). That θ∗s = θ#(σ) is immediate. To see that θ∗∗s (σ) = θ#(σ), recall

that, by the properties of the pooling equilibria, for any θ > θ#(σ),

R

(
θ, r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ

σ

))
> 0

which implies that

U

(
θ, r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ

σ

))
= W

(
θ, r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ

σ

))
> L(θ, r). (30)

By continuity, when applied to θ = θ#(σ), (30) implies that

W
(
θ#(σ), r#(σ), 0

)
= L(θ#(σ), r) ≤W

(
θ#(σ), r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ#(σ)

σ

))
Under SCC, this means that, for any θ > θ#(σ),

U
(
θ, r#(σ), 0

)
= W

(
θ, r#(σ), 0

)
≤ U

(
θ, r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ#(σ)

σ

))
= W

(
θ, r,Ψ

(
X(θ#(σ), θ#(σ);σ)− θ#(σ)

σ

))
Because Ψ

(
X(θ#(σ),θ#(σ);σ)−θ#(σ)

σ

)
> Ψ

(
X(θ#(σ),θ;σ)−θ

σ

)
, as shown in the proof of Proposition

2, this means that, for any θ > θ#(σ), R
(
θ, r,Ψ

(
X(θ#(σ),θ;σ)−θ

σ

))
> 0 and W

(
θ, r#(σ), 0

)
≤

46Recall that all types θ ∈ (θ∗s , θ̂) necessarily raise the policy to r = s.
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W
(
θ, r,Ψ

(
X(θ#(σ),θ;σ)−θ

σ

))
, which implies that the only θ′′s ≥ θ∗s = θ#(σ) that possibly satisfies

(9) or (10) is θ′′s = θ#(σ), which means that θ∗∗s (σ) = θ∗s = θ#(σ) for s = r#(σ).

Thus consider s ∈ (r, r#(σ)). From the proof of Lemma 4, a (x, r) = 0 for all x > X(θ∗s , θ
∗∗
s (σ);σ), while

from the proof of Lemma 5, a (x, r) = 1 for all x < X (θ∗s , θ
∗
s ;σ) . It follows that Ψ

(
X(θ∗s ,θ

∗∗
s (σ))−θ
σ

)
≥

A (θ, r) ≥ Ψ
(
X(θ∗s ,θ

∗
s )−θ

σ

)
for all θ. By the fact that R

(
θ, r,Ψ

(
X(θ,θ;σ)−θ

σ

))
< 0 for θ < θ#(σ), we

then have that R
(
θ∗s , r,Ψ

(
X(θ∗s ,θ

∗
s (σ))−θ∗s
σ

))
< 0, while by the fact that θ∗∗s (σ) satisfies condition

(9) or (10), we have that R
(
θ∗∗s (s), r,Ψ

(
X(θ∗s ,θ

∗∗
s (σ))−θ∗∗s (σ)

σ

))
≥ 0. Combining, we have that

R (θ∗s , r, A(θ∗s , r)) < 0 ≤ R (θ∗∗s (s), r, A (θ∗∗s (s), r)) (31)

Now the fact that the noise distribution ψ is log-concave implies that, after observing r = r, irre-

spective of the shape of the equilibrium policy r(θ) in the region [θ∗s , θ
∗∗
s (σ)] of possible intervention,

the aggregate attack A(θ, r) is monotone in θ — see the proof of Lemma A3. Condition (31), to-

gether with the monotonicity of A(θ, r) in θ and the property that Rθ > 0 > RA then ensures that

there exists a unique θ̂s ∈ [θ∗s , θ
∗∗
s (σ)] such that R (θ, r, A (θ, r)) ≤ 0 if and only if θ ≤ θ̂s. Now

if θ̂s = θ∗∗s (σ), then obviously r(θ) = s for all θ ∈ (θ∗s , θ
∗∗
s (σ)]. Thus suppose that θ̂s < θ∗∗s (σ),

which means θ∗∗s (σ) satisfies condition (9). Now let θsup
s ≡ sup{θ : r(θ) = s}. Clearly, θsup

s ≥ θ̂s; if

θsup
s < θ̂s, then types θ ∈ (θsup

s , θ̂s] would be better off by raising the policy to r = s rather than

leaving the policy at r and then facing regime change.

We now show that all types θ ∈ (θ∗s , θ
sup
s ] necessarily raise the policy to r = s. This is immediate

when θsup
s = θ̂s. Thus suppose θ

sup
s > θ̂s. Because, in this case, R (θsup

s , r, A (θsup
s , r)) > 0, then θsup

s

must satisfy

W (θsup
s , s, 0) = W (θsup

s , r, A (θsup
s , r))

Now let

h(θ) ≡W (θ, s, 0)−W (θ, r, A (θ, r))

Note that SCC, along with the monotonicity of A (·, r), implies that h(θ) > 0 for all θ ∈ (θ∗s , θ
sup
s ),

which in turn implies that all θ ∈ (θ∗s , θ
sup
s ) necessarily raise the policy to r = s. But then necessarily

A (θ, r) = Ψ

(
X (θ∗s , θ

sup
s ;σ)− θ
σ

)
This means that θsup

s must satisfy condition (9). Now recall that θ∗∗s (σ) is the highest θ′′s that

satisfies (9). That θsup
s = θ∗∗s (σ) in turn follows from the fact that, under SCC, the function

G(θ; θ∗s , σ) ≡W (θ, s, 0)−W
(
θ, r,Ψ

(
X (θ∗s , θ;σ)− θ

σ

))
is strictly negative for all θ ≥ θsup

s which implies that θsup
s = θ∗∗s (σ). � Q.E.D.
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