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Abstract

This paper investigates how incomplete information impacts the response of prices to nominal

shocks. Our baseline model is a variant of the Calvo model in which firms observe the underlying

nominal shocks with noise. In this model, the response of prices is pinned down by three

parameters: the precision of available information about the nominal shock; the frequency of

price adjustment; and the degree of strategic complementarity in pricing decisions. This result

synthesizes the broader lessons of the pertinent literature. We next highlight that this synthesis

provides only a partial view of the role of incomplete information. In general, the precision

of information does not pin down the response of higher-order beliefs. Therefore, one cannot

quantify the degree of price inertia without additional information about the dynamics of higher-

order beliefs, or the agents’ forecasts of inflation. We highlight the distinct role of higher-order

beliefs with three extensions of our baseline model, all of which break the tight connection

between the precision of information and higher-order beliefs featured in previous work.
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hosted by the Gerzensee Study Center, Switzerland. We received useful comments from multiple conference partici-

pants. We are particularly grateful to our discussants, Stephen Morris and Elmar Mertens, and to the organizers of
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1 Introduction

How much, and how quickly, do prices respond to nominal shocks? This is one of the most funda-

mental questions in macroeconomics: it is key to understanding the sources and the propagation of

the business cycle, as well as the power of monetary policy to control real economic activity.

To address this question, one strand of the literature has focused on menu costs and other fric-

tions in adjusting prices; this includes both convenient time-dependent models and state-dependent

adjustment models. Price rigidities are then identified as the key force behind price inertia. Another

strand of the literature has focused on informational frictions; this strand highlights that firms may

fail to adjust their price to nominal shocks, not because it is costly or impossible to do so, but

rather because they have imperfect information about these shocks. The older literature formal-

ized this imperfection as a geographical dispersion of the available information (Lucas, 1972, Barro,

1976); more recent contributions have proposed infrequent updating of information (Mankiw and

Reis, 2002; Reis, 2006) or rational inattention (Sims, 2003; Woodford, 2003, 2008; Machowiak and

Wiederholt, 2008). One way or another, though, the key driving force behind price inertia is that

firms happen, or choose, to have imperfect knowledge of the underlying nominal shocks.

The starting point of this paper is a bridge between these two approaches. In particular, our

baseline model is a hybrid of Calvo (1983), Morris and Shin (2002), and Woodford (2003): on the

one hand, firms can adjust prices only infrequently, as in Calvo; on the other hand, firms observe

the underlying nominal shocks only with noise, similarly to Morris-Shin and Woodford.

Within this baseline model, the response of prices to nominal shocks—and hence also the real

impact of these shocks—is characterized by the interaction of three key parameters: the precision

of available information about the underlying nominal shocks (equivalently, the level of noise in

the firms’ signals of these shocks); the frequency of price adjustment; and the degree of strategic

complementarity in pricing decisions. That all three parameters should matter is obvious; but

their interaction is also interesting. The combination of sticky prices and strategic complementarity

implies that the incompleteness of information can have lasting effects on inflation and real output

even if the shocks become commonly known very quickly. This is because firms that have full

information about the shock at the time they set prices will find it optimal to adjust only partly

to the extent that other firms had only incomplete information at the time they had set their

prices. Moreover, incomplete information can help make inflation peak after real output, which

seems consistent with available evidence based on structural VARs.
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These findings synthesize, and marginally extend, various lessons from the pertinent literature

with regard to how frictions in either price adjustment or information about the underlying nominal

shocks impact the response of prices to these shocks. This synthesis has its own value, as it provides

a simple and tractable incomplete-information version of the Calvo model that could readily be

taken to the data. Nevertheless, this synthesis is not the main contribution of the paper. Rather,

the main contribution of the paper is, first, to highlight that the aforementioned lessons miss the

distinct role that higher-order beliefs play in the dynamics of price adjustment and, second, to show

how this distinct role can be parsimoniously accommodated within our Calvo-like framework.

The basic idea behind our contribution is simple. The precision of the firms’ information about

the underlying nominal shock identifies how fast the firms’ forecasts of the shock respond to the true

shock: the more precise their information, the faster their forecasts converge to the truth. However,

this need not also identify how fast the forecasts of the forecasts of others may adjust. In other

words, the precision of available information pins down the response of first-order beliefs, but not

necessarily the response of higher-order beliefs. But when prices are strategic complements, the

response of the price level to the underlying shock depends heavily on the response of higher-order

beliefs. It follows that neither the precision of available information nor the degree of price rigidity

suffice for calibrating the degree of price inertia at the macro level.

To better understand this point, it is useful to abstract for a moment from sticky prices. Assume,

in particular, that all firms can adjust their prices in any given period and that the prices they set

are given by the following simple pricing rule:

pi = (1− α)Eiθ + αEip

where pi is the price set by firm i, θ is nominal demand, p is the aggregate price level, α ∈ (0, 1) is the

degree of strategic complementarity in pricing decisions, and Ei denotes the expectation conditional

on the information of firm i. Aggregating this condition and iterating over the expectations of the

price level, we infer that the aggregate price level must satisfy the following condition:

p = (1− α)
(
Ē1 + αĒ2 + α2Ē3 + . . .

)
,

where Ēk denotes the kth-order average forecast of θ.1 It then follows that the response of price

level p to an innovation in θ depends on the response of the entire sequence of different orders of

beliefs, {Ēk}∞k=1, to that shock.
1The kth-order average forecasts are defined recursively as follows: Ē1 is the cross-sectional mean of the firms’

forecasts of the underlying nominal shock; Ē2 is the cross-sectional mean of the firms’ forecasts of Ē1; and so on.
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When information is perfect or at least commonly shared, then Ēk = Ē1 for all k. It then follows

that the response of prices to an innovation in θ depends merely on the response of first-order beliefs,

which in turn is pinned down by the precision of the available information about θ. When, instead,

information is dispersed, higher-order beliefs need not coincide with first-order beliefs.

The potential role of higher-order beliefs has been noted before by Morris and Shin (2002),

Woodford (2003), and others. However, in the standard Gaussian example used in the pertinent

literature, the sensitivity of higher-order beliefs to the shock is tightly connected to that of first-

order beliefs: higher-order beliefs can be less sensitive to the underlying shock only if the precision

of information about the shock is lower, in which case first-order beliefs are also less sensitive. It

follows that in the standard Gaussian example the precision of information about the underlying

nominal shock remains the key determinant of the response of the price level to the shock. However,

once one goes away from the standard Gaussian example, this tight connection between first- and

higher-order beliefs can break—and the break can be quite significant.

We highlight the crucial and distinct role of higher-order beliefs with three variants of our

baseline model. All three variants retain the combination of infrequent price adjustment (as in

Calvo) and noisy information about the underlying shocks (as in Morris-Shin and Woodford), but

differentiate in the specification of higher-order beliefs.

In the first variant, firms face uncertainty, not only about the size of the aggregate nominal shock,

but also about the precision of the signals that other firms receive about this shock. This extension

helps isolate the role of higher-order beliefs or, equivalently, the role of strategic uncertainty: we

show how this additional source of uncertainty about the distribution of precisions can impact the

response of higher-order beliefs to the underlying shocks, and thereby the response of prices, without

necessarily affecting the response of first-order beliefs.

In the second variant, we let firms hold heterogeneous priors about the stochastic properties of

the signals that other firms receive. In this economy, firms expect the beliefs of others to adjust

more slowly to the underlying shocks than their own beliefs. They thus behave in equilibrium

as if they lived in a economy where all other firms had less precise information than what they

themselves have. This in turn helps rationalize why equilibrium prices may adjust very slowly to

the underlying nominal shocks even if the frequency of price adjustment is arbitrarily high and each

firm has arbitrarily precise information about the underlying nominal shock. Once again, the key

is the inertia of higher-order beliefs; heterogeneous priors is a convenient modeling device.
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The aforementioned two variants focus on how higher-order beliefs impact the propagation of

nominal shocks in the economy. In the third and final variant, we show how higher-order beliefs can

be the source of fluctuations in the economy—how they can themselves be one of the “structural”

shocks. In particular, we show how variation in higher-order beliefs that is orthogonal to either the

underlying nominal shocks or the firms information about these shocks can generate fluctuations in

inflation and real output that resemble those generated by “cost-push” shocks.

Combined, these findings point out that a macroeconomist who wishes to quantify the response of

the economy to its underlying structural shocks, or even to identify what are these structural shocks

in the first place, may need appropriate information, not only about the degree of price rigidity and

the firms’ information (beliefs) about these shocks, but also about the stochastic properties of their

forecasts of the forecasts of others (higher-order beliefs).

Because the hierarchy of beliefs is an infinitely dimensional object, incorporating the distinct

role of higher-order beliefs in macroeconomic models may appear to be a challenging task. Part of

the contribution of the paper is to show that this is not the case. All the models we present here

are highly parsimonious and nevertheless allow for rich dynamics in higher-order beliefs.

The rest of the paper is organized as follows. Section 2 discusses the relation of our paper to

the literature. Section 3 studies our baseline model, which introduces incomplete information in the

Calvo model. Section 4 studies the variant with uncertainty about the precisions of one another.

Section 5 studies the variant that with heterogeneous priors. Section 6 turns to cost-push shocks.

Section 7 concludes with suggestions for future research. All proofs are in the Appendix.

2 Related literature

The macroeconomics literature on informational frictions has a long history, going back to Phelps

(1970), Lucas (1972, 1975), Barro (1976), King (1983) and Townsend (1983). Recently, this litera-

ture has been revived by Mankiw and Reis (2002), Morris and Shin (2002), Sims (2003), Woodford

(2003), and subsequent work.2 This paper contributes to this literature in two ways: first, by

studying the interaction of incomplete information with price rigidities within the Calvo model;

second, and most importantly, by furthering our understanding of the distinct role of higher-order
2See, e.g., Amato and Shin (2006), Angeletos and La’O (2008, 2009a, 2009b), Angeletos and Pavan (2007),

Bacchetta and Wincoop (2005), Collard and Dellas (2005), Hellwig (2005), Lorenzoni (2008, 2009), Mackowiak and

Wiederholt (2008, 2009), Nimark (2007, 2008), and Reis (2006).
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beliefs. Closely related in this respect is Angeletos and La’O (2009a), which emphasizes how dis-

persed information has very distinct implications for the business cycle than uncertainty about the

fundamentals.

Our paper is highly complementary to the papers byWoodford (2003) and Morris and Shin (2002,

2006). These papers document how higher-order beliefs may respond less to information about the

underlying shocks than first-order beliefs, simply because they are more anchored to the common

prior.3 However, by adopting the convenience of a popular but very specific Gaussian information

structure, they have also restricted attention to settings where the response of higher-order beliefs is

tightly tied to the response of first-order beliefs: in their settings, the response of higher-order beliefs

is a monotone transformation of the response of first-order beliefs, thus precluding any independent

role for higher-order beliefs.

Our paper, instead, highlights that, whereas the response of first-order beliefs to the underlying

nominals shocks is pinned down solely by the level of uncertainty about these shocks, the response

of higher-order beliefs depends also on other sources of uncertainty, such as uncertainty about the

precision of others’ information. Furthermore, it shows how with heterogeneous priors it is possible

that higher-order beliefs respond very little, or even not at all, to the underlying shocks even if

all firms are nearly perfectly informed about these shocks (in which case first-order beliefs respond

nearly one-to-one with the shock).

Closely related are also the papers by Nimark (2008) and Klenow and Willis (2007). The former

paper studies a similar framework as ours, namely a Calvo model with incomplete information, along

with a more complex learning dynamics: unlike our paper and rather as in Woodford (2003), the

underlying shocks do not become common knowledge after one-period delay. The latter paper stud-

ies a menu-cost model with sticky information. Much alike our baseline model, both papers study

the interaction of price rigidities and informational frictions. However, these papers do disentangle

the role of higher-order beliefs as we do in this paper. In particular, the quantitative importance of

incomplete information in these papers is tied to the precision of information about the underlying

shocks at the time of price changes. In contrast, our paper shows how one can disentangle the

dynamics of higher-oder beliefs from the speed of learning, and uses this to argue that significant

price inertia at the macro level can be consistent with both significant price flexibility at the micro

level and fast learning about the underlying nominal shocks.
3A similar role of higher-order beliefs has been highlighted by Allen, Morris and Shin (2005), Angeletos, Lorenzoni

and Pavan (2007) and Bacchetta and Wincoop (2005) within the context of financial markets.
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Finally, the heterogeneous-priors variant of this paper builds on Angeletos and La’O (2009b). In

that paper we consider a real-business-cycle model in which firms have dispersed information about

the underlying productivity shocks. We then show how dispersed information opens the door to a

certain type of sunspot-like fluctuations—i.e., fluctuations that cannot be explained by variation in

either the underlying economic fundamentals or the firms’ beliefs about these fundamentals. These

fluctuations obtain also under a common prior, but are easier to model with heterogeneous priors.

The present paper complements this other work by illustrating how these type of fluctuations can

take the form of cost-push shocks in a new-keynesian model, and how heterogeneous priors can also

help rationalize significant inertia in the response of prices to nominal shocks.

3 The Calvo Model with Incomplete Information

In this section we consider a variant of the Calvo model that allows firms to have dispersed private

information about aggregate nominal demand.

Households and firms. The economy is populated by a representative household and a contin-

uum of firms that produce differentiated commodities. Firms are indexed by i ∈ [0, 1]. Time is

discrete, indexed by t ∈ {0, 1, 2, ...}. There is no capital, so that there is no saving in equilibrium.

Along with the fact that there is a representative household, we can also abstract from asset trading.

The preferences of the household are given by
∑

t β
tU(Ct, Nt), with

U(Ct, Nt) = logCt −Nt,

where β ∈ (0, 1) is the discount rate, Nt is the labor supplied by the household,

Ct =
[∫

C
η−1
ρ

i,t di

] η
η−1

is the familiar CES aggregator, Ci,t is the consumption of the commodity produced by firm i, and

η > 0 is the elasticity of substitution across commodities. As usual, this specification implies that

the demand for the commodity of firm i is given by

Ci,t =
(
Pi,t
Pt

)−η
Ct,

where Pt ≡
[∫

P η−1
i,t di

] 1
η−1 is the aggregate price index.
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The output of firm i, on the other hand, is given by

Yi,t = Ai,tL
ε
i,t,

where Ai,t is the idiosyncratic productivity shock and ε ∈ (0, 1) parameterizes the degree of dimin-

ishing returns.

By the resource constraint for each commodity, we have that Yi,t = Ci,t for all i and therefore

aggregate output is given by Yt = Ct. Finally, aggregate nominal demand is given by the following

quantity-theory or cash-in-advance constraint:

PtCt = Θt.

Here, Θt denotes the level of aggregate nominal demand (aggregate nominal GDP), is assumed to

be exogenous, and defines the “monetary shock” of our model.

In what follows, we use lower-case variables for the logarithms of the corresponding upper-case

variables: θt ≡ log Θt, yt ≡ log Yt, pt ≡ logPt, and so on. We also assume that all exogenous

shocks are log-normally distributed, which guarantees that the equilibrium admits an exact log-

linear solution.

Shocks and information. Aggregate nominal demand is assumed to follow a random walk:

θt = θt−1 + vt

where vt ∼ N (0, σ2
θ) is white noise. Each period has two stages, a morning and an evening. Let I1

i,t

and I2
i,t denote the information set of firm i during, respectively, the morning and the evening of

period t. Information about the current level of nominal demand is imperfect during the morning

but perfect during the evening. The information that a firm has about θt during the morning is

summarized in a Gaussian private signal of the following form:

xi,t = θt + εi,t,

where εi,t ∼ N (0, σ2
x) is purely idiosyncratic noise (i.i.d. across firms). Pricing choices (for the firms

that have the option to set prices) are made in the morning, while information about θt is imperfect;

employment and consumption choices are made in the evening, once θt has been publicly revealed.

Finally, we assume that the idiosyncratic productivity shock ai,t follows a random walk and that it

is known to the firm from the beginning of the period.
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The information of firm i in the morning of period t is therefore given by I1
i,t = I2

i,t−1∪{xi,t, ai,t},

while her information in the evening of the same period is given by I2
i,t = I1

i,t−1∪{θt}.We will see in

a moment that, in equilibrium, pt−1 and yt−1 are functions of {θt−1, θt−2, . . .}; it would thus make

no difference if we had included past values of the price level and real GDP in the information set

of the firm. Similarly, yi,t is a function of Ii,t; it would thus make no difference if we had included

the realized level of a firm’s demand into its evening information set.

The assumption that θt becomes common knowledge at the end of each period is neither random

nor inconsequential. If we wished information about θt to remain dispersed after the end of period t,

we would need somehow to limit the aggregation of information that takes place through commodity

markets. That would require a more decentralized trading structure and would complicate the

necessary micro-foundations. Furthermore, the dynamics would now become much less tractable:

as in Townsend (1983), Nimark (2008), and others, firms would now have to keep tract of the entire

history of their information in order to forecast the forecasts of others, and the equilibrium dynamics

would cease to have any simple recursive structure. Here, we avoid all these complications, and

keep the analysis highly tractable, only by assuming, as in Lucas (1972), that θt becomes common

knowledge after a short delay. However, it is important to recognize that, in so doing, we impose a

fast convergence of beliefs about the past shocks and also rule out any heterogeneity in the agents’

expectations of future shocks beyond the one in their beliefs about the current shock. One may

expect that relaxing these properties would add to even more inertia, both because firms would learn

more slowly (Woodford, 2003) and because expectations of future shocks could be more anchored

to public information (Morris and Shin, 2006).

Price-setting behavior. Consider for a moment the case where prices are flexible and the current

nominal shock is common knowledge at the moment firms set prices. The optimal price set by firm

i in period t is then given by

p∗i,t = µ+mci,t

where µ ≡ η
η−1 is the monopolistic mark-up and mci,t is the nominal marginal cost the firm faces

in the evening of period t. The latter is given by

mci,t = wt +
1− ε
ε

yi,t −
1
ε
ai,t
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where wt is the nominal wage rate in period t. From the representative household’s optimality

condition for work,

wt − pt = ct.

From the consumer’s demand,

ci,t − ct = −η(pi,t − pt).

From market clearing, ci,t = yi,t and ct = yt. Finally, from the cash-in-advance constraint, aggregate

real output is given by

yt = θt − pt.

Combining the aforementioned conditions, we conclude that the “target” price (i.e., the flexible-

price full-information optimal price) of firm i in period t is given by

p∗i,t = (1− α)θt + αpt + ξi,t (1)

where

α ≡ 1− 1
ε+ (1− ε)η

∈ (0, 1)

defines the degree of strategic complementarity in pricing decisions, and where

ξi,t ≡
ε

ε+ (1− ε)η
µ− 1

ε+ (1− ε)η
ai,t

is simply a linear transformation of the idiosyncratic productivity shock. We henceforth normalize

the mean of the idiosyncratic productivity shock so that the cross-sectional mean of ξi,t is zero.

If prices had been flexible and θt had been common knowledge in the begging of period t, the

firm would set pi,t = p∗i,t in all periods and states. However, we have assumed that firms have only

imperfect information. Moreover, following Calvo (1983), we assume that a firm may change its

price only with probability 1− λ during any given period, where λ ∈ (0, 1). It then follows that, in

the event that a firm changes its price, the price it chooses is equal (up to a constant) to its current

expectation of a weighted average of the current and all future target prices:

pi,t = Ei,t

(1− βλ)
∞∑
j=0

(βλ)j p∗t+j

 (2)

where β ∈ (0, 1) is the discount factor, λ is the probability that the firm won’t have the option to

adjust its price (a measure of how sticky prices are), and Ei,t is the expectation conditional on the
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information set of firm i in period t.4

Combining conditions (1) and (2), we conclude that the price set by any firm that gets the

chance to adjust its price in period t is given by

pi,t = (1− βλ)
∞∑
j=0

(βλ)j [(1− α) Ei,tθt+j + αEi,tpt+j + Ei,tξi,t+j ] (3)

In the remainder of the paper, we treat condition (3) as if it were an exogenous behavioral rule,

with the understanding though that this rule is actually fully microfounded in equilibrium.

Equilibrium dynamics. The economy effectively reduces to a dynamic game of incomplete in-

formation, with condition (3) representing the best response of the typical firm. The equilibrium

notion we adopt is standard Perfect-Bayesian Equilibrium.5 Because of the linearity of the best-

response condition (3) and the Gaussian specification of the information structure, it is a safe guess

that the equilibrium strategy will have a linear form. We thus conjecture the existence of equilibria

in which the price set by a firm in period t is a linear function of (pt−1, θt−1, xi,t, ξi,t):

pi,t = P (pt−1, θt−1, xi,t, ξi,t) = b1pt−1 + b2xi,t + b3θt−1 + ξi,t (4)

for some coefficients b1, b2, b3. This particular guess is justified by the following reasoning: we

expect pt−1 to matter because of a fraction of firms cannot adjust prices; xi,t because it conveys

information about the current nominal shock θt; θt−1 because it is the prior about θt; and ξi,t for

obvious reasons.

Given this guess, and given the fact that only a randomly selected fraction 1 − λ of firms can

adjust prices in any given period, we infer that the aggregate price level must satisfy

pt = λpt−1 + (1− λ)
∫ ∫

P (pt−1, θt−1;x, ξ)dFt(x)dGt(ξ)

where Ft denotes the cross-sectional distribution of the private signals (conditional on the current

shock θt) and Gt denotes the cross-sectional distribution of the idiosyncratic shocks. Given that P

4To be precise, condition (2) should have been written as pi,t = const + Ei,t
h
(1− βλ)

P∞
j=0 (βλ)j p∗t+j

i
, where

const is an endogenous quantity that involves second-order moments and that emerges due to risk aversion. However,

under the log-normal structure of shocks and signals that we have assumed, these second-order moments are invariant

with either the shock or the information of the firms, and it is thus without any loss of generality to ignore the

aforementioned constant.
5We can safely ignore out-of-equilibrium paths by assuming that firms observe (at most) the cross-section distri-

bution of prices, which guarantees that no individual deviation is detectable.
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is linear, that the cross-sectional average of xt is θt, and that cross-sectional average of ξt is 0, we

can re-write the above as pt = λpt−1 + (1− λ)P (pt−1, θt−1; θt, 0), or equivalently as

pt = c1pt−1 + c2θt + c3θt−1 (5)

where

c1 = λ+ (1− λ)b1, c2 = (1− λ)b2 c3 = (1− λ)b3. (6)

Next, note that we can rewrite (3) in recursive form as

pi,t = (1− βλ) [(1− α) Ei,tθt + αEi,tpt + ξi,t] + (βλ)Ei,tpi,t+1.

Using (4) and (5) into the right-hand side of the above condition, we infer that the price must satisfy

pi,t = (1−βλ) [(1− α) Ei,tθt + αEi,tpt + ξi,t]+(βλ) [b1Ei,tpt + b2Ei,tθt + b3Ei,tθt+1 + Ei,tξi,t+1] . (7)

Next, note that

Ei,tθt+1 = Ei,tθt =
κx

κx + κθ
xit +

κx
κx + κθ

θt−1 and Ei,tξi,t+1 = ξi,t,

where κx ≡ σ−2
x is the precision of the firms’ signals and κθ ≡ σ−2

θ is the precision of the common

prior about the innovation in θ. Using these facts, and substituting pt from (5) into (7), we can

rewrite the left-hand side of (7) as a linear function of pt−1, xi,t, θt−1, and ξi,t. For this to coincide

with our conjecture in (4), it is necessary and sufficient that the coefficients (b1, b2, b3) solve the

following system:

b1 = (1− βλ)αc1 + (βλ)b1c1

b2 = [(1− βλ)(1− α+ αc2) + (βλ)(b1c2 + b2 + b3)]
κx

κx + κθ
(8)

b3 = [(1− βλ)(1− α+ αc2) + (βλ)(b1c2 + b2 + b3)]
κθ

κx + κθ

+(1− βλ)αc3 + (βλ)b1c3

We conclude that an equilibrium is pinned down by the joint solution of (6) and (8).

Combining the conditions for c1 and b1, we get that c1 must solve the following equation:

c1 = λ+ (1− λ)
(

1− βλ
1− βλc1

)
αc1.

This equation admits two solutions: one with c1 > 1 and another with c1 ∈ (λ, 1). We ignore

the former solution because it leads to explosive price paths and henceforth limit attention to the
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latter solution. Note that this solution is independent of the information structure; indeed, the

coefficient c1, which identifies the endogenous persistence in the price level, coincides with the one

in the standard (complete-information) Calvo model.

Given this solution for c1, the remaining conditions define a linear system that admits a unique

solution for the remainder of the coefficients. It is straightforward to check that the solution satisfies

c1 + c2 + c3 = 1,

which simply means that the price process is homogenous of degree one in the level of nominal

demand. Furthermore,

c2 =
λ(1− c1)
λ+ c1

κθ
κx

which identifies the sensitivity of the price level to the current innovation in nominal demand as

an increasing function of the precision of available information. We therefore reach the following

characterization of the equilibrium.

Proposition 1. (i) There exists an equilibrium in which the pricing strategy of a firm is given by

pi,t = b1pt−1 + b2xi,t + b3θt−1

and the aggregate price level is given by

pt = c1pt−1 + c2θt + c3θt−1

for some positive coefficients (b1, b2, b3) and (c1, c2, c3).

(ii) The equilibrium values of the coefficients (c1, c2, c3) satisfy the following properties: c1 is

increasing in λ, increasing in α, and invariant to κx/κθ; c2 is non-monotone in λ, decreasing in α,

and increasing in κx/κθ; c3 is non-monotone in α, and decreasing in κx/κθ.

The comparative statics described in part (ii) are illustrated in Figures 1, 2 and 3. The baseline

parameterization we use for these figures, as well as for the impulse responses that we report later

on, is as follows. We identify the length of a period with one year; this seems a good benchmark for

how long it takes for macro data to become widely available.6 We accordingly set β = .95 (which
6A qualification is due here. The fact that these data are widely available suggests that most agents are likely to

be well informed about them. This in turn implies that their first-order beliefs are likely to converge to the truth

very fast. However, to the extent that this fact is not common knowledge, it is possible that higher-order beliefs do

not converge as fast, which could contribute to further inertia in the response of prices.
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means a discount rate of about 1% per quarter), λ = .20 (which means a probability of price change

equal to 1/3 per quarter), and α = .85 (which means a quite strong complementarity in pricing

decisions); these values are consistent with standard calibrations of the Calvo model. Lacking any

obvious estimate of the precision of information about the underlying shocks, we set κx/κθ = 1;

this means that the variance of the forecast error of the typical firm about the current innovation

in nominal demand is one half the variance of the innovation itself.7

Figure 1 plots the coefficients c1, c2, and c3 as functions of the Calvo parameter λ, the probability

the firm does not revise its price in a given period. We observe that c1 is increasing in λ, c3 is

decreasing in λ, and c2 is non-monotonic in λ (it increases for low values but decreases for high

values). Figure 2 plots these coefficients as functions of α, the degree of strategic complementarity

in pricing decisions. We observe that c1 is an increasing function in α, c2 is a decreasing function

in α, and c3 is non-monotonic in α. Finally, Figure 3 plots these coefficients as functions of κx/κθ,

the ratio of the precision of private signals to the precision of the prior. We see that c2 is increasing

in this ration, while c3 is decreasing and c1 is invariant.

The comparative statics described above are a hybrid of the results found in sticky-price Calvo

models and in the incomplete-information literature. As in the standard Calvo model, the aggregate

price level is persistent due to the fact that some firms cannot adjust prices. In our model, the

coefficient which characterizes the persistence of the aggregate price process is c1. We find that

this coefficient is unaffected by the incompleteness of information. In this sense, the persistence of

prices in our baseline model is the same as in the standard Calvo model. This property, however,

hinges on our assumption that the nominal shock becomes common knowledge only with a delay of

one period. If we increase the length of this delay, then we can obtain more persistence, similarly to

Woodford (2003) or Nimark (2008), but only till the shock becomes common knowledge; after that

point, any subsequence persistence is driven solely by the Calvo rigidity. The property, then, that c1

is increasing in the Calvo parameter λ should be familiar: it is almost the mechanical implication of

the fact that a fraction λ of firms do not adjust prices. The impact of α on c1 is also familiar: even

under complete information, firms who can adjust their price following a monetary shock will find

it optimal to stay closer to the past price level the higher the degree of strategic complementarity

between them and the firms that cannot adjust (and that are thus stuck to the past price level).
7Note that only the ratio κx/κθ, and not the absolute values of κx and κθ, matter for the equilibrium coefficients

c1, c2, and c3. In other words, once we fix κx/κθ, κθ is only a scaling parameter. By implication, the impulse responses

of the economy to a one-standard-deviation change in v are invariant to κθ.
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Where the incompleteness of information has a bite in our baseline model is on the coefficients

c2 and c3, which characterize, respectively, the price impact of the current and the past shock for

any given past price level. To understand how the precision of information affects these coefficients,

consider the choice of the price-setting firm. The price chosen by a firm is a linear combination of

past prices and past nominal shocks (which are common knowledge among all firms) and the firm’s

own expectation of current nominal demand (which is unknown in the current period). Aggregating

across firms, we find that the aggregate price level is a linear combination of past price levels and

past nominal shocks and of the average expectation of θt. As in any static incomplete information

model with Gaussian signals, the firm’s own expectation of the fundamental is merely a weighted

combination of his private signal and the common prior, which here coincides with θt−1. If firms

have less precise private information relative to the prior, i.e., lower κx/κθ, they place less weight

on their private signals than on their prior when forming their expectations of θt. As a result, the

average expectation is less sensitive to the current shock θt−1 and more anchored to the past shock

θt−1. This explains why less precise information (a lower κx/κθ) implies a lower c2 and a higher c3.
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Impulse responses. The above analysis highlights how introducing incompleteness of information

into the Calvo model dampens the response of prices to the underlying nominal shocks—the precision

of information becomes a key parameter for the dynamics of inflation along with the Calvo parameter

and the degree of strategic complementarity. To further appreciate this, we now study how the

precision of information affects the impulse responses of the inflation rate and real output to an

innovation in nominal demand.

Figures 4 and 5 plot these impulse responses. (Inflation in period t is given by pt − pt−1, while

real output is yt = θt − pt.) As before, we identify the period with a year and set β = .95, λ = .20

and α = .85. We then consider three alternative values for the precision of information: κx/κθ = 1,

which is our baseline; κx/κθ = ∞, which corresponds to the extreme of perfect information (as in

the standard Calvo model); and κx/κθ = 0, which corresponds to the alternative extreme, that of

no information about the current shock other than the prior (i.e., the past shock).

From Figure 4, we see that the incompleteness of information has important effects on inflation

dynamics relative to the complete information Calvo model. First, the instantaneous impact effect

of a monetary shock on inflation is increasing in κx/κθ. As the noise in private information increases,

prices react less initially to a nominal disturbance. Secondly, as the precision of private information

decreases, we observe that second period inflation becomes higher and higher. As the past nominal

demand now becomes common knowledge, prices with low sensitivity to the monetary shock last

period greatly increase in the second period to reflect this new information. Except for sufficiently

high values of κx/κθ, this is where inflation reaches its peak. Lastly, although the decay rate of

inflation is constant after this date, because of the high inflation experienced in the second period,

lower κx/κθ leads to a higher level of inflation for all subsequent periods.

From Figure 5, we then observe that the impact effect of a monetary shock on output is decreasing

in the precision of private information. Of course, this is simply the mirror image of what happens
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to prices. Furthermore, like the impulse responses for inflation, real output is higher for lower levels

of κx/κθ for all subsequent periods.

It is interesting here to note that incomplete information has lasting effects on the levels of

inflation and real GDP even though the shocks become common knowledge after just one period.

This is precisely because of the interaction of incomplete information with price staggering and

with strategic complementarity: by the time the shock becomes common knowledge, some firms

have already set their price on the basis of incomplete information about the shock; strategic

complementarity then guarantees that the firms that now have access to full information will still

find it optimal to respond to the shock as if themselves had incomplete information.

Note that, except for high values of κx/κθ, we observe that the peak of output occurs before

the peak in inflation. This is in contrast to the standard Calvo model which predicts strong price

increases during the period in which the shock is realized and therefore typically has inflation

peaking before output. A similar observation has been made in Woodford (2003), but with two

important differences: Woodford (2003) abstracts from price staggering; it also assumes that past

shocks and past outcomes never become known, thus appearing to require an implausibly slow degree

of learning about the underlying shocks. Here, we show how the empirically appealing property

that inflation peaks after real output can be obtained even with quite fast learning, provided one

interacts incomplete information with price staggering.

In the present model, the peak of inflation happens at most one period after the innovation

in θ. This particular property is an artifact of the assumption that the shock becomes common

knowledge exactly one period after the innovation takes place. If we extend the model so that the

shock becomes common knowledge after, say, 4 periods, then the peak in inflation can occur as late

as 4 periods after the shock. The more general insight is that inflation can start low if firms initially

have little information about the innovation and can rise in the early phases of learning, but once

firms have accumulated enough information about the shock then inflation will begin to fall. In

other words, the dynamics of learning are essential for the dynamics of inflation only as long as the

firms remain sufficiently uncertain about the shock; but once the firms have learned enough about

the shock, the subsequent dynamics of inflation are determined primarily by the Calvo mechanics.
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4 Uncertainty about precisions

The analysis so far has focused on a Gaussian specification for the information structure that is

quite standard in the pertinent literature. Under this specification, we show that the response of

prices to nominal shocks was determined by three parameters: (i) the degree of price rigidity; (ii)

the degree of strategic complementarity; and (iii) the precision of information about the underlying

nominal shock. In this section we show that, under a plausible variation of the information structure,

knowledge of these parameters need not suffice for calibrating the degree of price inertia. The key

insight is that the precision of information about the underlying shock pins down the response of

the firms’ forecasts of this shock, but not necessarily the response of their forecasts of the forecasts

of other firms (i.e., their higher-order beliefs); and what matters for the response of equilibrium

prices to the shock is not only the former but also the latter.

Apart from serving as an example for this more general insight, the variant we consider here

has its own appeal in that it introduces a plausible source of uncertainty: it allows firms to face

uncertainty regarding the precision of information that other firms may have regarding nominal

demand. In particular, we introduce a second aggregate state variable, which permits us to capture

uncertainty about the average precision of available information in the cross-section of the economy.

This new state variable is modeled as a binary random variable, st ∈ {h, l}, which is i.i.d. over

time and independent of the nominal shock θt, and which takes each of the two possible values h

and l with probability 1/2. Let γ, κh, κl be scalars, commonly known to all firms, with 1/2 < γ < 1

and 0 < κl < κh. The “type” of a firm is now given by the pair (xi,t, κi,t), where xi,t = θt + εi,t is

the particular signal the firm receives about the current nominal shock, εi,t ∼ N (0, 1/κi,t) is the

noise in this signal, and κi,t is its precision. The latter is specific to the firm and is contingent on

the new state variable st as follows: when this state is st = h, the precision of firm i is κi,t = κh

with probability γ and κi,t = κl with probability 1−γ; and, symmetrically, when the state is st = l,

the precision of firm i is κi,t = κl with probability γ and κi,t = κh with probability 1 − γ. Finally,

because these realizations are independent across the firms, γ is also the fraction of the population

whose signals have precision κs when the state is s, for s ∈ {h, l}.

Note that a firm knows his own κi,t, but not the underlying state st. A firm’s κi,t thus serves

a double role: it is both the precision of the firm’s own information about the nominal shock

θt and a noisy signal of the average precision in the cross-section of the economy. Therefore,

the key difference from the baseline model is the property that firms face an additional source of
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informational heterogeneity: they face uncertainty regarding how informed other firms might be

about the nominal demand shock. Note then that the coefficient γ parameterizes the level of this

heterogeneity: when γ = 1, all firms have the same precisions, and this fact is common knowledge;

when instead γ ∈ (1/2, 1), different firms have different precisions, and each firm is uncertain about

the distribution of precisions in the rest of the population.

Furthermore, note that knowing the state variable st would not help any firm improve his forecast

of the nominal shock θt. This is simply because belief of a firm about the nominal shock depends

only on its own precision (which the firm knows), not on the precisions of other firms (which the firm

does not know). Nevertheless, the firm would love to know st because this could help him improve

his forecast of the forecasts and actions of other firms in equilibrium. Indeed, since an firm’s own

expectation of θt depends on both his xit and his κit, it is a safe guess that the equilibrium choice

of the firm also depends on both xit and κit and therefore that the aggregate price level depends

both on θt and on κt. It then follows that firms face uncertainty about the aggregate price level, not

only because they do not know the underlying innovation in θt, but also because they don’t know

how precisely other firms are informed about this shock. Finally, note that, while the uncertainty

about θt matters for individual pricing behavior, and hence for aggregate prices, even when firms’

pricing decisions are strategically independent (α = 0), the uncertainty about st matters only when

their pricing decisions are interdependent (α 6= 0). This highlights the distinctive nature of the

additional source of uncertainty that we have introduced in this section.

To better appreciate this point, it is useful to study the stochastic properties of the hierarchy

of beliefs about θ. Let E1
t denote the cross-sectional average of Eit[θt] conditional on the current

state for the precisions being st. Next, for any k ≥ 2, let Ekt denote the cross-sectional average

of Eit[Ek−1
t ]; that’s the kth-order average beliefs. Clearly, all these average beliefs are functions

of the current and past nominal shocks and the current precision state st. Finally, let Ēkt denote

the expectation of the kth-order average belief conditional on the nominal shocks alone (that is,

averaging across the two possible st states). It is easy to check that

Ēkt = ηkθt + (1− ηk)θt−1,

for some constant ηk. The constant ηk ≡ ∂Ēkt /∂θt thus identifies the sensitivity of the kth-order

average belief to the underlying nominal shock. As anticipated in the Introduction, the response of

the price level to the underlying nominal shock is determined by the sensitivities {ηk}.8

8The discussion in the Introduction had abstracted from price rigidities (i.e., it had imposed λ = 0), but the
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We illustrate the behavior of the hierarchy of beliefs in Figures 6 and 7. In Figure 6, we focus

on the impact of the precision of information when this precision is common knowledge. We thus

restrict κh = κl = κ (in which case γ becomes irrelevant) and consider how the sensitivities of the

beliefs to the shock vary with κ (which now identifies the common precision of information). We

then observe the following qualitative properties. First, the hierarchy of beliefs about θt converges

to the common prior expectation, θt−1, as the signals become uninformative: for all k, ηk → 0 as

κ→ 0. Second, the beliefs converge to the true underlying state, θt, as the signals become perfect:

for all k, ηk → 1 as κ → ∞. Finally, whenever the signals are informative but not perfect, higher-

order beliefs are more anchored towards the prior than lower-order beliefs: for any κ ∈ (0,∞),

1 > η1 > η2 > ... > 0.

In Figure 7, we turn our focus to the impact of the uncertainty regarding the precision of others’

information. In particular, we let κh > κl and consider how the beliefs vary with the coefficient

γ (which parameterizes the heterogeneity of information regarding the underlying precision state).

We then observe that η1 is invariant to γ, while η2 and η3 increase with γ. That is, the sensitivity

of first-order beliefs to the nominal shock is independent of γ, while the sensitivities of higher-order

beliefs increase with γ.

Along with the fact that the price level depends not only on first-order but also on higher-order

beliefs, we can expect that γ should affect the response of the price level to the nominal shock even

though it does not affect the response of first-order beliefs. Indeed, following similar steps as in the

baseline model, we can solve for the equilibrium as follows.9

insight is clearly more general.
9As mentioned earlier, in both our baseline model and in all three variants of it, we identify the equilibrium as the

fixed point of the best-response condition (3). For the current variant, this is with some abuse, since the non-Gaussian

nature of the information structure implies that this condition is not exact: it is only a log-linear approximation.

However, the properties that first-order beliefs do not depend on γ, while higher-order beliefs and hence equilibrium
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Proposition 2. (i) There exists an equilibrium in which the pricing strategy of a firm is given by

pi,t =


b1pt−1 + b2,hxi,t + b3,hθt−1 if κi,t = κh

b1pt−1 + b2,hxi,t + b3,hθt−1 if κi,t = κl

while the aggregate price level is given by

pt =


c1pt−1 + c2,hθt + c3,hθt−1 if st = h

c1pt−1 + c2,hθt + c3,hθt−1 if st = l

for some coefficients (b1, b2,h, b2,l, b3,h, b3,l) and (c1, c2,h, c2,l, c3,h, c3,l).

(ii) Let c2 ≡ 1
2(c2,h + c2,l) and c3 ≡ 1

2(c3,h + c3,l) be the mean sensitivity of the price level to the

current and past nominal shock, averaging across the precision states. The equilibrium value of c1

does not depend on γ and is identical to that in the baseline model, while the equilibrium values of

c2 and c3 depend on γ if and only if α 6= 0.

This result is also illustrated in Figure 7, which plots the coefficient c2 ≡ E[∂pt/∂θt] as a function

of γ.We see that as γ decreases, the sensitivity of the first-order beliefs to the current nominal shock

stays constant, while the sensitivity of the price level decreases. Ss anticipated, this is because a

lower γ decreases the sensitivity of second- and higher-order beliefs.

To recap, the example of this section has highlighted how, even if one were to fix the sensitivity

of the firms forecasts to the underlying nominal shock, one could still have significant freedom in

how higher-order beliefs, and thereby equilibrium prices, respond to the shock. This is important

for understanding the quantitative implications of incomplete information: to estimate the degree

of price inertia caused by incomplete information, one may need direct or indirect information,

not only about the firm’s expectations about the underlying nominal shocks, but also about their

higher-order expectations.

Finally, it is interesting to note how a variant of the model we have introduced here could

generate the possibility that all firms are perfectly informed about the nominal shock, are free to

adjust their prices fully, and yet find it optimal to adjust only partly. To see this, suppose that

when the precision state is s = h all firms get κi =∞ (which means that their signals are perfectly

informative); but when s = l, some firms get κi = ∞ and others get κi = 0 (which means that

the signal is completely uninformative). Under this scenario, when the precision state is s = h, all

outcomes do depend on γ, do not hinge on this approximation. Finally, keep in mind that condition (3) is exact in

either the baseline model or the two other variants that we consider subsequently.
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firms are perfectly informed. However, this fact is not common knowledge. This is because each

firm cannot tell whether she is perfectly informed because the state is s = h or because the state is

s = l but she was among the lucky ones to receive the perfectly precise signals. As a result, each

firm must assign positive probability to the event that some other firms might not be informed and

hence might not adjust their prices. But then because of strategic complementarity every firm will

find it optimal not to adjust fully to the shock. It follows that there exist events where all firms are

perfectly informed about the shock and nevertheless do not fully adjust their prices.

Of course, in this last example the possibility that firms are perfectly informed and yet do not

respond perfectly to the shock can occur only with probability strictly less than one: the will also be

events where some firms are relative uninformed and nevertheless find it optimal to respond quite a

bit to the shock because they expect that other firms will be more informed. That is, this example

cannot generate situations where in all events firms are perfectly informed and nevertheless expect

other firms to be less informed. Indeed, based on the results of Kajii and Morris (1997) regarding

the robustness of complete-information equilibria to the introduction of incomplete information, one

can safely guess that if the common prior assigns probability near 1 to the set of events where the

firms are nearly perfectly informed about the underlying nominal shock, then with probability near

1 the response of prices to the underlying nominal shock will be nearly the same as in the common-

knowledge benchmark. Nevertheless, the results of this section do highlight how quantifying the

response of higher-order beliefs is essential for quantifying the response of prices to nominal shocks.

5 Heterogeneous priors

In this section we study how heterogeneous priors regarding the signals firms receive can affect

the behavior of higher-order beliefs and thereby the response of prices to the underlying nominal

shocks. In particular, we consider a system of heterogeneous priors that induces firms to behave in

equilibrium as if they lived in a world where other firms were less informed about the underlying

nominal shocks. This sustains a partially self-fulfilling equilibrium where firms react little to the

underlying shock, even if they have nearly perfect information about it.

Apart from the introduction of heterogeneous priors, the setup is identical to our baseline Calvo

model of Section 3. We again let θt follow an exogenous random walk process. In any given period,

a firm may change its price with probability 1− λ, in which case the price it chooses is a weighted
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average of all future target prices:

pi,t = (1− βλ)
∞∑
j=0

(βλ)j [(1− α) Ei,tθt+j + αEi,tpt+j ] (9)

As in the baseline model, each period firms learn perfectly the nominal demand of the previous

period, θt−1, and receive a private signal of the current period’s nominal demand:

xi,t = θt + εi,t.

However, firms disagree on the stochastic properties of the noise in their signals.

In particular, each firm believes that its own signal is an unbiased signal of θt. Specifically, firm

i believes the error in its own private signal is drawn from the following distribution:

εi,t ∼ N (0, 1/κx).

At the same time, each firm believes that the private signals of all other firms are biased. Specifically,

firm i believes that the errors in the private signals of all other firms are drawn independently from

the following distribution:

εj,t ∼ N (δi,t, 1/κx) ∀j 6= i

where δi,t is the bias that firm i believes to be present in the private signals of other firms. Finally, we

assume that the perceived biases are negatively correlated with the innovation in the fundamental

(the nominal shock). Specifically, we assume that, for all i and all t,

δi,t = δt ≡ −χνt = −χ(θt − θt−1),

where χ ∈ [0, 1] is a parameter that controls the correlation of the perceived bias with the innovation

in the nominal shock. Finally, these perceptions are commonly understood and mutually accepted:

the firms have agreed to disagree.10

To understand the difference between the baseline model (which had assumed a common prior)

and the current model (with allows for heterogeneous priors), it is useful to consider the beliefs
10We have used a related heterogeneous-priors specification in Angeletos and La’O (2009b), albeit within a different

context and for different purposes. We refer the reader to that paper for a more thorough discussion on the modeling

role of heterogeneous priors: they are convenient, but need not be strictly necessary for the type of effects we

document. For example, in that paper we document how a certain type of sunspot-like fluctuations can obtain with

either heterogeneous priors or a common prior, but the former maintain a higher level of tractability.
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of each firm about the average expectation of θt. In either model, each firm’s own (first-order)

expectation of the fundamental is

Ei,tθt =
κx

κx + κθ
xt +

κθ
κx + κθ

θt−1

In the baseline model, this implied that each firm believed that the average first-order expectation

in the rest of the population satisfied

Ē1
t =

κx
κx + κθ

θt +
κθ

κx + κθ
θt−1.

That is, the firm’s second-order expectation was given by

Ei,tĒ1
t =

κx
κx + κθ

Ei,tθt +
κθ

κx + κθ
θt−1.

In contrast, now that firms have heterogeneous priors, each firm believes the average first-order

expectation satisfies

Ē1
t =

(1− χ)κx
κx + κθ

θt +
κθ + χκx
κx + κθ

θt−1,

That is, the firm’s second-order expectation is now given by

Ei,tĒ1
t =

(1− χ)κx
κx + κθ

Ei,tθt +
κθ + χκx
κx + κθ

θt−1,

Therefore, the heterogeneous priors that we have introduced in this section do not affect first-order

beliefs, but they do affect second- and higher-order beliefs: the higher χ is, the more each firm

believes that the beliefs of others will be less sensitive to innovations θ, even though its own belief

is not affected.

We now examine how this affects equilibrium behavior. We conjecture once again an equilibrium

in which the price set by a firm in period t is a linear function of (pt−1, θt−1, xt, ):

pi,t = P (pt−1, θt−1, xi,t) = b1pt−1 + b2xi,t + b3θt−1 (10)

for some coefficients b1, b2, b3. Accordingly, firm i expects that the price level will satisfy

pt = λpt−1 + (1− λ)
∫
P (pt−1, θt−1, x)dFt(x) (11)

where Ft is the cross-sectional distribution of signals as perceived by the typical firm. Our assump-

tion regarding the heterogeneous priors implies that each firm thinks that the cross-sectional mean
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of the signals in the rest of the population is (1 − χ)θt + χθt−1. It follows that each firm expects

the price level to satisfy

pt = λpt−1 + (1− λ)P (pt−1, θt−1, (1− χ)θt + χθt−1)

or equivalently

pt = c1pt−1 + c2θt + c3θt−1 (12)

where

c1 = λ+ (1− λ)b1, c2 = (1− λ)b2(1− χ) c3 = (1− λ)(b3 + b2χ). (13)

But now recall from the baseline model that, no matter what are the coefficients (c1, c2, c3), the

best response of a firm to (12) is to set a price as in (10), with the coefficients (b1, b2, b3) defined

by the solution to (8). We conclude that the equilibrium values of the coefficients (b1, b2, b3) and

(c1, c2, c3) are now given by the joint solution of (8) and (13).

Note that χ enters only the conditions for c2 and c3 in (13), not the condition for c1. It follows

that the equilibrium value of c1 (and hence also that of b1) remains the same as in our baseline

model (or, equivalently, as in the standard Calvo model). Moreover, the price process continues to

be homogeneous of degree one, so that c1 + c2 + c3 = 1. Finally, the equilibrium value of c2 now

satisfies

c2 =
λ(1− c1)

λ+ c1
κθ+χκx
κx(1−χ)

.

Comparing this last condition with the corresponding condition for the baseline model, we

observe that the equilibrium values of (c1, c2, c3) for the present model coincide with those of the

baseline model if the precision of information in that model is adjusted to the value κ̃x defined by

κ̃x
κθ
≡ (1− χ)κx

κx + χκθ
, (14)

which is clearly decreasing in χ. This observation in turn establishes a certain isomorphism between

the present model and the baseline one: in the heterogeneous-prior economy that we have introduced

here, firms expect the price level to respond to the underlying nominal shock in the same way as in

a common-prior economy that is identical to the one in our baseline model except for the fact that

the precision of available information is decreased from κx to κ̃x.

Along with the fact that, because of strategic complementarity (α > 0), the incentive of a firm

to respond to its own information is lower the lower the expected response of the price level, we

conclude that heterogeneous priors reduce the response of each firm to its own information about

the underlying nominal shock.
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Proposition 3. In the equilibrium of the heterogeneous-priors economy, firms respond to their

information in the same way as in an a common-prior economy in which the precision of information

that other firms have is a decreasing function of χ. By implication, the sensitivity b2 of a firm’s price

to its own signal about the underlying nominal shock is also decreasing in χ for given precision.

To further appreciate this result, for the moment allow us to abstract from price rigidities (λ = 0)

and consider the limit as κx →∞, meaning that each firm is (nearly) perfectly informed about the

shock. In the common-prior world, this would have guaranteed that prices move one-to-one with

the nominal shock and hence that the nominal shock has no real effect. But now let χ → 1 along

with κx → ∞ in such a way that the quantity κ̃x defined in (14) stays bounded away from ∞. In

this limit, each firm is perfectly informed about the shock but expects other firms to respond as

if they were imperfectly informed; firms therefore find it optimal to adjust their prices less than

one-to-one in response to the nominal shock, thereby causing the shock to have a real effect, even

though they are perfectly informed about the shock and there is no price rigidity.

The preceding analysis has focused on how heterogeneous priors affect the instantaneous response

of prices to the underlying shock: in the model considered above, the dynamics of prices after the

initial shock is driven solely by the Calvo mechanics, much alike the baseline model. However,

heterogeneous priors can also affect these dynamics, to the extent that the perceived bias is persistent

over time. To see this, suppose that bias δt follows an autoregressive process of the following form:

δt = −χvt + ρδt,

for some ρ ∈ [0, 1). One can the easily extend the preceding analysis to show the following.

Proposition 4. There exist coefficients (b1, b2, b3, b4), which depend on (χ, ρ), such that the equi-

librium strategy of firm i is given by

pi,t = P (pt−1, xit, θt−1, δt−1) ≡ b1pt−1 + b2xit + b3θt−1 + b4δt−1

At this point, it is important to recognize that so far we have used the model to make predictions

only about what the firms expect the price level to do and how they respond to their information

about this shock—we have not used the model to make predictions about what we, as outside

observers or “econometricians”, expect the price level to do. This is where heterogeneous priors

make things delicate. To analyze the equilibrium strategy of the firm as a function of their signals

(their “types”), we do not need to take a stand on whether the firms signals are “truly” biased or
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not; we only need to postulate the system of their beliefs and then we can use the model to make

predictions about how these beliefs will map into behavior. In contrast, to analyze the impulse

response of the aggregate price level to the underlying shock, it no more suffices to characterize the

mapping from beliefs to behavior; we also need to know on what is the mapping from the underlying

nominal shock to the cross-sectional distribution of beliefs. In particular, we must now take a stand

on how the cross-sectional average of signals relates to the underlying nominal shock.

Here, we could assume either that “econometrician” believes that the signals are biased, so that

the cross-sectional average of xit is θt + δt, or that she believes that they are unbiased, so that the

cross-sectional average of xit is θt. If we assume the former scenario, then the econometrician’s law

of motion of the price level will coincide with the one in the minds of the firms. In particular, it

will be given by

pt = (1− λ)pt−1 + λP (pt−1, θt + δt, θt−1, δt−1),

with the function P given by Proposition 4. If instead we assume the latter scenario, then the

econometrician’s law of motion for the price level will differ from the one in the mind of the firms.

In particular, it will be given by

pt = (1− λ)pt−1 + λP (pt−1, θt, θt−1, δt−1),

with the function P given once again by Proposition 4. The only difference in these two law of

motions in that the cross-sectional average of xit is assumed to be θt + δt in the first case and θt in

the latter case.

For the remainder of the analysis, we will assume the latter scenario, keeping though in mind

three properties. First, under this scenario the econometrician predicts that firms react to δt not

because their signals are biased, but only because they believe that other firms will do so. Second,

the two scenarios deliver similar qualitative properties as long as α > 0. And third, the quantita-

tive difference between the two scenarios vanishes as α → 1. Both of these properties are direct

implications of strategic complementarity.

Assuming the second scenario and combining the stochastic process of θt and δt with the law

of motion for the price level, we conclude that the dynamics of the economy, as seen from the

perspective of the econometrician, are given by the following:
θt

δt

pt

 =


1 0 0

0 ρ 0

λb2 + λb3 λb4 1− λ+ λb1



θt−1

δt−1

pt−1

+


1

−χ

c2

 vt
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with the coefficients (b1, b2, b3, b4) being determined as in Proposition 4. We can then use this

system, along with the fact that real output is yt = θt − pt, to simulate the impulse responses of

inflation and output to a positive innovation in vt (of a size equal to the standard deviation of vt).

Figures 8 and 9 illustrate these impulse responses for different values of χ and ρ. The baseline

(common-prior) model corresponds to χ = ρ = 0. As anticipated, we see that letting χ > 0 but

keeping ρ = 0 affects the impact effect of the innovation but not its persistence. In particular,

in the period that the the innovation in nominal demand materializes, the response of inflation

is dampened by letting χ > 0, and by implication the positive effect on real output is amplified.

But as long as ρ = 0 the dynamics following this initial period are determined solely by the Calvo

propagation mechanism and hence the persistence is the same as in the baseline model. This is

because any discrepancy between either first-order or higher-order beliefs and the true value of

the shock vanishes after the initial period. In contrast, letting ρ > 0 permits the discrepancy to

persist in higher order beliefs even after it has vanished in first-order beliefs, thereby contributing

to additional persistence in the real effects of the nominal shock.

To sum up, heterogeneous priors can help rationalize significant inertia the response of prices to

changes in nominal demand simply by inducing inertia in the response of higher-order expectations.

This is true no matter how high is the firms’ precision of information, that is, the sensitivity of first-

order beliefs to the nominal shock. Moreover, this insight is not specific to the contemporaneous

response of beliefs to the shock, but also to the entire dynamic adjustment of the beliefs. Indeed,

in work that we do not report here because of space limitations, we have obtained similar results

in a heterogeneous-priors variant of Woodford (2003), in which the shock never becomes common

knowledge, thus allowing both first- and high-order beliefs converge to the truth only slowly over

time. But whereas in Woodford (2003) the rate of convergence of higher-order beliefs is tightly

connected to that of first-order beliefs, heterogeneous priors permits us to break this connection, so
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that higher-order beliefs and prices may converge very slowly to their complete-information values

even if first-order beliefs converge very fast.

Finally, note that the present model shares a bit of the flavor of the model with uncertain

precisions that we considered in the previous section: there we focused on the possibility that firms

may face uncertainty about the precision of other firms’ information about the shock; here we

showed how heterogeneous priors can induce firms to behave as if they expected other firms to have

less precise information than themselves. In either case, the key is the behavior of higher-order

beliefs as opposed to first-order beliefs.11

6 Heterogenous priors and cost-push shocks

In the preceding two sections we highlighted how higher-order beliefs can induce inertia in the

response of prices to nominal shocks in the economy. In so doing, we focused on the role of higher-

order beliefs for the propagation of certain structural shocks, namely nominal shocks. In this section,

building on Angeletos and La’O (2009b), we highlight how higher-order beliefs can themselves be

the source of a certain type of fluctuations in the price level and real output—fluctuations that

resemble the ones generated by cost-push, or mark-up, shocks.

For this purpose, we modify the model of the previous section as follows. Firms continue to

have heterogeneous priors about their signals, but the perceived bias is no more correlated with the

underlying nominal shock. Rather, the bias follows an independent stochastic process, given by

δt = ρδt−1 + ωt (15)

where ωt is a Normally distributed shock that is i.i.d. across time and independent of θτ for all τ .

Following similar steps as in the previous section, one can then show the following.
11The similarity we obtain between our two models is reminiscent of a point made in Lipman (2003). That paper

shows that, if one fixes a specific hierarchy of beliefs, one cannot tell apart a common prior from heterogeneous

priors from properties of any finite order of beliefs. This in turn suggests that in certain cases it may be possible

to replicate, or approximate, the equilibrium behavior that obtains for any particular hierarchy of beliefs with either

a common prior or heterogeneous priors. At the same time, because the reduced-form game that characterizes the

general equilibrium of our economy admits a unique rationalizable outcome, and hence also a unique correlated

equilibrium, the results of Kajii and Morris (1997) suggest that the complete-information equilibrium is robust to

the introduction of incomplete information. It then follows that, with a common prior, one needs sufficient "noise"

to make the predictions of the model under incomplete information sufficiently different.
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Proposition 5. There exist coefficients (b1, b2, b3, b4, b5) such that the equilibrium strategy of firm

i is given by

pi,t = b1pt−1 + b2xi,t + b3θt−1 + b4δt−1 + b5ωt

Taking once again the perspective of an econometrician who believes that the signals are unbi-

ased, we obtain the impulse responses of the price level from the following dynamics:
θt

δt

pt

 =


1 0 0

0 ρ 0

λb2 + λb3 λb4 1− λ+ λb1



θt−1

δt−1

pt−1

+


1

0

λb2

 vt +


0

1

λb5

ωt

In Figures 10 and 11, we illustrate the impulse responses of inflation and real output to a positive

innovation in ωt. Such a shock causes firms to raise their prices even though aggregate nominal

demand hasn’t change. As a result, inflation increases and output contracts. The resulting fluctu-

ations thus resembled to those often identified as the impact of “cost-push” shocks. When ρ = 0,

this cost-push-like shock is transitory; the moderately persistent effects on real output are then due

merely to the Calvo mechanics. When instead ρ > 0, the bias is itself persistent, which contributes

to additional persistence in the real effects of the shock.

7 Conclusion

In this paper we studied how the combination of incomplete information and infrequent price ad-

justment may dampen the response of prices to nominal shocks. We did so through a series of

variant models which progressively shifted focus from the stickiness of prices and the precision

of available information about the shocks to the dynamics of higher-order expectations. We thus

sought to highlight that quantifying the degree of price stickiness and the speed of learning (i.e.,

the rate at which first-order beliefs adjust to the shock) does not suffice for quantifying the rate
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at which higher-order beliefs adjust, and therefore also does not suffice for quantifying the rate at

which prices adjust. We also illustrated how the distinct role of higher-order beliefs could be readily

accommodated within the Calvo framework without any sacrifice in analytical tractability—which

in turn may pave the way to bringing the ideas of this paper closer to the data.

We thus hope that more effort will be devoted to quantifying the behavior of expectations and

their implications for the degree of price inertia at the macro level. How can this be done? One

possibility, at least in principle, would be to start conducting surveys of the higher-order beliefs of

economic agents. We find this both impractical and unnecessary. As we further argue in Angeletos

and La’O (2009a), in our eyes dispersed information—and higher-order beliefs—are merely modeling

devices for capturing the uncertainty that economic agents may face about aggregate economic

activity beyond the one that they face about the underlying fundamentals. Indeed, in macro models

and games alike, higher-order beliefs matter only to the extent that they impact forecasts of the

equilibrium actions of other agents. Furthermore, in most macro models this is typically summarized

in forecasts of few macroeconomic variables, such as the price level and the level of aggregate output

or employment. Therefore, we do not think that it is essential to collect data on the details of higher-

order beliefs. Rather, we believe that data on forecasts of economic activity can provide more direct

guidance for quantifying the type of effects we document here.

Turning to potential implications for monetary policy, we wish to make the following points. If

one interprets the exogenous shock in our analysis as an innovation in monetary policy, one may

conclude that our results justify strong real effects for exogenous changes to monetary policy. We

would not necessarily favor such an interpretation. The theory we have presented here does not

imply the same price inertia with respect to all shocks in the economy. Rather, it is crucial to

that there is non-trivial lack of common knowledge about the shock under consideration. But then

note that information about changes in monetary policy is readily available and closely followed,

not only from participants in financial markets but also from the general public when it seems to

matter. Moreover, it is commonly understood that this is the case; there is a lot of communication

in the market regarding monetary policy; and financial prices adjust within seconds to changes in

monetary policy. In our eyes, these are indications that assuming common knowledge about the

innovations to monetary policy might not be a terrible benchmark after all.

At the same time, we suspect a significant lack of common knowledge for a variety of other

"structural" shocks hitting the economy, such aggregate productivity shocks, financial shocks, labor-
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market shocks, and so on. We then expect incomplete information to have more bite on monetary

policy in a different dimension: the interest-rate rule followed by the central bank can affect how

much the incompleteness of information about these shocks impacts equilibrium outcome. In par-

ticular, the central bank can control the degree of strategic complementarity in pricing decision by

designing it response to realized inflation and output; in so doing, it can also mitigate the inertia

effects we have documented here. Further exploring this possibility is left for future work.12

12The insight that the response of policy to macroeconomic outcomes can impact the decentralized use of informa-

tion, and thereby the response of the economy to both the fundamentals, and noise draws from Angeletos and Pavan

(2009). See also Angeletos and La’O (2008) and Lorenzoni (2009) for some recent work on the design of optimal

monetary policy when information is dispersed.
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Appendix

Proof of Proposition 1. The condition that determines c1 can be restated as

f(c1, λ, β) = α, (16)

where

f(c1, λ, β) ≡ (1− βλc1) (c1 − λ)
c1 (1− λ) (1− βλ)

.

As mentioned in the main text, there are two solutions to this equation—one with c1 > 1 and

c1 ∈ (λ, 1)—and we focus on the non-explosive one.

Clearly, that the aforementioned equation is independent of κx and κθ, implying that c1 is

independent of the information structure. Moreover,

∂c1
∂λ

= − ∂f/∂λ
∂f/∂c1

=
c1(1− c1)(1− βc1)(1− βλ2)
λ(1− λ)(1− βλ)(1− βc21)

> 0,

∂c1
∂α

=
1

∂f/∂c1
=

λ(1− βc21)
c21(1− λ)(1− βλ)

> 0.

It follows that c1 is increasing in both λ and α. Next, recall from the main text that c2 satisfies

c2 =
λ(1− c1)
λ+ c1

κθ
κx

.

Since c1 is independent of (κx, κθ), it is immediate that c2 is increasing in κx/κθ; and since c3 =

1 − c1 − c2, it is immediate that c3 is decreasing in κx/κθ. Moreover, since the above expression

for c2 is independent of α for given c1 and is decreasing in c1, and since c1 is itself increasing in α,

it follows that c2 is decreasing in α. Finally, the fact that c2 is non-monotonic in λ and that c3 is

non-monotone in α can be establish by numerical example.

Proof of Proposition 2. The equilibrium can be characterized in a similar fashion as in the

baseline model. First, by aggregating the strategy of the firms, we infer that the coefficients

(c1, c2,h, c2,l, c3,h, c3,l) must solve the following system:

c1 = λ+ (1− λ)b1

c2,s = (1− λ) [γb2,s + (1− γ)b2,−s]

c3,s = (1− λ) [γb3,s + (1− γ)b3,−s]
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where we use the convention that −s = l when s = h and −s = h when s = l. Next, by taking the

firms’ best response, we infer that the coefficients (b1, b2,h, b2,l, b3,h, b3,l) solve the following system:

b1 = ((1− βλ)α+ (βλ)b1) c1

b2,s = [ (1− βλ) (1− α) + ((1− βλ)α+ (βλ)b1) (γc2,s + (1− γ)c2,−s)

+(βλ)
(

1
2(b2,l + b2,h) + (b3,l + b3,h)

) ] κx
κx + κθ

b3,s = [ (1− βλ) (1− α) + ((1− βλ)α+ (βλ)b1) (γc2,s + (1− γ)c2,−s)

+(βλ)
(

1
2(b2,l + b2,h) + (b3,l + b3,h)

) ] κθ
κx + κθ

+ ((1− βλ)α+ (βλ)b1) (γc3,s + (1− γ)c3,−s) .

Clearly, c1 and b1 continue to be determined by the same equations as in the baseline model. Once

again, we focus on the solution with c1 ∈ (0, 1). Given this solution, the remainder of the conditions

consist a linear system, which admits a unique solution for the coefficients (b2,s, b3,s, c2,s, c3,s)s∈{h,l}.

Proof of Proposition 3. In the main text we showed that the equilibrium values of (c1, c2, c3)

and (b1, b2, b3) are determined by the solution to (8) and (13); that c1 and b1 continue to be

determined as in the baseline model and are thus independent of χ; and that c2 satisfies

c2 =
λ(1− c1)

λ+ c1
κθ+χκx
κx(1−χ)

,

which is decreasing in χ. Along with the fact that c2 = (1− λ)b2(1− χ), we get that

b2 =
λ(1− c1)

(1− λ)
[
λ+ c1

κθ
κx

+ (c1 − λ)χ
] ,

which is also decreasing in χ, since c1 ∈ (λ, 1).

Proof of Propositions 4 and 5. To nest both the model of Section 5 and that of Section 6, we

let the bias be given by

δt = −χvt + ωt + ρδt−1.

We then conjecture an equilibrium in which the price set by a firm in period t is a linear function

of (pt−1, xt, θt−1δt−1, ωt):

pi,t = P (pt−1, xi,t, θt−1, δt−1, ωt) = b1pt−1 + b2xi,t + b3θt−1 + b4δt−1 + b5ωt (17)

for some coefficients b1, b2, b3, b4, b5.
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Our specification of the heterogeneous priors implies that each firm thinks that the cross-sectional

mean of the signals in the rest of the population is x̄t = θt + δt = (1− χ)θt + χθt−1 + ρδt−1 + ωt. It

follows that each firm expects the price level to satisfy

pt = λpt−1 + (1− λ)P (pt−1, x̄t, θt−1, δt−1, ωt)

or equivalently

pt = c1pt−1 + c2θt + c3θt−1 + c4δt−1 + c5ωt (18)

where

c1 = λ+ (1− λ) b1, c2 = (1− λ) b2 (1− χ) , c3 = (1− λ) (b2χ+ b3) (19)

c4 = (1− λ) (b2ρ+ b4) , c5 = (1− λ) (b2 + b5)

Next, note that we may write the firm i’s best response (9) as

pi,t = (1− βλ) [(1− α) Ei,tθt + αEi,tpt] + (βλ) Ei,tpi,t+1.

Given that the firm expects the price level to evolve according to (18), for the firm’s best response

to be consistent with our conjecture (17), it must be that the coefficients (b1, b2, b3, b4, b5) solve the

following system:

b1 = [(1− βλ)α+ (βλ) b1] c1 (20)

b2 = [(1− βλ) (1− α+ αc2) + (βλ) + (βλ) (b1c2 + b2 + b3 − χb4)]
κx

κx + κθ

b3 = [(1− βλ) (1− α+ αc2) + (βλ) + (βλ) (b1c2 + b2 + b3 − χb4)]
κθ

κx + κθ

+ (1− βλ)αc3 + (βλ) b1c3 + (βλ) b4χ

b4 = (1− βλ)αc4 + (βλ) b1c4 + (βλ) b4ρ

b5 = (1− βλ)αc5 + (βλ) b1c5 + (βλ) b4

Combining conditions (19) and (20) gives us a system of equations which characterizes the equilib-

rium values for (b1, b2, b3, b4, b5, c1, c2, c3, c4, c5).

It is immediate that the conditions that determine c1 and b1 are identical to those in the baseline

model. As in the baseline model, we ignore the solution that has c1 > 1 and focus on the solution

that has c1 ∈ (0, 1). Given this solution, the remaining conditions define a linear system, which has

a unique solution for the remaining coefficients.
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