Measuring the Completeness of Theories*

Drew Fudenberg† Jon Kleinberg‡ Annie Liang§ Sendhil Mullainathan¶

May 30, 2020

Abstract

To evaluate how well economic models predict behavior, it is important to have a measure of how well any model could be expected to perform. We provide a measure of the amount of predictable variation in the data that a model captures, which we call its “completeness.” We evaluate the completeness of leading models for three prediction problems from experimental economics: assigning certainty equivalents to lotteries, predicting initial play in games, and predicting human generation of random sequences. We show that the approach reveals new insights about the models, including how much room there is for improving their predictions. We also illustrate how and why our completeness measure varies with the experiments considered, and explain how our completeness measure can help guide the development of new theories.

1 Introduction

It is often of interest to evaluate how well various behavioral models predict an outcome of interest: All other things equal, we prefer more accurate theories, and when

* A two-page abstract of an early version of this project appeared in ACM:EC as “The Theory is Predictive, but is it Complete?” We thank Alberto Abadie, Amy Finkelstein, Marciano Siniscalchi, and Johan Ugander for helpful comments. We are also grateful to Adrian Bruhin, Helga Fehr-Duda, Thomas Epper, Kevin Leyton-Brown, and James Wright for sharing data with us, and National Science Foundation Grants SES 1643517 for financial support.

†Department of Economics, MIT

‡Department of Computer Science, Cornell University

§Department of Economics, University of Pennsylvania

¶Department of Economics, University of Chicago
the best models for a given behavior all predict poorly, there is reason to look for improvements. But what constitutes “good” performance—Is 60% accuracy in predicting a binary variable a success? Our view is that the answer to this depends on the “predictability” of the outcome given the specified explanatory variables or features. If the available features do not allow for very accurate predictions—as is the case for many prediction problems in the social sciences—then a model which predicts imperfectly may still use the available features in the best possible way. To formalize this idea, we provide a way to quantify predictive performance that takes into account how well we could expect any model to perform.

A model’s prediction error can be decomposed into two sources: (1) intrinsic noise in the problem due to limitations of the feature set, i.e. the irreducible error, and (2) regularities in the data that the model does not capture. Irreducible error represents the lowest achievable error with the given set of features. Thus, we propose comparing prediction errors not against a perfect zero, but rather against the irreducible error. If the achieved prediction errors come close to the irreducible error, then the model predicts as well as possible with the available features, and the only way to substantially improve predictive accuracy is to incorporate new explanatory variables. In contrast, when the prediction errors of the best models are much larger than the irreducible error, it may be possible to identify new regularities and incorporate them into new models that improve prediction, without requiring the acquisition or measurement of new explanatory variables. Thus the benchmark of irreducible error is important not only for interpreting a model’s error, but also for understanding how to generate better predictions.

The gap between a model’s error and its irreducible error is one measure of the model’s performance. It is also interesting to know how much the model improves on naive alternatives such as “guess an outcome at random.”1 We thus propose that the predictive success of a behavioral theory should be measured as its “completeness,” which we define as

\[
\frac{\mathcal{E}_{\text{naive}} - \mathcal{E}_{\text{model}}}{\mathcal{E}_{\text{naive}} - \mathcal{E}_{\text{irreducible}}}
\]

where \(\mathcal{E}_{\text{naive}}\) is the out-of-sample prediction error under a naive baseline (e.g. “guess at random”), \(\mathcal{E}_{\text{model}}\) is the out-of-sample error of the model, and \(\mathcal{E}_{\text{irreducible}}\) is the

1 Diebold and Kilian (2001) proposes benchmarking the accuracy of time series forecasts relative to that of a bad forecast. This is in the spirit of our comparison against to a naive model.
irreducible error. Thus, the measure is the model’s reduction in prediction error (relative to the naive baseline), divided by the achievable reduction in prediction error. A model with a completeness of 0 does not improve upon the naive baseline, while a model with a completeness of 1 eliminates all but the irreducible error.

In addition to proposing the completeness measure, we demonstrate that it can be practically computed in experimental work and leads to new insights about existing models. Specifically, we compute the completeness of models from three problem domains: Cumulative Prospect Theory (Tversky and Kahneman, 1992) for prediction of certainty equivalents, the Poisson Cognitive Hierarchy Model (Camerer et al., 2004) for prediction of initial play in games, and Rabin and Vayanos (2010) for prediction of human perception of randomness.

We find that Cumulative Prospect Theory is 95% complete for predicting certainty equivalents; that is, it almost achieves the best possible error given the explanatory variables that we use. Simply evaluating the absolute level of the model’s error would not have revealed this, as the mean-squared error is seemingly high, 67.38. In contrast, the Rabin and Vayanos (2010) model is only 14% complete, suggesting that there is further room for improvements in predictive accuracy using other regularities in behavior. In the setting of initial play, we find that the predictive limits vary substantially across different kinds of games, and so the same level of prediction error can mean different things.

In all of these prediction problems, the irreducible error is substantial, so the absolute level of a model’s error can be misleading. This is starkest in our application of predicting human generation of random outcomes, where the Rabin and Vayanos (2010) model reduces prediction error (relative to the naive benchmark of guessing at random) by only 0.0008, but is nevertheless 14% complete. These, and the subsequent observations we make in Sections 3.1–3.3, are informative about the problem domains and how much room there is for improving the predictions of their leading models without obtaining new sorts of data.

In each of our three applications, we have access to data sets with a large number of outcome observations for each vector of features. This lets us obtain a fairly precise estimate of the irreducible error by nonparametrically searching the space of possible models, and identifying the model that maximizes out-of-sample predictive accuracy for the set of available features. Irreducible error can be precisely estimated in some
other domains, but not in all of them, and we discuss limitations to our approach and its interpretation throughout the paper. The range of applications in the paper suggests that the irreducible error can be recovered in a broader range of settings than one might initially suspect. In general, we expect that completeness can be precisely estimated in many lab settings, where the experimenter can acquire a large number of observations for each feature value, e.g. many observations of choice between the same pair of lotteries.\footnote{This is especially feasible now given the possibility of running large-scale experiments on Mechanical Turk, and we take advantage of this in our subsequent applications.}

We note that our completeness measure depends on a specified set of features and is evaluated on a given data set. If we change either the underlying feature set or the data, we would expect the measurement of completeness to change, as we discuss in Section 4.2. Moreover, a model’s completeness depends on which experiments are run, e.g. which lotteries or games are used in testing. As we show in Sections 3.2, the way that the completeness of a model varies across test cases is of independent interest, as it can shed light on the domains in which the model performs well or performs poorly.

1.1 Related Work

Irreducible error is an old concept in statistics and machine learning. A large literature has studied the decomposition of this error into bias (reflecting error due to the specification of the model class) and variance (reflecting sensitivity of the estimated rule to the randomness in the training data). Depending on the quantity of data available to the analyst, it may be preferable to trade off bias for variance or vice versa.\footnote{For example, given small quantities of data, we may prefer to work with models that have fewer free parameters, leading to higher bias but potentially lower variance.} This paper abstracts from these concerns, as well as the related concern of overfitting. We work exclusively with data sets where there is enough data that the best feasible out-of-sample prediction accuracy is well approximated by searching across the unrestricted space of mappings from \mathcal{X} into \mathcal{Y} (see Appendix A).

The only previous measures of predictive success for economic models in experimental work that we know of are Selten (1991)’s measure of the relative frequency of successful predictions, Erev et al. (2007)’s definition of the equivalent number of
observations, and Apesteguia and Ballester (2020)’s measure of goodness-of-fit for stochastic choice models. Our work differs in that we focus on understanding the best possible prediction in a given problem, and evaluate performance relative to that benchmark.

Several recent papers compare a model’s predictive performance to that of specific machine learning algorithms, which sometimes approximate the best possible predictions. For example, Peysakhovich and Naecker (2017) compares the performance of economic models for perception of risk to the performance of regularized regression algorithms, and Bodoh-Creed et al. (2019) compares the performance of simple OLS models using known regressors against the performance of random forests built on a rich feature set, for the problem of predicting pricing variation. The algorithms used in these papers need not achieve the irreducible error, but they do provide a lower bound for the best achievable accuracy. We show that in experimental contexts, it can be possible to directly estimate the best achievable accuracy and use that as a benchmark.

Other papers directly use an algorithmic approach to predict economic behavior, e.g. Plonsky et al. (2017), Noti et al. (2016), and Plonsky et al. (2019) for prediction of choice, and Camerer et al. (2019) for prediction of disagreements in bargaining. The improvements achieved by these more complex algorithms over the existing economic models are sometimes modest. One reason for this might be intrinsic noise, as Bourgin et al. (2019) points out. We show how this noise can be quantified.

Finally, we note that in the special case where performance is measured by mean-squared error, and the naive rule is an unconditional mean, then our completeness measure can be seen as a ratio of the model’s R^2 and the nonparametric R^2, as we explain in Appendix B. Our approach is not special to this loss function, however, and can be implemented with any metric of accuracy.

2 Problem and Approach

2.1 Prediction Problems

In a prediction problem, there is an outcome Y whose realization is of interest, and features X that are statistically related to the outcome. The goal is to predict the
outcome given the observed features. Some examples include predicting an individual’s future wage based on childhood covariates (city of birth, family income, quality of education, etc.), or predicting a criminal defendant’s flight risk based on their past record and properties of the crime (Kleinberg et al., 2018). We focus on three prediction problems that emerge from experimental economics:

Example 1 (Risk Preferences). Can we predict the valuations that people will assign to various money lotteries?

Example 2 (Predicting Play in Games). Can we predict how people will play the first time they encounter a new simultaneous-move game?

Example 3 (Human Generation of Random Sequences). Given a target random process—for example, a Bernoulli random sequence—can we predict the errors that a human will make while mimicking this process?

Formally, suppose that the observable features belong to some space X and the outcome belongs to Y. There is a true but unknown joint distribution P over $X \times Y$. A map $f : X \rightarrow Y$ from features to outcomes is a (point) prediction rule. Many economic models can be described as a family of prediction rules F_Θ indexed by an interpretable parameter set Θ. For example, the model class may impose a linear relationship $f(x) = \langle x, \theta \rangle$ between the outcome and a set of features x, in which case the parameter $\theta \in \Theta$ defines a vector of weights applied to each feature. In Section 3.1, one specification of F_Θ is a family of utility functions $u(z) = z^\theta$ over dollar amounts, where the parameter θ reflects the degree of risk aversion.

2.2 Accuracy and Completeness

We suppose that our prediction problem comes with a loss function, $\ell : Y \times Y \rightarrow \mathbb{R}$, where $\ell(y', y)$ is the error assigned to a prediction of y' when the realized outcome is y. The commonly used loss functions mean-squared error and classification error correspond to $\ell(y', y) = (y' - y)^2$ and $\ell(y', y) = 1(y' \neq y)$ respectively.\(^4\)

\(^4\)Note that prediction of a probability distribution over Y can be cast as the prediction of a point in the space $Y' = \Delta(Y)$ of distributions on Y.

\(^5\)Different loss functions are typically used when predicting distributions, see e.g. Gneiting and Raftery (2007).

4. Note that prediction of a probability distribution over Y can be cast as the prediction of a point in the space $Y' = \Delta(Y)$ of distributions on Y.

5. Different loss functions are typically used when predicting distributions, see e.g. Gneiting and Raftery (2007).
Definition. The expected error (or risk) of prediction rule f on a new observation $(x, y) \sim P$ is

$$
\mathcal{E}_P(f) = \mathbb{E}_P[\ell(f(x), y)].
$$

(1)

The prediction rule in the parametric class \mathcal{F}_Θ that minimizes the expected prediction error is the one associated with the parameter value

$$
f^*_\Theta = \arg \min_{f \in \mathcal{F}_\Theta} \mathcal{E}_P(f).
$$

The expected error of this “best” rule in \mathcal{F} is $\mathcal{E}_P(f^*_\Theta)$.

In Section 2.3, we discuss how to estimate $\mathcal{E}_P(f^*_\Theta)$ on finite data; here we discuss how to interpret it. To understand a model’s error, it is helpful to distinguish between two different sources of error.

First, if the conditional distribution $Y \mid X$ is not degenerate, then even the ideal prediction rule

$$
f^*(x) = \arg \min_{y' \in Y} \mathbb{E}_P[\ell(y', y) \mid x]
$$

does not predict perfectly.

Definition. The irreducible error in the prediction problem is the expected error

$$
\mathcal{E}_P(f^*) = \mathbb{E}_P[\ell(f^*(x), y)]
$$

(2)

of the ideal rule on a new test observation.

The irreducible error is a lower bound on the error when predicting Y using the features in X.

A second source of prediction error is the specification of which prediction rules are in the class \mathcal{F}_Θ. Typically the best possible model will not be an element of \mathcal{F}_Θ, as most model classes are at least slightly misspecified. If \mathcal{F}_Θ leaves out an important regularity in the data, then there may be models outside of \mathcal{F}_Θ that yield much better predictions.\(^6\)

\(^6\)On the other hand, expanding the model class risks overfitting, so more parsimonious model classes can lead to more accurate predictions when data is scarce (Hastie et al., 2009). As we discuss in Sections 2.3 and 1.1, all of the data sets we consider here are large relative to the number of features.
These two sources of prediction error have very different implications for how to generate better predictions. If the model’s prediction error is substantially higher than the irreducible error, it may be possible to identify new regularities and incorporate them into models that improve prediction given the same feature set. These new models might be preferable if they do not involve too great an increase in complexity or in the number of parameters. Conversely, if the model’s prediction error is close to the irreducible error for the current feature set, the priority should be to identify additional features that will allow for better predictions.

We propose the ratio of the reduction in prediction error achieved by the model, compared to the achievable reduction, as a measure of how close the model comes to the best achievable performance. We call this ratio the model’s completeness. To operationalize this measure, we provide a lower bound for the “worst case” prediction accuracy using a naive rule $f_{\text{naive}} : \mathcal{X} \rightarrow \mathcal{Y}$ suited to the prediction problem, e.g. “predict uniformly at random.”

Definition. The completeness of the parametric model class \mathcal{F}_Θ is

$$\frac{\mathcal{E}_P(f_{\text{naive}}) - \mathcal{E}_P(f^*)}{\mathcal{E}_P(f_{\text{naive}}) - \mathcal{E}_P(f^*)}.$$

(3)

Note that the completeness measure depends on the underlying distribution P. We expect the conditional distribution $P(y \mid x)$ to be a fixed distribution describing the dependence of the outcome on the specified set of features, but the marginal distribution on X will depend on how the data is generated. In experimental economics (where the data is laboratory data), the distribution over X is typically chosen by the analyst—e.g. which games to ask laboratory participants to play. As we show in Section 3.2, changing this marginal distribution can lead to different measures of completeness for the same model. Ideally, we would like the chosen distribution over features to be the one that is most “economically relevant,” but in practice, it may be difficult to define what this means.

Note also that we define a “model” to be a map from features to the prediction of interest, which differs from other common uses of this word. The completeness of a model depends on the specified prediction problem: With the same features, a model of the effect of a price cut on sales might be able to predict the aggregate effect (e.g. a 5% increase in sales) very well but unable to predict which consumers would increase their purchases.
2.3 Evaluating Completeness from Data

The quantities $\mathcal{E}_P(f_{naive})$, $\mathcal{E}_P(f^*_{\Theta})$, and $\mathcal{E}_P(f^*)$ from (3) are not directly observable. To estimate them from data, we use the following standard procedure. First, we estimate model parameters on a set of training observations. Then, we use test data to evaluate the out-of-sample prediction error of the chosen model. The quantities $\mathcal{E}_P(f_{naive})$, $\mathcal{E}_P(f^*_{\Theta})$, and $\mathcal{E}_P(f^*)$ can be directly estimated in this way: $\mathcal{E}_P(f_{naive})$ corresponds to case $\mathcal{F} = \{f_{naive}\}$, while $\mathcal{E}_P(f^*_{\Theta})$ corresponds to $\mathcal{F} = \mathcal{F}_\Theta$, and $\mathcal{E}_P(f^*)$ corresponds to $\mathcal{F} = \mathcal{X}^Y$, the unrestricted set of all possible maps from features in \mathcal{X} into outcomes in \mathcal{Y}.

We now describe the estimation procedure and its theoretical guarantees in more detail.

Training and Testing. Let Z denote a typical data set of observations (x, y) (which may include repetitions of the same pair). The in-sample performance of f for predicting the observations in Z is

$$e(f, Z) = \frac{1}{|Z|} \sum_{(x, y) \in Z} \ell(f(x), y).$$

This is a sample analog of the expected prediction error in (1).

We will momentarily describe how the analyst splits the available data into training observations Z_{train} and test observations Z_{test}; for now suppose these sets are given. Let

$$\hat{f} \in \arg \min_{f \in \mathcal{F}} e(f, Z_{\text{train}}) \quad (4)$$

be a model from \mathcal{F} that best predicts the training observations in Z_{train}. The selected model \hat{f} is subsequently evaluated on the disjoint set of test observations in Z_{test}. Its out-of-sample prediction error is $e(\hat{f}, Z_{\text{test}})$.

Note that in the case where \mathcal{F} includes all possible mappings from \mathcal{X} to \mathcal{Y}, a solution to (4) is a function \hat{f}_{LT} such that

$$\hat{f}_{LT}(x) \in \arg \min_{y \in \mathcal{Y}} \sum_{(x, y') \in Z_{\text{train}}} \ell(y, y') \quad \forall x \in \mathcal{X}.$$
Such a function can be described as a lookup table that maps different elements $x \in X$ to the best prediction for that feature realization. For example, when the loss function is mean-squared error, \hat{f}_{LT} maps each x to the average outcome for that feature in the training data. When the loss function is the misclassification rate, \hat{f}_{LT} maps each x to the modal observed outcome for that feature.

Cross-Validation. A standard way of creating training and testing data is K-fold cross-validation: First, all of the available data is randomly split into K equally-sized disjoint subsets Z_1, \ldots, Z_K. In each iteration $1 \leq i \leq K$ of the procedure, the subset $Z_{test}^i \equiv Z_i$ is identified as the test data and the remaining subsets $Z_{train}^i \equiv \cup_{j \neq i} Z_j$ are used as training data. The best-fit model for the i-th training set is

$$f_i \equiv \arg \min_{f \in F} e(f, Z_{train}^i)$$

and this model’s out-of-sample performance on the i-th test set is

$$CV_i = e(f_i, Z_{test}^i).$$

The average out-of-sample error across the K test sets is

$$CV(F, \{Z_i\}_{i=1}^K) = \frac{1}{K} \sum_{i=1}^K CV_i. \quad (5)$$

Estimated Completeness. Define

$$\hat{E}_{naive} \equiv CV(\{f_{naive}\}, \{Z_i\}_{i=1}^K)$$

$$\hat{E}_{Theta} \equiv CV(F_{Theta}, \{Z_i\}_{i=1}^K)$$

$$\hat{E}_{best} \equiv CV(X^Y, \{Z_i\}_{i=1}^K).$$

In the main text, we refer to these estimates simply as prediction errors, understanding that they are finite-data estimates. In place of the theoretical completeness measure described in (3), we compute the empirical ratio

$$\frac{\hat{E}_{naive} - \hat{E}_{Theta}}{\hat{E}_{naive} - \hat{E}_{best}}.$$
from our data. The tables we report in the subsequent applications in Sections 3.1-3.3 are structured as follows:

<table>
<thead>
<tr>
<th>Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>(\hat{E}_{\text{naive}})</td>
</tr>
<tr>
<td>Economic Model</td>
<td>(\hat{E}_{\Theta})</td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>(\hat{E}_{\text{best}})</td>
</tr>
</tbody>
</table>

That is, our estimate for the completeness of the model is the ratio of the difference between the naive error and the model’s error, \(\hat{E}_{\text{naive}} - \hat{E}_{\Theta} \), and the difference between the naive error and the irreducible error, \(\hat{E}_{\text{naive}} - \hat{E}_{\text{best}} \).

Theoretical Guarantees. The empirical quantities \(\hat{E}_{\text{naive}} \), \(\hat{E}_{\Theta} \), and \(\hat{E}_{\text{best}} \) are consistent estimators for \(\mathcal{E}_P(f_{\text{naive}}) \), \(\mathcal{E}_P(f^*_\Theta) \), and \(\mathcal{E}_P(f^*) \), respectively (Hastie et al., 2009), and the empirical estimate of completeness in (7) is a consistent estimator for (3).

These estimates are good approximations for the theoretical quantities when the number of observations is sufficiently large. In particular, for \(\hat{E}_{\text{best}} \) to be a good approximation of the irreducible noise \(\mathcal{E}_P(f^*) \), the analyst must have access to a sufficiently large number of observations for each distinct \(x \in \mathcal{X} \). This can be a demanding criterion. To evaluate whether we have “enough” data in our applications, we report for each model class the standard error of the cross-validated prediction errors, which is

\[
\sqrt{\frac{1}{K} \sum_{k=1}^{K} (CV_k - \bar{CV})^2}
\]

with \(CV_i \) as defined in (5) and \(\bar{CV} = \frac{1}{K} \sum CV_k \) denoting the average cross-validated error across the folds. Loosely speaking, if the quantity of data is small, then the empirical out-of-sample error will be very sensitive to which observations are used as training data and which are used as testing data. We thus expect substantial variation in the out-of-sample error across the different training-testing iterations. For all of the data sets we look at, the standard errors are small relative to the magnitudes of the prediction errors. This suggests that our empirical estimates, in particular
our estimate for irreducible error, are close to their infinite-sample counterparts. See Appendix A.1 for more detail.\(^8\)

In general, the condition that the data includes many observations per feature is easier to satisfy in experimental settings, where the experimentalist has control over the structure of the data and can choose to acquire a large number of observations for each of a fixed set of feature values. For example, in the data sets that we consider, there is an average of 179 observations per unique \(x\) (Section 3.1), 50 observations per unique \(x\) (Section 3.2), and 164 observations per unique \(x\) (Section 3.3).

3 Three Applications

3.1 Domain #1: Assigning Certain Equivalents to Lotteries

Background and Data. An important question in economics is how individuals evaluate risk. In addition to Expected Utility models (von Neumann and Morgenstern, 1944; Savage, 1954; Samuelson, 1952), one of the most influential models of decision-making under risk is Cumulative Prospect Theory (Tversky and Kahneman, 1992). This model provides a flexible family of risk preferences that accommodates various behavioral anomalies, including reference-dependent preferences and nonlinear probability weighting.

A standard experimental paradigm for eliciting risk preferences, and thus for evaluating these models, is to ask subjects to report certainty equivalents for lotteries—i.e. the lowest certain payment that the individual would prefer over the lottery. We consider a data set from Bruhin et al. (2010), which includes 8906 certainty equivalents elicited from 179 subjects, all of whom were students at the University of Zurich or

\(^8\)Besides looking at standard errors, we consider two additional test for whether \(\hat{E}_{\text{best}}\) is a good approximation for the irreducible error \(E_P(f^*)\). First, we compare the performance of the lookup table function \(\hat{f}_{LT}\) with a machine learning algorithm that is better suited to smaller data sets (bagged decision trees). The out-of-sample performances are comparable, but \(\hat{f}_{LT}\) has a lower error for all of our applications (see Appendix A.2). Second, we investigate whether the out-of-sample performance of \(\hat{f}_{LT}\) has converged by evaluating its performance on subsamples of our data. The prediction errors using just 70% of the data are very close to those using all of our data. These analyses suggest that our estimate for irreducible error is a reasonable approximation in each of our applications.
the Swiss Federal Institute of Technology Zurich. Subjects reported certainty equivalents for the same 50 two-outcome lotteries, half over positive outcomes (e.g. gains) and half over negative outcomes (e.g. losses).

Prediction Task and Models. In this data set, the outcomes are the reported certainty equivalents for a given lottery, and the features are the lottery’s two possible monetary prizes z_1^1 and z_2^1, and the probability p of the first prize. A prediction rule is any function that maps the tuple (z_1^1, z_2^1, p) into a prediction for the certainty equivalent, i.e. a function $f: \mathbb{R} \times \mathbb{R} \times [0, 1] \to \mathbb{R}$. We use mean-squared error as the loss-function: In a test set of n observations $\{(z_1^i, z_2^i, p_i; y_i)\}_{i=1}^n$—where (z_1^i, z_2^i, p_i) is the lottery shown in observation i and y_i is the reported certainty equivalent—the mean-squared error of f is

$$\frac{1}{n} \sum_{i=1}^{n} (f(z_1^i, z_2^i, p_i) - y_i)^2.$$

We evaluate two prediction rules that are based on established models from the literature. Our *Expected Utility* (EU) rule sets the agent’s utility function to be $u(z) = z^\alpha$, where α is a free parameter that we train. The predicted certainty equivalent is $p \cdot (z_1^1)^\alpha + (1 - p) \cdot (z_2^1)^\alpha$.

Second, our *Cumulative Prospect Theory* (CPT)\(^9\) rule predicts

$$w(p)v(z_1^1) + (1 - w(p))v(z_2^1)$$

for each lottery, where w is a probability weighting function and v is a value function. We follow Bruhin et al. (2010) in our choice of functional forms:

$$v(z) = \begin{cases}
 z^\alpha & \text{if } z > 0 \\
 (-z)^\beta & \text{if } z \leq 0
\end{cases} \quad w(p) = \frac{\delta p^\gamma}{\delta p^\gamma + (1 - p)^\gamma}. \quad (8)$$

This model has four free parameters: $\alpha, \beta, \delta, \gamma \in \mathbb{R}_+$.

Finally, as a naive benchmark, we predict the expected value of the lottery, which is $pz_1^1 + (1 - p)z_2^1$.\(^{10}\)

\(^{9}\)CPT and the original Prospect Theory are equivalent on the 2-outcome lotteries we consider.

\(^{10}\)This naive benchmark is arguably less naive than the naive benchmarks we use for the other prediction problems. Replacing our naive benchmark with, for example, an unconditional mean, would result in even higher completeness for CPT than we find in Table 2.
Results. The following table reveals that both models are predictive, as their out-of-sample prediction error improves upon the Expected Value benchmark:11

<table>
<thead>
<tr>
<th>Error</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>103.81</td>
</tr>
<tr>
<td>(4.00)</td>
<td></td>
</tr>
<tr>
<td>Expected Utility</td>
<td>99.67</td>
</tr>
<tr>
<td>(4.50)</td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>67.38</td>
</tr>
<tr>
<td>(4.49)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Both models are predictive.

The improvement of CPT over the naive benchmark is larger than that of Expected Utility, but even CPT’s performance is substantially worse than perfect prediction. It is not surprising that these models do not achieve perfect prediction, as we expect different subjects to report different certainty equivalents for the same lottery, and thus a model that provides the same prediction for each \((z^1, z^2, p)\) input cannot possibly predict every reported certainty equivalent.

Based on Table 1 alone, it is difficult to interpret the gap between CPT’s accuracy and perfect prediction. In particular, the functional form assumptions in (8) are another potential source of error. Could a different (potentially more complex) specification for the value function or probability weighting function lead to large gains in prediction? Relatedly, might there be other features of risk evaluation, yet unmodelled, which lead to even larger improvements in prediction?

To separate these sources of error, we need to understand how CPT’s error compares to the irreducible error for this data. We estimate the irreducible error in this problem using a lookup table, where each of the 50 unique lotteries is mapped to the average certainty equivalent for that lottery in the training data. With 179 observations for each of the lotteries, we are able to approximate the mean certainty equivalent for each lottery using the training data, thus (approximately) minimizing

11The parameter estimate for EU is \(\alpha = 0.98\), and the parameter estimates for CPT are \(\alpha = 1.024, \beta = 0.975, \delta = 0.5\), and \(\gamma = 0.525\).
the out-of-sample prediction error. We report the estimated irreducible error and its standard error in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>103.81</td>
<td>0%</td>
</tr>
<tr>
<td>(4.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected Utility</td>
<td>99.67</td>
<td>11%</td>
</tr>
<tr>
<td>(4.50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPT</td>
<td>67.38</td>
<td>95%</td>
</tr>
<tr>
<td>(4.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>65.58</td>
<td>100%</td>
</tr>
<tr>
<td>(3.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: CPT is nearly complete for prediction of our data.

Table 2 shows that the CPT prediction error is almost as low as the irreducible error—CPT achieves 95% of the feasible reduction in prediction error over the naive baseline. Thus this data suggests that there is no reason to try to construct more predictive theories that use only the features \((z_1, z_2, p)\).\(^{12}\) To further reduce error, we would need to expand the set of variables on which the model depends. For example, as we discuss in Section 9, we could group subjects using auxiliary data such as their evaluations of other lotteries or response times, or use non-choice data, such as the hypothetical choices in Bernheim et al. (2020).

We note that our completeness measure does not imply that in general CPT is a nearly-complete model for predicting certainty equivalents, since the completeness measure we obtain is determined from a specific data set, so its generalizability depends on the extent to which that data is representative. However, Peysakhovich and Naecker (2017) find that CPT approximates the performance of regularized regression models for a data set of 3 outcome lotteries, which suggests that our finding is robust to certain 3 outcome lotteries, although the results of Bernheim and Sprenger (2020)

\(^{12}\)It is hard to know whether the high completeness of CPT (in the specified functional form) comes from its good match to actual behavior or because it is flexible enough to mimic most functions in \(\mathcal{X}^3\). This question is explored in Fudenberg et al. (2020).
show this will not be true for all of them.\footnote{The specification of CPT in Peysakhovich and Naecker (2017) sets $\delta = 1$ and thus has one fewer free parameter, so its model error may be higher.}

3.2 Domain #2: Initial Play in Games

Background and Data. In many game theory experiments, equilibrium analysis is a poor predictor of the choices that people make when they encounter a new game. This has led to models of initial play that depart from equilibrium theory, for example the level-k models of Stahl and Wilson (1994) and Nagel (1995), the Poisson Cognitive Hierarchy model (Camerer et al., 2004), and the related models surveyed in Crawford et al. (2013). These models represent improvements over the equilibrium predictions, but we do not know whether these models exhaust the main regularities in initial play.

Prediction Task and Models. We consider prediction of the action chosen by the row player in a given instance of play of a 3×3 normal-form game. The available features are the 18 entries of the payoff matrix, and a prediction rule is any map $f : \mathbb{R}^{18} \rightarrow \{a_1, a_2, a_3\}$ from 3×3 payoff matrices to row player actions.

For each prediction rule f and test set of observations $\{(g_i, a_i)\}_{i=1}^n$—where g_i is the payoff matrix in observation i, and a_i is the observed row player action—we evaluate error using the misclassification rate

$$\frac{1}{n} \sum_{i=1}^n \mathbb{1}(f(g_i) \neq a_i).$$

This is the fraction of observations where the predicted action was not the observed action.

As a naive baseline, we consider guessing uniformly at random for all games, which yields an expected misclassification rate of $2/3$. We use this benchmark to evaluate a prediction rule based on the Poisson Cognitive Hierarchy Model (PCHM), which supposes that there is a distribution over players of differing levels of sophistication: The level-0 player randomizes uniformly over his available actions, while the level-1 player best responds to level-0 play (Stahl and Wilson, 1994, 1995; Nagel, 1995).
Camerer et al. (2004) defines the play of level-\(k\) players, \(k \geq 2\), to be the best response to a perceived distribution

\[
p_k(h) = \frac{\pi_{\tau}(h)}{\sum_{l=0}^{k-1} \pi_{\tau}(l)} \quad \forall \ h \in \mathbb{N}_{<k}
\]

(9)

over (lower) opponent levels, where \(\pi_{\tau}\) is the Poisson distribution with rate parameter \(\tau\).\(^{14}\) We can derive a predicted distribution over actions by supposing that the proportion of level-\(k\) players in the population is proportional to \(\pi_{\tau}(k)\). Assuming this is the true distribution of play, the misclassification rate is minimized by predicting the mode of this distribution. We define the PCHM prediction to be that mode.

Comparison Across Games. We compare the performance of the PCHM relative to the best achievable performance on three subsamples of a data set from Fudenberg and Liang (2019).\(^{15}\) Our full data set consists of 23,137 total observations of initial play from 486 3 × 3 matrix games, where observations are pooled across all of the subjects and games.\(^{16,17}\)

The first subsample, *Game Set A*, consists of the 16,660 observations of play from the 359 games with no strictly dominated actions.\(^{18}\) *Game Set B* consists of the 7,860 observations of play from the 161 games in which the profile that maximizes the sum of the players’ payoffs is much larger (at least 20% of the largest row player payoff

\(^{14}\)Throughout, we take \(\tau\) to be a free parameter and estimate it from the training data.

\(^{15}\)Fudenberg and Liang (2019) studied a related prediction task, namely predicting the modal row player action in a given game. For that prediction task, the best achievable error is always zero. Here we consider prediction of the action played, where the best achievable error depends on the true distribution of play.

\(^{16}\)This data is an aggregate of three data sets: the first is a meta data set of play in 86 games, collected from six experimental game theory papers by Kevin Leyton-Brown and James Wright, see Wright and Leyton-Brown (2014); the second is a data set of play in 200 games with randomly generated payoffs, which were gathered on MTurk for Fudenberg and Liang (2019); the third is a data set of play in 200 games that were “algorithmically designed” for a certain model (level 1) to perform poorly, again from Fudenberg and Liang (2019).

\(^{17}\)There was no learning in these experiments—subjects were randomly matched to opponents, were not informed of their partners’ play, and did not learn their own payoffs until the end of the session.

\(^{18}\)Specifically, we consider games where no pure action is strictly dominated by another pure action.
in the game) than the highest sum of payoffs that can be achieved when the row player chooses a level-k action (for any k).\footnote{Following Stahl and Wilson (1995) and Nagel (1995), level-0 corresponds to uniform play, and each level-k action is the best response to level-$(k - 1)$ play.} For example, in the game below (which is included in Game Set B), the action profile (a_2, a_2) leads to a payoff sum of 160, but the largest payoff sum using level-k actions is 120. The difference, 40, is more than 20\% of the max row player payoff in this game, 100.20

\[
\begin{array}{ccc}
a_1 & a_2 & a_3 \\
a_1 & 40, 40 & 10, 20 & 70, 30 \\
a_2 & 20, 10 & 80, 80 & 0, 100 \\
a_3 & 30, 70 & 100, 0 & 60, 60 \\
\end{array}
\]

Finally, *Game Set C* consists of the 9,243 observations of play from the 175 games where the level 1 action’s expected payoff against uniform play is much higher than the expected payoff of the next best action (specifically, it is larger by at least 1/4 of the max row player payoff in the game).

The analysis we perform for these three subsamples can be conducted for arbitrary sets of games.

Results. Below we report the estimated irreducible error and associated completeness measures for each of the three sets of games.

<table>
<thead>
<tr>
<th></th>
<th>Game Set A</th>
<th></th>
<th>Game Set B</th>
<th></th>
<th>Game Set C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Error</td>
<td>Completeness</td>
<td>Error</td>
<td>Completeness</td>
<td>Error</td>
<td>Completeness</td>
</tr>
<tr>
<td>Naive Benchmark</td>
<td>0.66</td>
<td>0%</td>
<td>0.66</td>
<td>0%</td>
<td>0.66</td>
<td>0%</td>
</tr>
<tr>
<td>PCHM</td>
<td>0.49</td>
<td>68%</td>
<td>0.44</td>
<td>68%</td>
<td>0.28</td>
<td>97%</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td></td>
<td>(0.004)</td>
<td></td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>0.41</td>
<td>100%</td>
<td>0.34</td>
<td>100%</td>
<td>0.27</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td>(0.005)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of the completeness of PCHM across the three sets of games.

19In this game, action a_3 is level 1, since it yields the highest expected payoff against uniform play, and action a_1 is level 2, since it is a best response against play of a_1. Because (a_1, a_1) is a pure-strategy Nash equilibrium, action a_1 is level-k for all $k \geq 2$.18
Our estimate for the irreducible error is derived using a lookup table, where each game is mapped to the action most commonly chosen in that game in the training data. Since we have on average 50 observations per game, the modal action in the training data is a good approximation for the modal action in the test data. High irreducible error means that there is substantial heterogeneity in play, so predicting the mode still leads to a high rate of incorrect classification. Low irreducible error means that play across subjects is more coordinated on a single action. We find that the estimated irreducible error is largest—and hence, there is the most heterogeneity in play—in Data Set A, which includes only games where there are no strictly dominated actions, and smallest in Data Set C, which includes only games where the level-1 action has by far the highest expected payoff against uniform play.

Next we use the estimated irreducible errors as a benchmark to evaluate the completeness of PCHM on the three data sets. Although the PCHM achieves a better absolute prediction error in Game Set A than in Game Set B, its completeness is approximately 68% on both data sets. In contrast, the PCHM achieves 97% of the feasible reduction in prediction error in Game Set C. This means that PCHM captures essentially all of the predictable variation in games where the level 1 action clearly has the largest expected value against uniform play, while there is additional structure beyond the PCHM in Game Sets A and B. We leave to future work the question of what additional properties of the game are important determinants of the completeness of the PCHM.

3.3 Domain #3: Human Generation of Random Sequences

Background and Data. Extensive experimental and empirical evidence suggests that humans misperceive randomness, for example expecting that sequences of coin flips “self-correct” (too many Heads in a row must be followed by a Tails) and are balanced (the number of Heads and Tails are approximately the same) (Bar-Hillel and Wagenaar, 1991; Tversky and Kahneman, 1971). These misperceptions are significant not only for their basic psychological interest, but also for the ways in which misperception of randomness manifests itself in a variety of contexts: for example, investors’ judgment of sequences of (random) stock returns (Barberis et al., 1998), professional decision-makers’ reluctance to choose the same (correct) option multiple
times in succession (Chen et al., 2016), and people’s execution of a mixed strategy in a game (Batzilis et al., 2016).

A common experimental framework in this area is to ask human participants to generate fixed-length strings of \(k \) (pseudo-)random coin flips, for some small value of \(k \) (e.g. \(k = 8 \)), and then to compare the produced distribution over length-\(k \) strings to the output of a Bernoulli process that generates realizations from \(\{ H, T \} \) independently and uniformly at random (Rapaport and Budescu, 1997; Nickerson and Butler, 2009). Following in this tradition, we use the platform Mechanical Turk to collect a large dataset of human-generated strings designed to simulate the output of a \(\text{Bernoulli}(0.5) \) process, in which each symbol in the string is generated from \(\{ H, T \} \) independently and uniformly at random. To incentivize effort, we told subjects that payment would be approved only if their (set of) strings could not be identified as human-generated with high confidence.\(^{21,22} \) After removing subjects who were clearly not attempting to mimic a random process, our final data set consisted of 21,975 strings generated by 167 subjects.\(^{23} \)

Prediction Task, Performance Metric, and Models. We consider the problem of predicting the probability that the eighth entry in a string is \(H \) given its first seven entries. Thus the outcome here is a number in [0, 1]—a distribution on \(\{ H, T \} \)—and the feature space is \(\{ H, T \}^7 \) (note that as in the previous examples,

\(^{21}\)In one experiment, 537 subjects each produced 50 binary strings of length eight. In a second experiment, an additional 101 subjects were asked to each generate 25 binary strings of length eight.

\(^{22}\)Subjects were informed: “To encourage effort in this task, we have developed an algorithm (based on previous Mechanical Turkers) that detects human-generated coin flips from computer-generated coin flips. You are approved for payment only if our computer is not able to identify your flips as human-generated with high confidence.”

\(^{23}\)Our initial data set consists of 29,375 binary strings. We chose to remove all subjects who repeated any string in more than five rounds. This cutoff was selected by looking at how often each subject generated any given string and finding the average “highest frequency” across subjects. This turned out to be 10% of the strings, or five strings. Thus, our selection criteria removes all subjects whose highest frequency was above average. This selection eliminated 167 subjects and 7,400 strings, yielding a final dataset with 471 subjects and 21,975 strings. We check that our main results are not too sensitive to this selection criteria by considering two alternative choices in Appendix D.2—first, keeping only the initial 25 strings generated by all subjects; second, removing the subjects whose strings are “most different” from a Bernoulli process under a \(\chi^2 \)-test. We find very similar results under these alternative criteria.
we fit a representative-agent model and do not treat the identity of the subject as a feature).

Given a test data set \(\{(s^1_i, \ldots, s^8_i)\}_{i=1}^n \) of \(n \) binary strings of length-8, we evaluate the error of the prediction rule \(f \) using mean-squared error

\[
\frac{1}{n} \sum_{i=1}^{n} (s^8_i - f(s^1_i, \ldots, s^7_i))^2
\]

where \(f(s^1_i, \ldots, s^7_i) \) is the predicted probability that the eighth flip is ‘H’ given the observed initial seven flips \(s^1_i, \ldots, s^7_i \), and \(s^8_i \) is the actual eighth flip.\(^{24}\) Note that the naive baseline of unconditionally guessing 0.5 guarantees a mean-squared prediction error of 0.25. Moreover, if the strings in the test set were truly generated via a Bernoulli(0.5) process, then no prediction rule could improve in expectation upon the naive error.\(^{25}\) We expect that behavioral errors in the generation process will make it possible to improve upon the naive baseline, but do not know how much it is possible to improve upon 0.25.

In this task, the natural naive baseline is the rule that unconditionally guesses that the probability the final flip is ‘H’ is 0.5. We compare this baseline to prediction rules based on Rabin (2002) and Rabin and Vayanos (2010), both of which predict negatively autocorrelated sequences.\(^{26}\) Our prediction rule based on Rabin (2002) supposes that subjects generate sequences by drawing sequentially without replacement from an urn containing 0.5 \(N \) ‘1’ balls and 0.5 \(N \) ‘0’ balls. The urn is “refreshed” (meaning the composition is returned to its original) every period with independent probability \(p \). This model has two free parameters: \(N \in \mathbb{Z}_+ \) and \(p \in [0, 1] \).

Our prediction rule based on Rabin and Vayanos (2010) assumes that the first flip

\(^{24}\)Alternatively we could have defined the outcome to be an individual realization of \(H \) or \(T \), so that prediction rules are maps \(f : \{H, T\}^7 \rightarrow \{H, T\} \), and then evaluated error using the misclassification rate (i.e. the fraction of instances where the predicted outcome was not the realized outcome). We do not take a stand on which method is better, but note that the completeness measure can depend on which approach is used. In Appendix D.1 we show that the completeness measures are very similar using this alternative formulation.

\(^{25}\)Due to the convexity of the loss function, it is possible to do worse than the naive baseline, for example by predicting 1 unconditionally.

\(^{26}\)Although both of these frameworks are models of mistaken inference from data, as opposed to human attempts to generate random sequences, they are easily adapted to our setting, as the papers explain.
$s_1 \sim \text{Bernoulli}(0.5)$ while each subsequent flip s_k is distributed

$$s_k \sim \text{Ber} \left(0.5 - \alpha \sum_{t=0}^{k-2} \delta^t (2 \cdot s_{k-t-1} - 1) \right),$$

where the parameter $\delta \in \mathbb{R}_+$ reflects the (decaying) influence of past flips, and the parameter $\alpha \in \mathbb{R}_+$ measures the strength of negative autocorrelation.\(^{27}\)

Results. Table 4 shows that both prediction rules improve upon the naive baseline. The need for a benchmark for achievable prediction is starkest in this application, as the best improvement is only 0.0008, while the gap between the achieved prediction errors and a perfect zero is large. This is not surprising—since the data is generated by subjects attempting to mimic a fair coin, we naturally expect substantial variation in the eighth flip after conditioning on the initial seven flips.

<table>
<thead>
<tr>
<th></th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>0.25</td>
</tr>
<tr>
<td>Rabin (2002)</td>
<td>0.2494</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
</tr>
<tr>
<td>Rabin and Vayanos (2010)</td>
<td>0.2492</td>
</tr>
<tr>
<td></td>
<td>(0.0007)</td>
</tr>
</tbody>
</table>

Table 4: Both models improve upon naive guessing, but the absolute improvement is small.

For this problem, we can approximate the irreducible error by learning the empirical frequency with which each length-7 string is followed by ‘H’ in the training data. Although there are 2^7 unique initial sequences, with approximately 21,000 strings in our data set we have (on average) 164 observations per initial sequence.

\(^{27}\)We make a small modification on the Rabin and Vayanos (2010) model, allowing $\alpha, \delta \in \mathbb{R}_+$ instead of $\alpha, \delta \in [0, 1)$.
We find that irreducible error in this problem is 0.2441, so that naively comparing achieved prediction error against perfect prediction (which would suggest a completeness measure of at most 0.4%) grossly misrepresents the performance of the models. The existing models produce up to 14% of the achievable reduction in prediction error. This suggests that although negative autocorrelation is indeed present in the human-generated strings and explains a sizable part of the deviation from a Bernoulli(0.5) process, there is additional structure that could yet be exploited for prediction.

4 Extensions

4.1 Subject Heterogeneity

So far, we have evaluated the completeness of “representative agent” models that implement a single prediction across all subjects. When we evaluate models that allow for subject heterogeneity, the question of what is the largest achievable reduction in prediction error is still relevant, and the irreducible error for the new expanded feature set can again help us determine the size of potential error reductions. As a simple illustration, we return to our evaluation of risk preferences and demonstrate how to construct a predictive bound for certain models with subject heterogeneity.
The models that we consider extend the Expected Utility and Cumulative Prospect Theory models introduced in Section 3.1 by allowing for three groups of subjects. To test the models, we randomly select 71 (out of 171) subjects to be test subjects, and 45 (out of 50) lotteries to be test lotteries. All other data—the 100 training subjects’ choices in all lotteries, as well as the test subjects’ choices in the 5 training lotteries—are used for training the models.

We first use the training subjects’ responses in the training lotteries to develop a clustering algorithm to separate subjects into three groups. This algorithm assigns a group number to new subjects based on the similarity of their choices in the five training lotteries to those of the training subjects in each group. Second, we use each group’s training subjects’ responses in the test lotteries to estimate free model parameters—that is, the single free parameter of the EU model, and the four free parameters for CPT. This yields three versions of EU and CPT, one per group.

Out of sample, we first use the clustering algorithm to assign groups to the test subjects, and then use the associated models to predict each group’s certainty equivalents in the test lotteries. We measure accuracy using mean-squared error, as in Section 3.1, and we again report the Expected Value prediction as a naive baseline.

<table>
<thead>
<tr>
<th></th>
<th>Prediction Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>104.17 (12.95)</td>
</tr>
<tr>
<td>Expected Utility</td>
<td>86.68 (10.69)</td>
</tr>
<tr>
<td>CPT</td>
<td>57.14 (7.17)</td>
</tr>
</tbody>
</table>

Table 6: Prediction Errors Achieved by Models with Subject Heterogeneity

What we find from Table 6 is very similar to what we observed in Section 3.1: Both models improve upon the naive baseline, but it is difficult to assess the size of the improvement without an appropriate benchmark.

28 We use a simple algorithm, k-means, which minimizes the Euclidean distance between the vectors of reported certainty equivalents for subjects within the same group.
Our approach here for estimating the irreducible error is to learn the mean response of training subjects in each group for each lottery, and predict those means. With sufficiently many training subjects, this method approximates the best possible accuracy for this prediction task. We find that although the CPT error is substantially different from zero, the model is again nearly complete.

<table>
<thead>
<tr>
<th>Prediction Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>104.17</td>
</tr>
<tr>
<td></td>
<td>(12.95)</td>
</tr>
<tr>
<td>Expected Utility</td>
<td>86.68</td>
</tr>
<tr>
<td></td>
<td>(10.69)</td>
</tr>
<tr>
<td>CPT</td>
<td>57.14</td>
</tr>
<tr>
<td></td>
<td>(7.17)</td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>55.45</td>
</tr>
<tr>
<td></td>
<td>(6.26)</td>
</tr>
</tbody>
</table>

We note that because the same clustering method is used in all of the approaches, the gap between irreducible error and the prediction errors does not shed light on how much predictions could be improved by better ways of grouping the subjects. The development of better clustering techniques is an interesting avenue for future work.\(^{29}\)

4.2 Comparing Feature Sets

In the main text, we considered a fixed feature set \(\mathcal{X} \), and evaluated the completeness of different models for prediction given this feature set. We can alternatively compare irreducible error across different feature sets as a way of contrasting the predictive limits of those features. We illustrate this comparison by revisiting our problem from Section 3.3—predicting human generation of randomness—and considering three feature sets.

\(^{29}\)A comparison of the irreducible error under clustering, 55.45, with the irreducible error from Section 3.1, 65.58, sheds light on the size of predictive gains achieved by the present method for clustering.
The first feature set, $\mathcal{X}_{1:7}$, is our main feature set, which consists of the initial seven flips. Define $\mathcal{X}_{4:7} = \{H,T\} \times \{H,T\} \times \{H,T\}$ as the feature set corresponding to flips 4–7, and $\mathcal{X}_H = \{0,1,2\ldots,7\}$ as the number of ‘H’ realizations in the first seven flips. Interpreted as lookup tables, these new feature sets correspond to “compressed” lookup tables built on different properties of the initial seven flips, where strings are partitioned based on certain properties. We can estimate irreducible error by predicting the average continuation probability of ‘H’ among all strings in the same partition element.

Table 7: Comparison of the value of various feature sets.

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>0.25</td>
<td>0%</td>
</tr>
<tr>
<td>Irreducible Error for $\mathcal{X}_{4:7}$</td>
<td>0.2478 (0.0010)</td>
<td>36%</td>
</tr>
<tr>
<td>Irreducible Error for \mathcal{X}_H</td>
<td>0.2464 (0.0009)</td>
<td>59%</td>
</tr>
<tr>
<td>Irreducible Error for $\mathcal{X}_{1:7}$</td>
<td>0.2441 (0.0006)</td>
<td>100%</td>
</tr>
</tbody>
</table>

We find that the feature sets $\mathcal{X}_{4:7}$ and \mathcal{X}_H achieve large fractions of the achievable improvement from using $\mathcal{X}_{1:7}$. For example, using only the number of Heads as a feature, it is possible to achieve 59% of the achievable reduction of the full structure of the initial flips. Using only the most recent three flips achieves 36% of the reduction from using all seven initial flips. On the other hand, the gap between irreducible error for $\mathcal{X}_{4:7}$ and for $\mathcal{X}_{1:7}$ demonstrates that there is predictive content in flips 1–3 beyond what is captured in flips 4–7.

The feature set $\mathcal{X}_{1:7}$ could be expanded to create richer feature sets, and it would be interesting to consider what additional features might significantly improve predictive accuracy, for example “neuroeconomic” data such as the speed with which the strings were entered, or demographic data such as age or education.\(^{30}\) The exercise in Section 4.1, in which we used subject types (determined based on choices

\(^{30}\)As another example: recent work by Bernheim et al. (2020) test how well a model of Cumulative Prospect Theory that is trained on two-outcome lotteries predicts certainty equivalents for three-
in auxiliary problems), illustrates yet another way to expand the feature set. As we have shown above, comparing irreducible error across different feature sets is one potentially useful approach for measuring the predictive value of those features.\footnote{Note that the value of individual features will in general depend on what other features are available.}

5 Conclusion

When evaluating the predictive performance of a theory, it is important to know not just whether the theory is predictive, but also how complete its predictive performance is. Thus we should compare the prediction errors achieved by our models against the best achievable error for that problem, namely the irreducible error. What is perhaps striking is that irreducible error can be precisely estimated in certain prediction problems of interest in experimental economics. We demonstrate three domains in which completeness can help us evaluate the performance of existing models.

The completeness of a theory’s prediction is not meant to be the final word on its value. Theories are used for many reasons, so there are many criteria for evaluating them, including parsimony, portability, tractability, and fit with prior intuition. The purpose of the completeness measure is to guide the evaluation of the predictive content of a theory. Occasionally, as we found in Section 3.1, a model that has large prediction errors may nevertheless be nearly complete given its feature set.

We conclude with a brief discussion of our completeness measure, its limitations, and possibilities for extension.

Interpretability. In many applications, researchers may prefer to sacrifice some predictive power and completeness to use a model that is easier to interpret, for example using a model of preferences to predict choice as opposed to a black box, or adding a risk aversion parameter to level-1 models as in Fudenberg and Liang (2019). With an interpretable model it can be easier to see how to extend predictions to a new domain. It is also easier to bring intuition to bear, and when the model fits with intuition it may be more robust to different data selection and collection procedures.

Counterfactuals. Economic models are often used to provide counterfactual outcome lotteries. It finds that these “cross-domain” predictions can be improved using additional non-choice features (e.g. survey responses).
predictions about the impact of new policies. Of course, if there is no data about such policies, these counterfactual predictions rely on untested intuitions about the robustness of various forces that drive behavior. Suppose for example that the price variation in our data only comes from price changes by firms, and we want to predict the effect of a sales tax. We might conjecture that the price effects are the same as before, but in some cases consumers might be either more or less willing to accept a price increase imposed by the government. With or without an economic theory, any attempt to extrapolate from data in settings without sales taxes to the effects of sales taxes requires an untested hypothesis. And if we do have representative data on the past effect of sales taxes, the prediction problem does not involve a substantive counterfactual.\footnote{Except in the trivial sense that any extrapolation from past data to future outcomes requires some form of inductive hypothesis.}

Experimental Data. Experimental economists have a degree of control over the scope of their data that is not available in field studies. In particular, the experimentalist can choose to acquire a large number of observations for a fixed input space, so that nonparametric estimation of irreducible error for those inputs is feasible. Thus estimating completeness for laboratory data is feasible in many instances, as illustrated in the three applications in this paper. The main tradeoff is between gathering more instances of observations for a given set of feature values, versus ranging over a larger set of feature values. With a sufficiently large budget size, both may be possible.

Alternative Measures of Completeness. This paper estimates irreducible error nonparametrically, which is feasible when the number of data observations is large relative to the number of inputs. When this is not the case, econometric methods such as splines, sieves, and lasso regression can potentially be used as substitutes.\footnote{These methods may have better finite-sample performance when suitable regularity assumptions apply, but those assumptions may not be directly testable.}

In some cases, it may be possible to indirectly evaluate irreducible noise. For example, an interesting analogy to our approach to completeness is found in the literature on inheritability. Biologists have discovered a gap between two different methodologies for discovering how much of a particular outcome (say propensity to have a disease) is heritable, dubbed the ‘missing heritability problem’ (Manolio et al. 2009).
Traditional methods of measuring heritability, such as through carefully controlled twin studies, do not attempt to isolate individual genes. Newer measurement techniques instead allow us to postulate individual genes as the carrier of heritability. Yet for many outcomes, the explanatory power of individual genes has proven far smaller (sometimes by an order of magnitude) than overall measures of heritability suggest. This gap has motivated further theorizing and measurement to isolate where the “missing heritability” may lie. Roughly speaking, the aggregate measures of heritability are in effect being used as an analog of our completeness metric for the specific gene-based theories.

Measuring Portability. One important question is how to compare the transferability of models across domains. Indeed, we may expect that economic models that are outperformed by machine learning models in a given domain have higher transfer performance outside of the domain. In this sense, within-domain completeness may provide an insufficient measure of the “overall completeness” of the model, and we leave development of such notions to future work.

References

HASTIE, T., R. Tibshirani, AND J. Friedman (2009): The Elements of Statistical

metrīca, 20, 670–678.

Appendix

A How Good is Our Estimate of Irreducible Error?

In the main text, we present an approach for estimating irreducible error, where we estimate a “lookup table” function \(\hat{f}_{LT} \) on training data (see (4) and the discussion following). Below we investigate whether the data sets we study are large enough for this to be a good approximation.

We first review some results from the machine learning and statistics literatures, which explain why the cross-validated standard errors that we report in the main text are informative about the quality of this approximation (Section A.1).

In Section A.2, we compare the out-of-sample performance of the lookup table with that of bagged decision trees, an algorithm that works better on smaller quantities of data. We find that in each of our prediction problems, the two prediction errors are similar, and the lookup table weakly outperforms bagged decision trees. Finally, in Section A.3, we study the sensitivity of the lookup table’s performance to the quantity of data. The predictive accuracies achieved using our full data sets are very close to those achieved using, for example, just 70% of the data. This again suggests that only minimal improvements in predictive accuracy are feasible from further increases in data size.

A.1 Cross-Validated Standard Error

Suppose the loss function is mean-squared error: \(\ell(y', y) = (y' - y)^2 \). (Similar arguments apply for the misclassification rate; see e.g. Domingos (2000).) Let

\[
\hat{f}^*(x) = \mathbb{E}_P[y \mid x]
\]

be the idealized prediction rule discussed in Section 2.2, which assigns to each \(x \) its expected outcome \(y \) under distribution \(P \). Write \(\hat{f}_{LT}[Z] \) for the random lookup table prediction rule that has been estimated from a set \(Z \) of \(n \) i.i.d. training observations. The expected mean-squared error of \(\hat{f}_{LT} \) on a new observation \((x, y) \sim P \) can be
decomposed as follows (Hastie et al., 2009):

$$
\mathbb{E}[(\hat{f}_{LT}[Z](x) - y)^2] =
\mathbb{E}[(f^*(x) - y)^2] + \left(\mathbb{E}[(\hat{f}_{LT}[Z](x) - f^*(x))^2]
ight)^2 + \mathbb{E}[(\hat{f}_{LT}[Z](x) - \mathbb{E}[(\hat{f}_{LT}[Z](x))]^2]
$$

where the expectation is both over the realization of the training data Z used to train \hat{f}_{LT}, and also over the realization of the test observation (x, y).

The first component is the irreducible noise introduced in (2). The second component, bias, is the mean-squared difference between the expected lookup table prediction and the prediction of the ideal prediction rule f^*. The final component, sampling error, is the variance of the lookup table prediction (reflecting the sensitivity of the algorithm to the training data).

Since \hat{f}_{LT} is unbiased, the second component is zero. Thus, irreducible noise is the difference between the expected lookup table error and the sampling error of the lookup table predictor. As described in Section 2.3, we follow the standard procedure of using the variance of the cross-validated prediction errors to estimate the sampling error (Hastie et al., 2009). That is,

$$
\mathbb{E}[(\hat{f}_{LT}[Z](x) - \mathbb{E}[(\hat{f}_{LT}[Z](x))]^2] \approx \frac{1}{K} \text{Var}(\{CV_1, \ldots, CV_K\})
$$

where CV_i is the prediction error for the i-th iteration of cross-validation. The right-hand side of the display is the square of the cross-validated standard errors reported in the main text; thus, we have from Tables 2, 3, and 5:

<table>
<thead>
<tr>
<th></th>
<th>Estimate of Irreducible Error</th>
<th>Sampling Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Preferences</td>
<td>65.58</td>
<td>9</td>
</tr>
<tr>
<td>Initial Play, Data Set A</td>
<td>0.41</td>
<td><0.0001</td>
</tr>
<tr>
<td>Initial Play, Data Set B</td>
<td>0.34</td>
<td><0.0001</td>
</tr>
<tr>
<td>Random Sequences</td>
<td>0.2441</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

A.2 Comparison with Scalable Machine Learning Algorithms

An alternative way to evaluate whether the out-of-sample performance of the lookup table approximates the best possible prediction accuracy is to compare it with the
performance of other machine learning algorithms. Below we compare its performance with bagged decision trees (also known as bootstrap-aggregated decision trees). This algorithm creates several bootstrapped data sets from the training data by sampling with replacement, and then trains a decision tree on each bootstrapped training set. Decision trees are nonlinear prediction models that recursively partition the feature space and learn a (best) constant prediction for each partition element. The prediction of the bagged decision tree algorithm is an aggregation of the predictions of individual decision trees. When the loss function is mean-squared error, the decision tree ensemble predicts the average of the predictions of the individual trees. When the loss function is misclassification rate, the decision tree ensemble predicts based on a majority vote across the ensemble of trees.

Table 8 shows that for each prediction problem, the error of the bagged decision tree algorithm is comparable to and slightly worse than that of the lookup table. These results again suggest that our estimate of irreducible error is a reasonable approximation.

<table>
<thead>
<tr>
<th></th>
<th>Risk</th>
<th>Games A</th>
<th>Games B</th>
<th>Games C</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagged Decision Trees</td>
<td>65.65</td>
<td>0.45</td>
<td>0.36</td>
<td>0.29</td>
<td>0.2442</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.0005)</td>
</tr>
<tr>
<td>Lookup Table (\hat{f}_{LT})</td>
<td>65.58</td>
<td>0.41</td>
<td>0.34</td>
<td>0.27</td>
<td>0.2441</td>
</tr>
<tr>
<td></td>
<td>(3.00)</td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.0006)</td>
</tr>
</tbody>
</table>

Table 8: The lookup table outperforms Bagged Decision Trees in each of our prediction problems.

A.3 Performance of the Lookup Table on Smaller Samples

Finally, we report the lookup table’s cross-validated performance on random samples of \(x \%) of our data, where \(x \in \{10, 20, \ldots, 100\} \). For each \(x \), we repeat the procedure 1000 times, and report the average performance across iterations. We find that performance error flattens out for larger values of \(x \), suggesting that the quantity of data we have is indeed large enough that further increases in the data size will not substantially improve predictive performance.
Table 9: Performance of Lookup Table \hat{f}_{LT} using $x\%$ of the data, averaged over 100 iterations for each x

<table>
<thead>
<tr>
<th>$x%$</th>
<th>Risk</th>
<th>Games A</th>
<th>Games B</th>
<th>Games C</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>10%</td>
<td>69.47</td>
<td>0.4191</td>
<td>0.3473</td>
<td>0.2729</td>
<td>0.2592</td>
</tr>
<tr>
<td></td>
<td>(11.13)</td>
<td>(0.012)</td>
<td>(0.018)</td>
<td>(0.0015)</td>
<td>(0.0034)</td>
</tr>
<tr>
<td>20%</td>
<td>67.13</td>
<td>0.4183</td>
<td>0.3476</td>
<td>0.2718</td>
<td>0.2504</td>
</tr>
<tr>
<td></td>
<td>(7.95)</td>
<td>(0.0018)</td>
<td>(0.024)</td>
<td>(0.0020)</td>
<td>(0.0018)</td>
</tr>
<tr>
<td>30%</td>
<td>66.28</td>
<td>0.4178</td>
<td>0.3472</td>
<td>0.2714</td>
<td>0.2479</td>
</tr>
<tr>
<td></td>
<td>(6.51)</td>
<td>(0.0022)</td>
<td>(0.0029)</td>
<td>(0.0025)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>40%</td>
<td>66.25</td>
<td>0.4169</td>
<td>0.3470</td>
<td>0.2708</td>
<td>0.2464</td>
</tr>
<tr>
<td></td>
<td>(5.65)</td>
<td>(0.0024)</td>
<td>(0.0032)</td>
<td>(0.0028)</td>
<td>(0.0011)</td>
</tr>
<tr>
<td>50%</td>
<td>65.68</td>
<td>0.4157</td>
<td>0.3459</td>
<td>0.2703</td>
<td>0.2458</td>
</tr>
<tr>
<td></td>
<td>(4.59)</td>
<td>(0.0025)</td>
<td>(0.0036)</td>
<td>(0.0032)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>60%</td>
<td>65.68</td>
<td>0.4141</td>
<td>0.3449</td>
<td>0.2691</td>
<td>0.2452</td>
</tr>
<tr>
<td></td>
<td>(4.24)</td>
<td>(0.0027)</td>
<td>(0.0040)</td>
<td>(0.0035)</td>
<td>(0.0008)</td>
</tr>
<tr>
<td>70%</td>
<td>65.68</td>
<td>0.4131</td>
<td>0.3435</td>
<td>0.2682</td>
<td>0.2448</td>
</tr>
<tr>
<td></td>
<td>(3.95)</td>
<td>(0.0031)</td>
<td>(0.0045)</td>
<td>(0.0037)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>80%</td>
<td>65.68</td>
<td>0.4119</td>
<td>0.3427</td>
<td>0.2677</td>
<td>0.2445</td>
</tr>
<tr>
<td></td>
<td>(3.95)</td>
<td>(0.0034)</td>
<td>(0.0046)</td>
<td>(0.0040)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>90%</td>
<td>65.66</td>
<td>0.4109</td>
<td>0.3416</td>
<td>0.2672</td>
<td>0.2443</td>
</tr>
<tr>
<td></td>
<td>(3.71)</td>
<td>(0.0034)</td>
<td>(0.0047)</td>
<td>(0.0042)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>100%</td>
<td>65.58</td>
<td>0.4100</td>
<td>0.3404</td>
<td>0.2668</td>
<td>0.2441</td>
</tr>
<tr>
<td></td>
<td>(3.00)</td>
<td>(0.0036)</td>
<td>(0.0051)</td>
<td>(0.0045)</td>
<td>(0.0006)</td>
</tr>
</tbody>
</table>

B Relationship of Completeness to Nonparametric R^2

Consider the special case in which the loss function is mean-squared error $\ell(y', y) = (y - y')^2$, and the naive benchmark is the unconditional mean of the outcome variable, $f_{\text{naive}}(y) = \mathbb{E}_{P}(y)$, i.e. the unconditional mean of the outcome variable.
Because $\mathcal{E}_P(f_{\text{naive}}) = \text{var}(y)$, the R^2 for the model class is

$$R^2_{\Theta} = \frac{\mathcal{E}_P(f_{\text{naive}}) - \mathcal{E}_P(f^*_\Theta)}{\mathcal{E}_P(f_{\text{naive}})}$$

Alternatively, defining $f^*(x) = \mathbb{E}_P(y \mid x)$ to be the conditional mean function, we have the nonparametric R^2:

$$R^2_{\text{nonpar}} = \frac{\mathcal{E}_P(f_{\text{naive}}) - \mathbb{E}_P(f^*)}{\mathcal{E}_P(f_{\text{naive}})}$$

Then, our completeness measure coincides with the ratio $R^2_{\Theta} / R^2_{\text{nonpar}}$.\footnote{We thank an anonymous referee for making this observation.}

\section*{C Experimental Instructions for Section 3.3}

Subjects on Mechanical Turk were presented with the following introduction screen:
D Supplementary Material to Section 3.3

D.1 Robustness

Here we check how our results in Section 3.3 change when the outcome space and error function are changed so that prediction functions are maps \(f : \{H,T\}^7 \rightarrow \{H,T\} \) and the error for predicting the test data set \(\{(s^1_i, \ldots, s^8_i)_{i=1}^n\} \) is defined to be

\[
\frac{1}{n} \sum_{i=1}^n \mathbb{1}(s^8_i \neq f(s^1_i, \ldots, s^7_i)),
\]

i.e. the misclassification rate. We use as a naive benchmark the prediction rule that guesses \(H \) and \(T \) uniformly at random; this is guaranteed an expected misclassification rate of 0.50.

For this problem, we can estimate irreducible error by using a lookup table that learns the modal continuation for each sequence in \(\{0, 1\}^7 \). We find that the completeness of Rabin (2002) and Rabin (2000) relative to this benchmark are respectively 19% and 9%.

<table>
<thead>
<tr>
<th></th>
<th>Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>Rabin (2002)</td>
<td>0.45</td>
<td>19%</td>
</tr>
<tr>
<td>Rabin & Vayanos (2010)</td>
<td>0.475</td>
<td>9%</td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>0.23</td>
<td>1</td>
</tr>
</tbody>
</table>

D.2 Different Cuts of the Data

Initial strings only. We repeat the analysis in Section 3.3 using data from all subjects, but only their first 25 strings. This selection accounts for potential fatigue in generation of the final strings, and leaves a total of 638 subjects and 15,950 strings. Prediction results for our main exercise are shown below using this alternative selection.
Removing the least random subjects. For each subject, we conduct a Chi-squared test for the null hypothesis that their strings were generated under a Bernoulli process. We order subjects by p-values and remove the 100 subjects with the lowest p-values (subjects whose generated strings were most different from what we would expect under a Bernoulli process). This leaves a total of 538 subjects and 24,550 strings. Prediction results for our main exercise are shown below using this alternative selection.

<table>
<thead>
<tr>
<th></th>
<th>Error</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Benchmark</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Rabin & Vayanos (2010)</td>
<td>0.2491</td>
<td>5%</td>
</tr>
<tr>
<td>(0.0008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irreducible Error</td>
<td>0.2326</td>
<td>100%</td>
</tr>
<tr>
<td>(0.0030)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>