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Both the tie-breaking experiment and the regression-discontinuity analysis are partic-

ularly subject to the external validity limitation of selection-X interaction in that the

effect has been demonstrated only for a very narrow band of talent, i.e., only for those

at the cutting score... Broader generalizations involve the extrapolation of the below-X

fit across the entire range of X values, and at each greater degree of extrapolation, the

number of plausible rival hypotheses becomes greater.

– Donald T. Campbell and Julian Stanley (1963; Experimental and Quasi-Experimental

Designs for Research)

1 Introduction

In a regression discontinuity (RD) framework, treatment status changes discontinuously as a func-

tion of an underlying covariate, commonly known as the running variable. Provided conditional

mean functions for potential outcomes given the running variable are reasonably smooth, changes

in outcome distributions at the assignment cutoff must be driven by discontinuities in the likelihood

of treatment. RD identification comes from a kind of virtual random assignment, where small and

presumably serendipitous variation in the running variable across the point of discontinuity manip-

ulates treatment. On the other hand, because the running variable is typically related to outcomes,

claims for unconditional “as-if random assignment” are most credible for observations near the point

of discontinuity. RD methods need not identify causal effects for larger and perhaps more represen-

tative groups of subjects. Our epigraph suggests this point was no less apparent to RD’s inventors

than to today’s RD nonparametricians.

A recent study of causal effects at Boston’s selective public schools – known as “exam schools”

– highlights the possibly local and potentially limiting nature of RD findings. Boston exam schools

choose their students based on an index that combines admissions test scores with a student’s

grade point average (GPA). Abdulkadiroğlu, Angrist, and Pathak (2012) use parametric and non-

parametric RD estimators to capture the causal effects of exam school attendance for exam school

applications with index values in the neighborhood of admissions cutoffs. In this case, nonparamet-

ric RD compares students just to the left and just to the right of each cutoff. For most of these

marginal students, the resulting estimates suggest that exam school attendance does little to boost

achievement.1 But applicants who only barely manage to gain admission to, say, the highly selec-

tive Boston Latin School, might be unlikely to benefit from an advanced exam school curriculum.
1Dobbie and Fryer (2012) report similar results for applicants to New York exam schools.
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Stronger applicants who qualify more easily may benefit more from an elite public school education.

Debates over affirmative action also focus attention on inframarginal applicants, including some

who stand to gain seats and some who stand to lose should affirmative action considerations be

introduced.

Motivated by the question of how exam school attendance affects achievement for inframarginal

applicants, this paper tackles the theoretical problem of how to identify causal effects in an RD

setting for applicants other than those in the immediate neighborhood of admissions cutoffs. Our

first tack extrapolates parametric models for conditional mean functions estimated to the left and

right of cutoffs. As noted by Angrist and Pischke (2009), in a parametric RD world, extrapolation

is easy. In a closely-related approach, inspired by an argument in Dong and Lewbel (2011), we

also use derivatives estimated at the cutoff to extrapolate treatment effects. Dong and Lewbel

exploit the fact that derivatives at the cutoff are non-parametrically identified, though, in practice,

our implementation of derivative-based extrapolation looks a lot like a parametric polynomial. We

therefore see parametric and derivative-based extrapolation as two versions of a common functional-

form-based approach.

As it turns out, functional-form-based estimation procedures fail to produce compelling results

for the empirical questions that motivate our theoretical inquiry. The resulting estimates of exam

school effects away from the cutoff are mostly imprecise and sensitive to the polynomial used for

extrapolation, with or without the implicit weighting induced by a nonparametric bandwidth. We

therefore turn to a conditional independence argument that exploits a key feature of most RD

assignment mechanisms: RD treatments are assigned as a deterministic function of a single observed

covariate, the running variable. The association between running variable and outcome variables is

therefore the only source of omitted variables bias in RD estimates. If, for example, the running

variable were randomly assigned, or otherwise made independent of potential outcomes, we could

ignore it and analyze data from RD designs as if from a randomized trial.

This unique feature of RD assignment leads us to a conditional independence assumption (CIA)

that identifies causal effects by conditioning on covariates besides the running variable, with an eye

to eliminating the relationship between running variable and outcomes. It’s not always possible to

find such good controls, of course, but, as we show below, a straightforward statistical test isolates

promising candidates. As an empirical matter, we show that conditioning on baseline scores and

demographic variables largely eliminates the relationship between running variables and test score

outcomes for 9th grade applicants to Boston exam schools. This finding lays the foundation for a

matching strategy that identifies causal effects for inframarginal applicants.
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Our CIA-driven matching strategy is used here to answer two questions about exam school

treatment effects away from admissions cutoffs. The first concerns the impact of attendance at

Boston’s most selective exam school, the Boston Latin School (BLS), on applicants with running

variable values that put them well above the BLS admissions cutoff. The second question concerns

the impact of attendance at Boston’s least selective exam school, the O’Bryant School of Math and

Science, on applicants who fall a decile or more below the relevant admissions cutoff. The resulting

estimates are mostly in line with RD estimates of causal effects at the cutoff. In particular, both

strategies suggest BLS attendance generates little effect on either math or English achievement,

while O’Bryant may generate some gains, especially in English Language Arts (ELA). The ELA

gains for successful O’Bryant applicants approach one-fifth of a standard deviation. Interestingly,

therefore, those who seem most likely to gain from any expansion in exam school seats are weak

applicants who currently fail to gain admission to Boston’s least selective exam school. Ultra-high

ability applicants, that is, BLS applicants who easily clear the threshold for Boston’s most selective

public school, are likely to do well with our without a BLS experience, at least as far as standardized

test scores go.

2 Motivation: Causal Effects at Boston Exam Schools

Boston’s three exam schools serve grades 7-12. The high-profile Boston Latin School (BLS), which

enrolls about 2,400 students, is the oldest American high school, founded in 1635. BLS is a model

for other exam schools, including New York’s well-known selective high schools. The second oldest

Boston exam school is Boston Latin Academy (BLA), formerly Girls’ Latin School. Opened in 1877,

BLA first admitted boys in 1972 and currently enrolls about 1,700 students. The John D. O’Bryant

High School of Mathematics and Science (formerly Boston Technical High) is Boston’s third exam

school; O’Bryant opened in 1893 and now enrolls about 1,200 students.

The Boston Public School (BPS) system spans a wide range of peer achievement. Like urban

students elsewhere in the U.S., Boston exam school applicants who fail to enroll in an exam school

end up at schools with average SAT scores well below the state average, in this case, at schools close to

the 5th percentile of the distribution of school averages in the state. By contrast, O’Bryant’s average

SAT score falls at about the 40th percentile of the state distribution of averages, a big step up from

the overall BPS average, but not elite in an absolute sense. Successful Boston BLA applicants

find themselves at a school with average score around the 80th percentile of the distribution of

school means, while the average SAT score at BLS is the fourth highest among public schools in
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Massachusetts.

Abdulkadiroğlu, Angrist, and Pathak (2012) investigate the causal effects of exam school atten-

dance in a fuzzy RD setup, where exam school offers are used as instrumental variables for mediating

channels that might explain exam school impacts. Because Boston’s exams are ordered by selectiv-

ity, unsuccessful applicants to BLS and BLA mostly find themselves in another exam school. Still,

applicants admitted to each of the three schools are exposed to marked changes in peer composition.

An O’Bryant offer increases average baseline (4th or 8th grade) peer scores by roughly three-fourths

of a standard deviation, while the peer achievement gain is almost .4� at the BLA cutoff, and about

.7� at the BLS cutoff. First-stages for racial composition also show that exam school offers induce

a 12-24 percentage point reduction in the proportion of non-white classmates at each exam school

cutoff. Peer achievement and racial composition are not the only channels by which an exam school

education might matter, but they are clearly important features of the exam school experiment.

Here, we’re initially interested in the effects of an exam school offer for students away from

admissions cutoffs, without the complication of adjustment for possible mediators. We therefore

begin by focusing on what amounts to the reduced form relation in the Abdulkadiroğlu, Angrist,

and Pathak (2012) analysis. In the background, however, is the idea that mediators like exam

school enrollment and peer composition explain why we might expect an exam school effect in the

first place. Following the discussion of reduced form offer effects, we also consider an extension to

fuzzy RD with causal mediators, in this case, a dummy for exam school enrollment and an ordered

treatment variable that counts years of exam school attendance. Extensions to other mediators,

such as peer composition, are straightforward in our fuzzy CIA framework.

2.1 Data

The analysis file used here comes from a data set constructed by Abdulkadiroğlu, Angrist, and Pathak

(2012). This data set merges BPS enrollment and demographic information with Massachusetts

Comprehensive Assessment System (MCAS) scores. MCAS tests are taken each spring, typically in

grades 3-8 and 10. Baseline (i.e., pre-application) scores for grade 7 applicants are from 4th grade.

Baseline English scores for 9th grade applicants come from 8th grade math and 7th grade ELA tests

(the 8th grade English exam was introduced in 2006). We lose some applicants with missing baseline

scores. For the purposes of our analysis, scores were standardized by subject, grade, and year to

have mean zero and unit variance in the BPS population.

Data on student enrollment, demographics and test scores were combined with the BPS exam

school applicant file. This file records applicants’ current grade and school enrolled, applicants’
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preference ordering over exam schools, and applicants’ Independent Schools Entrance Exam (ISEE)

test scores, along with each exam schools’ ranking of its applicants as determined by ISEE scores

and GPA. These school-specific rankings become the exam school running variables in our setup.

Our initial analysis sample includes BPS-enrolled students who applied for exam school seats in

7th grade from 1997-2008 or in 9th grade from 2001-2007. For reasons explained below, most of the

estimates reported here use 9th grade applicants only. We focus on applicants enrolled in BPS at the

time of application (as opposed to private school students) because we’re interested in how an exam

school education compares to a traditional BPS education. Moreover, private school applicants are

much more likely to remain outside the BPS district and hence out of our sample if they fail to get

an exam school offer. Applicants who apply to transfer from one exam school to another are also

omitted.2

2.2 Exam School Admissions: Defining Sharp Samples

Our sharp CIA-based estimation strategy is predicated on the notion that exam school effects are

a deterministic function of exam school running variables. Exam school running variables are con-

structed by ranking a weighted average of ISEE scores and applicants’ GPAs at the time of appli-

cation. In practice, however, Boston exam school offers take account of student preferences over

schools as well as ISEE scores and GPAs. Students list up to three exam schools for which they wish

to be considered, in order of preference. Admissions offers are determined by a student-proposing de-

ferred acceptance (DA) algorithm, using student preferences and school-specific running variables as

inputs (for more on DA, see Abdulkadiroğlu, Pathak, and Roth (2009), Pathak and Sönmez (2008),

and Pathak and Sönmez (2011)). The DA matching process complicates our RD analysis because

it loosens the direct link between running variables and admissions offers. As in Abdulkadiroğlu,

Angrist, and Pathak (2012), our econometric strategy begins by constructing analysis samples that

restore a deterministic link between exam school offers and running variables, so that offers are sharp

around admissions cutoffs.

Applicants are ranked only for schools to which they’ve applied, so applicants with the same GPA

and ISEE scores might be ranked differently at different schools depending on where they fall in each

school’s applicant pool (each schools also weights ISEE and GPA a little differently). Applicants

are ranked at every school to which they apply, regardless of how they’ve ordered schools. Student-

proposing DA generates offers from student preference and school-specific rankings as follows:

• In round 1: Each student applies to his first choice school. Each school rejects its lowest-ranked
2For more on data, see the appendix to Abdulkadiroğlu, Angrist, and Pathak (2012).
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applicants in excess of its capacity, with the rest provisionally admitted (students not rejected

at this step may be rejected in later steps.)

• In general, at round ` > 1: Students rejected in Round `-1 apply to their next most preferred

school (if any). Each school considers these students and provisionally admitted students from

the previous round together, rejecting the lowest-ranked applicants in excess of capacity from

this combined pool, producing a new provisional admit list (again, students not rejected at

this step may be rejected in later steps.)

The DA algorithm terminates when either every student is matched to a school or every unmatched

student has been rejected by every school he has ranked.

Let ⌧k denote the rank of the last applicant offered a seat at school k; let cik denote student i’s

composite score at school k; and write the vector of composite scores as ci = (ci1, ci2, ci3), where cik

is missing if student i did not rank school k. A dummy variable qi(k) = 1[cik  ⌧k] indicates that

student i qualified for school k by clearing ⌧k (rank and qualification at k are missing for applicants

who did not rank k). Finally, let pik denote student i’s kth choice and represent i’s preference list

by pi = (pi1, pi2, pi3), where pik = 0 if the list is incomplete. Students who ranked and qualified for

a school will not be offered a seat at that school if they get an offer from a more preferred school.

With three schools ranked, applicant i is offered a seat at school k in one of three ways:

• The applicant ranks school k first and qualifies: ({pi1 = k} \ {qi(k) = 1}).

• The applicant doesn’t qualify for his first choice, ranks school k second and qualifies there:

({qi(pi1) = 0} \ {pi2 = k} \ {qi(k) = 1}).

• The applicant doesn’t qualify at his top two choices, ranks school k third, and qualifies there:

({qi(pi1) = qi(pi2) = 0} \ {pi3 = k} \ {qi(k) = 1}).

We summarize the relationship between composite scores, cutoffs, and offers by letting Oi denote

the identity of student i’s offer, with the convention that Oi = 0 means no offer. DA determines Oi

as follows:
Oi =

J
X

j=1

pijqi(pij)

"

j�1
Y

`=1

(1 � qi(pi`))

#

.

The formulation shows that the sample for which offers at school k are deterministically linked

with the school-k composite score, a group we refer to as the sharp sample for school k, is the union

of three sets of applicants:

• Applicants who rank k first, so (pi1 = k)
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• Applicants unqualified for their first choice, ranking k second, so (qi(pi1) = 0 \ pi2 = k)

• Applicants unqualified for their top two choices, ranking k third, so ((qi(pi1) = qi(pi2) =

0) \ pi3 = k).

All applicants are in at least one sharp sample (at the exam school they rank first), but can be in

more than one. For example, a student who ranked BLS first, but did not qualify there, is also in

the sharp sample for BLA if he ranked BLA second.

The sharp RD treatment is an offer dummy, denoted Dik, indicating applicants offered a seat

at school k, defined separately for applicants in each school-specific sharp sample. For the purposes

of empirical work, school-specific ranks are centered and scaled to produce the following running

variable:
rik =

100

Nk
⇥ (⌧k � cik), (1)

where Nk is the total number of students who ranked school k (not the number in the sharp sample).

Scaled school-specific ranks, rik, equal zero at the cutoff rank for school k, with positive values

indicating students who ranked and qualified for admission at that school. Absent centering, scaled

ranks give applicants’ percentile position in the distribution of applicants to school k. Within sharp

samples, we focus on a window limited to applicants with running variables no more than 20 units

(percentiles) away from the cutoff. For qualified 9th grade applicants at BLS, this is non-binding

since the BLS cutoff is closer to the top of the 9th grade applicant distribution than the .8 quantile.

Figure 1a plots offers as a function of rik, confirming the sharpness of offers in sharp samples.

Plotted points in this figure are conditional means for all applicants in a one-unit binwidth along

with a conditional mean function smoothed using local linear regression (LLR). Specifically, for

school k, data in the estimation window were used to construct estimates of Ê[yi|rik], where yi is

the dependent variable and rik is the running variable. The LLR smoother uses the edge kernel,

Kh(rik) = 1
n

�

�

�

rik
h

�

�

�

 1
o

·
⇣

1 �
�

�

�

rik
h

�

�

�

⌘

,

where h is the bandwidth. In a RD context, LLR has been shown to produce estimates with good

properties at boundary points.3

In sharp samples, offers are determined by the running variable, but not all offers are accepted.

Figure 1b plots school-specific enrollment rates around cutoffs, while Table 1 reports some of the as-

sociated summary statistics. Specifically, Table 1 shows LLR estimates of school-specific enrollment
3The bandwidth used here is a version of the DesJardins and McCall (2008) bandwidth (hereafter, DM) studied

by Imbens and Kalyanaraman (2012), who derive optimal bandwidths for sharp RD using a mean square-error loss
function with a regularization adjustment. The DM smoother (which generates somewhat more stable estimates in
our application than the bandwidth Imbens and Kalyanaraman (2012) prefer) is also used to construct nonparametric
RD estimates, below.
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rates in the neighborhood of each school’s cutoff. Among qualifying 7th grade applicants in the

O’Bryant sharp sample, 72% enroll in O’Bryant, while the remaining 28% enroll in a regular BPS

school. 91% of those qualifying at BLA enroll there the following fall, while 93% qualifying at BLS

enroll there. Many applicants not offered seats at one exam school end up in another, mostly the

next school down in the hierarchy of school selectivity. At the same time, Abdulkadiroğlu, Angrist,

and Pathak (2012) document the fact that movement up the ladder of exam school selectivity is

associated with dramatic changes in peer composition.4

2.3 Results at the Cutoff

As a starting point, we recap the RD estimation strategy that Abdulkadiroğlu, Angrist, and Pathak

(2012) use to estimate the effects of exam school offers at the cutoff. Because there are no estimation

issues unique to a particular school, the k subscript indexing schools is omitted going forward, though

running variables and the conditional expectation functions they generate should still be understood

to be school-specific. Thus, Di indicates a generic exam school offer, from a school with running

variable ri.

Our graphical analysis begins with plots of binwise and smoothed (LLR) estimates of Ê[yi|ri],

where yi is a dependent variable and ri is the relevant (school-specific) running variable. These graphs

and the associated estimates of jumps at the cutoff capture causal effects for marginal applicants.

Except in the plots for 10th grade English, which show jumps at two out of three cutoffs, we see

little evidence of marked discontinuities in MCAS scores at school-specific cutoffs. This is apparent

in Figures 2a and 2b for middle school and Figures 3a and 3b for high school.

Parametric and non-parametric RD estimates of the effect of an exam school offer using the

centered and scaled composite ranks are derived from models for potential outcomes as follows. Let

Y1i and Y0i denote potential outcomes in treated and untreated states, with the observed outcome

determined by
yi = Y0i + [Y1i � Y0i]Di.

4A possible concern with the sharp sample strategy originates in the fact that the sharp sample itself may change
discontinuously at the cutoff. Suppose , for example, there are two schools with the same cutoff and a common
running variable. Some students rank two ahead of one and some rank one ahead of two. The sharp sample for
school one includes those who rank 1 first and those who rank two first but are disqualfied there. This second group
appears only to the left of the common cutoff, changing the composition of the sample. In practice, however, Boston
school-specific running variables are distinct and school-specific cutoffs are separated. Not surprsingly, therefore, we
find no evidence of discontinuities in sharp sample partiticipation at each cutoff.
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The conditional mean functions for potential outcomes given the running variable are modeled as:

E[Y0i|ri] = f0(ri)

E[Y1i|ri] = ⇢+ f1(ri),

using polynomials for fj(ri); j = 0, 1.

Substituting these expressions in E[yi|ri] = E[Y0i|ri] + E[Y1i � Y0i|ri]Di, and allowing for the

fact that the estimates pool data from different test years and from different application years and

entry grades, the parametric estimating equation for applicants in the sharp sample of applicants to

school k is

yit = ↵t +
X

`

�`di` + (1 �Di)f0(ri) + Dif1(ri) + ⇢Di + ⌘it, (2)

where the coefficient of interest is ⇢. Equation (2) controls for test year effects, denoted ↵t, and for

the year and grade of application, indexed by ` and indicated by dummies, di`. The effects of the

running variable are controlled by a pair of pth-order polynomials that differ on either side of the

cutoff, specifically
fj(ri) = ⇡1jri + ⇡2jr

2
i + ... + ⇡pjr

p
i ; j = 0, 1. (3)

The benchmark estimates set p = 3.

Non-parametric estimators differ from parametric in three ways. First, they narrow the esti-

mation window when the optimal data-driven bandwidth falls below 20, as it usually does. Non-

parametric estimators also use a tent-shaped edge kernel centered at admissions cutoffs instead of the

uniform kernel implicit in parametric estimation. Finally, non-parametric models control for linear

functions of the running variable only, omitting higher-order terms. The nonparametric estimating

equation is

yit = ↵t +
X

`

�`di` + �0(1 �D)ri + �1Diri + ⇢Di + ⌘it

= ↵t +
X

`

�`di` + �0ri + �⇤Diri + ⇢Di + ⌘it (4)

Non-parametric RD estimates come from a kernel-weighted LLR fit of equation (4), estimated sep-

arately in the sharp sample of applicants to each of Boston’s three exam schools.

Estimates of (2) and (4), reported in Table 2, are mostly small and some are precise enough to

support a conclusion of no effect (estimates that pool applicants to the three schools are more precise;

see Abdulkadiroğlu, Angrist, and Pathak (2012) for details). The statistically significant effects at

Latin School are negative (for example, Latin School effects on 10th grade math and middle school
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ELA). On the other hand, as suggested by the figures, Table 2 shows a statistically significant gain

in 10th grade ELA scores at BLA and O’Bryant. This positive finding emerges even more clearly in

an analysis that distinguishes 7th and 9th grade applicants, as we show below.

2.4 To Infinity and Beyond: Extrapolating Across the Cutoff

Researchers relying on RD to identify causal effects must be willing to extrapolate. This is high-

lighted by Figure 4, which illustrates the identification problem for the effects of BLS attendance

on applicants with running variable values both at and away from the cutoff. The running variable

is the star covariate in any RD scene, but plays a role distinct from that played by covariates in

matching and regression-control strategies. In the latter, we look to comparisons of treated and

non-treated observations conditional on covariates to eliminate omitted variables bias. As Figure

4 highlights, however, in an RD design, there is no value of the running variable at which both

treatment and control subjects are observed. Nonparametric identification comes from infinitesimal

movement across the RD cutoff. In empirical work, nonparametric inference compares applicants

in a small neighborhood to the left of the cutoff to those in a small neighborhood to the right in

an effort to ensure that identification involves only modest extrapolation. Identification of causal

effects away from the cutoff necessarily requires a more substantial extrapolatory leap.

In a parametric setup such as described by the model in (2) and (3), extrapolation is easy though

not necessarily credible. For any relevant value of c, we have

⇢(c) ⌘ E[Y1i � Y0i|ri = c] = ⇢+ ⇡⇤1c + ⇡⇤2c
2 + ... + ⇡⇤pc

p, (5)

where ⇡⇤1 = ⇡11 � ⇡10, and so on. But the notation in (5) buries the extrapolation problem inherent

in identification away from the cutoff: potential outcomes in the treated state are observed for

ri = c > 0, but the value of E[Y0i|ri = c] for positive c is fundamentally counterfactual. The

dotted lines in Figure 4 illustrate two possibilities, implying different causal effects at ri = c. It

seems natural to use observations to the left of the cutoff to pin down functional form, and then

extrapolate this to impute E[Y0i|ri = c]. With enough data, and sufficiently regular conditional

mean functions, f0(c) is identified for all values of c, including those never seen in the data. It’s also

easy to see, however, why this approach may not generate robust or convincing findings.

We experimented with parametric extrapolation for the effects of exam school attendance on the

10th grade math scores of 7th and 9th grade applicants to O’Bryant and BLS. This inquiry revolves

around two focused questions, which also anchor our CIA-based analysis. Specifically, we ask:

1. How would inframarginal low-scoring O’Bryant applicants do if they were lucky enough to
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find seats at O’Bryant; in other words, what if poorly qualified O’Bryant applicants now at a

regular BPS school were given the opportunity to attend O’Bryant?

2. How would inframarginal high-scoring BLS applicants do if their BLS offers were withdrawn;

in other words, what if highly qualified applicants now at BLS had to settle for BLA?

Both questions can be motivated by debates over affirmative action in exam schools. Between

1974 and 1998, Boston exam schools reserved seats for minority applicants. Though quotas are no

longer in place, the role of race in exam school admissions continues to be debated in Boston and

is currently the subject of litigation in New York. The first question above addresses the impact

of exam school attendance on applicants who currently fail to make the cut but might do so with

minority preferences restored. The second question applies to applicants like Julia McLaughlin,

whose 1996 lawsuit ended racial quotas at Boston exam schools. McLaughlin was offered a seat at

BLA, but sued for a seat at BLS, arguing, ultimately successfully, that she was kept out of BLS by

unconstitutional racial quotas. The counterfactual here sends BLS students like McLaughlin back

to BLA.

The unsatisfying nature of parametric extrapolation emerges in Figure 5. This figure shows

imputed counterfactuals for 10th grade math scores using linear, quadratic, and cubic specifications

for fj(ri) in a sample that includes both 7th and 9th grade applicants. These models generate

a wide range of estimates, especially as distance from the cutoff grows. The estimated effect of

BLS attendance 15 units out change sign when the polynomial goes from second to third degree.

This variability is not surprising, perhaps, and consistent with the Campbell and Stanley (1963)

observation that, “at each greater degree of extrapolation, the number of plausible rival hypotheses

becomes greater.” On the other hand, given that f0(ri) looks reasonably linear for ri < 0 and f1(ri)

looks reasonably linear for ri > 0, we might have hoped for results consistent with those from linear

models even when the specification allows something more elaborate.

Panel A of Table 3, which reports estimates and standard errors from the models used to construct

the fitted values plotted in Figure 5, shows that part of the problem uncovered in the figure is

imprecision. Estimates constructed with p = 3 are clearly too noisy to be useful at c = 5 or higher.

Models setting p = 2 generate much more precise estimates of ⇢(c) than when p = 3, though still

fairly imprecise for c � 10. On the other hand, for very modest extrapolation (c = 1), a reasonably

consistent picture emerges. Like RD estimates at the cutoff, this slight extrapolation generates small

positive estimates for O’Bryant and small negative effects at BLS, some on the margin of statistical

significance.5

5The estimates in Table 3 parallel those in Figure 5 and are from models omitting controls for test year and
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Using Derivatives Instead

Dong and Lewbel (2011) propose an alternative to parametric extrapolation based on the insight

that the derivatives of conditional mean functions at the cutoff are nonparametrically identified (a

similar idea appears in Section 3.3.2 of DiNardo and Lee, 2011). Using the fact that

fj(c) ⇡ fj(0) + f 0
j(0) · c, (6)

the necessary conditional mean functions can be approximated for any value of c, though the quality

of the approximation is likely to shrink as c grows.

The components of (6) are consistently estimated by fitting a linear model to fj(ri) in a neigh-

borhood of the cutoff using a data-driven bandwidth. Specifically, the effect of an offer at cutoff

value c can be approximated as
⇢(c) ⇡ ⇢+ �⇤ · c, (7)

with parameters taken from equation (4). The innovation here relative to LLR estimation of (4)

is in the interpretation of the interaction term, �⇤. Instead of a bias-reducing nuisance parameter,

�⇤ is seen here as as identifying a derivative of substantive interest. Note also that fj(c) can be

approximated to higher order by setting p > 1 in 2, while still weighting the LLR minimand with a

data-driven bandwidth to keep the estimation local.

The results of linear extrapolation with local derivative estimates, plotted in Figure 6, seem

mostly like the corresponding linear parametric results plotted in Figure 5. Interestingly, however,

Figure 6 also documents more robustness to the degree of approximation used to estimate effects

to right of the BLS cutoff, with quadratic and cubic results consistently showing no effect for any

positive c. On the other hand, derivative-based extrapolation of O’Bryant effects to the left of the

cutoff appear to be no less sensitive to the choice of p than the corresponding parametric estimates.

This sensitivity emerges is in spite of the fact that Figure 6 offers little evidence of curvature in

conditional mean functions for applicants to either school. The estimates that go with Figure 6,

reported in Panel B of Table 3, suggest once again a big part of the problem here is lack of precision.

Perhaps not surprisingly, treatment effects imputed using local derivative estimates are uniformly

less precise than the corresponding parametric estimates.

application year and grade. Estimates from models with these controls differ little from those reported in the table.
Use of orthogonal polynomials as a model selection device generates no highly significant polynomial coefficients
beyond linear. Still, many of the extrapolated linear estimates seem too imprecise to be useful.
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Related Work

Related discussions of RD identification away from the cutoff include DiNardo and Lee (2011) and

Lee and Lemieux (2010), both of which note that the local interpretation of nonparametric RD

estimates can be relaxed by treating the running variable as random rather than conditioning on

it. In this view, observed running variable values are the realization of a non-degenerate stochastic

process assigning values to individuals of an underlying type. Each type contributes to local-to-cutoff

average treatment effects in proportion to the type’s likelihood of being represented at the cutoff.

Since “type” is an inherently latent construct, the DiNardo-Lee-Lemieux interpretation doesn’t

seem to offer concrete guidance as to how general any particular RD estimate might be. The

distinction between fixed and random running variables parallels that between inference with fixed

and stochastic regressors in classical regression theory. In practice, this distinction offers researchers

the opportunity to fix or ignore the marginal distribution of regressors observed in any particular

sample. The empirical consequences of such regressor conditioning boil down to a modest adjustment

of standard errors.6 At the same time, Lee and Lemieux (2010, p. 298-299) note that observed

covariates may provide a useful lever for the RD extrapolation problem: “It remains to be seen

whether or not and how information on the reliability [of a test-based running variable], or a second

test measurement, or other covariates that can predict assignment could be used in conjunction with

the RD gap to learn about average treatment effects for the overall population.” The next section

takes up this challenge.7

3 Using Conditional Independence

RD designs take the mystery out of treatment assignment. In sharp samples of applicants to Boston

exam schools, we know that offers at a given school and applicant cohort are determined by

Di = 1[ri > 0].

6See Abadie, Imbens, and Zheng (2011) for a recent discussion of this point.
7Also noteworthy is the study by Jackson (2010), which tackles inframarginal RD identification by exploiting

cross-sectional variation in cutoffs. Jackson identifies inframarginal exam school effects at schools in Trinidad and
Tobago by exploiting the fact that students with the same running variable (a test score) can end up at different
schools depending on their preferences. Effects away from the cutoff are identified by differences-in-differences style
contrasts between infra-marginal high- and low-scoring applicants with different rankings. A differences-in-differences
approach might also work for Boston exam schools, as here too offers are partly determined by student preferences.
We leave application of this approach to Boston exam schools for future work as the econometric issues seem distinct
from those raised by the conditional independence framework detailed below.
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This signal feature of the RD design implies that failure to control for ri is the only possible source

of omitted variables bias.8

Armed with precise knowledge of the source of omitted variables bias, we propose to identify

causal effects by means of a conditional independence argument. In sharp samples, Boston exam

school offers are determined by measures of past achievement, specifically ISEE scores and students’

GPAs. But these are not the only measures of lagged achievement available. In addition to demo-

graphic variables that are highly predictive of achievement, we observe (pre-application) scores on

MCAS tests taken in 4th grade and, for high school applicants, in 7th or 8th grade. Conditioning

on this rich and relevant set of controls may serve to break the link between running variables and

outcomes.

Gather the set of available controls in a covariate vector, xi. Our conditional independence

assumption (CIA) asserts that:

CONDITIONAL INDEPENDENCE ASSUMPTION (CIA)

E[Yji|ri, xi] = E[Yji|xi]; j = 0, 1

In other words, the CIA says that potential outcomes are mean-independent of the running variable

conditional on xi. This strong assumption identifies any counterfactual average of interest. For

example, the average of Y0i to the right of the cutoff is:

E[Y0i|Di = 1] = E{E[Y0i|xi, Di = 1]|Di = 1} = E{E[yi|xi, Di = 0]|Di = 1}, (8)

while the average treatment effect on the treated is identified by a matching-style estimand:

E[Y1i � Y0i|Di = 1] = E{E[yi|xi, Di = 1] � E[yi|xi, Di = 0]|Di = 1}.

3.1 Testing the CIA

CIA-type assumptions break the link between treatment status and potential outcomes, opening

the door to identification of a wide range of average causal effects (as in Heckman, Ichimura, and

Todd (1998) and Dehejia and Wahba (1999)). Have we thrown RD out the window in favor of

a conventional matching style conditional independence argument? A key distinction between the

CIA assumption invoked here and conventional matching is exploitation of the deterministic nature

of the RD assignment mechanism.
8Cook (2008) credits Goldberger (1972a) and Goldberger (1972b) for showing that with selection on a pretest,

regression control for the pretest eliminates omitted variables bias. Goldberger credits Barnow (1972) and Lord and
Novick (1972) for similar insights.

14



Knowledge of the assignment mechanism is key to our approach because it guides specification

of the covariate vector, xi. By virtue of the conditional independence relation implied by the CIA,

we have:
E[Y1i|ri, xi, ri > 0] = E[Y1i|xi] = E[Y1i|xi, ri > 0],

so we should expect that
E[yi|ri, xi, Di = 1] = E[yi|xi, Di = 1], (9)

to the right of the cutoff. Likewise, the CIA also implies:

E[Y0i|ri, xi, ri < 0] = E[Y0i|xi] = E[Y0i|xi, ri < 0],

suggesting we look for
E[yi|ri, xi, Di = 0] = E[yi|xi, Di = 0], (10)

to the left of the cutoff.

Regressions of outcomes on xi and the running variable on either side of the cutoff provide a

natural test for (9) and (10). These testable implications give the CIA a big plausibility boost

when substantiated, while the CIA strategy seems implausible when they fail. Mean independence

is stronger than regression independence but regression testing procedures can easily embed flexible

models that approximate conditional mean functions. As always, researchers face a trade-off between

power and specification error as the conditional mean parameterization becomes more elaborate,

a fact that favors parsimony. In practice, simple models seem likely to provide the most useful

evidence since any simple model is likely to fail conditional independence tests in the face of strong

dependence between outcomes and running variable, while more elaborate specifications with many

free parameters may come in under the radar when parameter estimates are poorly determined.

Concerns about power notwithstanding, the CIA is demanding and may be hard to satisfy. A

weaker and perhaps more realistic version limits the range of running variable values for which the

CIA is maintained. A bounded conditional independence assumption asserts that the CIA holds

only over a limited range, as follows:

BOUNDED CONDITIONAL INDEPENDENCE ASSUMPTION (BCIA)

E[Yji|ri, xi, | ri |< d] = E[Yji|xi, | ri |< d]; j = 0, 1

Bounded CIA says that potential outcomes are mean-independent of the running variable conditional

on xi, but only in a d-neighborhood of the cutoff. Testing BCIA, we look for

E[yi|ri, xi, 0 < ri < d] = E[yi|xi, 0 < ri < d] (11)
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to the right of the cutoff, and

E[yi|ri, xi,�d < ri < 0] = E[yi|xi,�d < ri < 0] (12)

to the left.

The BCIA is reminiscent of nonparametric RD identification in that it leads to estimation of

casual effects inside an implicit bandwidth around the cutoff. An important distinction, however, is

the absence of any promise to make the d-neighborhood smaller as the sample size grows. Likewise,

there’s no parallel effort to choose bandwidth or local polynomial smoothers with an eye on bias-

variance trade-offs. Researchers need only choose values of d that are large enough to be useful or

interesting in the application at hand. The largest value of d that appears to satisfy BCIA defines

the playing field for CIA-based matching.

CEI vs CIA

A natural alternative to the CIA asserts mean independence of individual causal effects, instead of

potential outcomes. In an RD context, this weaker Conditional Effect Ignorability (CEI) assumption,

similar to the one introduced by Angrist and Fernandez-Val (2010), says:

CONDITIONAL EFFECT IGNORABILITY (CEI)

E[Y1i � Y0i|ri, xi] = E[Y1i � Y0i|xi]

CEI means that - conditional on xi - we can ignore the running variable when computing aver-

age causal effects, even if potential outcomes are not marginally mean-independent of the running

variable.9

CEI has much of the identifying power of the CIA. In particular, given CEI, the effect of treatment

on the treated can be written:

E[Y1i � Y0i|Di = 1] = E{E[yi|xi, ri = 0+] � E[yi|xi, ri = 0�]|Di = 1}, (13)

where E[yi|xi, ri = 0+] and E[yi|xi, ri = 0�] denote right- and left-hand limits of conditional-on-xi
conditional expectation functions for outcomes at the cutoff. In other words, the CEI identifies causal

effects away from the cutoff by reweighting nonparametrically identified conditional-on-covariates

effects at the cutoff.
9Lewbel (2007) invokes a similar assumption in a setup using exclusion restrictions to correct for classifcation error

in treatment status.

16



The CIA is stronger than CEI and therefore more powerful. In practice, CIA-based estimates also

seem likely to be more useful than those derived from equation (13). For one thing, the CIA can be

expected to generate more precise estimates since, not being limited to identification near the cutoff,

it uses more data. Second, CEI relies on the ability to find a fair number of observations near the

cutoff for all relevant covariate values, a tall order in many empirical applications. Finally, the CEI

framework lacks the strong testable assumptions that fall out of the CIA. Conditional independence

tests based on (11) and (12) make CIA-based estimation credible. Relying as it does on a kernel

of covariate-specific nonparametric estimates at the cutoff, the CEI is hard to assess. Finally, as a

practical matter, our experiments with CEI estimators for Boston exam school applicants failed to

produce estimates that seem precise enough to be useful.

3.2 CIA-based Estimators

We economize on notation by omitting explicit conditioning on running variable values in the [�d, d]

interval. All expectations in this section should be understood to be conditional on the largest value

of d that satisfies BCIA. Where relevant, the constant c is assumed to be no bigger than d in absolute

value.

At specific running variable values, CIA leads to the following matching-style estimand:

E[Y1i � Y0i|ri = c] =

E{E[yi|xi, Di = 1] � E[yi|xi, Di = 0]|ri = c} (14)

Alternately, on the right-hand side of the cutoff, we might consider causal effects averaged over all

positive values up to c, a bounded effect of treatment on the treated:

E[Y1i � Y0i|0 < ri  c] =

E{E[yi|xi, Di = 1] � E[yi|xi, Di = 0]|0 < ri  c} (15)

Paralleling this on the left, the bounded effect of treatment on the non-treated is:

E[Y1i � Y0i|� c  ri < 0] =

E{E[yi|xi, Di = 1] � E[yi|xi, Di = 0]|� c  ri < 0} (16)

We consider two sorts of estimators of (14), (15) and (16). The first is the linear reweighting

estimator discussed by Kline (2011). The second is a version of the Hirano, Imbens, and Ridder

(2003) propensity score estimator based on Horvitz and Thompson (1952). We also use the esti-

mated propensity score to document common support, as in Dehejia and Wahba’s (1999) pioneering
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propensity score study of the effect of a training program on earnings.

Kline’s reweighting estimator begins with linear models for conditional means, which can be

written:

E[yi|xi] = x0i�0 (17)

E[yi|xi] = x0i�1

Linearity is not really restrictive since the parametrization for x0i�j can be rich and flexible. Substi-

tuting in (14), we have

E[Y1i � Y0i|ri = c]

= (�1 � �0)
0E[xi|ri = c], (18)

with similar expressions based on (15) and (16).

Let �(xi) ⌘ E[Di|xi] denote the propensity score. Our propensity score weighting estimator

begins with the observation that the CIA implies

E



yi(1 �Di)

1 � �(xi)
|xi

�

= E[Y0i|xi]

E



yiDi

�(xi)
|xi

�

= E[Y1i|xi]

Bringing these expressions inside a single expectation and over a common denominator, the treatment

effect on the treated for those with 0 < ri < c is given by

E[Y1i � Y0i|0 < ri  c] = E

⇢

yi[Di � �(xi)]

�(xi) [1 � �(xi)]
· P [0 < ri  c|xi]

P [0 < ri  c]

�

. (19)

Similar formulas give the average effect for non-treated applicants and average effects at specific,

possibly narrow, ranges of running variable values. Note that implementation of (19) requires a

model for the probability P [0 < ri  c|xi] as well as for �(xi). It seems natural to use the same

parameterization for both. If c = d, the estimand in (19) simplifies to

E[Y1i � Y0i|Di = 1] = E

⇢

yi[Di � �(xi)]

[1 � �(xi)]E[Di]

�

,

as in Hirano, Imbens, and Ridder (2003).10

10The expectations and conditioning here refer to distributions in the sharp sample of applicants for each school.
Thus, treatment effects on the treated are for the treated applicants in a school-k sharp sample. Assuming the running
variable is continuous, when the estimand targets average effects at r

i

= c, the probabilities P [r
i

= c|x
i

] and P [r
i

= c]
needed for (19) become densities.
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4 The CIA in Action at Boston Exam Schools

We continue to focus on counterfactual scenarios involving inframarginal unqualified O’Bryant ap-

plicants and highly qualified applicants admitted to BLS. The sample here is limited to 9th grade

applicants because only for this group do we have close-to-outcome-date baseline scores. In combi-

nation with demographic control variables and 4th grade scores, 7th or 8th grade MCAS scores do a

good job of eliminating the running variable from outcome conditional mean functions. By contrast,

the most recent lagged test score available for 7th grade applicants is a 4th grade MCAS score. For

7th grade applicants, the available conditioning variables fail to satisfy bounded CIA for empirically

interesting values of d.

As a benchmark, Figures 7a and 7b plot 10th grade scores against school-specific running vari-

ables in the sample of 9th grade applicants; the corresponding RD estimates of effects at the cutoff

are reported in Table 4. Consistent with the results for all applicants reported in Table 2, the esti-

mates and figures for 9th grade applicants offer little evidence of a gain in scores at the BLS cutoff.

On the other hand, both figures and estimates point to a possible score gains for marginal O’Bryant

applicants, especially in English. The nonparametric ELA estimate at the O’Bryant cutoff, reported

in column 4 of Table 4, is a reasonably precise .17�.

Bounded CIA tests for 9th grade applicants come from models that control for 4th and 7th grade

ELA scores and 4th and 8th grade math scores, along with indicators of special education status,

limited English proficiency, eligibility for free or reduced price lunch, race (black/Asian/Hispanic)

and sex.11 The estimation windows set d equal to 10, 15, and 20. Test results, reported in Table 5,

offer only scattered evidence of CIA violations, even where d = 20. Results for d = 10 show mostly

small coefficients, none significantly different from zero, while results with d = 15 produce only one

rejection. Results for d = 20 are more worrying, but only one of three rejections here is stronger than

marginal. This scattered pattern of violations allows us to check for changes in impact estimates

across subgroups where the CIA is in doubt. For example, the marginally significant .005 in column

2 when estimated in a window of width 20 (for the math scores of treated O’Bryant applicants)

disappears when the window is narrowed. When findings for this group are similar in estimation

windows of 10, 15 and 20, bias from failure of the CIA seems unlikely. The coefficients in the last

column of Table 5, for the ELA scores of admitted BLS applicants, are large enough to be worrying

even if not significantly different from zero. Fortunately, however, the corresponding test results for

math (reported in column 4) are much smaller.12

11Results with quadratic terms in lagged scores and cross-subject interaction terms are similar.
12The unchanging sample size to the right of the BLS cutoff as d shrinks reflects the high BLS admissions threshold
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Columns 1-4 Table 6 report linear reweighting estimates of E[Y1i � Y0i|0 < ri < d] for BLS

applicants and E[Y1i � Y0i|� d < ri < 0] for O’Bryant applicants, in samples that set d equal to 10,

15, and 20. The estimand for BLS is

E[Y1i � Y0i|0 < ri  d]

= (�1 � �0)
0E[xi|0 < ri  d], (20)

while that for O’Bryant is

E[Y1i � Y0i|� d  ri < 0]

= (�1 � �0)
0E[xi|� d  ri < 0], (21)

where �0 and �1 are as defined in (17). The BLS estimand is an average effect of treatment on the

treated, since treated observations in the estimation window must have positive running variables.

Similarly, the O’Bryant estimand is an average effect of treatment on the non-treated.

As with RD estimates at the cutoff, the CIA results in Table 6 show no evidence of a BLS

achievement boost. At the same time, results for inframarginal unqualified O’Bryant applicants

offer some evidence of gains, especially in ELA. The math estimates range from .08� when d = 10

to .16� when d = 20, though only those for d = 15 and d = 20 are significantly different from zero.

Results for ELA are clear cut, ranging from .18� to .2�, and significantly different from zero for

each choice of d. The CIA estimates are remarkably consistent with the corresponding RD estimates

at the cutoff: compare, for example, the estimates in columns 1 and 3 of Table 6 to nonparametric

O’Bryant RD estimates at the cutoff of .12� (SE=.07) in math and .17� (SE=.07) for ELA.

Figure 8 fills in CIA-based estimates over a range of cutoff values by plotting linear reweighting

estimates of E[Y1i|ri = c] and E[Y0i|ri = c] for all values of c in the [�20, 20] interval. To the left of

the O’Bryant cutoff, the estimates of E[Y0i|ri = c] are essentially fitted values for observed outcomes

(the line labelled “Estimated” in the figure) while the estimates of E[Y1i|ri = c] are effectively an

extrapolation and labelled accordingly. To the right of the BLS cutoff, the estimates of E[Y1i|ri = c]

are fitted values while the estimates of E[Y0i|ri = c] are an extrapolation. The conditional means

in this figure were constructed by plugging individual values of xi into (17) and smoothing the

resulting individual-level treatment effects using local linear regression.13 The figure presents a

picture consistent with that arising from the estimates in Table 6. In particular, the extrapolated

BLS effects are small (for ELA) or noisy (for math), while the O’Bryant extrapolation reveals a

for 9th grade applicants; setting d = 10 is not binding for BLS on the right.
13This uses the edge kernel with Stata’s default bandwidth.
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remarkably stable increase in ELA scores away from the cutoff. The extrapolated effect of O’Bryant

offers on math scores appears to increase modestly as a function of distance from the cutoff, a finding

probed further below.

4.1 Propensity Score Estimates

CIA-based identification strategies for the effect of exam school offers seem like a good application

for propensity score estimators since the covariates generating conditional independence include mul-

tiple continuously distributed control variables. These features of the data complicate full covariate

matching. Our logit model for the propensity score uses the same control variables and parametriza-

tion as were used to construct the tests in Table 5 and the reweighting estimates in columns 1-4 of

Table 6.14

Estimated score distributions for treated and control observations exhibit a substantial degree

of overlap. This is documented in Figure 9, which plots the histogram of estimated scores for

treated and control observations above and below a common horizontal axis. Not surprisingly, the

larger sample for O’Bryant generates more overlap than the sample for highly selective BLS. Most

score values for untreated O’Bryant applicants fall below about .6. Each decile in the O’Bryant

score distribution contains at least a few treated observations, however; above the first decile, there

appear to be more than enough for accurate inference. By contrast, few non-treated BLS applicants

have covariate values for which a BLS offer is highly likely. We should therefore expect the BLS

counterfactual to be estimated less precisely than that for O’Bryant.

It’s also worth noting that because the sample contains no BLS controls with propensity score

values above .8 (or .85 in one window), the BLS estimates fail to reflect outcomes for applicants

with admissions probabilities above this value. Figure 9 documents a related and probably unsur-

prising feature of propensity score strategies: the data are likely to be thinnest where we need them

most. The O’Bryant treatment effect on the non-treated implicitly compares the many non-treated

applicants with low scores to the fewer (though still plentiful) treated O’Bryant applicants with

scores in this range. The BLS treatment effect on the treated compares a modest number of treated

applicants, more or less uniformly distributed across score values, with the corresponding untreated

observations, of which many more are low-scoring than high.

Concerns about limited covariate support notwithstanding, the propensity-score-weighted esti-

mates reported in columns 5-8 of Table 6 are remarkably consistent with the linear reweighting

estimates in columns 1-4 of the table. In particular, the estimates here suggest most BLS students
14Propensity score models omit test date dummies because application and test dates are nearly collinear.
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would lose little if they had had to go to BLA instead, while low scoring O’Bryant applicants might

enjoy substantial gains in ELA were they given the chance to attend O’Bryant. At the same time,

the BLS propensity score estimates in columns 6 and 8 are highly imprecise. BLS propensity score

estimates are not only much less precise than the corresponding O’Bryant estimates, the standard

errors here are two-four times larger than those generated by linear reweighting for the same samples

of applicants. Linear reweighting looks like an attractive procedure in this context.15

5 Fuzzy CIA Models

Effects of O’Bryant offers on the ELA scores of 9th grade applicants are reasonably stable as distance

from the cutoff grows. By contrast, the effect of O’Bryant offers on math scores appears to increase

as window width or distance from the cutoff increases. In a window of width 10, estimated O’Bryant

math effects are not significantly different from zero, while the estimate in a window of width 20

is fifty percent larger and significant (.13� with a standard error of .05�). Taken at face value,

this finding suggests that the weakest 9th grade applicants stand to gain the most from O’Bryant

admission, an interesting substantive finding. Omitted variables bias (failure of CIA) seems unlikely

to explain this pattern since the relevant conditional independence tests, reported in columns 1 and

5 of Table 5, show only one (marginally significant) violation.

An alternative explanation for the pattern of O’Bryant math estimates plotted in Figure 8

begins with the observation that exam school offers affect achievement by facilitating exam school

enrollment. Assuming, as seems plausible, that exam school offers affect outcomes solely through

enrollment (that is, other causal channels, such as peer effects, are downstream to enrollment),

the estimates in Table 6 can be interpreted as the reduced form for an instrumental variables (IV)

procedure in which exam school enrollment is the endogenous variable. The magnitude of reduced

form comparisons is easier to interpret when the relevant first stage estimates scale these effects. If

the first stage changes as a function of the running variable, comparisons of estimates across running

variable values are informative only after appropriate rescaling. In principle, IV methods make the

appropriate adjustment. A subtlety here, however, is how to interpret IV estimates constructed

under the CIA in a world of heterogeneous potential outcomes, where the average causal effects

identified by IV potentially vary with the running variable.
15The standard errors reported in this table use a bootstrap with 500 replications. Bootstrap standard errors provide

asymptotically valid confidence intervals for estimators like (19) since, as note by Hirano, Imbens, and Ridder (2003),
the propensity-score-weighting estimator is asymptotically linear. As noted at the end of Section 3.1, estimates based
on CEI instead of CIA are imprecise. Still, the general pattern is similar, suggesting positive effects at O’Bryant, and
nothing at BLS.
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We estimate and interpret the causal effects of exam school enrollment by adapting the causal

IV framework outlined in Abadie (2003). This framework allows for unrestricted treatment effect

heterogeneity while accommodating covariates without functional form restrictions. The starting

point is notation for potential treatment assignments, W0i and W1i, indexed against the instrument,

in this case, exam school offers indicated by Di. Thus, W0i indicates (eventual) exam school enroll-

ment among those not offered a seat, while W1i indicates (eventual) exam school enrollment among

those offered a seat. Observed enrollment status is

Wi = W0i(1 �Di) + W1iDi.

The core identifying assumption in our IV framework is a generalized version of CIA:

GENERALIZED CONDITIONAL INDEPENDENCE ASSUMPTION (GCIA)

(Y0i, Y1i,W0i,W1i) q rik | xi

GCIA can be assumed to hold in a d�neighborhood of the cutoff as with BCIA.

The GCIA generalizes simple CIA in three ways. First, GCIA imposes full independence instead

of mean independence; this seems innocuous since any behavioral or assignment mechanism satis-

fying the latter is likely to satisfy the former. Second, along with potential outcomes, the pair of

potential treatment assignments (W0i and W1i) is taken to be conditionally independent of the run-

ning variable. Finally, GCIA requires joint independence of all outcome and assignment variables,

while the CIA in Section 3 requires only marginal (mean) independence. Again, its hard to see why

we’d have the latter without the former.

5.1 Fuzzy Identification

As in Section 3.2, all expectations below and in the proofs of the theorems in this section should be

understood to be conditional on the largest value of d that satisfies GCIA.

Local Average Treatment Effects

In a local average treatment effects (LATE) framework with Bernoulli treatment and Bernoulli

instruments, the subset of compliers consists of individuals whose treatment status can be changed

by changing the instrument. This group is defined here by W1i > W0i. A key identifying assumption

in the LATE framework is monotonicity : the instrument can only make treatment more or less

likely. Assuming that the instrument Di satisfies monotonicity with W1i � W0i, and that for some

the inequality is strong so there is a first-stage, the LATE theorem (Imbens and Angrist, 1994) tells
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us that E[yi|Di = 1] � E[yi|Di = 0]

E[Wi|Di = 1] � E[Wi|Di = 0]
= E[Y1i � Y0i|W1i > W0i]

In other words, a simple Wald-type IV estimator captures average causal effects on exam school

applicants who enroll when they receive an offer but not otherwise.

Abadie (2003) generalizes the LATE theorem by showing that the expectation of any measurable

function of treatment, covariates, and outcomes is identified for compliers. This result opens the

door to IV estimation using a wide range of causal models, including nonlinear models such as those

based on the propensity score. Here, we adapt the Abadie (2003) result for a fuzzy RD setup that

identifies causal effects away from the cutoff. To make this adaptation, we need a conditional first

stage in addition to the GCIA and monotonicity:

CONDITIONAL FIRST STAGE

0 < P [Di = 1|xi] < 1] and P [W1i = 1|xi] > P [W0i = 1|xi] a.s.

Given GCIA, monotonicity, and a conditional first stage, the appendix proves the following theo-

rem:

THEOREM 1 (FUZZY CIA EFFECTS)

E[Y1i � Y0i|W1i > W0i,0 < ri  c]

=
1

P [W1i > W0i|0 < ri  c]
E

⇢

 (Di, xi)
P [0 < ri  c|xi]
P [0 < ri  c]

yi

�

(22)

for  (Di, xi) ⌘
Di � �(xi)

�(xi)[1 � �(xi)]
(23)

This theorem leads to estimators that capture causal effects for compliers with running variable

values falling into any range over which there’s common support.16

At first blush, it’s not immediately clear how to identify the conditional compliance probability,

P [W1i > W0i|0 < ri  c], appearing in the denominator of (22). Because everyone to the right of the

cutoff is treated, there would seem to be no lever available to construct compliance rates conditional

on 0 < ri  c (in the original LATE framework, the IV first stage measures the probability of

compliance). However, paralleling an argument in Abadie (2003), the appendix shows that

P [W1i > W0i|0 < ri  c] = E

⇢

 (Wi, Dixi)
P [0  ri  c | xi]
P [0  ri  c]

�

(24)

16The weighting function in the numerator is much like that used to construct average treatment effects in Hirano,
Imbens, and Ridder (2003) and Abadie (2005). Extensions of the theorem along the lines suggested by Theorem 3.1
in Abadie (2003) identify the marginal distribution of Y0i and Y1i.
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where

 (Wi, Dixi) = 1 � Wi (1 �Di)

1 � �(xi)
� (1 �Wi)Di

�(xi)
.

Average Causal Response

The causal framework leading to Theorem 1 is limited to Bernoulli endogenous variables. For many

applicants, however, the exam school treatment is mediated by years of potential attendance rather

than a simple go/no-go decision. We develop a fuzzy CIA framework for ordered treatments by

adapting a result from Angrist and Imbens (1995). This framework relies on potential outcomes

indexed against an ordered treatment, wi. In this context, potential outcomes are denoted by Yji

when wi = j, for j = 0, 1, 2, ..., J . Assume also that potential treatments, w1i and w0i, satisfy

monotonicity with w1i � w0i and that there’s a conditional first stage:

E[w1i|xi] 6= E[w0i|xi]

The Angrist and Imbens (1995) Average Causal Response (ACR) theorem describes the Wald

IV estimand as follows:

E [yi | Di = 1] � E [yi | Di = 0]

E [wi | Di = 1] � E [wi | Di = 0]
=

X

j

⌫jE [Yji � Yj�1,i | w1i � j > w0i]

where

⌫j =
P [w1i � j > w0i]

P

` P [w1i � ` > w0i]

=
P [wi  j | Di = 0] � P [wi  j | Di = 1]

E [wi | Di = 1] � E [wi | Di = 0]

In other words, a simple Wald-type IV estimator captures a weighted average of the unit causal

treatment effects for compliers whose treatment status is moved by the instrument from below j to

above j. The weights, given by the impact of the instrument on the CDF of the endogenous variable

at each point, are positive and sum to one. The numerator here captures the extent to which the

instrument shifts the distribution of potential treatments at each point of support.

The GCIA assumption allows us to adapt the Angrist and Imbens (1995) result to identify ACR

away from the cutoff in a fuzzy RD setup with an ordered treatment. The appendix proves the

following:

THEOREM 2 (FUZZY AVERAGE CAUSAL RESPONSE)
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E {E [yi | Di = 1, xi] � E [yi | Di = 0, xi] | 0  ri  c}
{E [wi | Di = 1, xi] � E [wi | Di = 0, xi] | 0  ri  c}
=

X

j

⌫jcE [Yji � Yj�1,i | w1i � j > w0i, 0  ri  c] (25)

where

⌫jc =
P [w1i � j > w0i | 0  ri  c]

P

` P [w1i � ` > w0i | 0  ri  c]
(26)

Theorem 2 says that a Wald-type estimator constructed by averaging covariate-specific first-stages

and reduced forms can be interpreted as a weighted average causal response for compliers with

running variable values in the desired range. The weights applied to each incremental average

causal response, E [Yji � Yj�1,i | w1i � j > w0i, 0  ri  c] , are given by the conditional probability

the instruments moves the ordered treatment through the point at which the increment is evaluated.

In practice, we estimate the left hand side of (25) by fitting linear models to the reduced form and

first stage using a version of Kline’s (2011) reweighting procedure. The fuzzy reweighting procedure

works as follows: Estimate linear reduced forms based on (17); use these estimates to construct the

desired average reduced form effect as in (20) and (21); divide by a similarly constructed average

first stage.17 The same procedure can be used to estimate (25) for a Bernoulli treatment like Wi,

in which case the average causal response defined by Theorem 2 becomes the same average causal

effect identified by Theorem 1.

5.2 Fuzzy Estimates

We estimated fuzzy enrollment effects to the left of the O’Bryant cutoff and to the right of the BLS

cutoff in windows setting d equal to 10, 15 and 20. The enrollment first stage changes remarkably

little as distance from the cutoff grows. This can be seen columns 1-4 of Table 7, which report

estimates of the effect of exam school offers on exam school enrollment, constructed separately for

O’Bryant and BLS applicants using equation (24). The propensity score model is the same as

that used to construct the estimates in Table 6 (Table 7 shows separate first stage estimates for

the math and ELA samples, which differ slightly). Given this stable first stage, its unsurprising

that the estimates of E[Y1i � Y0i|W1i > W0i, 0 < ri  d], reported in columns 5-8 of the table,

change qualitatively little as a function of d. The pattern here is consistent with that in Table 6,

showing small and statistically insignificant effects at BLS, with evidence of large effects at O’Bryant.

Estimates of O’Bryant effects on ELA are large, ranging from an impressive gain of .37� when d = 20,
17Specifically, let �0 be the main effect of D

i

and let �1 be the vector of interactions with x

i

in a first stage regression
of w

i

on D

i

, x

i

, and D

i

x

i

. The denominator of (25) is �0 + �

0
1µxc

, where µ

xc

= E[x
i

|0  r

i

 c].
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to a still-substantial gain of .27� when the window is half as wide.

The gains for inframarginal applicants who enroll at O’Bryant are perhaps too large to be credible

and may signal failure of the underlying exclusion restriction. Not everyone who starts in an exam

school completes their schooling there, so we’d like to adjust for years of exam school exposure. We

therefore treat years of exam school enrollment as the endogenous variable and estimate the ACR

parameter on the left-hand side of equation (25), using the modified Kline reweighting procedure

described above. The covariate parameterization used to construct both reduced form and first stage

estimates is the same as that used to construct the sharp estimates in Table 6.

The first stage estimates for average causal response, reported in columns 1-4 of Table 8, indicate

that successful BLS applicants spend about 1.8 years in BLS between application and test date, while

successful O’Bryant applicants spend about 1.4 years at O’Bryant between application and test date.

The associated 2SLS estimates, reported in columns 5-8 of the table, are in line with those in Table

7, but considerably more precise. For example the effect of a year of BLS exposure on ELA scores

is estimated to be no more than about .04, with a standard of roughly the same magnitude. This

compares with estimates of about the same size in column 8 of Table 7, but standard errors for the

latter are five or more times larger. The precision gain here comes from linearity of the estimator and

not the change in endogenous variable, paralleling precision gains seen in the switch from propensity

score to linear reweighting to construct the sharp estimates in Table 6. The estimate ELA effects

at O’Bryant consistently suggest gains of about .14� per year of exam school exposure, a finding

that’s more stable across window width than the Bernoulli estimates in column 7 of Table 7. This

suggests that some of the variability in the Table 7 estimates comes from changes in the underlying

first stage for years of enrollment in column 3 of Table 8. At the same time, the estimated O’Bryant

math gains in column 5 of Table 8 still seem to fade in a narrower window, the same pattern seen

in Tables 6 and 7.

6 Summary and Directions for Further Work

RD estimates of the effect of an offer at Boston exam schools generate little evidence of an achieve-

ment gain for most applicants on the margin of admission, but these results need not be relevant for

applicants with running variable values well above or well below admissions cutoffs. We therefore

develop RD-inspired identification strategies for causal effects away from the cutoff. Parametric

extrapolation seems like a natural first step, but this generates unsatisfying estimates of the effects

of exam school offers, mostly because many of the resulting estimates are too imprecise to be useful
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and sensitive to functional form. We therefore turn to identification strategies based on a conditional

independence assumption that focuses on the running variable.

A key insight emerging from the RD framework is that the only source of omitted variables bias

is the running variable. Our conditional independence assumption makes the running variable ignor-

able, that is, independent of potential outcomes, by conditioning on other predictors of outcomes.

When the running variable is ignorable, treatment is ignorable. The conditional independence as-

sumption invoked here has strong testable implications that are easily checked. Specifically, the CIA

implies that in samples limited to either treated or control observations, regressions of outcomes

on the running variable and the covariate vector supporting CIA should show no running variable

effects. A modified or bounded version of the CIA asserts that this conditional independence relation

holds only in a neighborhood of the cutoff.

Among 9th grade applicants to the O’Bryant school and Boston Latin School, bounded condi-

tional independence appears to hold over a reasonably wide interval. Importantly, the conditioning

variables supporting this result include 7th or 8th grade and 4th grade MCAS scores, all lagged

versions of the 10th grade outcome variable. Lagged middle school scores in particular seems like a

key control, probably because relatively recent lags are a powerful predictor of future scores. Lagged

outcomes are better predictors, in fact, than the running variable, which is a composite constructed

from applicants’ GPAs and a distinct exam school admissions test.

Results based on the CIA suggest that inframarginal high-scoring BLS applicants gain little

(in terms of achievement) from BLS attendance, a result consistent with the RD estimates of BLS

effects at the cutoff reported in Abdulkadiroğlu, Angrist, and Pathak (2012). At the same time,

CIA-based estimation using both linear and propensity score models generate robust evidence of

strong gains in English for unqualified inframarginal O’Bryant applicants. Findings showing 10th

grade ELA gains also emerge from the RD estimates reported by Abdulkadiroğlu, Angrist, and

Pathak (2012), especially for nonwhites. The CIA-based estimates reported here suggest similar

gains would likely be observed should the O’Bryant cutoff be reduced to accommodate currently

inframarginal high school applicants, perhaps as a result of changing affirmative action policies. On

the other hand, most exam school seats are offered to rising 7th graders. Unfortunately, CIA-based

estimation strategies have little to say about causal effects in this larger group.

An additional contribution here is a modification of CIA-based identification strategies for fuzzy

RD. We use this modification to estimate the effects of exam school offers and years of exam school

attendance, in addition to the (reduced form) effects of offers themselves. The fuzzy extension

allows us to explore the possibility that variations in reduced form causal effects as a function of the
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running variable might be driven by changes in an underlying first stage. An important by-product

of the fuzzy extension, though one we leave for future work, is that this opens the door to Abadie

(2003)-style identification of causal effects for compliers in RD models for quantile treatment effects.

As noted recently by Frandsen, Frölich, and Melly (2012), the weighting approach used by Abadie,

Angrist, and Imbens (2002) breaks down in the standard RD framework because the instrument

distribution is degenerate conditional on the running variable. By taking the running variable out

of the equation, our framework would seem to circumvent this problem.

In other work in progress, we’re adapting the identification strategy introduced here for use in

factor models in which the necessary conditioning variable is latent. The availability of multiple noisy

indicators of this latent factor gives leverage in this approach. Finally, an important unsolved prob-

lem implicit in our empirical strategy is causal inference conditional on a pretest. Estimators that

condition on the results of a specification or model-selection test may have sampling distributions for

which conventional asymptotic formulas provide a poor approximation. Pretesting is a challenging

and virtually ubiquitous problem in applied econometrics. It remains to be seen whether recent

theoretical progress on the pretesting problem (e.g., Andrews and Guggenberger (2009); Belloni,

Chernozhukov, and Hansen (2012)) can be fruitfully applied in our context.
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Table 1: Boston Destinations

Z=0 Z=1 Z=0 Z=1 Z=0 Z=1
(1) (2) (3) (4) (5) (6)

Traditional Boston public schools 1.00 0.28 0.24 0.09 0.08 0.05
O'Bryant 0.00 0.72 0.75 0.00 0.06 0.00
Latin Academy 0.00 0.00 0.00 0.91 0.86 0.01
Latin School ... ... ... ... 0.00 0.93

Traditional Boston public schools 1.00 0.34 0.28 0.14 0.15 0.04
O'Bryant 0.00 0.66 0.72 0.00 0.00 0.00
Latin Academy ... ... 0.00 0.87 0.86 0.02
Latin School ... ... 0.00 -0.01 0.00 0.94

Panel B. 9th Grade Applicants

Notes: This table (excerpted from Abdulkadiroglu, Angrist, and Pathak, 2012) describes the destination schools of Boston exam school 
applicants.   Enrollment rates are measured in the fall admissions cycle following exam school application and estimated using local 
linear smoothing.  The sample of Boston 7th grade applicants includes students who applieds for an exam school seat between 1999-
2008.  The sample of Boston 9th grade applicants includes students who applied for an exam school seat between 2001-2007. 

Panel A. 7th Grade Applicants

Table 1. Boston Destinations
All Applicants

O'Bryant Latin Academy Latin School

Table 2: Boston Reduced Form Estimates - MCAS Math and English

Latin Latin Latin Latin
Application Test O'Bryant Academy School O'Bryant Academy School
Grade Grade (1) (2) (3) (5) (6) (7)

7th 7th and 8th -0.128 -0.081 -0.015 -0.087 -0.143* -0.001
(0.101) (0.092) (0.098) (0.069) (0.076) (0.062)
4035 4194 3776 3621 3986 3066

7th and 9th 10th 0.070 -0.090 -0.053 0.060 -0.050 -0.076**
(0.070) (0.080) (0.055) (0.046) (0.044) (0.033)
3370 2702 2457 3067 2022 1825

7th 7th and 8th -0.060 -0.092 -0.183*** -0.072* 0.011 -0.136***
(0.078) (0.067) (0.067) (0.040) (0.041) (0.038)
4139 4302 3790 3930 3743 3524

7th and 9th 10th 0.125 0.159 0.040 0.152*** 0.181*** 0.012
(0.083) (0.105) (0.089) (0.047) (0.064) (0.066)
3379 2707 2459 3289 1781 1913

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table (excerpted from Abdulkadiroglu, Angrist, and Pathak, 2012) reports estimates of the effects of exam school offers 
on MCAS scores.  The sample covers students within 20 standardized units of offer cutoffs.  Parametric models include a cubic 
function of the running variable, allowed to differ on either side of offer cutoffs.  Non-parametric estimates use the edge kernel, with 
bandwidth computed following DesJardins and McCall (2008) and Imbens and Kalyanaraman (2012).   Optimal bandwidths were 
computed separately for each school.  Robust standard errors, clustered on year and school are shown in parentheses. The number of 
observations is reported below standard errors. 

Table 3. Boston Reduced Form Estimates - MCAS Math and English
Parametric Estimates Non-parametric (DM) Estimates

Panel B. ELA

Panel A. Math
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Table 3: Extrapolation Estimates for 10th Grade Math (7th & 9th grade applicants)

c = -1 c = -5 c = -10 c = -15 c = 1 c = 5 c = 10 c = 15
(1) (2) (3) (4) (5) (6) (7) (8)

Linear 0.081** 0.108*** 0.142*** 0.176*** -0.073** -0.069** -0.064 -0.059
(0.039) (0.041) (0.050) (0.063) (0.030) (0.034) (0.042) (0.052)
3391 3391 3391 3391 2460 2460 2460 2460

Quadratic 0.109* 0.199** 0.325* 0.466* -0.093** -0.162** -0.247* -0.331
(0.057) (0.091) (0.166) (0.264) (0.045) (0.077) (0.143) (0.229)
3391 3391 3391 3391 2460 2460 2460 2460

Cubic 0.112 0.211 0.360 0.539 -0.075 -0.055 0.017 0.207
(0.081) (0.234) (0.626) (1.293) (0.065) (0.197) (0.532) (1.103)
3391 3391 3391 3391 2460 2460 2460 2460

Linear 0.091** 0.132*** 0.178*** 0.222*** -0.079** -0.100** -0.117** -0.122*
(0.042) (0.048) (0.062) (0.079) (0.035) (0.041) (0.054) (0.070)
3360 3360 3360 3360 1987 2152 2152 2152

Quadratic 0.111* 0.202* 0.328 0.475 -0.078 -0.095 -0.110 -0.091
(0.062) (0.114) (0.222) (0.365) (0.052) (0.109) (0.225) (0.382)
3360 3360 3360 3360 1987 2152 2152 2152

Cubic 0.120 0.270 0.528 0.920 -0.081 -0.071 -0.070 -0.000
(0.090) (0.294) (0.834) (1.780) (0.079) (0.308) (0.938) (2.076)
3360 3360 3360 3360 1987 2152 2152 2152

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated: 2012-11-18 (MR)

Notes: This table reports estimated exam school offer effects on 10th grade Math scores extrapolated to points away from the cutoff indicated in the 
column headings. Columns 1-4 report estimates of the effect of O'Bryant attendance on unqualified O'Bryant applicants. Columns 5-8 report the 
effects of BLS attendance on qualified BLS applicants.   Panel A shows parametric estimates computed using first, second, and third order 
polynomials, as indicated in rows of the table.  Panel B shows estimates based on nonparametric estimates of derivatives for polynomial 
approximations of the same degree.  The nonparametric bandwidth was constructed as for Table 2. Robust standard errors are shown in parentheses.

Table 3. Extrapolation Estimates for 10th Grade Math (7th & 9th grade applicaants)
O'Bryant Latin School

Panel A: Parametric

Panel B: Derivative-based (Dong & Lewbel 2011)

Table 4: RD Estimates for 9th Grade Applicants

Latin Latin
O'Bryant School O'Bryant School

(1) (2) (3) (4)
Math 0.160 -0.131 0.115* -0.149*

(0.109) (0.116) (0.066) (0.077)
1559 606 1386 361

ELA 0.190* 0.094 0.171*** 0.069
(0.110) (0.179) (0.066) (0.104)
1564 607 1532 458

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated: 2012-11-01 (MR)

Table 4. RD Estimates for 9th Grade Applicants
Parametric Nonparametric

Notes: This table reports parametric and nonparametric RD estimates of the effects 
of exam school attendance on 10th grade MCAS scores in the sample of 9th grade 
applicants.  Models and estimators are the same as used to construct the estimates 
in Table 2. Robust standard errors are reported in parentheses.
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Table 5: Conditional Independence Tests

D = 0 D = 1 D = 0 D = 1 D = 0 D = 1 D = 0 D = 1
Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.003 0.005* 0.009*** 0.009 0.004 0.002 0.008* 0.054

(0.004) (0.003) (0.004) (0.024) (0.004) (0.004) (0.005) (0.044)
513 486 320 49 516 489 320 50

15 0.012** -0.000 0.008 0.009 0.009 0.001 0.004 0.054
(0.006) (0.005) (0.005) (0.024) (0.006) (0.006) (0.006) (0.044)

375 373 228 49 376 374 229 50

10 0.002 0.000 0.007 0.009 0.013 -0.004 0.019 0.054
(0.011) (0.009) (0.009) (0.024) (0.011) (0.010) (0.014) (0.044)

253 260 142 49 253 261 142 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated: 2012-11-27 (MR)

Notes: This table reports regression-based tests of the conditional independence assumption described in the text.  Tests statistics consist of the 
coefficient on the same-subject running variable in models for 10th grade math and ELA scores that control for baseline scores, along with 
indicators for special education status, limited English proficiency, eligibility for free or reduced price lunch, race (black/Asian/Hispanic) and 
sex.  Estimates use only observations to the left or right of the cutoff as indicated in column headings, and were computed in the window width 
indicated at left.  Robust standard errors are reported in parentheses.

Math ELA
Table 5. Conditional Independence Tests

O'Bryant Latin School O'Bryant Latin School

Table 6: CIA Estimates of the Effect of Exam School offers

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.157*** -0.023 0.205*** 0.077 0.134** -0.028 0.247*** 0.054

(0.040) (0.086) (0.041) (0.081) (0.052) (0.167) (0.072) (0.173)
N untreated 513 320 516 320 513 320 516 320
N treated 486 49 489 50 486 49 489 50

15 0.127*** -0.070 0.185*** 0.050 0.103* -0.076 0.200*** 0.018
(0.043) (0.049) (0.044) (0.075) (0.053) (0.213) (0.062) (0.233)

N untreated 375 228 376 229 375 228 376 229
N treated 373 49 374 50 373 49 374 50

10 0.083 -0.088 0.186*** 0.005 0.094 -0.093 0.186** -0.052
(0.054) (0.054) (0.053) (0.090) (0.060) (0.251) (0.075) (0.347)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 260 49 261 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated: 2012-11-27 (MR)

Notes: This table reports estimates of the effect if exam school offers on MCAS scores for 9th grade applicants to O'Bryant and BLS. Columns 1-4 
report results from a linear reweighting estimator, whiles columns 5-8 report results from inverse propesnity score weighting, as described in the text.  
Controls are the same as used to construct the test statistics except that the propensity score models omit test year dummies. The O'Bryant estimates are 
effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are are effects on treated applicants in windows to the 
right of the cutoff. Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications.  The table also reports 
the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.

Table 6. CIA Estimates of the Effect of Exam School offers
Linear Reweighting Propensity Score Weighting

Math ELA Math ELA
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Table 7: Fuzzy CIA Estimates of LATE (Exam School Enrollment)

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.661*** 0.898*** 0.662*** 0.900*** 0.203** -0.031 0.372*** 0.060

(0.056) (0.052) (0.058) (0.050) (0.085) (0.180) (0.145) (0.167)
N untreated 513 320 516 320 513 320 516 320
N treated 486 49 489 50 486 49 489 50

15 0.668*** 0.898*** 0.669*** 0.900*** 0.154** -0.085 0.299*** 0.020
(0.048) (0.052) (0.049) (0.049) (0.078) (0.222) (0.113) (0.238)

N untreated 375 228 376 229 375 228 376 229
N treated 373 49 374 50 373 49 374 50

10 0.676*** 0.898*** 0.680*** 0.900*** 0.139 -0.104 0.273** -0.058
(0.048) (0.050) (0.048) (0.047) (0.086) (0.303) (0.134) (0.411)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 260 49 261 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Updated: 2012-12-11 (MR)

Notes: This table reports fuzzy RD estimates of the effect of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS.    
The O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are for treated applicants 
in windows to the right of the cutoff.  The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a modified 
propensity-score style weighting estimator described in the text.  Standard errors (shown in parentheses) were computed using a nonparametric 
bootstrap with 500 replications.  The table also reports the number of treated and untreated (offered and not offered) observations in each window, in the 
relevant outcome sample.

Table 7. Fuzzy CIA Estimates of the Effects of Exam School Enrollment
First Stage LATE

Math ELA Math ELA

Table 8: Fuzzy CIA Estimates of Average Causal Response (Years of Exam School Enrollment)

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 1.388*** 1.816*** 1.394*** 1.820*** 0.113*** -0.013 0.147*** 0.042

(0.064) (0.095) (0.065) (0.090) (0.029) (0.046) (0.030) (0.043)
N untreated 513 320 516 320 513 320 516 320
N treated 486 49 489 50 486 49 489 50

15 1.347*** 1.816*** 1.353*** 1.820*** 0.094*** -0.039 0.137*** 0.027
(0.064) (0.096) (0.061) (0.093) (0.032) (0.028) (0.034) (0.042)

N untreated 375 228 376 229 375 228 376 229
N treated 373 49 374 50 373 49 374 50

10 1.317*** 1.816*** 1.308*** 1.820*** 0.063 -0.048 0.142*** 0.003
(0.076) (0.096) (0.077) (0.096) (0.039) (0.031) (0.043) (0.052)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 260 49 261 50

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: This table reports fuzzy RD estimates of the effect of years of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and 
BLS.  The O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are for treated 
applicants in windows to the right of the cutoff.  The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a 
modified linear 2SLS estimator described in the text.  Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 
replications.  The table also reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome 
sample.

Table 8. Fuzzy CIA Estimates of the Effects of Years of Exam School Enrollment
First Stage ACR

Math ELA Math ELA
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Figure 1A: Offers at Each Boston Exam School for 7th (1999-2008) and 9th (2001-2007) Grade Applicants

Figure 1B: Enrollment at Each Boston Exam School for 7th (1999-2008) and 9th (2001-2007) Grade Applicants
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Figure 1B: Enrollment at Each Boston Exam School for 7th (1999-2008) and 9th (2001-2007) Grade Applicants(b) Enrollment

Figure 1: Offers and Enrollment at Each Boston Exam School for 7th (1999-2008) and 9th (2001-
2007) Grade Applicants
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Figure 2A: 7th and 8th Grade Math (2006-2009/2001-2009) at Boston Exam Schools for 7th Grade Applicants (1999-
2007/2005-2008)

Figure 2B: 7th and 8th Grade English (2001-2009/2006-2009) at Boston Exam Schools for 7th Grade Applicants (2000-
2008/2004-2007)
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Figure 2B: 7th and 8th Grade English (2001-2009/2006-2009) at Boston Exam Schools for 7th Grade Applicants (2000-
2008/2004-2007)

(b) English

Figure 2: 7th and 8th Grade Math and ELA Scores at Boston Exam Schools for 7th Grade Applicants
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Figure 3A: 10th Grade Math (2003-2009) at Boston Exam Schools for 7th (1999-2005) and 9th (2001-2007) Grade Applicants

Figure 3B: 10th Grade English (2003-2009) at Boston Exam Schools for 7th (1999-2005) and 9th (2001-2007) Grade Appli-
cants
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Figure 3A: 10th Grade Math (2003-2009) at Boston Exam Schools for 7th (1999-2005) and 9th (2001-2007) Grade Applicants
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Figure 3B: 10th Grade English (2003-2009) at Boston Exam Schools for 7th (1999-2005) and 9th (2001-2007) Grade Appli-
cants

(b) English

Figure 3: 10th Grade Math and ELA Scores at Boston Exam Schools for 7th and 9th Grade Appli-
cants
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Figure 4: Identification of Boston Latin School Effects At and Away from the Cutoff. ⇢(0) is an
effect at the cutoff; ⇢DL(c) is an effect near the cutoff approximated using a first derivative; ⇢A(c)
and ⇢B(c) are possible effects well away from the cutoff.
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Figure 1: Parametric extrapolation: 7&9 apps, Math 10

1

Figure 5: Parametric Extrapolation at O’Bryant and Boston Latin School. O’Bryant extrapolation
is for E[Y1i|ri = c]; BLS extrapolation is for E[Y0i|ri = c].

37



0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Linear
.""

0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Quadratic
O’Bryant

0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Cubic
.""

0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Linear
.""

0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Quadratic
Latin School

0
.5

1
1.

5
2

−20 −15 −10 −5 0 5 10 15 20

Cubic
.""

Estimated Extrapolated

Figure 2: Dong & Lewbel extrapolation: 7&9 apps, Math 10
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Figure 6: Derivative-based Extrapolation at O’Bryant and Boston Latin School. O’Bryant extrap-
olation is for E[Y1i|ri = c]; BLS extrapolation is for E[Y0i|ri = c].
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Figure 3: Nonparametric RD plot: 9 apps, Math 10
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(a) 10th Grade Math
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Figure 4: Nonparametric RD plot: 9 apps, Eng 10
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(b) 10th Grade English

Figure 7: 10th Grade Math and ELA Scores for 9th Grade Applicants to O’Bryant and Boston Latin
School
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Figure 8: CIA-based Estimates of E[Y1i|ri = c] and E[Y0i|ri = c] for c in [�20, 20]. To the left of
the O’Bryant cutoff, the estimates of E[Y0i|ri = c] are fitted values for observed outcomes (the line
labelled “Estimated”) while the estimates of E[Y1i|ri = c] are extrapolations. To the right of the
BLS cutoff, the estimates of E[Y1i|ri = c] are fitted values while the estimates of E[Y0i|ri = c] are
extrapolations. These estimates were constructed using the linear reweighting estimator discussed
in the text.
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Figure 9: Histograms of Estimated Propensity Scores for 9th Grade Applicants to O’Bryant and
BLS. The y-axis shows the observation count in each score-distribution decile. These estimates were
constructed using a logit model fitted in the sample window indicated above each panel.
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Appendix

Proof of Theorem 1

We continue to assume that GCIA and other LATE assumptions hold. Given these assumptions,

Theorem 3.1 in Abadie (2003) implies that for any measurable function, g (yi,Wi, xi), we have

E [g (yi,Wi, xi) | xi,W1i > W0i] =
1

P [W1i > W0i | xi]
E [ (Wi, Di, xi) g (yi,Wi, xi) | xi] (27)

where

 (Wi, Di, xi) = 1 � Wi (1 �Di)

1 � P [Di = 1 | xi]
� (1 �Wi)Di

P [Di = 1 | xi]

and

E [g (YWi, xi) | xi,W1i > W0i] =
1

P [W1i > W0i | xi]
E [W (Wi, Di, xi) g (yi, xi) | xi] ,

where W 2 {0, 1} and

0 (Wi, Di, xi) = (1 �Wi)
P [Di = 1 | xi] �Di

(1 � P [Di = 1 | xi])P [Di = 1 | xi]

1 (Wi, Di, xi) = Wi
Di � P [Di = 1 | xi]

(1 � P [Di = 1 | xi])P [Di = 1 | xi]
.

Using the GCIA, we can simplify as follows:

E [g (YWi, xi) | W1i > W0i, 0  ri  c]

= E {E [g (YWi, xi) | xi,W1i > W0i] | W1i > W0i, 0  ri  c}

=

ˆ
1

P [W1i > W0i | xi]
E [W (Wi, Di, xi) g (yi, xi) | X] dP [xi | W1i > W0i, 0  ri  c]

=
1

P [W1i > W0i | 0  ri  c]

ˆ
E [W (Wi, Di, xi) g (y, xi) | xi]

P [0  ri  c | xi]
P [0  ri  c]

dP [xi](28)

=
1

P [W1i > W0i | 0  ri  c]
E



W (Wi, Di, xi)
P [0  ri  c | xi]
P [0  ri  c]

g (yi, xi)

�

.

This implies that LATE can be written:

E [Y1i � Y0i | W1i > W0i, 0  ri  c]

= E [Y1i | W1i > W0i, 0  ri  c] � E [Y0i | W1i > W0i, 0  ri  c]

=
1

P [W1i > W0i | 0  ri  c]
E



 (Di, xi)
P [0  ri  c | xi]
P [0  ri  c]

yi

�

45



where

 (Di, xi) = 1 (Wi, Di, xi) � 0 (Wi, Di, xi)

=
Di � P [Di = 1 | xi]

(1 � P [Di = 1 | xi])P [Di = 1 | xi]
.

Finally, by setting g (yi,Wi, xi) = 1 in equation (27) we get:

P [W1i > W0i | xi] = E [ (Wi, Di, xi) | xi] .

Using the same steps as in equation (28), the GCIA implies:

P [W1i > W0i | 0  ri  c] = E {P [W1i > W0i | xi] | 0  ri  c}

= E



 (Wi, Di, xi)
P [0  ri  c | xi]
P [0  xi  c]

�

.

Proof of Theorem 2

Theorem 1 in Angrist and Imbens (1995) implies:

E [yi | Di = 1, xi] � E [yi | Di = 0, xi] =
X

j

P [w1i � j > w0i | xi]E [Yji � Yj�1,i | w1i � j > w0i, xi]

E [wi | Di = 1, xi] � E [wi | Di = 0, xi] =
X

j

P [w1i � j > w0i | xi] .

Given the GCIA, we have:

E {E [yi | Di = 1, xi] � E [yi | Di = 0, xi] | 0  ri  c}

=
X

j

ˆ
P [w1i � j > w0i | xi]E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | 0  ri  c]

=
X

j

ˆ
P [w1i � j > w0i | xi, 0  ri  c]E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | 0  ri  c]

=
X

j

P [w1i � j > w0i | 0  ri  c]

⇥
ˆ

E [Yji � Yj�1,i | w1i � j > w0i, xi] dP [xi | w1i � j > w0i, 0  ri  c]

=
X

j

P [w1i � j > w0i | 0  ri  c]E [Yji � Yj�1,i | w1i � j > w0i, 0  ri  c] .

The GCIA can similarly be shown to imply:

E [E [wi | Di = 1, xi] � E [wi | Di = 0, xi] | 0  ri  c]

=
X

j

P [w1i � j > w0i | 0  ri  c] .
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Combining these results, the ACR can be written:

E {E [yi | Di = 1, xi] � E [yi | Di = 0, xi] | 0  ri  c}
E {E [wi | Di = 1, xi] � E [wi | Di = 0, xi] | 0  ri  c}
=

X

j

⌫jcE [Yji � Yj�1,i | w1i � j > w0i, 0  ri  c]

where

⌫ijc =
P [w1i � j > w0i | 0  ri  c]

P

` P [w1i � ` > w0i | 0  ri  c]
.
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