Crises: Equilibrium Shifts and Large Shocks

Stephen Morris (Princeton) and Muhamet Yildiz (MIT)

Cowles Lunch Talk
February 2018
on July 26th, 2012, Mario Draghi gave a speech in which he promised "....to do whatever it takes to preserve the euro. And believe me, it will be enough...."
on July 26th, 2012, Mario Draghi gave a speech in which he promised "....to do whatever it takes to preserve the euro. And believe me, it will be enough...."

Widely credited with having shifted the Eurozone economy from a "bad equilibrium" (high sovereign debt spreads and growing fiscal deficits mutually reinforcing each other); to a "good equilibrium" (with low spreads and sustainable fiscal policy).
explaining equilibrium shifts

in many economic (and other) settings...

- have convincing explanations/models of strategic complementarities giving rise to self-fulfilling outcomes
explaining equilibrium shifts

in many economic (and other) settings...

- have convincing explanations/models of strategic complementarities giving rise to self-fulfilling outcomes
- lack convincing explanations/models to think about "equilibrium shifts"
explaining equilibrium shifts

...in many economic (and other) settings...

- have convincing explanations/models of strategic complementarities giving rise to self-fulfilling outcomes
- lack convincing explanations/models to think about "equilibrium shifts"

E.g., sovereign debt markets, financial crises, revolutions
Consider a setting where...

- Fundamentals hit a critical boundary (we will see how this boundary is determined)
- There is a large enough shock to fundamentals - even if the shock does not take us to the critical boundary (we will see how big this jump must be)

We explain when shifts must occur but allow for multiplicity and hysteresis in many scenarios.
Consider a setting where...

- a coordination game is played every period whose payoffs depend on a "fundamental state"
Consider a setting where...

- a coordination game is played every period whose payoffs depend on a "fundamental state"
- the fundamental state evolves according to an exogenous random process

We ask: which informational events (must) trigger equilibrium switches?

We identify two distinct scenarios that must trigger equilibrium shifts:

1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
2. There is a large enough shock to fundamentals - even if the shock does not take us to the critical boundary (we will see how big this jump must be)

We explain when shifts must occur but allow for multiplicity and hysteresis in many scenarios.
• Consider a setting where...
 • a coordination game is played every period whose payoffs depend on a "fundamental state"
 • the fundamental state evolves according to an exogenous random process
 • there is *incomplete information* about innovations to fundamentals...
Consider a setting where...

- a coordination game is played every period whose payoffs depend on a "fundamental state"
- the fundamental state evolves according to an exogenous random process
- there is *incomplete information* about innovations to fundamentals...

We ask:

1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
2. There is a large enough shock to fundamentals - even if the shock does not take us to the critical boundary (we will see how big this jump must be)

We explain when shifts must occur but allow for multiplicity and hysteresis in many scenarios
Levels and Changes

- Consider a setting where...
 - a coordination game is played every period whose payoffs depend on a "fundamental state"
 - the fundamental state evolves according to an exogenous random process
 - there is *incomplete information* about innovations to fundamentals...

- We ask:
 - which informational events (must) trigger equilibrium switches?
• Consider a setting where...
 • a coordination game is played every period whose payoffs depend on a "fundamental state"
 • the fundamental state evolves according to an exogenous random process
 • there is *incomplete information* about innovations to fundamentals...

• We ask:
 • which informational events (must) trigger equilibrium switches?

• We identify two distinct scenarios must trigger equilibrium shifts:

Levels and Changes
- Consider a setting where...
 - a coordination game is played every period whose payoffs depend on a "fundamental state"
 - the fundamental state evolves according to an exogenous random process
 - there is *incomplete information* about innovations to fundamentals...

- We ask:
 - which informational events (must) trigger equilibrium switches?
- We identify two distinct scenarios must trigger equilibrium shifts:
 1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
Consider a setting where...

- a coordination game is played every period whose payoffs depend on a "fundamental state"
- the fundamental state evolves according to an exogenous random process
- there is *incomplete information* about innovations to fundamentals...

We ask:

- which informational events (must) trigger equilibrium switches?

We identify two distinct scenarios must trigger equilibrium shifts:

1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
2. There is a large enough shock to fundamentals - even if the shock does not take us to the critical boundary (we will see how big this jump must be)
Consider a setting where...

- a coordination game is played every period whose payoffs depend on a "fundamental state"
- the fundamental state evolves according to an exogenous random process
- there is *incomplete information* about innovations to fundamentals...

We ask:

- which informational events (must) trigger equilibrium switches?

We identify two distinct scenarios must trigger equilibrium shifts:

1. Fundamentals hit a critical boundary (we will see how this boundary is determined)
2. There is a large enough shock to fundamentals - even if the shock does not take us to the critical boundary (we will see how big this jump must be)

We explain when shifts must occur but allow for multiplicity and hysteresis in many scenarios
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
 • large shocks imply diffuse beliefs about whether others are more or less optimistic than you ("uniform rank beliefs")
Mechanism

• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
 • large shocks imply diffuse beliefs about whether others are more or less optimistic than you ("uniform rank beliefs")

• Key strategic implication:
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
 • large shocks imply diffuse beliefs about whether others are more or less optimistic than you ("uniform rank beliefs")

• Key strategic implication:
 • with no or small shocks, can keep doing same thing as before because you may rationally be confident that others will do so
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
 • large shocks imply diffuse beliefs about whether others are more or less optimistic than you ("uniform rank beliefs")

• Key strategic implication:
 • with no or small shocks, can keep doing same thing as before because you may rationally be confident that others will do so
 • with large shocks,
• Key assumption: innovations to fundamentals have "fat tails" (relative to observation error)

• Key statistical implication:
 • large shocks to private signal attributed to common component of fundamentals
 • large shocks imply diffuse beliefs about whether others are more or less optimistic than you ("uniform rank beliefs")

• Key strategic implication:
 • with no or small shocks, can keep doing same thing as before because you may rationally be confident that others will do so
 • with large shocks,
 • not rational for marginal player to be confident of others’ behavior; uniform rank beliefs select "risk dominant" equilibrium
Both levels and change predict shifts.
Distinctive Predictions

1. Both levels and change predict shifts.
2. Don’t always play risk dominant equilibrium, but switches only to risk dominant equilibrium.
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - common knowledge of uniform rank beliefs
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness

- Our main large shock result relies on fat tails (c.f., large normal prior, normal noise global game literature)
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness
 - \Rightarrow risk dominant play always
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness
 - \Rightarrow risk dominant play always

- compare this paper:
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - ⇒ common knowledge of uniform rank beliefs
 - ⇒ global uniqueness
 - ⇒ risk dominant play always

- compare this paper:
 - fat tail prior + large shocks
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness
 - \Rightarrow risk dominant play always

- compare this paper:
 - fat tail prior + large shocks
 - \Rightarrow one sided uniform rank beliefs
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - ⇒ common knowledge of uniform rank beliefs
 - ⇒ global uniqueness
 - ⇒ risk dominant play always

- compare this paper:
 - fat tail prior + large shocks
 - ⇒ one sided uniform rank beliefs
 - ⇒ local uniqueness
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness
 - \Rightarrow risk dominant play always

- compare this paper:
 - fat tail prior + large shocks
 - \Rightarrow one sided uniform rank beliefs
 - \Rightarrow local uniqueness
 - \Rightarrow prediction of equilibrium shift to risk dominant play at certain histories
Part 1 (Analysis): Individual Rationalizable Behavior in a Static Coordination Game with Incomplete Information

- Carlsson and van Damme 93 "global game" model
 - smooth prior / arbitrarily small idiosyncratic noise
 - \Rightarrow common knowledge of uniform rank beliefs
 - \Rightarrow global uniqueness
 - \Rightarrow risk dominant play always

- compare this paper:
 - fat tail prior $+$ large shocks
 - \Rightarrow one sided uniform rank beliefs
 - \Rightarrow local uniqueness
 - \Rightarrow prediction of equilibrium shift to risk dominant play at certain histories

- our main large shock result relies on fat tails (c.f., large normal prior, normal noise global game literature)
Part 2 (Interpretation): Aggregate Behavior in Dynamic Coordination Game

- Static coordination game played repeatedly under evolving fundamentals and fat-tailed prior on common innovations
Part 2 (Interpretation): Aggregate Behavior in Dynamic Coordination Game

- Static coordination game played repeatedly under evolving fundamentals and fat-tailed prior on common innovations
- Assume hysteresis: follow majority play from previous period if rationalizable, otherwise
Part 2 (Interpretation): Aggregate Behavior in Dynamic Coordination Game

- Static coordination game played repeatedly under evolving fundamentals and fat-tailed prior on common innovations
- Assume hysteresis: follow majority play from previous period if rationalizable, otherwise
- Majority behavior switches in response to either extreme enough level of fundamentals or a large shock
a continuum of players
Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
• a continuum of players
• each player decides to "invest" or "not invest"
• "return to investing" x
Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
- "return to investing" x
- invest if the return exceeds the expected proportion of others not investing
Complete Information Game

- a continuum of players
- each player decides to "invest" or "not invest"
- "return to investing" \times
- invest if the return exceeds the expected proportion of others not investing
- formally, payoff to not investing is 0 and payoff to investing is $x + \alpha - 1$, where α is the proportion of other players investing
Complete Information Game Equilibria

- Equilibria...
Complete Information Game Equilibria

- Equilibria...
 - if $x > 1$, players have a dominant strategy to invest
 - if $x < 0$, players have a dominant strategy to not invest
 - if $0 < x < 1$, “all invest” and “all not invest” are both equilibria
 - Terminology: the risk dominant action is the one that would be chosen by a player with a uniform belief over the proportion of others who will invest.
 - if $x > 1/2$, “all invest” is the risk dominant equilibrium
 - if $x < 1/2$, “all not invest” is the risk dominant equilibrium
Complete Information Game Equilibria

- Equilibria...
 - if $x > 1$, players have a dominant strategy to invest
 - if $x < 0$, players have a dominant strategy to not invest
• Equilibria...
 • if $x > 1$, players have a dominant strategy to invest
 • if $x < 0$, players have a dominant strategy to not invest
 • if $0 \leq x \leq 1$, "all invest" and "all not invest" are both equilibria
Complete Information Game Equilibria

- Equilibria...
 - if $x > 1$, players have a dominant strategy to invest
 - if $x < 0$, players have a dominant strategy to not invest
 - if $0 \leq x \leq 1$, "all invest" and "all not invest" are both equilibria

- Terminology: the risk dominant action is the one that would be chosen by a player with a uniform belief over the proportion of others who will invest.....
Complete Information Game Equilibria

- Equilibria...
 - if $x > 1$, players have a dominant strategy to invest
 - if $x < 0$, players have a dominant strategy to not invest
 - if $0 \leq x \leq 1$, "all invest" and "all not invest" are both equilibria

- Terminology: the risk dominant action is the one that would be chosen by a player with a uniform belief over the proportion of others who will invest.....
 - if $x > \frac{1}{2}$, "all invest" is the risk dominant equilibrium
Complete Information Game Equilibria

- Equilibria...
 - if $x > 1$, players have a dominant strategy to invest
 - if $x < 0$, players have a dominant strategy to not invest
 - if $0 \leq x \leq 1$, "all invest" and "all not invest" are both equilibria

- Terminology: the risk dominant action is the one that would be chosen by a player with a uniform belief over the proportion of others who will invest.....
 - if $x > \frac{1}{2}$, "all invest" is the risk dominant equilibrium
 - if $x < \frac{1}{2}$, "all not invest" is the risk dominant equilibrium
• common prior mean return is y
• agent i has return to investment is $x_i = y + \sigma z_i$ where
 • parameter $\sigma > 0$ measures "shock sensitivity"
• common prior mean return is y
• agent i has return to investment is $x_i = y + \sigma z_i$ where
 • parameter $\sigma > 0$ measures "shock sensitivity"
 • agent i’s shock z_i has two components, $z_i = \eta + \varepsilon_i$
• common prior mean return is y
• agent i has return to investment is $x_i = y + \sigma z_i$ where
 • parameter $\sigma > 0$ measures "shock sensitivity"
 • agent i’s shock z_i has two components, $z_i = \eta + \varepsilon_i$
 • a common shock η
Incomplete Information / Heterogeneous Returns

- common prior mean return is y
- agent i has return to investment is $x_i = y + \sigma z_i$ where
 - parameter $\sigma > 0$ measures "shock sensitivity"
 - agent i’s shock z_i has two components, $z_i = \eta + \varepsilon_i$
 - a common shock η
 - an idiosyncratic shock ε_i
1 thick tailed common shocks: η is distributed according to density g with thick (regularly varying) tails, i.e.,

$$\lim_{\lambda \to \infty} \frac{g(\lambda \eta)}{g(\lambda \eta')} \in (0, \infty) \text{ for all } \eta, \eta'$$
1. **thick tailed common shocks**: η is distributed according to density g with thick (regularly varying) tails, i.e.,

$$\lim_{\lambda \to \infty} \frac{g(\lambda \eta)}{g(\lambda \eta')} \in (0, \infty) \text{ for all } \eta, \eta'$$

2. **thinner tailed idiosyncratic shocks**: ε is distributed according to log-concave density f (i.e., log f is concave)
Rank belief: what probability does an agent assign to a representative agent having a lower return than his own?

\[R(z) \equiv \Pr(z_j \leq z | z_i = z) = \frac{\int F(\varepsilon) f(\varepsilon) g(z - \varepsilon) d\varepsilon}{\int f(\varepsilon) g(z - \varepsilon) d\varepsilon} \]

Equivalently, what is an agent’s expectation of the proportion of other agents with lower returns?
• \(f \) is standard normal distribution \(N(0, 1) \)
• f is standard normal distribution $N(0, 1)$
• g is Student's t-distribution
• f is standard normal distribution $N(0, 1)$
• g is Student’s t-distribution
 • variance of η is unknown and distributed with inverse χ^2
Rank Beliefs in the Leading Example

Figure: Rank belief function R.

Rank belief function for t distribution
R is differentiable and satisfies:

- **symmetry**: $R(-z) = 1 - R(z)$; in particular, $R(0) = 1/2$.
R is differentiable and satisfies:

- **symmetry**: $R(-z) = 1 - R(z)$; in particular, $R(0) = 1/2$.
- **single crossing at $1/2$**: $R(z) > 1/2 > R(-z)$ whenever $z > 0$.
\(R \) is differentiable and satisfies:

- **symmetry**: \(R(-z) = 1 - R(z) \); in particular, \(R(0) = 1/2 \).
- **single crossing at 1/2**: \(R(z) > 1/2 > R(-z) \) whenever \(z > 0 \).
- **limit uniform rank beliefs**: \(R(z) \to \frac{1}{2} \) as \(z \to \infty \).
Fat-Tails Assumption—Motivation

- model uncertainty:
Fat-Tails Assumption—Motivation

- model uncertainty:
 - e.g., variance uncertainty + normal \Rightarrow t distribution
Fat-Tails Assumption—Motivation

- model uncertainty:
 - e.g., variance uncertainty + normal \Rightarrow t distribution
- empirically, changes in key economic variables have fat tails.....
Fat-Tails Assumption—Motivation

- model uncertainty:
 - e.g., variance uncertainty + normal \(\Rightarrow \) t distribution
- empirically, changes in key economic variables have fat tails:.
 - e.g. income, prices, financial asset returns, exchange rates, GDP, ...
Fat-Tails Assumption—Motivation

- model uncertainty:
 - e.g., variance uncertainty + normal \Rightarrow t distribution
- empirically, changes in key economic variables have fat tails.....
 - e.g. income, prices, financial asset returns, exchange rates, GDP, ...
- present in many commonly used statistical models (e.g. GARCH, stochastic volatility)
Fat-Tails Assumption—Motivation

- model uncertainty:
 - e.g., variance uncertainty + normal \Rightarrow t distribution
- empirically, changes in key economic variables have fat tails.....
 - e.g. income, prices, financial asset returns, exchange rates, GDP, ...
- present in many commonly used statistical models (e.g. GARCH, stochastic volatility)
- limit uniform rank beliefs as a primitive assumption?
Figure: Rank belief function under normal idiosyncratic shocks and normal or exponential common shocks
• Suppose agents follow a "cutoff" strategy, with each agent investing if his shock z_i is above some critical threshold \hat{Z}.
• Suppose agents follow a "cutoff" strategy, with each agent investing if his shock z_i is above some critical threshold \hat{Z}

• an agent with shock \hat{Z} agent is indifferent between investing and not investing when

$$y + \sigma \hat{Z} = R(\hat{Z})$$

(1) is a necessary condition for a \hat{Z}-cutoff equilibrium also sufficient because log-concavity of f implies that when an agent has a high return, she has a higher (w.r.t. FOSD) belief about other player's return.
Suppose agents follow a "cutoff" strategy, with each agent investing if his shock z_i is above some critical threshold \hat{z}.

An agent with shock \hat{z} is indifferent between investing and not investing when

$$y + \sigma \hat{z} = R(\hat{z})$$

Following graph plots $y + \sigma \hat{z}$ (in blue) and $R(\hat{z})$ (in red).
Suppose agents follow a "cutoff" strategy, with each agent investing if his shock z_i is above some critical threshold \hat{z}.

An agent with shock \hat{z} agent is indifferent between investing and not investing when

$$y + \sigma \hat{z} = R(\hat{z})$$ \hspace{1cm} (1)

following graph plots $y + \sigma \hat{z}$ (in blue) and $R(\hat{z})$ (in red).

(1) is a necessary condition for a \hat{z}-cutoff equilibrium.
Suppose agents follow a "cutoff" strategy, with each agent investing if his shock z_i is above some critical threshold \hat{Z}

An agent with shock \hat{Z} agent is indifferent between investing and not investing when

$$y + \sigma \hat{Z} = R(\hat{Z})$$ \hspace{1cm} (1)

following graph plots $y + \sigma \hat{Z}$ (in blue) and $R(\hat{Z})$ (in red)

(1) is a necessary condition for a \hat{Z}-cutoff equilibrium

also sufficient because log-concavity of f implies that when an agent has a high return, she has a higher (w.r.t. FOSD) belief about other player’s return
Let z^{**} be largest solution to (1)
Unique Rationalizable Play

- Let z^{**} be largest solution to (1)
- Corresponds to equilibrium with the least investment (invest only if $z \geq z^{**}$)
• Let z^{**} be largest solution to (1)
• Corresponds to equilibrium with the least investment (invest only if $z \geq z^{**}$)
• Invest is uniquely rationalizable if and only if $z > z^{**}$
• Let z^{**} be largest solution to (1)
• Corresponds to equilibrium with the least investment (invest only if $z \geq z^{**}$)
• Invest is uniquely rationalizable if and only if $z > z^{**}$
• PROOF: Let \bar{z} be the largest shock at which not invest is rationalizable and suppose $\bar{z} > z^{**}$. The payoff to investing is at least

\[
\underbrace{y + \sigma \bar{z}} \quad \text{own return} \quad \underbrace{R(\bar{z})} \quad \text{proportion of others not investing} > 0,
\]

a contradiction.
Let \bar{R} be the maximum possible rank belief:

$$\bar{R} = \max_{z \geq 0} R(z)$$

Proposition

Invest is uniquely rationalizable whenever $x > \bar{R}$

- equivalently, invest is uniquely rationalizable if $z > \frac{\bar{R} - y}{\sigma}$
Let \overline{R} be the maximum possible rank belief:

$$\overline{R} = \max_{z \geq 0} R(z)$$

Proposition

Invest is uniquely rationalizable whenever $x > \overline{R}$

- equivalently, invest is uniquely rationalizable if $z > \frac{\overline{R} - y}{\sigma}$
- for sufficiently high returns, it doesn’t matter how you got there
Let \overline{R} be the maximum possible rank belief:

$$\overline{R} = \max_{z \geq 0} R(z)$$

Proposition

Invest is uniquely rationalizable whenever $x > \overline{R}$

- equivalently, invest is uniquely rationalizable if $z > \frac{\overline{R}-y}{\sigma}$
- for sufficiently high returns, it doesn’t matter how you got there
- observe that $\frac{1}{2} < \overline{R} < 1$; thus this criterion is intermediate between risk dominance and dominant strategies
For each $x \in \left(\frac{1}{2}, R\right]$, define critical shock size $\bar{z}(x)$ to be the largest shock at which the rank belief is x:

$$\bar{z}(x) = \max R^{-1}(x)$$

Proposition

Invest is uniquely rationalizable if $x \in \left(\frac{1}{2}, R\right]$ and $z > \bar{z}(x)$
For each $x \in \left(\frac{1}{2}, R\right]$, define critical shock size $z(x)$ to be the largest shock at which the rank belief is x:

$$z(x) = \max R^{-1}(x)$$

Proposition

Invest is uniquely rationalizable if $x \in \left(\frac{1}{2}, R\right]$ *and* $z > \bar{z}(x)$

• for intermediate returns, whether invest is uniquely rationalizable depends on whether there was a positive shock
• Invest will be uniquely rationalizable at fundamentals x_i if reached via a large shock (left panel) but not if reached by a small shock (right panel)
Proposition

Invest is uniquely rationalizable whenever $x > \frac{1}{2}$ and $y > \bar{y}$
Ex Ante Level Sufficient Condition

- Let \bar{y} be the critical level of fundamentals at which returns will exceed the rank belief whenever shocks are positive.
- Formally, define \bar{y} to be the largest y such that

$$R(z) \geq y + \sigma z$$

for some z.

Proposition

Invest is uniquely rationalizable whenever $x > \frac{1}{2}$ and $y > \bar{y}$
Ex Ante Level Sufficient Condition

- Let \bar{y} be the critical level of fundamentals at which returns will exceed the rank belief whenever shocks are positive.
- Formally, define \bar{y} to be the largest y such that

$$R(z) \geq y + \sigma z$$

for some z.
- For small σ, $\bar{y} \approx \bar{R}$

Proposition

Invest is uniquely rationalizable whenever $x > \frac{1}{2}$ and $y > \bar{y}$
• For small σ, sufficient conditions are also necessary...

Proposition

If R is single peaked and $y \leq \bar{R} - \sigma \bar{z}(\bar{R}) \leq \bar{y}$, invest is uniquely rationalizable only if (i) $x > \bar{R}$ or (ii) $x > \frac{1}{2}$ and $z > \bar{z}(x)$
• For small σ, sufficient conditions are also necessary....
• We get a partial converse under two additional restrictions:

Proposition

If R is single peaked and $y \leq \bar{R} - \sigma \bar{z}(\bar{R}) \leq \bar{y}$, invest is uniquely rationalizable only if (i) $x > \bar{R}$ or (ii) $x > \frac{1}{2}$ and $z > \bar{z}(x)$
Call $\theta = y + \sigma \eta$ the *fundamental state*; fundamental state is the population mean return and also the median agent’s return.

Proposition

Invest is uniquely rationalizable for the majority if it is risk dominant ($\theta > \frac{1}{2}$) and, in addition, (i) the realized fundamentals are sufficiently high ($\theta > \bar{R}$), or (ii) the expected fundamentals were sufficiently high ($y > \bar{y}$), or (iii) the shock is sufficiently high $\eta > \bar{z}(\theta)$.
• Infinite horizon game played in every period $t = 0, 1, \ldots$
• Infinite horizon game played in every period $t = 0, 1, ...$
• Enter each period with mean y_t
Dynamic Game

- Infinite horizon game played in every period $t = 0, 1, ...$
- Enter each period with mean y_t
- Draw $\theta_t = y_t + \sigma \eta_t$
Dynamic Game

- Infinite horizon game played in every period $t = 0, 1, ...$
- Enter each period with mean y_t
- Draw $\theta_t = y_t + \sigma \eta_t$
- Draw $x_{it} = \theta + \sigma \varepsilon_i = y + \sigma \eta + \sigma \varepsilon_i$
- Infinite horizon game played in every period $t = 0, 1, ...$
- Enter each period with mean y_t
- Draw $\theta_t = y_t + \sigma \eta_t$
- Draw $x_{it} = \theta + \sigma \varepsilon_i = y + \sigma \eta + \sigma \varepsilon_i$
- Play static game
• Infinite horizon game played in every period $t = 0, 1, ...$
• Enter each period with mean y_t
• Draw $\theta_t = y_t + \sigma \eta_t$
• Draw $x_{it} = \theta + \sigma \varepsilon_i = y + \sigma \eta + \sigma \varepsilon_i$
• Play static game
• Period t play and θ_t become common knowledge
Dynamic Game

- Infinite horizon game played in every period $t = 0, 1, ...$
- Enter each period with mean y_t
- Draw $\theta_t = y_t + \sigma \eta_t$
- Draw $x_{it} = \theta + \sigma \varepsilon_i = y + \sigma \eta + \sigma \varepsilon_i$
- Play static game
- Period t play and θ_t become common knowledge
- Let $y_{t+1} = Y(\theta_t)$ for $t = 0, 1, ...$
Dynamic Game

- Infinite horizon game played in every period $t = 0, 1, \ldots$
- Enter each period with mean y_t
- Draw $\theta_t = y_t + \sigma \eta_t$
- Draw $x_{it} = \theta + \sigma \varepsilon_i = y + \sigma \eta + \sigma \varepsilon_i$
- Play static game
- Period t play and θ_t become common knowledge
- Let $y_{t+1} = Y(\theta_t)$ for $t = 0, 1, \ldots$
 - for example, random walk ($y_{t+1} = \theta_t$) or reversion to the mean ($y_{t+1} = \frac{1}{2} + \kappa (\theta_t - \frac{1}{2})$)
Equilibria of the Dynamic Game

- "Public strategy": agents condition only on public histories and current return
Equilibria of the Dynamic Game

- "Public strategy": agents condition only on public histories and current return
- equilibria in public strategies consist of static equilibria selected in arbitrary history dependent way
"Public strategy": agents condition only on public histories and current return

equilibria in public strategies consist of static equilibria selected in arbitrary history dependent way

A special *hysteresis equilibrium*:
• "Public strategy": agents condition only on public histories and current return

• equilibria in public strategies consist of static equilibria selected in arbitrary history dependent way

• A special *hysteresis equilibrium*:
 • was there majority investment in the previous period?
"Public strategy": agents condition only on public histories and current return.
equilibrria in public strategies consist of static equilibria selected in arbitrary history dependent way.
A special *hysteresis equilibrium*:
 - was there majority investment in the previous period?
 - if yes, invest whenever rationalizable.
"Public strategy": agents condition only on public histories and current return

- Equilibria in public strategies consist of static equilibria selected in arbitrary history dependent way

- A special *hysteresis equilibrium*:
 - was there majority investment in the previous period?
 - if yes, invest whenever rationalizable
 - if not, do not invest whenever rationalizable
Proposition

Shifts to majority investment will occur whenever invest is risk dominant \((\theta_t > \frac{1}{2})\) *and, in addition, (i) the realized fundamentals are sufficiently high* \((\theta_t > \bar{R})\), *(ii) the expected fundamentals were sufficiently high* \((y_t > \bar{y})\) *or the shock was sufficiently high* \(\eta_t > \bar{z}(\theta_t)\).*
• Methodological:

- Large shocks imply uniform rank beliefs and selection, even without unique predictions, leaving role for hysteresis, culture, or whatever...
- Significant events may shift equilibria because there is NOT common knowledge of how to interpret them.

Substantive:
- Slow news release is good if you want to stay in current equilibrium (and vice versa).
- Simple mechanism that can be plugged into richer models.
Takeaways

- Methodological:
 - rank beliefs matter
• Methodological:
 • rank beliefs matter
 • large shocks imply uniform rank beliefs and selection
Methodological:

- rank beliefs matter
- large shocks imply uniform rank beliefs and selection
- this is true even without unique predictions, leaving role for hysteresis, culture, level 0 beliefs, whatever...
• Methodological:
 • rank beliefs matter
 • large shocks imply uniform rank beliefs and selection
 • this is true even without unique predictions, leaving role for hysteresis, culture, level 0 beliefs, whatever...
 • significant events may shift equilibria exactly because there is NOT common knowledge of how to interpret them
Takeaways

• Methodological:
 • rank beliefs matter
 • large shocks imply uniform rank beliefs and selection
 • this is true even without unique predictions, leaving role for hysteresis, culture, level 0 beliefs, whatever...
 • significant events may shift equilibria exactly because there is NOT common knowledge of how to interpret them

• Substantive
• **Methodological:**

 • rank beliefs matter

 • large shocks imply uniform rank beliefs and selection

 • this is true even without unique predictions, leaving role for hysteresis, culture, level 0 beliefs, whatever...

 • significant events may shift equilibria exactly because there is NOT common knowledge of how to interpret them

• **Substantive**

 • slow news release good if you want to stay in current equilibrium (and vica versa)
Methodological:

- rank beliefs matter
- large shocks imply uniform rank beliefs and selection
- this is true even without unique predictions, leaving role for hysteresis, culture, level 0 beliefs, whatever...
- significant events may shift equilibria exactly because there is NOT common knowledge of how to interpret them

Substantive

- slow news release good if you want to stay in current equilibrium (and vica versa)
- simple mechanism that can be plugged into richer models
More generally, we can identify limit rank belief

\[R_\infty = \lim_{z \to \infty} R(z) \in [0, 1] \]
More generally, we can identify limit rank belief

\[R_\infty = \lim_{z \to \infty} R(z) \in [0, 1] \]

Invest is uniquely rationalizable if \(x > \bar{R} \) or if \(x \in (R_\infty, \bar{R}] \) and \(z > \bar{z}(x) \).
More generally, we can identify limit rank belief

\[R_\infty = \lim_{z \to \infty} R(z) \in [0, 1] \]

• Invest is uniquely rationalizable if \(x > \bar{R} \) or if \(x \in (R_\infty, \bar{R}] \) and \(z > \bar{z}(x) \)

• No role for shocks with monotone rank beliefs and \(R_\infty = 1 \) (e.g., normality)
• All results so far were agnostic on whether there was a unique rationalizable outcome in each period
All results so far were agnostic on whether there was a unique rationalizable outcome in each period.

A sufficient condition for multiplicity is that

\[\sigma < \sup_z \frac{R(z) - \frac{1}{2}}{z} \]
• All results so far were agnostic on whether there was a unique rationalizable outcome in each period
• A sufficient condition for multiplicity is that

\[\sigma < \sup_z R(z) - \frac{1}{2} \]

• If common shocks are normally distributed with standard deviation \(\tau \), there is multiplicity if

\[\sigma < R'(0) = \sqrt{2\pi (\tau^2 + 1)(\tau^2 + 2)}: \]

higher variance of public signals / common shock required for uniqueness
• All results so far were agnostic on whether there was a unique rationalizable outcome in each period
• A sufficient condition for multiplicity is that
 \[\sigma < \sup_z R(z) - \frac{1}{2} \]
• If common shocks are normally distributed with standard deviation \(\tau \), there is multiplicity if
 \[\sigma < R'(0) = \sqrt{2\pi (\tau^2 + 1)(\tau^2 + 2)}: \]
 higher variance of public signals / common shock required for uniqueness

• SMALL SHOCKS PROPOSITION: Under multiplicity condition, there exists \(\Delta > 0 \) such that whenever
 \(|x - y| \leq \Delta\), invest is uniquely rationalizable if and only if \(y > \bar{y}\).
If a "good" equilibrium is being played, and fundamentals are on the way down, it is better to have fundamentals drift down slowly (or bad news to be released gradually)
• If a "good" equilibrium is being played, and fundamentals are on the way down, it is better to have fundamentals drift down slowly (or bad news to be released gradually)

• If a bad equilibrium is being played, and fundamentals are heading up, it is better to have fundamentals jump up (or good news released in chunks)
• Equilibrium shifts occur when triggered by common knowledge events
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur when triggered by common knowledge events
 - folk argument
Equilibrium shifts occur when triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
Equilibrium shifts occur when triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
- (some of my earlier work)
Equilibrium shifts occur when triggered by common knowledge events

- folk argument
- Michael Chwe "Coordination, Ritual and Common Knowledge"
 - (some of my earlier work)

Questions:
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur when triggered by common knowledge events
 - folk argument
 - Michael Chwe "Coordination, Ritual and Common Knowledge"
 - (some of my earlier work)

- Questions:
 - If going from multiplicity to multiplicity, what explains direction of shift?
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur when triggered by common knowledge events
 - folk argument
 - Michael Chwe "Coordination, Ritual and Common Knowledge"
 - (some of my earlier work)

- Questions:
 - If going from multiplicity to multiplicity, what explains direction of shift?
 - Similarly, if going from uniqueness to multiplicity (c.f., global game arguments)
Competing Hypothesis? Coordination and Common Knowledge

- Equilibrium shifts occur when triggered by common knowledge events
 - folk argument
 - Michael Chwe "Coordination, Ritual and Common Knowledge"
 - (some of my earlier work)

- Questions:
 - If going from multiplicity to multiplicity, what explains direction of shift?
 - Similarly, if going from uniqueness to multiplicity (c.f., global game arguments)
 - Feels like we go from multiplicity to uniqueness?