Central Bank Forward Guidance and the Signal Value of Market Prices

Stephen Morris (Princeton) and Hyun Song Shin (BIS)

AEA Meetings
January 2018
Two way flow:

- Monetary policy works through financial markets
Two way flow:

- Monetary policy works through financial markets
- But market prices inform the central bank on \textit{where} to steer the economy.
paul samuelson and the “reflection problem”

• Samuelson (1994) at Boston Fed:

When Dr Greenspan says he must do this or that to be in accord with the bond market, I am reminded of a monkey who for the first time has seen a mirror. He sees an image of himself in the mirror and thinks that by looking at the reactions of that monkey – including its surprises – he is getting new information. Well, what Greenspan is getting from the market is what the market heard Greenspan say before.
central bank communication and commitment

- Communication:

 - Communication problem arises when CB communication is about future policy actions (forward guidance).
 - More weight on forward guidance as policy rates have hit the effective lower bound.

- Commitment:

 - Time consistency of actions: will central bank follow through on high interest rates after lowering inflationary expectations?
 - Time consistency in choice of information set: use of market signal reduces the informativeness of market signal....
 - CB gains from committing to reduced weight on market signals, focusing on non-market information.
• Communication:
 • Reflection problem arises when CB communication is about future policy actions (forward guidance)
Communication:

- Reflection problem arises when CB communication is about future policy actions (forward guidance)
- More weight on forward guidance as policy rates have hit the effective lower bound
• Communication:
 • Reflection problem arises when CB communication is about future policy actions (forward guidance)
 • More weight on forward guidance as policy rates have hit the effective lower bound

• Commitment
Communication:

- Reflection problem arises when CB communication is about future policy actions (forward guidance)
- More weight on forward guidance as policy rates have hit the effective lower bound

Commitment

- Time consistency of actions (i) will central bank follow through on high interest rates after lowering inflationary expectations? (ii) will central bank follow through on continued easy policy after recovery?
communication and commitment

- Communication:
 - Reflection problem arises when CB communication is about future policy actions (forward guidance)
 - More weight on forward guidance as policy rates have hit the effective lower bound

- Commitment
 - Time consistency of actions (i) will central bank follow through on high interest rates after lowering inflationary expectations? (ii) will central bank follow through on continued easy policy after recovery?
 - Time consistency in choice of information set
central bank communication and commitment

Communication:
- Reflection problem arises when CB communication is about future policy actions (forward guidance)
- More weight on forward guidance as policy rates have hit the effective lower bound

Commitment
- Time consistency of actions (i) will central bank follow through on high interest rates after lowering inflationary expectations? (ii) will central bank follow through on continued easy policy after recovery?
- Time consistency in choice of information set
 - use of market signal reduces the informativeness of market signal....
central bank communication and commitment

• Communication:
 • Reflection problem arises when CB communication is about future policy actions (forward guidance)
 • More weight on forward guidance as policy rates have hit the effective lower bound

• Commitment
 • Time consistency of actions (i) will central bank follow through on high interest rates after lowering inflationary expectations? (ii) will central bank follow through on continued easy policy after recovery?
 • Time consistency in choice of information set
 • use of market signal reduces the informativeness of market signal....
 • CB gains from committing to reduced weight on market signals, focussing on non-market information
model ingredients

- market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
• market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
• central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment

model ingredients
model ingredients

- market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
- central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment
- central bank aims to match fundamentals; market participants aim (mostly) to match CB’s action
model ingredients

- market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
- central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment
- central bank aims to match fundamentals; market participants aim (mostly) to match CB's action
- "reflection problem": reliance on market signal can sometimes be self-defeating

The more CB relies on market signal, the less market participants incorporate private signal, rendering market signal less informative.

Lesson: CB must strike a balance between market information and other information.

Compare reflection effect in Bernanke and Woodford (1997), Bond and Goldstein (2015) and others.
• market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
• central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment
• central bank aims to match fundamentals; market participants aim (mostly) to match CB’s action
• "reflection problem": reliance on market signal can sometimes be self-defeating
 • the more CB relies on market signal, the less market participants incorporate private signal, rendering market signal less informative

lesson: CB must strike a balance between market information and other information

compare reflection effect in Bernanke and Woodford (1997), Bond and Goldstein (2015) and others
model ingredients

- market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal
- central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment
- central bank aims to match fundamentals; market participants aim (mostly) to match CB’s action
- "reflection problem": reliance on market signal can sometimes be self-defeating
 - the more CB relies on market signal, the less market participants incorporate private signal, rendering market signal less informative
 - lesson: CB must strike a balance between market information and other information
market participants each have private information about economic fundamentals, as well as "conventional wisdom": a noisy semi-public signal

central bank has a reaction function: action is function of market signal (average action of market participants) and proprietary information / assessment

central bank aims to match fundamentals; market participants aim (mostly) to match CB's action

"reflection problem": reliance on market signal can sometimes be self-defeating
 - the more CB relies on market signal, the less market participants incorporate private signal, rendering market signal less informative
 - lesson: CB must strike a balance between market information and other information

compare reflection effect in Bernanke and Woodford (1997), Bond and Goldstein (2015) and others
model

- fundamental state \(\theta \) has a diffuse (uniform) distribution
• fundamental state θ has a diffuse (uniform) distribution
• central bank observes a private signal z of fundamentals with mean θ and precision γ.
• fundamental state θ has a diffuse (uniform) distribution
• central bank observes a private signal z of fundamentals with mean θ and precision γ.
• market participants observe private signals x_i with mean θ and precision β, as well as public (among themselves) signal y with mean θ and precision α.
• fundamental state θ has a diffuse (uniform) distribution
• central bank observes a private signal z of fundamentals with mean θ and precision γ.
• market participants observe private signals x_i with mean θ and precision β, as well as public (among themselves) signal y with mean θ and precision α.
• the central bank chooses an action r
• fundamental state θ has a diffuse (uniform) distribution
• central bank observes a private signal z of fundamentals with mean θ and precision γ.
• market participants observe private signals x_i with mean θ and precision β, as well as public (among themselves) signal y with mean θ and precision α.
• the central bank chooses an action r
• private sector agents choose actions a_i in anticipation of central bank action and the central bank can condition on them as well as z
• central bank wants to set action appropriate for fundamentals: it minimizes

$$(r - \theta)^2$$
• central bank wants to set action appropriate for fundamentals: it minimizes

\[(r - \theta)^2\]

• market participants want (mostly) to guess central bank action but also (a bit) to match fundamentals: agent \(i\) minimizes

\[w (a_i - r)^2 + (1 - w) (a_i - \theta)^2;\]

where \(w \approx 1\)... we will consider limit as \(w \to 1\) (limit \(w = 1\) case will be degenerate)
market participant actions depend on CB reaction function

- central bank reaction function

\[r = \lambda \bar{a} + (1 - \lambda) z \]

where \(\bar{a} \) is market signal (average action) and \(\lambda \) is "weight on market"
market participant actions depend on CB reaction function

- central bank reaction function
 \[r = \lambda \bar{a} + (1 - \lambda) z \]
 where \(\bar{a} \) is market signal (average action) and \(\lambda \) is "weight on market"
- market participant \(i \)'s strategy
 \[a_i = w E_i(r) + (1 - w) E_i(\theta) \]
 \[= w \lambda E_i(\bar{a}) + (1 - w \lambda) E_i(\theta) \]
 \[= \xi x_i + (1 - \xi) y \]
 with "informativeness"
 \[\xi = \tilde{\xi}(\lambda) = \frac{\beta (1 - w \lambda)}{\alpha + \beta (1 - w \lambda)} \]
Market participant actions depend on CB reaction function

- Central bank reaction function
 \[r = \lambda \bar{a} + (1 - \lambda) z \]
 where \(\bar{a} \) is market signal (average action) and \(\lambda \) is "weight on market"

- Market participant \(i \)'s strategy
 \[a_i = w E_i (r) + (1 - w) E_i (\theta) \]
 \[= w \lambda E_i (\bar{a}) + (1 - w \lambda) E_i (\theta) \]
 \[= \xi x_i + (1 - \xi) y \]
 with "informativeness"

\[\xi = \tilde{\xi} (\lambda) = \frac{\beta (1 - w \lambda)}{\alpha + \beta (1 - w \lambda)} \]

- "Reflection effect":
market participant actions depend on CB reaction function

- central bank reaction function

\[r = \lambda \bar{a} + (1 - \lambda) z \]

where \(\bar{a} \) is market signal (average action) and \(\lambda \) is "weight on market"

- market participant \(i \)'s strategy

\[a_i = w E_i(r) + (1 - w) E_i(\theta) \]
\[= w \lambda E_i(\bar{a}) + (1 - w \lambda) E_i(\theta) \]
\[= \xi x_i + (1 - \xi)y \]

with "informativeness"

\[\xi = \tilde{\xi}(\lambda) = \frac{\beta (1 - w \lambda)}{\alpha + \beta (1 - w \lambda)} \]

- "reflection effect":
 - high \(\lambda \) and high \(w \) reduce \(\xi \)… etc.
market participant actions depend on CB reaction function

- central bank reaction function
 \[r = \lambda \bar{a} + (1 - \lambda) z \]
 where \(\bar{a} \) is market signal (average action) and \(\lambda \) is "weight on market"

- market participant \(i \)'s strategy
 \[a_i = wE_i (r) + (1 - w) E_i (\theta) \]
 \[= w \lambda E_i (\bar{a}) + (1 - w \lambda) E_i (\theta) \]
 \[= \xi x_i + (1 - \xi) y \]
 with "informativeness"
 \[\xi = \tilde{\xi} (\lambda) = \frac{\beta (1 - w \lambda)}{\alpha + \beta (1 - w \lambda)} \]

- "reflection effect":
 - high \(\lambda \) and high \(w \) reduce \(\xi \)… etc.
 - in \(w \to 1 \) limit, as \(\lambda \to 1 \), we have \(\xi \to 0 \), rendering market signal uninformative
- \(w = 1, \alpha = 1, \beta = 2, \gamma = 1 \)
solution with commitment: Odyssean or Stackelberg

- CB chooses λ to minimise

$$\lambda^2 (1 - \xi)^2 \frac{1}{\alpha} + (1 - \lambda)^2 \frac{1}{\gamma}$$

subject to $\xi = \tilde{\xi} (\lambda)$.

![Diagram](image-url)
solution with commitment: Odyssean or Stackelberg

- CB chooses λ to minimise

$$\lambda^2 (1 - \xi)^2 \frac{1}{\alpha} + (1 - \lambda)^2 \frac{1}{\gamma}$$

subject to $\xi = \tilde{\xi}(\lambda)$.

- Stackelberg equilibrium $\lambda^* = 0.63$ and $\xi^* = 0.42$
solution without commitment: Delphic or Cournot

- CB chooses λ as a best reply to ξ

$$\lambda = \frac{\alpha}{\alpha + \gamma (1 - \xi)^2}$$
solution without commitment: Delphic or Cournot

- CB chooses λ as a best reply to ξ

$$\lambda = \frac{\alpha}{\alpha + \gamma (1 - \xi)^2}$$

- Nash Equilibrium $\lambda^{**} = 0.71 > \lambda^*$ and $\xi^{**} = 0.36 < \xi^*$
improper uniform prior gives clean model, limit of proper prior models
improper uniform prior gives clean model, limit of proper prior models

with no semi-public signal ($\alpha = 0$) and proper prior, can get arbitrarily close to first best with small weight on z and weight > 1 on \bar{a}. Indeterminacy in the limit (c.f., Bernanke-Woodford 97).
improper uniform prior gives clean model, limit of proper prior models

with no semi-public signal ($\alpha = 0$) and proper prior, can get arbitrarily close to first best with small weight on z and weight > 1 on \bar{a}. indeterminacy in the limit (c.f., Bernanke-Woodford 97)

precision of semi public signal has non-monotonic effect of CB’s objective (c.f., Morris-Shin 02)

$$\lambda^2 \frac{\alpha}{(\alpha + \beta (1 - w \lambda))^2} + (1 - \lambda)^2 \frac{1}{\gamma}$$
improper uniform prior gives clean model, limit of proper prior models

with no semi-public signal \((\alpha = 0) \) and proper prior, can get arbitrarily close to first best with small weight on \(z \) and weight \(> 1 \) on \(a \). Indeterminacy in the limit (c.f., Bernanke-Woodford 97).

precision of semi-public signal has non-monotonic effect of CB’s objective (c.f., Morris-Shin 02)

\[
\chi^2 \frac{\alpha}{(\alpha + \beta (1 - w \lambda))^2} + (1 - \lambda)^2 \frac{1}{\gamma}
\]

same conclusion about forward guidance if CB puts weight on \((\bar{a} - \theta)^2 \) as well as \((r - \theta)^2 \)