Central question for labor and macro: what determines the level of employment and unemployment in the economy?

Textbook answer: labor supply, labor demand, and unemployment as “leisure”.

Neither realistic nor a useful framework for analysis.

Alternative: labor market frictions

Related questions raised by the presence of frictions:
- is the level of employment efficient/optimal?
- how is the composition and quality of jobs determined, is it efficient?
- distribution of earnings across workers.
Applied questions:

- why was unemployment around 4-5% in the US economy until the 1970s?
- why did the increase in the 70s and 80s, and then decline again in the late 90s?
- why did it then remain high throughout the 90s and 2000s?
- why did European unemployment increase in the 1970s and remain persistently high?
- is the unemployment rate the relevant variable to focus on? Or the labor force participation rate? Or the non-employment rate?
- why is the composition of employment so different across countries?
 - male versus female, young versus old, high versus low wages
Challenge: how should labor market frictions be modeled?

Alternatives:
- incentive problems, efficiency wages
- wage rigidities, bargaining, non-market clearing prices
- search

Search and matching: costly process of workers finding the “right” jobs.

Theoretical interest: how do markets function without the Walrasian auctioneer?

Empirically important,

But how to develop a tractable and rich model?
The simplest model of search frictions.

Problem of an individual getting draws from a given wage distribution.

Decision: which jobs to accept and when to start work.

Jobs sampled sequentially.

Alternative: Stigler, fixed sample search (choose a sample of n jobs and then take the most attractive one).

Sequential search typically more reasonable.

Moreover, whenever sequential search is possible, is preferred to fixed sample search (why?).
Environment

- Risk neutral individual in discrete time.
- At time $t = 0$, this individual has preferences given by
 \[\sum_{t=0}^{\infty} \beta^t c_t \]
- $c_t =$ consumption.
- Start as unemployed, with consumption equal to b
- All jobs are identical except for their wages, and wages are given by
 an exogenous stationary distribution of
 \[F(w) \]
 with finite (bounded) support \mathbb{W}.
- At every date, the individual samples a wage $w_t \in \mathbb{W}$, and has to decide whether to take this or continue searching.
- Jobs are for life.
- Draws from \mathbb{W} over time are independent and identically distributed.
Environment (continued)

- *Undirected search*, in the sense that the individual has no ability to seek or direct his search towards different parts of the wage distribution (or towards different types of jobs).
- Alternative: *directed search*.
Suppose search without recall.

If the worker accepts a job with wage w_t, he will be employed at that job forever, so the net present value of accepting a job of wage w_t is

$$\frac{w_t}{1 - \beta}.$$

Class of decision rules of the agent:

$$a_t : \mathcal{W} \rightarrow [0, 1]$$

as acceptance decision (acceptance probability)
Dynamic Programming Formulation

- Define the value of the agent when he has sampled a job of \(w \in \mathbb{W} \):

\[
v(w) = \max \left\{ \frac{w}{1 - \beta}, \beta v + b \right\}, \tag{1}
\]

where

\[
v = \int_{\mathbb{W}} v(\omega) \, dF(\omega) \tag{2}
\]

- \(v \) is the continuation value of not accepting a job.

- Integral in (2) as a Lebesgue integral, since \(F(w) \) could be a mixture of discrete and continuous.

- Intuition.

- We are interested in finding both the value function \(v(w) \) and the optimal policy of the individual.
Dynamic Programming Formulation (continued)

- Previous two equations:

\[v(w) = \max \left\{ \frac{w}{1-\beta}, \ b + \beta \int_{W} v(\omega) \ dF(\omega) \right\}. \]

(3)

- Existence of optimal policies follows from standard theorems in dynamic programming.

- But, even more simply (3) implies that \(v(w) \) must be piecewise linear with first a flat portion and then an increasing portion.

- Optimal policy: \(v(w) \) is non-decreasing, therefore optimal policy will take a cutoff form.

\[\rightarrow \text{reservation wage } R \]

- all wages above \(R \) will be accepted and those \(w < R \) will be turned down.

- Implication of the reservation wage policy \(\rightarrow \) no recall assumption of no consequence (why?).
Reservation Wage

- Reservation wage given by

\[
\frac{R}{1 - \beta} = b + \beta \int_{\mathcal{W}} v(\omega) \, dF(\omega).
\] (4)

- Intuition?
- Since \(w < R \) are turned down, for all \(w < R \)

\[
v(w) = b + \beta \int_{\mathcal{W}} v(\omega) \, dF(\omega)
\]

\[= \frac{R}{1 - \beta},\]

and for all \(w \geq R \),

\[
v(w) = \frac{w}{1 - \beta}
\]

- Therefore,

\[
\int_{\mathcal{W}} v(\omega) \, dF(\omega) = \frac{RF(R)}{1 - \beta} + \int_{w \geq R} \frac{w}{1 - \beta} \, dF(\omega).
\]
Combining this with (4), we have

\[
\frac{R}{1-\beta} = b + \beta \left[\frac{RF(R)}{1-\beta} + \int_{w \geq R} \frac{w}{1-\beta} dF(w) \right]
\]

Rewriting

\[
\int_{w < R} \frac{R}{1-\beta} dF(w) + \int_{w \geq R} \frac{R}{1-\beta} dF(w) = b + \beta \left[\int_{w < R} \frac{R}{1-\beta} dF(w) \right. - \left. \int_{w \geq R} \frac{R}{1-\beta} dF(w) \right]
\]

Subtracting \(\beta R \int_{w \geq R} dF(w) / (1-\beta) + \beta R \int_{w < R} dF(w) / (1-\beta)\) from both sides,

\[
\int_{w < R} \frac{R}{1-\beta} dF(w) + \int_{w \geq R} \frac{R}{1-\beta} dF(w)
\]

\[
-\beta \int_{w \geq R} \frac{R}{1-\beta} dF(w) - \beta \int_{w < R} \frac{R}{1-\beta} dF(w)
\]

\[
= b + \beta \left[\int_{w \geq R} \frac{w - R}{1-\beta} dF(w) \right]
\]
Collecting terms, we obtain

$$R - b = \frac{\beta}{1 - \beta} \left[\int_{w \geq R} (w - R) \, dF(w) \right].$$

(5)

The left-hand side is the cost of foregoing the wage of R.
The right hand side is the expected benefit of one more search.
At the reservation wage, these two are equal.
Reservation Wage (continued)

- Let us define the right hand side of equation (5) as

\[g(R) \equiv \frac{\beta}{1 - \beta} \left[\int_{w \geq R} (w - R) dF(w) \right], \]

- This is the expected benefit of one more search as a function of the reservation wage.
- Differentiating

\[g'(R) = -\frac{\beta}{1 - \beta} (R - R) f(R) - \frac{\beta}{1 - \beta} \left[\int_{w \geq R} dF(w) \right] \]

\[= -\frac{\beta}{1 - \beta} [1 - F(R)] < 0 \]

- Therefore equation (5) has a unique solution.
- Moreover, by the implicit function theorem,

\[\frac{dR}{db} = \frac{1}{1 - g'(R)} > 0. \]
 Reservation Wage (continued)

- Suppose that the density of \(F(R) \), denoted by \(f(R) \), exists (was this necessary until now?).
- Then the second derivative of \(g \) also exists and is

\[
g''(R) = \frac{\beta}{1 - \beta} f(R) \geq 0.
\]

- This implies the right hand side of equation (5) is also convex.
- What does this mean?
Wage Dispersion and Search

- Start with equation (5), which is

\[R - b = \frac{\beta}{1 - \beta} \left[\int_{w \geq R} (w - R) \, dF(w) \right]. \]

- Rewrite this as

\[R - b = \frac{\beta}{1 - \beta} \left[\int_{w \geq R} (w - R) \, dF(w) \right] + \frac{\beta}{1 - \beta} \left[\int_{w \leq R} (w - R) \, dF(w) \right] - \frac{\beta}{1 - \beta} \left[\int_{w \leq R} (w - R) \, dF(w) \right], \]

\[= \frac{\beta}{1 - \beta} (Ew - R) - \frac{\beta}{1 - \beta} \left[\int_{w \leq R} (w - R) \, dF(w) \right], \]

where

\[Ew = \int_{W} w \, dF(w) \]

is the mean of the distribution.
Wage Dispersion and Search (continued)

- Rearranging the previous equation

\[R - b = \beta (Ew - b) - \beta \int_{w \leq R} (w - R) \, dF(w). \]

- Applying integration by parts to the integral on the right hand side, i.e., noting that

\[
\int_{w \leq R} wdF(w) = \int_{0}^{R} wdF(w) = wF(w)\big|_{0}^{R} - \int_{0}^{R} F(w) \, dw = RF(R) - \int_{0}^{R} F(w) \, dw.
\]

- We obtain

\[R - b = \beta (Ew - b) + \beta \int_{0}^{R} F(w) \, dw. \] \hspace{1cm} (6)
Wage Dispersion and Search (continued)

- Now consider a shift from F to \tilde{F} corresponding to a mean preserving spread.
- This implies that Ew is unchanged.
- But by definition of a mean preserving spread (second-order stochastic dominance), the last integral increases.
- Therefore, the mean preserving spread induces a shift in the reservation wage from R to $\tilde{R} > R$.
- Intuition?
- Relation to the convexity of $\nu(w)$?
Suppose that there is now a continuum of identical individuals sampling jobs from the same stationary distribution F.

Once a job is created, it lasts until the worker dies, which happens with probability s.

There is a mass of s workers born every period, so that population is constant.

New workers start out as unemployed.

The death probability means that the effective discount factor of workers is equal to $\beta (1 - s)$.

Consequently, the value of having accepted a wage of w is:

$$v^a (w) = \frac{w}{1 - \beta (1 - s)}.$$
With the same reasoning as before, the value of having a job offer at wage w at hand is

$$v(w) = \max \{ v^a(w), b + \beta (1 - s) v \}$$

with

$$v = \int_W v(w) \, dF.$$

Therefore, the reservation wages given by

$$R - b = \frac{\beta (1 - s)}{1 - \beta (1 - s)} \left[\int_{w \geq R} (w - R) \, dF(w) \right].$$
Law of Motion of Unemployment

- Let us start time t with U_t unemployed workers.
- There will be s new workers born into the unemployment pool.
- Out of the U_t unemployed workers, those who survive and do not find a job will remain unemployed.
- Therefore

$$U_{t+1} = s + (1 - s) \cdot F(R) \cdot U_t.$$

- Here $F(R)$ is the probability of not finding a job, so $(1 - s) \cdot F(R)$ is the joint probability of not finding a job and surviving.
- Simple first-order linear difference equation (only depending on the reservation wage R, which is itself independent of the level of unemployment, U_t).
- Since $(1 - s) \cdot F(R) < 1$, it is asymptotically stable, and will converge to a unique steady-state level of unemployment.
Flow Approached Unemployment

- This gives us the simplest version of the flow approach to unemployment.

- Subtracting U_t from both sides:

$$U_{t+1} - U_t = s(1 - U_t) - (1 - s)(1 - F(R))U_t.$$

- If period length is arbitrary, this can be written as

$$U_{t+\Delta t} - U_t = s(1 - U_t)\Delta t - (1 - s)(1 - F(R))U_t\Delta t + o(\Delta t).$$

- Dividing by Δt and taking limits as $\Delta t \to 0$, we obtain the continuous time version

$$\dot{U}_t = s(1 - U_t) - (1 - s)(1 - F(R))U_t.$$
Flow Approached Unemployment (continued)

- The unique steady-state unemployment rate where \(U_{t+1} = U_t \) (or \(\dot{U}_t = 0 \)) given by

\[
U = \frac{s}{s + (1 - s)(1 - F(R))}.
\]

- Canonical formula of the flow approach.

- The steady-state unemployment rate is equal to the job destruction rate (here the rate at which workers die, \(s \)) divided by the job destruction rate plus the job creation rate (here in fact the rate at which workers leave unemployment, which is different from the job creation rate).

- Clearly, an increase in \(s \) will raise steady-state unemployment.

- Moreover, an increase in \(R \), that is, a higher reservation wage, will also depress job creation and increase unemployment.
The search framework is attractive especially when we want to think of a world without a Walrasian auctioneer, or alternatively a world with “frictions”.

Search theory holds the promise of potentially answering these questions, and providing us with a framework for analysis.

But...
The Rothschild Critique

- The key ingredient of the McCall model is non-degenerate wage distribution \(F(w) \).
- Where does this come from?
- Presumably somebody is offering every wage in the support of this distribution.
- *Wage posting* by firms.
- The basis of the Rothschild critique is that it is difficult to rationalize the distribution function \(F(w) \) as resulting from profit-maximizing choices of firms.
The Rothschild Critique (continued)

- Imagine that the economy consists of a mass 1 of identical workers similar to our searching agent.
- On the other side, there are N firms that can productively employ workers. Imagine that firm j has access to a technology such that it can employ l_j workers to produce

$$y_j = x_j l_j$$

units of output (with its price normalized to one as the numeraire, so that w is the real wage).
- Suppose that each firm can only attract workers by posting a single vacancy.
- Moreover, to simplify the discussion, suppose that firms post a vacancy at the beginning of the game at $t = 0$, and then do not change the wage from then on. (why is this useful?)
The Rothschild Critique (continued)

- Suppose that the distribution of \(x \) in the population of firms is given by \(G(x) \) with support \(X \subset \mathbb{R}_+ \).
- Also assume that there is some cost \(\gamma > 0 \) of posting a vacancy at the beginning, and finally, that \(N >> 1 \) (i.e., \(N = \int_{-\infty}^{\infty} dG(x) >> 1 \)) and each worker samples one firm from the distribution of posting firms.
- As before, suppose that once a worker accepts a job, this is permanent, and he will be employed at this job forever.
- Moreover let us set \(b = 0 \), so that there is no unemployment benefits.
- Finally, to keep the environment entirely stationary, assume that once a worker accepts a job, a new worker is born, and starts search.
- Will these firms offer a non-degenerate wage distribution \(F(w) \)?
Equilibrium Wage Distribution?

- The answer is no.
- Previous analysis: all workers will use a reservation wage, so
 \[a(w) = \begin{cases}
 1 & \text{if } w \geq R \\
 0 & \text{otherwise}
 \end{cases} \]
- Since all workers are identical and the equation above determining the reservation wage, (5), has a unique solution, all workers will all be using the same reservation rule, accepting all wages \(w \geq R \) and turning down those \(w < R \).
- Workers' strategies are therefore again characterized by a reservation wage \(R \).
- Next consider a firm offering a wage \(\tilde{w} < R \).
- This wage will be rejected by all workers, and the firm would lose the cost of posting a vacancy.
- Therefore, in equilibrium when workers use the reservation wage rule of accepting only wages greater than \(R \), all firms will offer the same
The Diamond Paradox

- In fact, the paradox is even deeper.

Theorem

(Diamond Paradox) *For all $\beta < 1$, the unique equilibrium in the above economy is $R = 0$, and all workers accept the first wage offer.*

- **Sketch proof**: suppose $R \geq 0$, and $\beta < 1$.
- The optimal acceptance decision for to worker is
 \[
 a(w) = \begin{cases}
 1 & \text{if } w \geq R \\
 0 & \text{otherwise}
 \end{cases}
 \]
- Therefore, all firms offering $w = R$ is an equilibrium
- But also...
Lemma

There exists $\varepsilon > 0$ such that when “almost all” firms are offering $w = R$, it is optimal for each worker to use the following acceptance strategy:

$$a(w) = \begin{cases} 1 & \text{if } w \geq \max\{R - \varepsilon, 0\} \\ 0 & \text{otherwise} \end{cases}$$

So for any $R > 0$, a firm can undercut the offers of all other firms and still have its offer accepted.
Sketch proof:

- If the worker accepts the wage of $R - \varepsilon$,
 \[u^{\text{accept}} = \frac{R - \varepsilon}{1 - \beta} \]

- If he rejects and waits until next period, then since “almost all” firms are offering R,
 \[u^{\text{reject}} = \frac{\beta R}{1 - \beta} \]

- For all $\beta < 1$, there exists $\varepsilon > 0$ such that
 \[u^{\text{accept}} > u^{\text{reject}}. \]
The Diamond Paradox (continued)

- Implication: starting from an allocation where all firms offer R, any firm can deviate and offer a wage of $R - \varepsilon$ and increase its profits.
- This proves that no wage $R > 0$ can be the equilibrium, proving the proposition.
- Is the same true for Nash equilibria?
Solutions to the Diamond Paradox

How do we resolve this paradox?

1. By assumption: assume that $F(w)$ is not the distribution of wages, but the distribution of “fruits” exogenously offered by “trees”. This is clearly unsatisfactory, both from the modeling point of view, and from the point of view of asking policy questions from the model (e.g., how does unemployment insurance affect the equilibrium? The answer will depend also on how the equilibrium wage distribution changes).

2. Introduce other dimensions of heterogeneity — heterogeneity of types (sometimes works) or heterogeneity of information or opportunities (which we will see later).

3. Modify the wage determination assumptions—bargaining rather than wage posting: the most common and tractable alternative (though is it the most realistic?)
To circumvent the Rothschild and the Diamond paradoxes, assume *no wage posting* but instead *wage determination by bargaining*. Where are the search frictions? Reduced form: *matching function*. Continue to assume *undirected search*. → Baseline equilibrium model: Diamond-Mortensen-Pissarides (DMP) framework. Very tractable and widely used in macro and labor. Roughly speaking: flows approach meets equilibrium. Shortcoming: reduced form matching function.
Setup

- Continuous time, infinite horizon economy with risk neutral agents.
- Matching Function:
 \[\text{Matches} = x(U, V) \]
- Continuous time: \(x(U, V) \) as the flow rate of matches.
- Assume that \(x(U, V) \) exhibits constant returns to scale.
Matching Function

Therefore:

\[\text{Matches} = xL = x(uL, vL) \]
\[\implies x = x(u, v) \]

- \(U \) = unemployment;
- \(u \) = unemployment rate
- \(V \) = vacancies;
- \(v \) = vacancy rate (per worker in labor force)
- \(L \) = labor force
Evidence and Interpretation

- Existing aggregate evidence suggests that the assumption of x exhibiting CRS is reasonable.
- Intuitively, one might have expected “increasing returns” if the matching function corresponds to physical frictions
 - think of people trying to run into each other on an island.
- But the matching function is to reduced form for this type of interpretation.
- In practice, frictions due to differences in the supply and demand for specific types of skills.
Matching Rates and Job Creation

- Using the constant returns assumption, we can express everything as a function of the tightness of the labor market.

\[q(\theta) \equiv \frac{x}{v} = x \left(\frac{u}{v}, 1 \right), \]

- Here \(\theta \equiv v/u \) is the tightness of the labor market.

\[q(\theta) : \text{Poisson arrival rate of match for a vacancy} \]
\[\theta q(\theta) : \text{Poisson arrival rate of match for an unemployed worker} \]

- Therefore, job creation is equal to

\[\text{Job creation} = u\theta q(\theta)L \]
What about job destruction?

Let us start with the simplest model of job destruction, which is basically to treat it as “exogenous”.

Think of it as follows, firms are hit by adverse shocks, and then they decide whether to destroy or to continue.

\[
\text{Adverse Shock} \rightarrow \text{destroy} \quad \text{or} \quad \text{continue}
\]

Exogenous job destruction: Adverse shock $= -\infty$ with “probability” (i.e., flow rate) s
Steady State of the Flow Approach

- As in the partial equilibrium sequential search model
- Steady State:

 \[\text{flow into unemployment} = \text{flow out of unemployment} \]

- Therefore, with exogenous job destruction:

 \[s(1 - u) = \theta q(\theta) u \]

- Therefore, steady state unemployment rate:

 \[u = \frac{s}{s + \theta q(\theta)} \]

- Intuition
The Beverage Curve

- This relationship is also referred to as the Beveridge Curve, or the U-V curve.
- It draws a downward sloping locus of unemployment-vacancy combinations in the U-V space that are consistent with flow into unemployment being equal with flow out of unemployment.
- Some authors interpret shifts of this relationship as reflecting structural changes in the labor market, but we will see that there are many factors that might actually shift at a generalized version of such relationship.
Production Side

- Let the output of each firm be given by neoclassical production function combining labor and capital:
 \[Y = AF(K, N) \]

- \(F \) exhibits constant returns, \(K \) is the capital stock of the economy, and \(N \) is employment (different from labor force because of unemployment).

- Let
 \[k \equiv \frac{K}{N} \]
 be the capital labor ratio, then
 \[\frac{Y}{N} = Af(k) \equiv AF\left(\frac{K}{N}, 1\right) \]

- Also let
 - \(r \): cost of capital
 - \(\delta \): depreciation
Production Side: Two Interpretations

- Each firm is a “job” hires one worker
- Each firm can hire as many worker as it likes
- For our purposes either interpretation is fine
Hiring Costs

- Why don’t firms open an infinite number of vacancies?
- Hiring activities are costly.
- Vacancy costs γ_0: fixed cost of hiring
Bellman Equations

J^V: PDV of a vacancy
J^F: PDV of a “job”
J^U: PDV of a searching worker
J^E: PDV of an employed worker

Why is J^F not conditioned on k?

Big assumption: perfectly reversible capital investments (why is this important?)
Value of Vacancies

- Perfect capital market gives the asset value for a vacancy (in steady state) as
 \[rJ^V = -\gamma_0 + q(\theta)(J^F - J^V) \]
- Intuition?
Free Entry $\implies \quad J^V \equiv 0$

If it were positive, more firms would enter.

Important implication: job creation can happen really “fast”, except because of the frictions created by matching searching workers to searching vacancies.

Alternative would be: $\gamma_0 = \Gamma_0(V)$ or $\Gamma_1(\theta)$, so as there are more and more jobs created, the cost of opening an additional job increases.
Characterization of Equilibrium

- Free entry implies that
 \[J^F = \frac{\gamma_0}{q(\theta)} \]
- Asset value equation for the value of a field job:
 \[r(J^F + k) = Af(k) - \delta k - w - s(J^F - J^V) \]
- Intuitively, the firm has two assets: the fact that it is matched with a worker, and its capital, \(k \).
- So its asset value is \(J^F + k \) (more generally, without the perfect reversibility, we would have the more general \(J^F(k) \)).
- Its return is equal to production, \(Af(k) \), and its costs are depreciation of capital and wages, \(\delta k \) and \(w \).
- Finally, at the rate \(s \), the relationship comes to an end and the firm loses \(J^F \).
Wage Determination

- Can wages be equal to marginal cost of labor and value of marginal product of labor?
- No because of labor market frictions
- a worker with a firm is more valuable than an unemployed worker.
- How are wages determined?
- *Nash bargaining* over match specific surplus $J^E + J^F - J^U - J^V$
- Where is k?
Implications of Perfect Reversability

- Perfect Reversability implies that w does not depend on the firm’s choice of capital

\implies equilibrium capital utilization $f'(k) = r + \delta$

- *Modified Golden Rule*
Equilibrium Job Creation

- Free entry together with the Bellman equation for filled jobs implies

\[Af(k) - (r - \delta)k - w - \frac{(r + s)}{q(\theta)} \gamma_0 = 0 \]

- For unemployed workers

\[rJ^U = z + \theta q(\theta)(J^E - J^U) \]

where \(z \) is unemployment benefits.

- Employed workers:

\[rJ^E = w + s(J^U - J^E) \]

- Reversibility again: \(w \) independent of \(k \).
Solving these equations we obtain

\[
\begin{align*}
J^U &= \frac{(r + s)z + \theta q(\theta)w}{r + s + \theta q(\theta)} \\
J^E &= \frac{sz + [r + \theta q(\theta)]w}{r + s + \theta q(\theta)}
\end{align*}
\]
Consider the surplus of pair i:

$$
\begin{align*}
 rJ_i^F &= Af(k) - (r + \delta)k - w_i - sJ_i^F \\
 rJ_i^E &= w_i - s(J_i^E - J_0^U).
\end{align*}
$$

Why is it important to do this for pair i (rather than use the equilibrium expressions above)?

The Nash solution will solve

$$
\max(J_i^E - J_0^U) \beta (J_i^F - J_0^V)^{1-\beta}
$$

$$
\beta = \text{bargaining power of the worker}
$$

Since we have linear utility, thus “transferable utility”, this implies

$$
J_i^E - J_0^U = \beta(J_i^F + J_i^E - J_0^V - J_0^U)
$$
Nash Bargaining

• Using the expressions for the value functions

\[w = (1 - \beta)z + \beta [Af(k) - (r + \delta)k + \theta \gamma_0] \]

• Here

\[Af(k) - (r + \delta)k + \theta \gamma_0 \]

is the quasi-rent created by a match that the firm and workers share.

• Why is the term \(\theta \gamma_0 \) there?
Digression: Irreversible Capital Investments

- Much more realistic, but typically not adopted in the literature (why not?)
- Suppose k is not perfectly reversible then suppose that the worker captures a fraction β all the output in bargaining.
- Then the wage depends on the capital stock of the firm, as in the holdup models discussed before.

$$w(k) = \beta Af(k)$$

$$Af'(k) = \frac{r + \delta}{1 - \beta} ; \text{capital accumulation is distorted}$$
Steady State Equilibrium

Steady State Equilibrium is given by four equations

1. The Beveridge curve:
 \[u = \frac{s}{s + \theta q(\theta)} \]

2. Job creation leads zero profits:
 \[Af(k) - (r + \delta)k - w - \frac{(r + s)}{q(\theta)} \gamma_0 = 0 \]

3. Wage determination:
 \[w = (1 - \beta)z + \beta [Af(k) - (r + \delta)k + \theta \gamma_0] \]

4. Modified golden rule:
 \[Af'(k) = r + \delta \]
These four equations define a block recursive system

\[(4) + r \rightarrow k\]

\[k + r + (2) + (3) \rightarrow \theta, w\]

\[\theta + (1) \rightarrow u\]
Alternatively, combining three of these equations we obtain the zero-profit locus, the VS curve.

Combine this with the Beveridge curve to obtain the equilibrium.

\[(2), (3), (4) \implies \text{the VS curve}\]

\[(1 - \beta) [A_f(k) - (r + \delta)k - z] - \frac{r + \delta + \beta \theta q(\theta)}{q(\theta)} \gamma_0 = 0\]

Therefore, the equilibrium looks very similar to the intersection of “quasi-labor demand” and “quasi-labor supply”.

\[
(1 - \beta) [A_f(k) - (r + \delta)k - z] - \frac{r + \delta + \beta \theta q(\theta)}{q(\theta)} \gamma_0 = 0
\]
Steady State Equilibrium in a Diagram

Steady state comparative statics
Comparative Statics of the Steady State

- From the figure:

\[s \uparrow \quad U \uparrow \quad V \uparrow \quad \theta \downarrow \quad w \downarrow \]
\[r \uparrow \quad U \uparrow \quad V \downarrow \quad \theta \downarrow \quad w \downarrow \]
\[\gamma_0 \uparrow \quad U \uparrow \quad V \downarrow \quad \theta \downarrow \quad w \downarrow \]
\[\beta \uparrow \quad U \uparrow \quad V \downarrow \quad \theta \downarrow \quad w \uparrow \]
\[z \uparrow \quad U \uparrow \quad V \downarrow \quad \theta \downarrow \quad w \uparrow \]
\[A \uparrow \quad U \downarrow \quad V \uparrow \quad \theta \uparrow \quad w \uparrow \]

- Can we think of any of these factors is explaining the rise in unemployment in Europe during the 1980s, or the lesser rise in unemployment in 1980s in the United States?
Dynamics

- It can be verified that in this basic model there are no dynamics in θ. (Why is that? How could this be generalized?)
- But there will still be dynamics nonemployment because job creation is slow.
- We will later see how important these dynamics could be.
Is the search equilibrium efficient?

Clearly, it is inefficient relative to a first-best alternative, e.g., a social planner that can avoid the matching frictions.

Instead look at “surplus-maximization” subject to search constraints (why not constrained Pareto optimality?)
Search Externalities

- There are two major externalities

\[\theta \uparrow \implies \text{workers find jobs more easily} \]
\[\iff \text{thick-market externality} \]
\[\iff \text{firms find workers more slowly} \]
\[\iff \text{congestion externality} \]

- Why are these externalities?
- Pecuniary or nonpecuniary?
- Why should we care about the junior externalities?
The question of efficiency boils down to whether these two externalities cancel each other or whether one of them dominates.

To analyze this question more systematically, consider a social planner subject to the same constraints, intending to maximize “total surplus”, in other words, pursuing a utilitarian objective.

First ignore discounting, i.e., $r \rightarrow 0$, and letting the value of a match be y (e.g., $y = Af(k) - (r + \delta)k$), we have that the planner’s problem can be written as

$$\max_{u, \theta} SS = \left(1 - u\right) y + uz - u\theta\gamma_0.$$

s.t.

$$u = \frac{s}{s + \theta q(\theta)}.$$

where we assumed that z corresponds to the utility of leisure rather than unemployment benefits (how would this be different if z were unemployment benefits?)

Intuition?

Daron Acemoglu (MIT)
Why is $r = 0$ useful?

It turns this from a dynamic into a static optimization problem.

Form the Lagrangian:

$$\mathcal{L} = (1 - u)y + uz - u\theta \gamma_0 + \lambda \left[u - \frac{s}{s + \theta q(\theta)} \right]$$

The first-order conditions with respect to u and θ are straightforward:

$$(y - z) + \theta \gamma_0 = \lambda$$

$$u\gamma_0 = \lambda s \frac{\theta q'(\theta) + q(\theta)}{(s + \theta q(\theta))^2}$$
Efficiency of Search Equilibrium (continued)

- The constraint will clearly binding (why?)
- Then substitute for u from the Beveridge curve, and obtain:

$$\lambda = \frac{\gamma_0 (s + \theta q (\theta))}{\theta q' (\theta) + q (\theta)}$$

- Now substitute this into the first condition to obtain

$$[\theta q' (\theta) + q (\theta)] (y - z) + [\theta q' (\theta) + q (\theta)] \theta \gamma_0 - \gamma_0 (s + \theta q (\theta)) = 0$$

- Simplifying and dividing through by $q (\theta)$, we obtain

$$[1 - \eta (\theta)] [y - z] - \frac{s + \eta (\theta) \theta q (\theta)}{q (\theta)} \gamma_0 = 0.$$

where

$$\eta (\theta) = -\frac{\theta q' (\theta)}{q (\theta)} = \frac{\partial M(U, V)}{\partial U} U \frac{\partial M(U, V)}{\partial M(U, V)}$$

is the elasticity of the matching function respect to unemployment.
Comparison to Equilibrium

- Recall that in equilibrium (with \(r = 0 \)) we have

\[
(1 - \beta)(y - z) - \frac{s + \beta \theta q(\theta)}{q(\theta)} \gamma_0 = 0.
\]

- Comparing these two conditions we find that efficiency obtains if and only if the Hosios condition

\[
\beta = \eta(\theta)
\]

is satisfied

- In other words, efficiency requires the bargaining power of the worker to be equal to the elasticity of the matching function with respect to unemployment.

- This is only possible if the matching function is constant returns to scale.

- What happens if not?

- Intuition?
Efficiency with Discounting

- Exactly the same result holds when we have discounting, i.e., \(r > 0 \)
- In this case, the objective function is

\[
SS^* = \int_0^\infty e^{-rt} \left[Ny - zN - \gamma_0 \theta (L - N) \right] dt
\]

and will be maximized subject to

\[
\dot{N} = q(\theta) \theta (L - N) - sN
\]

- Simple optimal control problem.
Efficiency with Discounting (continued)

Solution:

\[y - z - \frac{r + s + \eta(\theta)q(\theta)\theta}{q(\theta)\left[1 - \eta(\theta)\right]} \gamma_0 = 0 \]

Compared to the equilibrium where

\[(1 - \beta)[y - z] + \frac{r + s + \beta q(\theta)\theta}{q(\theta)} \gamma_0 = 0 \]
Efficiency with Discounting

- Again, $\eta(\theta) = \beta$ would decentralize the constrained efficient allocation.
- Does the surplus maximizing allocation to zero unemployment?
- Why not?
- What is the social value unemployment?
Monopsony: Recap

- Recall from Josh’s lecture about the key aspects of monopsony.
 1. Firms face an upward sloping labor supply curve.
 2. As a result, they can pay less than the marginal product of labor.
 3. The level of employment is lower than the case in which they pay the marginal product of labor.
Monopsony: Recap (continued)

\[MFC = S^{-1}(L) \left(1 + \frac{1}{\varepsilon}\right) \]

\[MFC - w = \frac{w}{\varepsilon} \]

\[pf'(L^*) = w^* \]

\[w^m \]

\[L^m \]

\[L^* \]

\[\text{excess demand} \]
Monopsony in Search

- Do firms have monopsony power in search models?
- The answer is yes, but in a somewhat more nuanced way.
- In search models, following the formation of a match there is a quasi-rent that the firm and the worker have to share.
- This leads to a *bilateral monopoly problem* — both the worker and the firm have market power, because the match is specific to both.
- As a result, in the baseline search model, the issues are more subtle.
 - The firm cannot unilaterally cut its price (prices are bargained).
 - Wages are always below marginal product of labor and above the opportunity cost of labor.
 - Employment may be less or more than the efficient level (depending on the Hosios condition).

- But what happens is wage setting institutions are different?
- Most important alternative to bargaining is *wage posting*.
Wage Poster

- With wage posting, the firm has control over the wage.
- What happens if the firm posts a lower wage?
- Two options:
 - No worker any longer applies to its vacancy — but this cannot be true in a frictional labor market in general.
 - Workers still apply but perhaps at lower frequency — a monopsony power to firm can exploit.
- This type of model would be much more realistic than pure monopsony (there is always competition for workers except in company towns).
- It turns out to be tractable and also lead to some additional interesting patterns.
- But the devil is in the details...
Modeling Wage Posting

Two potential assumptions on wage posting:

1. Workers randomly apply to jobs even though jobs have posted wages (this is similar to the McCall model).
 We know this could be problematic — the Diamond paradox...
 But there are ways of solving the Diamond paradox as mentioned above.

2. Workers observe posted wages and decide where to direct their search (e.g., Peters, 1991; Montgomery, 1991; Moen, 1997; Acemoglu and Shimer, 1999, 2000).

Let us start with the first possibility, and the classic model of Burdett and Mortensen.
A Model of Wage Posting

- Consider a simplified version of the Burdett-Mortensen’s classic paper.
- There is a continuum 1 of workers, who can be employed or unemployed.
- Think of the workers as in the McCall sequential search world, observing wages from a given distribution (except that, imagine we are in continuous time, so workers see a wage at some flow rate).
- Moreover, let us simplify the environment by assuming that both employed and unemployed workers receive wage offers at the flow rate \(p \) (this can be generalized easily but with more math and the original paper does not impose this assumption).
- An employed worker who receives an offer can leave his job and immediately start at the new job if he so wishes.
Firms and Matching

- There is a continuum $m < 1$ of firms.
- They post wages and their wage offers are seen by a worker at the flow rate q. Thus p and q are exactly as in our standard search model, except that they are not “matching” probabilities but flow rates of a worker seeing a wage, and a wage being seen by a worker.
- For simplicity, let us take p and q as exogenous. (Free entry can be introduced easily).
- Unemployed workers receive a benefit of $b < 1$.
- Employed workers produce output equal to 1, and there is no disutility of work.
- As in our baseline model, there is exogenous separation at the rate s. and also potentially endogenous separation if workers receive a better wage offer.
- Both workers and firms are risk-neutral and discount the future at the rate r.
Wage Posting

- Wage posting corresponds to a promise by the firm to employ a worker at some prespecified wage until the job is destroyed exogenously.
- Workers observe promised wages before making their decisions.
- Let us denote the offered wage distribution by $F(w)$, and let us restrict attention to steady states, assuming that this distribution is stationary.
Search Behavior

- First let’s look at the search behavior of an unemployed worker.
- As usual, the worker is solving a straightforward dynamic programming problem, and his search behavior will be characterized by a reservation wage.
- Moreover, in this case the reservation wage is easy to pin down.
- Since there is no disutility and accepting a job doesn't reduce future opportunities, an unemployed worker will accept all offered wages

\[w \geq b \]

- Let's now look at the behavior of an employed worker, currently working at the wage \(w_0 \). By the same reasoning, this worker will take any job that offers

\[w \geq w_0 \]

- Therefore, firms get workers from other firms that have lower wages and lose workers to exogenous separation and to firms that offer higher wages.
Properties of the Wage Distribution

An important observation is that, with the structure, the equilibrium wage distribution will be continuous (without atoms) and connected over some range \([b, \bar{w}]\).

In particular, there will have to be wage dispersion — even though workers and firms are all identical.

Why? Let me outline the argument, somewhat informally, without distinguishing formally between offered and accepted wage distributions, see below.

First, it is easy to check that \(\bar{w} \leq 1\). If \(\bar{w} > 1\), the firm would make negative profits. This implies that employing a (one more) worker is always profitable.
Properties of the Wage Distribution

- Suppose that the wage distribution is not continuous, meaning that there is an atom at some point w'. Then it is more profitable to offer a wage of $w' + \varepsilon$ than w' for ε sufficiently small, since with positive probability a worker will end up with two wages of w' and thus accept each with probability 1/2. A wage of $w' + \varepsilon$ wins the worker for sure in this case — this is because of competition between the firm and other options the workers have.

- Suppose that the wage distribution is not connected, so that there is zero mass in some range (w', w''). Then all firms offering w'' can cut their wages to $w' + \varepsilon$, and receive the same number of workers.

- The lower support has to be $w = b$. Suppose not, i.e., suppose $w > b$. Then firms offering w can cut their wages without losing any workers.
Offered and Accepted Wages

- Let’s now look at the differential equations determining the number of workers employed in each firm and workers in unemployment.
- Unemployment dynamics are given by
 \[\dot{u} = s (1 - u) - pu \]
 since unemployed workers receive wage offers at the rate \(p \), and all of them take their offers.
- Therefore, steady state unemployment is fixed by technology as
 \[u = \frac{s}{s + p} \]
- However, employment rate of firms is endogenous. Imagine that the equilibrium wage distribution is given by \(G(\tilde{w}) \) and the offered wage distribution is \(F(\tilde{w}) \). Let us continue to restrict attention to steady states, where both of those are stationary. It is important that these two are not the same (why?).
Employment Distributions

- Now the level of employment of a firm offering wage w (now and forever) follows the law of motion

$$\dot{N}(w) = q(u + (1 - u)G(w)) - (s + p(1 - F(w)))N(w).$$

- Intuition?
- The offer of this firm is seen by a worker at the flow rate q, and if he is unemployed, which has probability u, he takes it, and otherwise he is employed at some wage distribution G. His wage is lower than the offered wage with probability $G(w)$, in which case he takes the job.
- The outflow is explained similarly, bearing in mind that now what is relevant is not the actual wage distribution but the offered wage distribution $F(w)$.

To find the steady state, we need to set $\dot{N}(w) = 0$, which implies

$$N(w) = \frac{q(u + (1 - u)G(w))}{(s + p(1 - F(w)))} \quad (7)$$
Equilibrium Wage Distribution

- The equilibrium (actual) distribution of wages, represented by the distribution function $G(w)$.
- With a similar argument, the total fraction of workers employed and getting paid a wage of less than or equal to w is $(1 - u) G(w)$.
- The outflow of workers from this group is similarly equal to $[s + p (1 - F(w))] (1 - u) G(w)$.
- The inflow of workers into the status of employed and being paid a wage less than w only comes from unemployment (when a worker upgrades from the wage w' to $w'' \in (w', w]$), this does not change $G(w)$. Hence the inflow is $pF(w) u$,
 which is the measure of unemployed workers receiving an offer, pu, times the probability that this offer is less than w.

Solving for Equilibrium Wages

- Equating the outflow and the inflow, we obtain the cumulative density function of actual wages as

\[G(w) = \frac{pF(w)u}{[s + p(1 - F(w))](1 - u)}. \]

- Then using the steady-state unemployment rate, we obtain

\[G(w) = \frac{psF(w)}{p[s + p(1 - F(w))]} \quad (8) \]

- Equilibrium wages are \textbf{positively selected} from offered wages:

\[G(w) < F(w). \]

This means that the fraction of jobs in the equilibrium wage distribution below wage \(w \) is always lower than the fraction of offers below \(w \), so that \(G \) first-order stochastically dominates \(F \).

- This is because lower wages have a lower probability of being accepted and, once accepted, a lower probability of surviving.
Now combining (8) this with (7), we obtain

\[N(w) = q \left(\frac{s}{s+p} + \frac{p}{s+p} \frac{psF(w)}{p[s+p(1-F(w))]} \right) \]

\[= \frac{psq}{(s + p (1 - F(w)))^2}. \]
Equilibrium Profits

- In equilibrium, all firms have to make equal profits, which means equal discounted profits.

- Nevertheless, characterizing equilibrium profits is a little complicated, so let us simplify our lives and focus on the limit case where $r \to 0$. This basically means that we can simply focus on state state, and equal discounted profits is equivalent to equal profits in the steady state.

- The profits of a firm offering wage w (when the offer wage distribution is given by F), is

$$\pi (w) = (1 - w) N (w).$$

- This implies

$$\pi (w) = \bar{\pi} \text{ for all } w \in \text{supp}F,$$

where $\bar{\pi}$ is also determined as part of the equilibrium.
Full Equilibrium Characterization

- Now solving these equations:

\[
\pi(w) = (1 - w) \frac{psq}{(s + p(1 - F(w)))^2} = \bar{\pi}
\]

- Inverting this, we obtain the full offered wage distribution

\[
F(w) = 1 - \sqrt{\frac{(1 - w) sq}{p \bar{\pi}}} + \frac{s}{p}
\]

over the support of \(F \).

- Moreover, we know that \(w = b \) is in the support of \(F \), and \(F(b) = 0 \), and this implies

\[
0 = 1 - \sqrt{\frac{(1 - b) sq}{p \bar{\pi}}} + \frac{s}{p}
\]

or

\[
\bar{\pi} = \frac{(1 - b) psq}{(p + s)^2}.
\]
Now substituting, we have

\[F(w) = 1 - \sqrt{\frac{(1 - w)(p + s)^2}{(1 - b)p^2}} + \frac{s}{p}, \]

which is a well-behaved distribution function that is increasing everywhere.

Moreover, since \(F(\bar{w}) = 1 \), we also obtain that

\[\bar{w} < 1, \]

so even the highest wages less than the full marginal product of the worker.

From here, observed wage distribution \(G(w) \) is quite easy to calculate.
Interpretation

- Because firms only face “imperfect” competition for workers (from the other wage for the workers currently hold or have observed), they have monopsony power and wages are below the marginal product of workers (which is 1).

- In addition, because the monopsony power of a firm depends on the wages offered by other firms, there is a nondegenerate wage distribution.

- Intuitively, each firm is competing a la Bertrand against another firm, but the identity of this other firm is random. So each firm would like to offer a little more than other firms, leading to wage dispersion.
Implications

- Wages below marginal product (as in classic monopsony).
- Employer wage-size correlation: firms paying higher wages recruit more workers and are larger (this is similar to classic monopsony as well, but in a richer way).
- But no aggregate employment effects.
- In fact, if we endogenized entry, monopsony power here would increase employment — more vacancy creation as in the baseline search-matching model.
- More important inefficiencies would arise if there is heterogeneity in firm productivity. Monopsony power would get in the way of workers being reassigned to higher productivity firms (why?).
Directed Search

- What is making the Burdett-Mortensen model work?
- Wage posting combined with random search.
- So what happens if workers also direct their search towards vacancies offering different wages?
- Very different implications...
To bring out the most important points, let us consider a simple directed search model.

Workers and firms match one to one.

But let us enrich this environment (for reasons I want to emphasize below) by supposing that firms make an ex ante capital investment (and recall that under bargaining this typically leads to hold up and inefficiency).

Suppose that each firm has access to the production function $f(k)$, where k is capital for worker chosen before the matching stage by the firm. We assume

$$f' > 0, \quad f'' < 0$$

I continue to denote the rate of time preference by r, and the rate of separation due to the destruction of capital by s.
Search Process

- If more workers apply to a job, it becomes harder for each worker to get a job (but this increases the probability that the job gets filled).
- This implies that we should think about the search process at the job level — number of workers applying to that particular vacancy rather than the overall vacancy to unemployment ratio.
- More specifically, suppose that if there are an average of q workers per vacancy of a certain type then the flow rate of match for workers is $\mu(q)$, which is assumed to be continuously differentiable with $\mu' < 0$.
- Similarly, the flow rate of matching for a vacancy is $\eta(q) \equiv q\mu(q)$.
- Importantly, q refers to a specific job.
- Put differently, q is the inverse of the vacancy-unemployment ratio, θ, in the baseline search-matching model, except that it is for a specific (type of) vacancy rather than the entire market.
So this might seem somewhat strange at first — workers know what the various wages are, but conditional on applying to a job they may not get it.

This might be justified with a coordination failure in the application process, which is reasonable when there is no (centralized) coordination in the economy — too many other people may be applying specifically to that job, each crowding out the others.

The urn ball technology captures this in a very specific way. Suppose each application is a ball thrown into an urn, with iid success probability. If there are multiple balls in an urn, one is chosen at random. Then, the probability that the urn receives at least one ball and the ball is the one chosen in the urn are:

\[
\eta(q) = 1 - \exp(-aq) \quad \text{and} \quad \mu(q) = \frac{1 - \exp(-aq)}{q}
\]

The technology here generalizes the urn ball technology.
Wage Posting

- As explained above, first all firms post wages w and also choose their capital k.
- Workers observe all wages and then choose which job to seek. (they do not care about capital stocks).
- Now more specifically let $q(w)$ be the ratio of workers seeking wage w to firms offering w. then $\mu(q(w))$ is flow rate of workers getting a job with wage w and $\eta(q(w))$ is flow rate of firms filling their jobs.
Equilibrium Notion

- What equilibrium concept should we use here?
- We should ensure that workers apply to jobs that maximize utility and anticipate queue lengths at various wages rationally. This is straightforward.
- The harder part is for firms. Firms should choose wages and investment to maximize profits, anticipating queue lengths at wages not offered in equilibrium.
- The last part is very important and corresponds to **Subgame perfection**.
- This is obviously important, since we have a dynamic economy, and you can see what will go wrong if we didn’t impose subgame perfection.
Before we go further, let us first write the Bellman Equations, which are intuitive and standard for the firm (again imposing steady state throughout):

\[rJ^V(w, k) = \eta(q(w))(J^F(w, k) - J^V(w, k)) - sJ^V(w, k) \]
\[rJ^F(w, k) = f(k) - w - sJ^F(w, k) \]

implying a simple equation for the value of firm

\[J^V(w, k) = \frac{\eta(f(k) - w)}{(r + s)(r + s + \eta)} \]

which we will use below.

The value of an employed worker is also simple:

\[rJ^E(w) = w + s(J^U - J^E(w)) \]

What is slightly more involved is the value for unemployed worker.
The Value of Unemployment

- Recall that unemployed workers take an important action: they decide which job to seek.
- Let $J^U(w)$ be the value of an unemployed worker when seeking wage w.

\[
\text{utility of applying to wage } w = \mu(q(w)) \left[J^E(w) - J^U \right]
\]

Unemployment benefits are suppressed without loss of generality.

- So what is J^U? Clearly:

\[
J^U = \max_{w \in \mathcal{W}} J^U(w)
\]

where \mathcal{W} is the support of the equilibrium wage distribution.
Optimal Choices

- Now this already builds in the requirement that w maximizes $J^U(w)$.
- Also it is clear that w, k should maximize $J^V(w, k)$.
- But what are the $q(w)$’s?
- If we did not impose subgame perfection, then we could have crazy $q(w)$’s. Instead, firms would have to anticipate what workers would do if they deviate and create a new wage distribution.
- So off-the-equilibrium path $q(w)$ should satisfy

$$
\mu(q(w)) \left[J^E(w) - J^U \right] = rJ^U
$$

or if $J^E(w) - J^U < rJ^U$, then $q(w) = 0$.
Definition of Equilibrium

To define an equilibrium more formally, let an allocation be a tuple \(\langle \mathcal{W}, Q, K, J^U \rangle \), where \(\mathcal{W} \) is the support of the wage distribution, \(Q : \mathcal{W} \to \mathbb{R} \) is a queue length function, \(K : \mathcal{W} \rightrightarrows \mathbb{R} \) is a capital choice correspondence, and \(J^U \in \mathbb{R} \) is the equilibrium utility of unemployed workers.

Definition

A directed search equilibrium satisfies

1. For all \(w \in \mathcal{W} \) and \(k \in K(w) \), \(J^V(w, k) = 0 \).
2. For all \(k \) and for all \(w \), \(J^V(w, k) \leq 0 \).
3. \(J^U = \sup_{w \in \mathcal{W}} J^U(w) \).
4. \(Q(w) \) s.t. \(\forall w, J^U \geq J^U(w) \), and \(Q(w) \geq 0 \), with complementary slackness.
Motivation

- In words, the first condition requires firms to make zero profits when they choose equilibrium wages and corresponding capital stocks.
- The second requires that for all other capital stock and wage combinations, profits are nonpositive.
- The third condition defines J^U as the maximal utility that an unemployed worker can get.
- The fourth condition is the most important one. It defines queue lengths to be such that workers are indifferent between applying to available jobs, or if they cannot be made indifferent, nobody applies to a particular job (thus the complementary slackness part is very important). This builds in the notion of subgame perfection.
Equilibrium Characterization

Theorem

(Acemoglu and Shimer) Equilibrium k, w, q maximize $\frac{\mu(q)w}{r+s+\mu} (= rJ^U)$ subject to $\eta(q) \frac{(f(k)-w)}{r+s+\eta(q)} = (r + s)k$. And conversely, any solution to this maximization problem can be supported as an equilibrium.

- Basically what this theorem says is that the equilibrium will be such that the utility of an unemployed worker is maximized subject to zero profit.
- A very different result than Burdett and Mortensen. Why?
- An aside: this constrained maximization formulation allows very easy comparative statics etc.
Diagrammatic Representation

Workers’ Indifference Curve

Firms’ Zero Profit Condition

w vs. q

w^* vs. q^*
Comparative Statics in the Diagram
Directed search erodes the monopsony power of firms — workers have more choice now.

Wages are still below the marginal product of labor.

Is that a problem?

No, because in fact in a search model wages should never be equal to the marginal product of labor (why not?).
In fact, (constrained) efficiency is more surprising here.

First, it says that directed search naturally satisfies the type of surplus division that would be induced by the very specific value of bargaining power captured in the Hosios condition.

Second, even more surprisingly, the Hosios condition would not get us the right level of investment. But now firms are investing at the efficient level as well. Why is that?

This is because firms are choosing their investment together with the level of wage they offer. So there is no holdup problem, and the directed search process makes sure that the constrained efficient rate of job filling is achieved.
The directed search model is not superior to the random search plus wage posting model. One or the other may be empirically more relevant.

But it helps us understand what causes monopsony power in these models.

There is always bilateral monopoly because the surplus is specific to the match, but different wage setting arrangements lead to different divisions, highlighting the monopoly power of workers or the biopsy power of firms.

So we need to understand empirically how these things work (see recitation).