First price auctions
with general information structures:
Implications for bidding and revenue

Dirk Bergemann
Yale

Benjamin Brooks
BFI/UChicago

Stephen Morris
Princeton

Simon Fraser University

March 2016
Premises

1. Classical auction theory makes stylized assumptions about information.
2. Assumptions about information are hard to test.
3. Equilibrium behavior can depend a lot on how we specify information.
Premises

1. Classical auction theory makes stylized assumptions about information
Premises

1. Classical auction theory makes stylized assumptions about information
2. Assumptions about information are hard to test
Premises

1. Classical auction theory makes stylized assumptions about information
2. Assumptions about information are hard to test
3. Equilibrium behavior can depend a lot on how we specify information
Promises

- Goal: a theory of bidding that is robust to specification of information
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
- We deliver:
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
- We deliver:
 - A tight lower bound on the winning bid distribution
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
- We deliver:
 - A tight lower bound on the winning bid distribution
 - A tight lower bound on revenue
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
- We deliver:
 - A tight lower bound on the winning bid distribution
 - A tight lower bound on revenue
 - A tight upper bound on bidder surplus
Promises

- Goal: a theory of bidding that is robust to specification of information
- First attempt: First price auction
- Hold fixed underlying value distribution,
- Consider all specifications of information and equilibrium
- We deliver:
 - A tight lower bound on the winning bid distribution
 - A tight lower bound on revenue
 - A tight upper bound on bidder surplus
- Other results on max revenue, min bidder surplus, min efficiency
A (toy) model of a first price auction

- Two bidders
- Pure common value $v \sim U[0, 1]$
A (toy) model of a first price auction

- Two bidders
- Pure common value $v \sim U[0, 1]$
- Submit bids $b_i \in \mathbb{R}_+$
- High bidder gets the good and pays bid
 \implies winner’s surplus is $v - b_i$
A (toy) model of a first price auction

- Two bidders
- Pure common value $v \sim U[0, 1]$
- Submit bids $b_i \in \mathbb{R}_+$
- High bidder gets the good and pays bid
 \implies winner’s surplus is $v - b_i$
- Allocation of good is always efficient, total surplus $1/2$
- Seller’s expected revenue is $R = \mathbb{E}\left[\max\{b_1, b_2\} \right]$
- Bidder surplus $U = 1/2 - R$
A (toy) model of a first price auction

- Two bidders
- Pure common value $v \sim U[0, 1]$
- Submit bids $b_i \in \mathbb{R}_+$
- High bidder gets the good and pays bid
 \implies winner’s surplus is $v - b_i$
- Allocation of good is always efficient, total surplus $1/2$
- Seller’s expected revenue is $R = \mathbb{E}[\max\{b_1, b_2\}]$
- Bidder surplus $U = 1/2 - R$
- What predictions can we make about U and R in equilibrium?
Filling in beliefs

- What do bidders know about the value?
- What do they know about what others know?
Filling in beliefs

- What do bidders know about the value?
- What do they know about what others know?
- Assume beliefs are consistent with a common prior

\[
\begin{align*}
\text{Unique equilibrium:} & \quad b_1 = b_2 = R = \frac{1}{2} \\
\text{Bidders observe everything:} & \quad b_1 = b_2 = v, R = \frac{1}{2} \\
\text{True information structure is likely somewhere in between:} & \\
\text{Bidders have some information about } v, \text{ but not perfect} \\
\text{But exactly how much information do they have?}
\end{align*}
\]
Filling in beliefs

- What do bidders know about the value?
- What do they know about what others know?
- Assume beliefs are consistent with a common prior
- Still, many possible ways to “fill in” information:
Filling in beliefs

- What do bidders know about the value?
- What do they know about what others know?
- Assume beliefs are consistent with a common prior
- Still, many possible ways to “fill in” information:
 - Bidders observe nothing;
 Unique equilibrium: \(b_1 = b_2 = R = 1/2 \)
Filling in beliefs

- What do bidders know about the value?
- What do they know about what others know?
- Assume beliefs are consistent with a common prior
- Still, many possible ways to “fill in” information:
 - Bidders observe nothing;
 Unique equilibrium: $b_1 = b_2 = R = 1/2$
 - Bidders observe everything;
 $b_1 = b_2 = v, R = 1/2$
Filling in beliefs

- What do bidders know about the value?

- What do they know about what others know?

- Assume beliefs are consistent with a common prior

- Still, many possible ways to “fill in” information:
 - Bidders observe nothing;
 Unique equilibrium: $b_1 = b_2 = R = 1/2$
 - Bidders observe everything;
 $b_1 = b_2 = v, R = 1/2$

- True information structure is likely somewhere in between:
 - Bidders have some information about v, but not perfect
 - But exactly how much information do they have?
Lower revenue?

- Bidder 1 observes ν, bidder 2 observes nothing
 - $b_1 = \nu/2$, $b_2 \sim U[0, 1/2]$ and independent of ν
Lower revenue?

- Bidder 1 observes \(v \), bidder 2 observes nothing
 - \(b_1 = \frac{v}{2}, \; b_2 \sim U[0, 1/2] \) and independent of \(v \)
- Bidder 2 is indifferent:
 With a bid of \(b_2 \in [0, 1/2] \), will win whenever \(v \leq 2b_2 \)
Lower revenue?

 - Bidder 1 observes v, bidder 2 observes nothing
 - $b_1 = v/2$, $b_2 \sim U[0, 1/2]$ and independent of v
 - Bidder 2 is indifferent:
 With a bid of $b_2 \in [0, 1/2]$, will win whenever $v \leq 2b_2$
 Expected value is exactly b_2!
Lower revenue?

 - Bidder 1 observes ν, bidder 2 observes nothing
 - $b_1 = \nu / 2$, $b_2 \sim U[0, 1/2]$ and independent of ν
 - Bidder 2 is indifferent:
 With a bid of $b_2 \in [0, 1/2]$, will win whenever $\nu \leq 2b_2$
 Expected value is exactly b_2!
 - Bidder 1 wins with a bid of b_1 with probability $2b_1$
 Surplus is $(\nu - b_1)2b_1$
Lower revenue?

- Bidder 1 observes v, bidder 2 observes nothing
 - $b_1 = v/2$, $b_2 \sim U[0, 1/2]$ and independent of v
- Bidder 2 is indifferent:
 With a bid of $b_2 \in [0, 1/2]$, will win whenever $v \leq 2b_2$
 Expected value is exactly b_2!
- Bidder 1 wins with a bid of b_1 with probability $2b_1$
 Surplus is $(v - b_1)2b_1$
 \implies optimal to bid $b_1 = v/2$!
Lower revenue?

 - Bidder 1 observes \(v \), bidder 2 observes nothing
 - \(b_1 = v/2, \ b_2 \sim U[0, 1/2] \) and independent of \(v \)
 - Bidder 2 is indifferent:
 With a bid of \(b_2 \in [0, 1/2] \), will win whenever \(v \leq 2b_2 \)
 Expected value is exactly \(b_2 \)!
 - Bidder 1 wins with a bid of \(b_1 \) with probability \(2b_1 \)
 Surplus is \((v - b_1)2b_1 \)
 \(\implies \) optimal to bid \(b_1 = v/2! \)
 - \(U_1 = \int_{v=0}^{1} v(v - v/2)dv = 1/6, \ U_2 = 0, \ R = 1/3 \)
How we model beliefs matters

- Welfare outcomes are sensitive to modelling of information
- Why? Optimal bid depends on distribution of others’ bids, and on correlation between others’ bids and values
How we model beliefs matters

- Welfare outcomes are sensitive to modelling of information
- Why? Optimal bid depends on distribution of others’ bids, and on correlation between others’ bids and values
- Problem: hard to say which specification is “correct”
How we model beliefs matters

- Welfare outcomes are sensitive to modelling of information
- Why? Optimal bid depends on distribution of others’ bids, and on correlation between others’ bids and values
- Problem: hard to say which specification is “correct”
- What welfare predictions do not depend on how we model information?
Uniform example continued

- Can we characterize minimum revenue?
Uniform example continued

- Can we characterize minimum revenue?
- Must be greater than zero!
Uniform example continued

- Can we characterize minimum revenue?
- Must be greater than zero!
- But seems likely to be lower than EMW
- At min R, winning bids have been pushed down “as far as they can go”
- Force pushing back must be incentive to deviate to higher bids
Uniform example continued

- Can we characterize minimum revenue?
- Must be greater than zero!
- But seems likely to be lower than EMW
- At min R, winning bids have been pushed down “as far as they can go”
- Force pushing back must be incentive to deviate to higher bids
- In EMW, informed bidder strictly prefers equilibrium bid
Towards a bound

- Consider symmetric equilibria in which winning bid is an increasing function $\beta(v)$ of v.
- Which β could be incentive compatible in equilibrium?
Towards a bound

- Consider symmetric equilibria in which winning bid is an increasing function $\beta(v)$ of v
- Which β could be incentive compatible in equilibrium?
- Consider the following *uniform upward deviation*: Whenever equilibrium bid is $x < b$, bid b instead
Towards a bound

- Consider symmetric equilibria in which winning bid is an increasing function $\beta(v)$ of v
- Which β could be incentive compatible in equilibrium?
- Consider the following *uniform upward deviation*: Whenever equilibrium bid is $x < b$, bid b instead
- Uniform deviation up to $b = \beta(v)$ is not attractive if

$$\frac{1}{2} \int_{x=0}^{v} (\beta(v) - \beta(x)) \, dx$$

loss when would have won
Towards a bound

- Consider symmetric equilibria in which winning bid is an increasing function $\beta(v)$ of v.
- Which β could be incentive compatible in equilibrium?
- Consider the following *uniform upward deviation*: Whenever equilibrium bid is $x < b$, bid b instead.
- Uniform deviation up to $b = \beta(v)$ is not attractive if

$$\frac{1}{2} \int_{x=0}^{\beta(v)} (\beta(v) - \beta(x))dx \geq \frac{1}{2} \int_{x=0}^{\beta(v)} (x - \beta(v))dx$$

\[\text{loss when would have won} \quad \text{gain when would have lost}\]
Restrictions on β

- Rearranges to

$$\beta(v) \geq \frac{1}{2v} \int_{x=0}^{v} (x + \beta(x)) dx \quad (IC)$$
Restrictions on β

- Rearranges to

$$
\beta(v) \geq \frac{1}{2v} \int_{x=0}^{v} (x + \beta(x)) \, dx \\
(\text{IC})
$$

- What is the smallest β subject to (IC) and $\beta \geq 0$?
- Must solve (IC) with equality for all v
Restrictions on β

- Rearranges to

$$\beta(v) \geq \frac{1}{2v} \int_{x=0}^{v} (x + \beta(x)) \, dx$$ \hspace{1cm} (IC)

- What is the smallest β subject to (IC) and $\beta \geq 0$?
- Must solve (IC) with equality for all v
- Solution is

$$\beta(v) = \frac{1}{\sqrt{v}} \int_{x=0}^{v} x \frac{1}{2\sqrt{x}} \, dx$$
Restrictions on β

- Rearranges to

$$\beta(v) \geq \frac{1}{2v} \int_{x=0}^{v} (x + \beta(x)) dx \quad (\text{IC})$$

- What is the smallest β subject to (IC) and $\beta \geq 0$?

- Must solve (IC) with equality for all v

- Solution is

$$\beta(v) = \frac{1}{\sqrt{v}} \int_{x=0}^{v} x \frac{1}{2\sqrt{x}} dx$$

$$= \frac{v}{3}$$
A lower bound on revenue

- Induced distribution of winning bids is $U[0, 1/3]$
- Revenue is $1/6$
A lower bound on revenue

- Induced distribution of winning bids is $U[0, 1/3]$
- Revenue is $1/6$
- In fact, symmetry/deterministic winning bid are not needed
- Distribution of winning bid has to FOSD $U[0, 1/3]$ in all equilibria under any information
- $1/6$ is a global lower bound on equilibrium revenue
Bound is tight

- Can construct information/equilibrium that hits bound
Bound is tight

- Can construct information/equilibrium that hits bound
- Bidders get i.i.d. signals $s_i \sim F(x) = \sqrt{x}$ on $[0, 1]$
- Value is highest signal
- Distribution of highest signal is $U[0, 1]$
Bound is tight

- Can construct information/equilibrium that hits bound
- Bidders get i.i.d. signals $s_i \sim F(x) = \sqrt{x}$ on $[0, 1]$
- Value is highest signal
- Distribution of highest signal is $U[0, 1]$
- Equilibrium bid: $\sigma_i(s_i) = s_i/3$
Bound is tight

- Can construct information/equilibrium that hits bound
- Bidders get i.i.d. signals $s_i \sim F(x) = \sqrt{x}$ on $[0, 1]$
- Value is highest signal
- Distribution of highest signal is $U[0, 1]$
- Equilibrium bid: $\sigma_i(s_i) = s_i/3 \ (= \beta(s_i))$
Bound is tight

- Can construct information/equilibrium that hits bound
- Bidders get i.i.d. signals $s_i \sim F(x) = \sqrt{x}$ on $[0, 1]$
- Value is highest signal
- Distribution of highest signal is $U[0, 1]$
- Equilibrium bid: $\sigma_i(s_i) = s_i / 3 \ (= \beta(s_i))$
- Defer proof until general results
Beyond the example

▶ Argument generalizes to:
Beyond the example

- Argument generalizes to:
- Any common value distribution!
Beyond the example

- Argument generalizes to:
- Any common value distribution!
 - Any number of bidders!
Beyond the example

- Argument generalizes to:
 - Any common value distribution!
 - Any number of bidders!
 - Arbitrarily correlated values!!!
Beyond the example

- Argument generalizes to:
 - Any common value distribution!
 - Any number of bidders!
 - Arbitrarily correlated values!!!
 - Assume symmetry of value distribution for some results
Beyond the example

- Argument generalizes to:
 - Any common value distribution!
 - Any number of bidders!
 - Arbitrarily correlated values!!!
 - Assume symmetry of value distribution for some results
 - Minimum bidding is characterized by a *deterministic winning bid* given the true values
Beyond the example

- Argument generalizes to:
 - Any common value distribution!
 - Any number of bidders!
 - Arbitrarily correlated values!!!

- Assume symmetry of value distribution for some results

- Minimum bidding is characterized by a deterministic winning bid given the true values

- In general model, only depends on a one-dimensional statistic of the value profile
Beyond the example

- Argument generalizes to:
 - Any common value distribution!
 - Any number of bidders!
 - Arbitrarily correlated values!!!
 - Assume symmetry of value distribution for some results
 - Minimum bidding is characterized by a deterministic winning bid given the true values
 - In general model, only depends on a one-dimensional statistic of the value profile
 - Bound is characterized by binding uniform upward incentive constraints
The plan

- Detailed exposition of minimum bidding
- Maximum revenue/minimum bidder surplus
- Restrictions on information
- Other directions in welfare space (e.g., efficiency)
General model

- N bidders
- Distribution of values: $P(dv_1, \ldots, dv_N)$
- Support of marginals $V = [\underline{v}, \overline{v}] \subseteq \mathbb{R}_+$
General model

- N bidders
- Distribution of values: $P(dv_1, \ldots, dv_N)$
- Support of marginals $V = [\underline{v}, \overline{v}] \subseteq \mathbb{R}_+$
- An information structure S consists of
 - A measurable space S_i of signals for each player i, $S = \times_{i=1}^N S_i$
 - A conditional probability measure

$$\pi : V^N \to \Delta(S)$$
Equilibrium

- Bidders’ strategies map signals to distributions over bids in $[0, v]$

$$\sigma_i : S_i \rightarrow \Delta(B)$$

- Assume “weakly undominated strategies”: bidder i never bids strictly above the support of first-order beliefs about v_i
Equilibrium

- Bidders’ strategies map signals to distributions over bids in $[0, \bar{v}]$

$$\sigma_i : S_i \rightarrow \Delta(B)$$

- Assume “weakly undominated strategies”: bidder i never bids strictly above the support of first-order beliefs about v_i

- Bidder i’s payoff given strategy profile $\sigma = (\sigma_1, \ldots, \sigma_N)$:

$$U_i(\sigma, S) = \int_{v \in V} \int_{s \in S} \int_{b \in B^N} (v_i - b_i) \frac{\mathbb{I}b_i \geq b_j \ \forall j}{|\arg \max_j b_j|} \sigma(db|s)\pi(ds|v)P(dv)$$
Equilibrium

- Bidders’ strategies map signals to distributions over bids in $[0, \bar{v}]$

$$\sigma_i : S_i \rightarrow \Delta(B)$$

- Assume “weakly undominated strategies”: bidder i never bids strictly above the support of first-order beliefs about v_i

- Bidder i’s payoff given strategy profile $\sigma = (\sigma_1, \ldots, \sigma_N)$:

$$U_i(\sigma, S) = \int_{v \in V} \int_{s \in S} \int_{b \in B^N} (v_i - b_i) \frac{\mathbb{I}_{b_i \geq b_j \ \forall j}}{\arg \max_j b_j} \sigma(db|s)\pi(ds|v)P(dv)$$

- σ is a Bayes Nash equilibrium if

$$U_i(\sigma, S) \geq U_i(\sigma'_i, \sigma_{-i}, S) \ \forall i, \sigma'_i$$
Other welfare outcomes

Bidder surplus: $U(\sigma, S) = \sum_{i=1}^{N} U_i(\sigma, S)$

Revenue: $R(\sigma, S) = \int_{v \in V^N} \int_{s \in S} \int_{b \in B^N} \max_i b_i \sigma(b|s) \pi(ds|v) P(dv)$

Total surplus: $T(\sigma, S) = R(\sigma, S) + U(\sigma, S)$

Efficient surplus: $\overline{T} = \int_{v \in V} \max_i v_i P(dv)$
As we generalize, minimum bidding continues to be characterized by a *deterministic winning bid* given values:
\[\beta(v_1, \ldots, v_N) \]

\[\beta \] has an explicit formula.
General common values

- As we generalize, minimum bidding continues to be characterized by a *deterministic winning bid* given values: $\beta(v_1, \ldots, v_N)$
- β has an explicit formula
- Consider pure common values with $v \sim P \in \Delta([\underline{v}, \overline{v}])$
As we generalize, minimum bidding continues to be characterized by a deterministic winning bid given values: \[\beta(v_1, \ldots, v_N) \]

\(\beta \) has an explicit formula.

Consider pure common values with \(v \sim P \in \Delta([v, \bar{v}]) \).

Minimum winning bid generalizes to

\[
\beta(v) = \frac{1}{\sqrt{P(v)}} \int_{x=v}^{x} \frac{P(dx)}{2\sqrt{P(x)}}
\]
General common values

- As we generalize, minimum bidding continues to be characterized by a *deterministic winning bid* given values: \(\underline{\beta}(v_1, \ldots, v_N) \)
- \(\underline{\beta} \) has an explicit formula
- Consider pure common values with \(v \sim P \in \Delta([v, \bar{v}]) \)
- Minimum winning bid generalizes to

\[
\underline{\beta}(v) = \frac{1}{\sqrt{P(v)}} \int_{x=v}^{\bar{v}} P(dx) \times \frac{P(dx)}{2\sqrt{P(x)}}
\]

- Minimum revenue:

\[
R = \int_{v=v}^{\bar{v}} \underline{\beta}(v)P(dv)
\]
$N = 2$ and general value distributions

- Write $P(dv_1, dv_2)$ for value distribution
\(N = 2 \) and general value distributions

- Write \(P(dv_1, dv_2) \) for value distribution
- Similarly, lots of binding uniform upward IC
$N = 2$ and general value distributions

- Write $P(dv_1, dv_2)$ for value distribution
- Similarly, lots of binding uniform upward IC
- Incentive to deviate up depends on value when you lose
- On the whole, efficient allocation reduces gains from deviating up
$N = 2$ and general value distributions

- Write $P(dv_1, dv_2)$ for value distribution
- Similarly, lots of binding uniform upward IC
- Incentive to deviate up depends on value when you lose
- On the whole, efficient allocation reduces gains from deviating up
- Suggests minimizing equilibrium is efficient, winning bid is constrained by loser’s (i.e., lowest) value
General bounds for $N = 2$

- Similar β, but now depends on *lowest* value
- $Q(dm)$ is distribution of $m = \min\{v_1, v_2\}$ (assume non-atomic)
General bounds for $N = 2$

- Similar β, but now depends on *lowest* value
- $Q(dm)$ is distribution of $m = \min\{v_1, v_2\}$ (assume non-atomic)
- Minimum winning bid is

$$
\beta(m) = \frac{1}{\sqrt{Q(m)}} \int_{x=v}^{v} \frac{Q(dx)}{2\sqrt{Q(x)}}
$$
General bounds for $N = 2$

- Similar β, but now depends on *lowest* value
- $Q(dm)$ is distribution of $m = \min\{v_1, v_2\}$ (assume non-atomic)
- Minimum winning bid is

$$
\beta(m) = \frac{1}{\sqrt{Q(m)}} \int_{x=v}^{\bar{v}} x \frac{Q(dx)}{2\sqrt{Q(x)}}
$$

- Minimum revenue:

$$
\overline{R} = \int_{m=v}^{\bar{v}} \beta(m) Q(dm)
$$
Losing values when $N > 2$

- With $N > 2$, bid minimizing equilibrium should still be efficient
- Intuition: coarse information about losers’ values lowers revenue
Losing values when \(N > 2 \)

- With \(N > 2 \), bid minimizing equilibrium should still be efficient.
- Intuition: coarse information about losers’ values lowers revenue.
- Consider complete information, all values are common knowledge.
- High value bidder wins and pays second highest value.
Average losing values I

- Simple variation: Bidders only observe
 (i) High value bidder’s identity
 (ii) *Distribution* of values

\[
\mu(v_1, \ldots, v_N) = \frac{1}{N-1} \left(\sum_{i=1}^{N} v_i - \max_i v_i \right)
\]
Average losing values 1

- Simple variation: Bidders only observe
 1. High value bidder’s identity
 2. Distribution of values

- Winner is still high value bidder, but losing bidders don’t know who has which value

- If prior is symmetric, believe they are equally likely to be at any point in the distribution except the highest

\[
\mu(v_1, \ldots, v_N) = \frac{1}{N-1} \sum_{i=1}^{N} v_i - \max_i v_i
\]
Average losing values I

- Simple variation: Bidders only observe
 (i) High value bidder’s identity
 (ii) Distribution of values
- Winner is still high value bidder, but losing bidders don’t know who has which value
- If prior is symmetric, believe they are equally likely to be at any point in the distribution except the highest
- In equilibrium, winner pays average of $N - 1$ lowest values:

$$
\mu(v_1, \ldots, v_N) = \frac{1}{N - 1} \left(\sum_{i=1}^{N} v_i - \max_i v_i \right)
$$
General bounds

- $Q(dm)$ is distribution of $m = \mu(\nu)$ (assume non-atomic)
General bounds

- $Q(dm)$ is distribution of $m = \mu(v)$ (assume non-atomic)
- Minimum winning bid and revenue:

$$
\beta(m) = \frac{1}{Q \frac{N-1}{N}(v)} \int_{x=v}^{v} \frac{N - 1}{N} \frac{Q(dx)}{Q \frac{1}{N}(x)}
= \frac{1}{Q \frac{N-1}{N}(v)} \int_{x=v}^{v} \frac{Q^{\frac{N-1}{N}}(dx)}{Q^{\frac{1}{N}}(x)}
$$
General bounds

- $Q(dm)$ is distribution of $m = \mu(v)$ (assume non-atomic)
- Minimum winning bid and revenue:

$$
\beta(m) = \frac{1}{Q^{N-1}(v)} \int_{x=v}^{v} x \frac{N - 1}{N} \frac{Q(dx)}{Q^{1/N}(x)}
= \frac{1}{Q^{N-1}(v)} \int_{x=v}^{v} x \frac{N - 1}{N} (dx)
$$

- Minimum revenue:

$$
R = \int_{m=v}^{v} \beta(m) Q(dm)
$$
General bounds

- \(Q(dm) \) is distribution of \(m = \mu(v) \) (assume non-atomic)
- Minimum winning bid and revenue:

 \[
 \beta(m) = \frac{1}{Q \frac{N-1}{N} (v)} \int_{x=v}^{\bar{v}} \frac{N-1}{N} \frac{Q(dx)}{Q \frac{1}{N} (x)} \\
 = \frac{1}{Q \frac{N-1}{N} (v)} \int_{x=v}^{\bar{v}} Q \frac{N-1}{N} (dx)
 \]

- Minimum revenue:

 \[
 R = \int_{m=v}^{\bar{v}} \beta(m) \cdot Q(dm)
 \]

- Let \(\widetilde{H}(b) = Q(\beta^{-1}(b)) \)
Main result

Theorem (Minimum winning bids)

1. *In any equilibrium under any information structure in which the marginal distribution of values is* P, *the distribution of winning bids must first-order stochastically dominate* H.
Main result

Theorem (Minimum winning bids)

1. *In any equilibrium under any information structure in which the marginal distribution of values is P, the distribution of winning bids must first-order stochastically dominate H."

2. *Moreover, there exists an information structure and an efficient equilibrium in which the distribution of winning bids is exactly H."

Implications

Corollary (Minimum revenue)

Minimum revenue over all information structures and equilibria is R.
Corollary (Minimum revenue)

Minimum revenue over all information structures and equilibria is \(R \).

Corollary (Maximum bidder surplus)

Maximum total bidder surplus over all information structures and equilibria is \(\bar{T} - R \).
Proof methodology

1. Obtain a bound via relaxed program
Proof methodology

1. Obtain a bound via relaxed program
2. Construct information and equilibrium that attain the bounds
Proof methodology

1. Obtain a bound via relaxed program
2. Construct information and equilibrium that attain the bounds
 (start with #2)
Minimizing equilibrium and information

- Bidders receive independent signals \(s_i \sim Q^{1/N}(s_i) \)
 \[\Rightarrow \] distribution of highest signal is \(Q(s) \)
Minimizing equilibrium and information

- Bidders receive independent signals $s_i \sim Q^{1/N}(s_i)$
 \[\implies\] distribution of highest signal is $Q(s)$
- Signals are correlated with values s.t.
 - Highest signal is true average lowest value, i.e.,
 \[\mu(v_1, \ldots, v_n) = \max\{s_1, \ldots, s_n\}\]
Minimizing equilibrium and information

- Bidders receive independent signals \(s_i \sim Q^{1/N}(s_i) \)
 \[\Rightarrow \text{distribution of highest signal is } Q(s) \]
- Signals are correlated with values s.t.
 - Highest signal is true average lowest value, i.e.,
 \[\mu(v_1, \ldots, v_n) = \max\{s_1, \ldots, s_n\} \]
 - Bidder with highest signal is also bidder with highest value, i.e.,
 \[\arg \max_i s_i \subseteq \arg \max_i v_i \]
Minimizing equilibrium and information

- Bidders receive independent signals $s_i \sim Q^{1/N}(s_i)$
 \implies distribution of highest signal is $Q(s)$
- Signals are correlated with values s.t.
 - Highest signal is true average lowest value, i.e.,
 \[
 \mu(v_1, \ldots, v_n) = \max\{s_1, \ldots, s_n\}
 \]
 - Bidder with highest signal is also bidder with highest value, i.e.,
 \[
 \arg\max_i s_i \subseteq \arg\max_i v_i
 \]
- All bidders use the monotonic pure-strategy $\beta(s_i)$
Proof of equilibrium

- \(\beta \) is the equilibrium strategy for an “as-if” IPV model, in which \(v_i = s_i \)
Proof of equilibrium

- β is the equilibrium strategy for an “as-if” IPV model, in which $v_i = s_i$

- IC for IPV model with independent draws from $Q^{1/N}$:

 $$(s_i - \sigma(s_i))Q^{\frac{N-1}{N}}(s_i)$$
Proof of equilibrium

- β is the equilibrium strategy for an “as-if” IPV model, in which $v_i = s_i$
- IC for IPV model with independent draws from $Q^{1/N}$:
 \[
 (s_i - \sigma(s_i))Q^{\frac{N-1}{N}}(s_i) \geq (s_i - \sigma(m))Q^{\frac{N-1}{N}}(m)
 \]
Proof of equilibrium

- β is the equilibrium strategy for an “as-if” IPV model, in which $v_i = s_i$

- IC for IPV model with independent draws from $Q^{1/N}$:

$$\left(s_i - \sigma(s_i)\right)Q^{\frac{N-1}{N}}(s_i) \geq \left(s_i - \sigma(m)\right)Q^{\frac{N-1}{N}}(m)$$

- Local IC:

$$\left(s_i - \sigma(s_i)\right)Q^{\frac{N-1}{N}}(ds_i) - \sigma'(s_i)Q^{\frac{N-1}{N}}(s_i) = 0$$
Proof of equilibrium

- β is the equilibrium strategy for an “as-if” IPV model, in which $v_i = s_i$
- IC for IPV model with independent draws from $Q^{1/N}$:
 \[
 (s_i - \sigma(s_i)) Q^{\frac{N-1}{N}} (s_i) \geq (s_i - \sigma(m)) Q^{\frac{N-1}{N}} (m)
 \]
- Local IC:
 \[
 (s_i - \sigma(s_i)) Q^{\frac{N-1}{N}} (ds_i) - \sigma'(s_i) Q^{\frac{N-1}{N}} (s_i) = 0
 \]
- Solution is precisely
 \[
 \sigma(s_i) = \frac{1}{Q^{\frac{N-1}{N}} (s_i)} \int_{x=v}^{s_i} x Q^{\frac{N-1}{N}} (dx) = \beta(s_i)
 \]
Downward deviations

- Expectation of the bidder with the highest signal is $\tilde{v}(s_i) \geq s_i$
- Downward deviator obtains surplus

\[(\tilde{v}(s_i) - \beta(m)) Q^{\frac{N-1}{N}}(m) \]

and

\[(\tilde{v}(s_i) - \beta(m)) Q^{\frac{N-1}{N}}(dm) - \beta'(m) Q^{\frac{N-1}{N}}(m) \]

\[\geq (s_i - \beta(m)) Q^{\frac{N-1}{N}}(dm) - \beta'(m) Q^{\frac{N-1}{N}}(m) \]
Downward deviations

- Expectation of the bidder with the highest signal is $\tilde{v}(s_i) \geq s_i$
- Downward deviator obtains surplus

\[
(\tilde{v}(s_i) - \beta(m)) \frac{N-1}{N} (m)
\]

and

\[
(\tilde{v}(s_i) - \beta(m)) \frac{N-1}{N} (dm) - \beta'(m) \frac{N-1}{N} (m)
\geq (s_i - \beta(m)) \frac{N-1}{N} (dm) - \beta'(m) \frac{N-1}{N} (m)
\]

- Well-known that IPV surplus is single peaked: if $m < s_i$,

\[
\implies (s_i - \beta(m)) \frac{N-1}{N} (dm) - \beta'(m) \frac{N-1}{N} (dm) \geq 0
\]
Average losing values II

- Winning bids depend on avg of lowest values
 = average of losing bids (since equilibrium is efficient)
Average losing values II

- Winning bids depend on avg of lowest values
 \(=\) average of losing bids (since equilibrium is efficient)

- Suppose winning bid in equilibrium is \(\beta(m) > \beta(s_i)\)
 \(\implies \mu(v) = m\) for true values \(v\)

- By symmetry, all permutations of \(v\) are in \(\mu^{-1}(m)\) and equally likely
Winning bids depend on avg of lowest values
\[= \text{average of losing bids (since equilibrium is efficient)}\]

Suppose winning bid in equilibrium is \(\beta(m) > \beta(s_i) \)
\[\implies \mu(v) = m \text{ for true values } v \]

By symmetry, all permutations of \(v \) are in \(\mu^{-1}(m) \) and equally likely

If you only know that

(i) you lose in equilibrium and
(ii) \(v \in \mu^{-1}(m), \)

you expect your value to be \(m! \)
Average losing values II

- Winning bids depend on avg of lowest values
 = average of losing bids (since equilibrium is efficient)
- Suppose winning bid in equilibrium is $\beta(m) > \beta(s_i)$
 $\implies \mu(v) = m$ for true values v
- By symmetry, all permutations of v are in $\mu^{-1}(m)$ and equally likely
- If you only know that
 (i) you lose in equilibrium and
 (ii) $v \in \mu^{-1}(m)$,
 you expect your value to be m!
- By deviating up to win on this event, gain m in surplus
Upward deviations

- Upward deviator’s surplus

\[
(\tilde{v}(s_i) - \beta(m))Q^{\frac{N-1}{N}}(s_i) + \int_{x=s_i}^{m} (x - \underline{\beta}(m))Q^{\frac{N-1}{N}}(dx)
\]
Upward deviations

- Upward deviator’s surplus

\[
(\tilde{v}(s_i) - \beta(m))Q^{\frac{N-1}{N}}(s_i) + \int_{x=s_i}^{m} (x - \beta(m))Q^{\frac{N-1}{N}}(dx)
\]

- Derivative w.r.t. \(m \):

\[
(m - \beta(m))Q^{\frac{N-1}{N}}(dm) - \beta(m)'Q^{\frac{N-1}{N}}(m) = 0!
\]
Upward deviations

- Upward deviator’s surplus

\[(\tilde{v}(s_i) - \beta(m))Q^{\frac{N-1}{N}}(s_i) + \int_{x=s_i}^{m} (x - \beta(m))Q^{\frac{N-1}{N}}(dx) \]

- Derivative w.r.t. \(m \):

\[(m - \beta(m))Q^{\frac{N-1}{N}}(dm) - \beta(m)'Q^{\frac{N-1}{N}}(m) = 0! \]

- In effect, correlation between others bids’ and losing values induces adverse selection s.t. losing bidders are indifferent to deviating up
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
 1. Symmetry
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
 1. Symmetry
 2. Winning bid depends on average losing value
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
 1. Symmetry
 2. Winning bid depends on average losing value
 3. Efficiency
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
 1. Symmetry
 2. Winning bid depends on average losing value
 3. Efficiency
 4. Monotonicity of winning bids in losing values
Towards a general bound

- Claim is that construction attains a lower bound
- Show this via relaxed program
- Minimum CDF of winning bids subject to uniform upward IC
- Key WLOG properties of solution (and minimizing equilibrium):
 1. Symmetry
 2. Winning bid depends on average losing value
 3. Efficiency
 4. Monotonicity of winning bids in losing values
 5. All uniform upward IC bind
Winning bid distributions

- Choice variables: Measure over \(i \)'s winning bids given values:

\[
H_i(db|v_1, ..., v_n)
\]
Winning bid distributions

- Choice variables: Measure over i’s winning bids given values:

$$H_i(db|v_1, ..., v_n)$$

- Feasibility:

$$H_i(b|v) \geq 0, \quad \sum_i H_i(b|v) \leq 1 \quad \text{(Feas)}$$
Winning bid distributions

- Choice variables: Measure over i’s winning bids given values:

\[H_i(db|v_1, \ldots, v_n) \]

- Feasibility:

\[H_i(b|v) \geq 0, \quad \sum_i H_i(b|v) \leq 1 \quad \text{(Feas)} \]

- Note

\[
H(b) = \int_{v \in V^N} \sum_{i=1}^{N} H_i(b|v) P(dv)
\]
Relaxed program

- Also impose *uniform upward incentive constraints* (IC):

\[
\int_{v \in V^N} \int_{x=v}^b (b - x) H_i(dx|v) P(dv) \\
\geq \int_{v \in V^N} \int_{x=v}^b (v_i - b) \sum_{j \neq i} H_j(dx|v) P(dv)
\]

loss when would have won

gain when would have lost

Relaxed program: for fixed \(f(b) \) that is weakly increasing,

\[
\min_{v \in V^N} \sum_{i=1}^{N} \int_{v \in V^N} \int_{x=v}^b H_i(dx|v) P(dv)
\]

over \(\{H_i(b|v)\} \) subject to (Feas) and (IC)

Note: Objective and constraints are linear in \(H_i \)
Relaxed program

- Also impose *uniform upward incentive constraints* (IC):

\[
\int_{v \in V^N} \int_{x=v}^{b} (b - x) H_i(dx|v) P(dv)
\]
\[
\geq \int_{v \in V^N} \int_{x=v}^{b} (v_i - b) \sum_{j \neq i} H_j(dx|v) P(dv)
\]

loss when would have won

\[
\geq \int_{v \in V^N} \int_{x=v}^{b} (v_i - b) \sum_{j \neq i} H_j(dx|v) P(dv)
\]
\[
\sum_{i=1}^{N} \int_{b=v_i}^{V} f(b) H_i(db|v) P(dv)
\]

over \(\{H_i(b|v)\} \) subject to (Feas) and (IC)
Relaxed program

- Also impose *uniform upward incentive constraints* (IC):

\[
\int_{v \in V^N} \int_{x=v}^b (b - x) H_i(dx|v)P(dv) \geq \\
\int_{v \in V^N} \int_{x=v}^b (v_i - b) \sum_{j \neq i} H_j(dx|v)P(dv)
\]

- Relaxed program: for fixed \(f(b) \) that is weakly increasing,

\[
\min \int_{v \in V^N} \sum_{i=1}^N \int_{b=v}^\bar{v} f(b) H_i(db|v)P(dv)
\]

over \(\{H_i(b|v)\} \) subject to (Feas) and (IC)

- Note: Objective and constraints are *linear* in \(H_i \)
Symmetry

- WLOG to consider *symmetric* solutions in which

\[H_i(\cdot|\nu) = H_{\xi(i)}(\cdot|\xi(\nu)) \]

for all permutations \(\xi \)
WLOG to consider symmetric solutions in which

\[H_i(\cdot|\nu) = H_{\xi(i)}(\cdot|\xi(\nu)) \]

for all permutations \(\xi \)

For example, with \(N = 2 \), can create symmetric solution:

\[
\tilde{H}_1(b|v_1, v_2) = \frac{1}{2} (H_1(b|v_1, v_2) + H_2(b|v_2, v_1))
\]

\[
\tilde{H}_2(b|v_1, v_2) = \frac{1}{2} (H_2(b|v_1, v_2) + H_1(b|v_2, v_1))
\]
Average losing values III

- Consider a bidder who uniformly deviates up, so they *always* win when the equilibrium winning bid is \(b \).
- Say there is a value profile \(v \) at which \(b \) is sometimes the winning bid.
- Symmetry \(\implies b \) is equally likely to be the winning bid when values are permutations of \(v \), \(\xi(v) \).
Consider a bidder who uniformly deviates up, so they always win when the equilibrium winning bid is b.

Say there is a value profile v at which b is sometimes the winning bid.

Symmetry $\implies b$ is equally likely to be the winning bid when values are permutations of v, $\xi(v)$.

Upward deviator can only control equivalence classes $[v] = \{\xi(v)\}$ on which they win, and expected value on $[v]$ is average value.

But someone has to win in equilibrium...
Average losing values III

- Consider a bidder who uniformly deviates up, so they *always* win when the equilibrium winning bid is b
- Say there is a value profile v at which b is sometimes the winning bid
- Symmetry $\implies b$ is equally likely to be the winning bid when values are permutations of v, $\xi(v)$
- Upward deviator can only control *equivalence classes* $[v] = \{\xi(v)\}$ on which they win, and expected value on $[v]$ is *average* value
- But someone has to win in equilibrium...
- Incremental gain from winning when you would lose in equilibrium is the *average losing value* given $[v]$:

$$\mu(v) = \frac{1}{N - 1} \left(\sum_{i=1}^{N} v_i - \text{expected winner’s value} \right)$$
Efficiency

- Can rewrite gain from upward deviating as

\[
\int_{v \in V^N} \int_{x = v} (\mu(v) - b) \frac{N - 1}{N} \sum_i H_i(dx|v) P(dv)
\]

- Incentive to deviate is weaker if \(\mu(v)\) is smaller
Efficiency

- Can rewrite gain from upward deviating as
 \[
 \int_{v \in V^N} \int_{x = v} (\mu(v) - b) \frac{N - 1}{N} \sum_i H_i(dx|v)P(dv)
 \]

- Incentive to deviate is weaker if \(\mu(v) \) is smaller

- \(\mu(v) \) is minimized by *efficient allocation*

\[
\mu(v) = \frac{1}{N - 1} \left(\sum_{i=1}^{N} v_i - \max_i v_i \right)
\]
Efficiency

- Can rewrite gain from upward deviating as

\[
\int_{v \in V^N} \int_{x = v} (\mu(v) - b) \frac{N - 1}{N} \sum_i H_i(dx|v)P(dv)
\]

- Incentive to deviate is weaker if \(\mu(v)\) is smaller

- \(\mu(v)\) is minimized by efficient allocation

\[
\mu(v) = \frac{1}{N - 1} \left(\sum_{i=1}^{N} v_i - \max_i v_i \right)
\]

- Can always induce efficient allocation without changing \(H(b)\):
If \(v_i = \max v\), set

\[
\tilde{H}_i(b|v) = \frac{1}{|\arg \max v|} \sum_{j=1}^{N} H_j(b|v)
\]
Relaxed program II

- Can write $H(b|m)$ for CDF of winning bid given $\mu(v) = m$
- Recall $Q(dm)$ is distribution of m
Relaxed program II

- Can write $H(b|m)$ for CDF of winning bid given $\mu(v) = m$
- Recall $Q(dm)$ is distribution of m
- Relaxed program:

$$\min \int_{m=v}^{\bar{v}} \int_{b=v}^{\bar{v}} f(b)H(db|m)Q(dm)$$

subject to

$$0 \leq H(b|m) \leq 1 \quad \text{(Feas)}$$

and

$$\frac{1}{N} \int_{m=v}^{\bar{v}} \int_{x=v}^{b} (b - x)H(dx|m)Q(dm) \geq \frac{N - 1}{N} \int_{m=v}^{\bar{v}} (m - b)H(b|m)Q(dm) \quad \text{(IC)}$$
Monotonicity

- Only part of (IC) that depends on correlation between b and m is

\[
\hat{m}(b) = \int_{m=\bar{v}}^{\bar{Y}} m \, H(b|m) \, Q(dm),
\]

i.e., average losing value when winning bid is less than b

- Incentive to deviate up is weaker if $\hat{m}(b)$ is lower
Monotonicity

- Only part of (IC) that depends on correlation between b and m is

$$\hat{m}(b) = \int_{m=\hat{m}}^{\bar{V}} m \, H(b|m) \, Q(dm),$$

i.e., average losing value when winning bid is less than b

- Incentive to deviate up is weaker if $\hat{m}(b)$ is lower

- Which correlation structure minimizes $\hat{m}(b)$?
Monotonicity

- Only part of (IC) that depends on correlation between b and m is

$$\hat{m}(b) = \int_{m=\nu}^{\nu} m H(b|m)Q(dm),$$

i.e., average losing value when winning bid is less than b

- Incentive to deviate up is weaker if $\hat{m}(b)$ is lower

- Which correlation structure minimizes $\hat{m}(b)$?

- Can minimize $\hat{m}(b)$ **pointwise** by making b and m comonotonic,

 i.e., the α lowest m are associated with the α lowest b
Monotonicity

- Only part of (IC) that depends on correlation between \(b \) and \(m \) is

\[
\hat{m}(b) = \int_{m=\underline{\nu}}^{\bar{\nu}} m H(b|m) Q(dm),
\]

i.e., average losing value when winning bid is less than \(b \)

- Incentive to deviate up is weaker if \(\hat{m}(b) \) is lower

- Which correlation structure minimizes \(\hat{m}(b) \)?

- Can minimize \(\hat{m}(b) \) pointwise by making \(b \) and \(m \) comonotonic,
 i.e., the \(\alpha \) lowest \(m \) are associated with the \(\alpha \) lowest \(b \)

- Implies a deterministic winning bid \(\beta(m) \) s.t. for all \(m \),

\[
H(\beta(m)) = Q(m)
\]
Relaxed program III

- Relaxed program is reduced to what we assumed in example:

\[
\min \int_{m=v}^{\bar{V}} f(\beta(m)) Q(dm)
\]

subject to \(\beta(m) \geq v \) and

\[
\frac{1}{N} \int_{x=v}^{m} (\beta(m) - \beta(x)) Q(dx)
\geq \frac{N - 1}{N} \int_{x=v}^{\bar{V}} (x - \beta(m)) Q(dx)
\]

(\text{IC})
Relaxed program III

- Relaxed program is reduced to what we assumed in example:

\[
\min \int_{m=v}^{\bar{v}} f(\beta(m)) Q(dm)
\]

subject to \(\beta(m) \geq v\) and

\[
\frac{1}{N} \int_{x=v}^{m} (\beta(m) - \beta(x)) Q(dx)
\]

\[
\geq \frac{N - 1}{N} \int_{x=v}^{\bar{v}} (x - \beta(m)) Q(dx)
\]

- Minimize \(\beta(m)\) pointwise by \(\beta(\bar{v}) = \bar{v}\) and (IC) binding everywhere
Relaxed program III

- Relaxed program is reduced to what we assumed in example:

\[
\min \int_{m=\nu}^{\overline{V}} f(\beta(m))Q(dm)
\]

subject to \(\beta(m) \geq \nu\) and

\[
\frac{1}{N} \int_{x=\nu}^{m} (\beta(m) - \beta(x))Q(dx) \geq \frac{N - 1}{N} \int_{x=\nu}^{\overline{V}} (x - \beta(m))Q(dx)
\]

(\text{IC})

- Minimize \(\beta(m)\) pointwise by \(\beta(\nu) = \nu\) and (\text{IC}) binding everywhere

- Solution is precisely \(\beta\)!
Wrapping up

- H solves the relaxed program for an arbitrary $f(\max b)$
- Must therefore be FOSD by any equilibrium $H(b)$
- Construction attains H, so proof of theorem is complete
Maximum revenue

- With pure common value, no-information and complete information induce full surplus extraction
- Not true with idiosyncratic values:
 - No-information induces inefficiency
 - Complete information gives rents to bidders
- Nonetheless...
Maximum revenue

- With pure common value, no-information and complete information induce full surplus extraction
- Not true with idiosyncratic values:
 - No-information induces inefficiency
 - Complete information gives rents to bidders
- Nonetheless...

Theorem (Maximum revenue and minimum bidder surplus)

For every $\epsilon > 0$, there exists an information structure and equilibrium such that revenue is at least $\overline{T} - \epsilon$ and bidder surplus is at most ϵ.
Additional restrictions on information

- We refer to above model as *unknown values*: bidder need not know anything about value
- Sensible starting point in common value models
Additional restrictions on information

- We refer to above model as *unknown values*: bidder need not know anything about value
- Sensible starting point in common value models
- Often, want to model values with an idiosyncratic component
- Reasonable to suppose that bidders are more informed about own value than others’ values
- The *known values* model: own value is known exactly
Additional restrictions on information

- We refer to above model as *unknown values*: bidder need not know anything about value
- Sensible starting point in common value models
- Often, want to model values with an idiosyncratic component
- Reasonable to suppose that bidders are more informed about own value than others’ values
- The *known values* model: own value is known exactly
- Weak dominance: players do not bid more than own value
A lower bound bidder surplus

- If bid b, always win when others’ values are less than b
- Lower bound on bidder surplus $U_i(v_i)$ from best responding to “worst case” in which others bid their values:

$$U_i(v_i) = \max_b \left\{ (v_i - b) \int_{\{v_{-i} \mid \max_{j \neq i} v_j \leq b\}} P(dv_{-i} \mid v_i) \right\}$$

- Integrate over values to obtain an ex-ante bound U_i
Maximum revenue/minimum bidder surplus

Theorem (Known values)

1. There exists an equilibrium in which every bidder receives surplus \(U_i \), thus attaining minimum bidder surplus with known values.
Maximum revenue/minimum bidder surplus

Theorem (Known values)

1. There exists an equilibrium in which every bidder receives surplus U_i, thus attaining minimum bidder surplus with known values.

2. Moreover, this equilibrium is efficient, thus attaining maximum revenue with known values.
Proof sketch

- Bidders with $v_i < \max v$ see entire profile v
- Known they will lose to some $b_j \geq v_i$
- \implies losers bid $b_i = v_i$
Proof sketch

- Bidders with $v_i < \max v$ see entire profile v
- Known they will lose to some $b_j \geq v_i$
- \implies losers bid $b_i = v_i$
- High valuation bidder learns he has the high value
- Receives partial information about losers’ values such that

 (i) He outbids the others with probability 1
 (ii) Indifferent between equilibrium bid and the bid that generates U_i
Proof sketch

- Bidders with \(v_i < \max \nu \) see entire profile \(\nu \)
- Known they will lose to some \(b_j \geq v_i \)
- \(\implies \) losers bid \(b_i = v_i \)
- High valuation bidder learns he has the high value
- Receives partial information about losers’ values such that
 (i) He outbids the others with probability 1
 (ii) Indifferent between equilibrium bid and the bid that generates \(U_i \)
- Uses ideas from “The Limits of Price Discrimination”, BBM 2015
Known values: Minimum revenue

- Learning own value from bid is no longer an issue
- Instead, bid is informative about others’ values
Known values: Minimum revenue

- Learning own value from bid is no longer an issue
- Instead, bid is informative about others’ values
- Also, with unknown values, likelihood of you winning in equilibrium at a winning bid b is always $1/N$
- With unknown values, likelihood may depend on b and distribution of others’ values
Known values: Minimum revenue

- Learning own value from bid is no longer an issue
- Instead, bid is informative about others’ values
- Also, with unknown values, likelihood of you winning in equilibrium at a winning bid b is always $1/N$
- With unknown values, likelihood may depend on b and distribution of others’ values
- Example: higher winning bids occur when values are higher on average
- If equilibrium is efficient and v_i is low, I am unlikely to win in equilibrium at high bids
- Increase in probability of winning from upward deviation varies with v_i
Binary known values

- Case we can solve completely: $v_i \in \{v_L, v_H\}$
- Setting first considered by Maskin and Riley (1985)
- v_L types are in Bertrand competition
 \Rightarrow essentially always bid v_L, lose to v_H
Binary known values

- Case we can solve completely: $v_i \in \{v_L, v_H\}$
- Setting first considered by Maskin and Riley (1985)
- v_L types are in Bertrand competition
 \implies essentially always bid v_L, lose to v_H
- All uniform upward constraints bind
- Winning bids are higher when average value is higher
Binary known values

- Case we can solve completely: $v_i \in \{v_L, v_H\}$
- Setting first considered by Maskin and Riley (1985)
- v_L types are in Bertrand competition
 \Rightarrow essentially always bid v_L, lose to v_H
- All uniform upward constraints bind
- Winning bids are higher when average value is higher
- General known values minimum revenue is an open question
Other directions

- We talked about max/min revenue, max/min bidder surplus
- What about weighted sums? Minimum efficiency?
Other directions

- We talked about max/min revenue, max/min bidder surplus
- What about weighted sums? Minimum efficiency?
- More broadly, what is the *whole set* of possible \((U, R)\) pairs?
Other directions

- We talked about max/min revenue, max/min bidder surplus
- What about weighted sums? Minimum efficiency?
- More broadly, what is the *whole set* of possible \((U, R)\) pairs?
- Solved numerically for two bidder i.i.d. \(U[0, 1]\) model
Welfare set

Note: Lower bound on efficiency
What can we do with this?

- Applications/extensions:
 - Many bidder limit
 - Impact of reserve prices/entry fees
 - Identification
 - Other directions in welfare space

- Context:
 - Part of a larger agenda on robust predictions and information design
What can we do with this?

Applications/extensions:
- Many bidder limit
- Impact of reserve prices/entry fees
- Identification
- Other directions in welfare space

Context:
- Part of a larger agenda on robust predictions and information design
Thank you!