Clarendon Lectures, Lecture 3
General Theory of Directed Technical Change

Daron Acemoglu

October 24, 2007
Summary of Results so Far

• Importance of directed technical change.

• Relatively strong results on the equilibrium direction of technical change.

• Implications for the evolution of skill bias of technology.

• But results derived under two sets of special assumptions:
 1. Constant elasticity of substitution production functions.

• How general are the insights?
This Lecture

• Main insights will hold very generally.
• Useful to distinguish between:
 1. relative bias: about shifts of relative demand curves
 2. absolute bias: about shifts of factor demands
• Results so far about relative bias.
• Main results:
 1. Theorems on relative bias can be generalized, but only to some degree.
 2. Much more general theorems on absolute bias.
Plan

- First introduce a class of environments where we can study bias of technology.
- Then generalize results on relative bias and show their limitations.
- Most important results: weak and strong theorems on absolute bias.
- Main takeaway message: under fairly reasonable conditions, factor demand curves will be upward sloping!
Basic Environment

- Static economy consisting of a unique final good (dynamics not central to the message here).
- $N + 1$ factors of production, Z and $L = (L_1, ..., L_N)$.

Inelastic supplies: $\bar{Z} \in \mathbb{R}_+$ and $\bar{L} \in \mathbb{R}^N_+$.

- Main comparative statics: changing \bar{Z}.

- Representative household with preferences defined over the consumption of the final good.

- A continuum of firms (final good producers) denoted by the set \mathcal{F}, each with an identical production function.

- Normalize the measure of \mathcal{F}, $|\mathcal{F}|$, to 1.

- The price of the final good is also normalized to 1.
Alternative Economies

• Consider four different environments:

 1. **Economy D**: Fully decentralized. Technologies chosen by firms themselves.

 2. **Economy C**: Centralized. Technology decided by a centralized agency (taking firms’ profit maximization is given).

 4. **Economy O**: Oligopoly. Technology decided by a set of (potentially competing) oligopolist.
Economy D

- For benchmark (not the most realistic economy for technology choice).
- Each firm $i \in \mathcal{F}$ has access to a production function
 \[Y^i = G(Z^i, L^i, \theta^i), \]
- $Z^i \in \mathcal{Z} \subset \mathbb{R}_+$, $L^i \in \mathcal{L} \subset \mathbb{R}_+^N$
- $\theta^i \in \Theta \subset \mathbb{R}^K$ is the measure of technology.
- G: production function (throughout assumed to be twice differentiable).
- The cost of technology $\theta \in \Theta$ in terms of final goods is $C(\theta)$.
Economy D (continued)

- Each final good producer (firm) maximizes profits:

 \[
 \max_{Z^i \in Z, L^i \in L, \theta^i \in \Theta} \pi(Z^i, L^i, \theta^i) = G(Z^i, L^i, \theta^i) - w_Z Z^i - \sum_{j=1}^{N} w_{Lj} L^i_j - C(\theta^i),
 \]

- \(w_Z\) is the price of factor \(Z\) and \(w_{Lj}\) is the price of factor \(L_j\) for \(j = 1, ..., N\).

- All factor prices taken as given by firms.

- The vector of prices for factors \(L\) denoted by \(w_L\).

- Market clearing:

 \[
 \int_{i \in F} Z^i di \leq \bar{Z} \text{ and } \int_{i \in F} L^i_j di \leq \bar{L}_j \text{ for } j = 1, ..., N.
 \]
Economy D (continued)

Definition 1 An equilibrium in Economy D is a set of decisions \(\{Z^i, L^i, \theta^i\}_{i \in F}\) and factor prices \((w_Z, w_L)\) such that \(\{Z^i, L^i, \theta^i\}_{i \in F}\) maximize profits given prices \((w_Z, w_L)\) and market clearing conditions hold.

- Any \(\theta^i\) that is part of the set of equilibrium allocations, \(\{Z^i, L^i, \theta^i\}_{i \in F}\), is an **equilibrium technology**.

- Let us also define the **net production function**:

\[
F(Z^i, L^i, \theta^i) \equiv G(Z^i, L^i, \theta^i) - C(\theta^i).
\]
Economy D (continued)

Assumption 1 Either \(F(Z^i, L^i, \theta^i) \) is jointly strictly concave in \((Z^i, L^i, \theta^i)\) and increasing in \((Z^i, L^i)\), and \(Z, \mathcal{L}\) and \(\Theta\) are convex; or \(F(Z^i, L^i, \theta^i) \) is increasing in \((Z^i, L^i)\) and exhibits constant returns to scale in \((Z^i, L^i, \theta^i)\), and we have \((\bar{Z}, \bar{L}) \in Z \times \mathcal{L}\).

- Main problem with Economy D: Assumption 1 overly restrictive.
- It requires concavity (strict concavity or constant returns to scale) jointly in the factors of production and technology.
Economy D (continued)

• Equilibrium characterization and welfare theorems:

Proposition 1 Suppose Assumption 1 holds. Then any equilibrium technology θ in Economy D is a solution to

$$\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta'),$$

and any solution to this problem is an equilibrium technology.

• Equilibrium factor prices given by the marginal products of G or F.

$$w_Z = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial Z} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial Z}$$

and

$$w_{Lj} = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial L_j} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial L_j}$$

for $j = 1, \ldots, N$
Economy C

• Now assume that firms maximize profits, but technologies chosen by a “welfare-maximizing” centralized research firm.

• Useful as an introduction to the more realistic models with monopoly and oligopoly technology suppliers.

• The research firm chooses a single technology θ and makes it available to all firms (single technology for simplicity).

• Notice that this will typically not give the social (Pareto) optimum, since employment decisions controlled by different agents.
Economy C (continued)

- The maximization problem of each final good producer is

\[
\max_{Z^i \in Z, L^i \in L} \pi(Z^i, L^i, \theta) = G(Z^i, L^i, \theta) - w_Z Z^i - \sum_{j=1}^{N} w_{Lj} L^i_j.
\]

- Notice: in contrast to Economy D, final good producers are only maximizing with respect to \((Z^i, L^i)\), not with respect to \(\theta^i\).

- The objective of the research firm is to maximize total net output:

\[
\max_{\theta \in \Theta} \Pi(\theta) = \int_{0}^{1} G(Z^i, L^i, \theta) \, di - C(\theta).
\]
Economy C (continued)

Definition 2 An equilibrium in Economy C is a set of firm decisions \(\{Z^i, L^i\}_{i \in \mathcal{F}} \), technology choice \(\theta \) and factor prices \((w_Z, w_L) \) such that \(\{Z^i, L^i\}_{i \in \mathcal{F}} \) maximize profits given \((w_Z, w_L) \) and \(\theta \), market clearing conditions hold, and the technology choice for the research firm, \(\theta \), maximizes its objective function.

- Major difference: we only need a weaker version of Assumption 1
- Concavity only in \((Z, L) \):

Assumption 2 Either \(G(Z^i, L^i, \theta^i) \) is jointly strictly concave and increasing in \((Z^i, L^i) \) and \(Z \) and \(L \) are convex; or \(G(Z^i, L^i, \theta^i) \) is increasing and exhibits constant returns to scale in \((Z^i, L^i) \), and we have \((\bar{Z}, \bar{L}) \in Z \times L \).
Economy C (continued)

Proposition 2 Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy C is a solution to

$$\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C(\theta')$$

and any solution to this problem is an equilibrium technology.

- Most important novel feature: while in Economy D the function $F(\bar{Z}, \bar{L}, \theta)$ is jointly concave in (Z, θ), the same is not true in Economy C.

- As in Economy D, equilibrium factor prices are given by

$$w_Z = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial Z} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial Z}$$

and

$$w_{Lj} = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial L_j} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial L_j}$$

for $j = 1, \ldots, N$.
Economy M

• Now a profit-maximizing monopolist sells technologies to final good producers.

• To facilitate analysis, assume that

\[Y^i = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^i, L^i, \theta^i) \right]^{\alpha} q(\theta^i)^{1-\alpha}. \]

• Here \(G(Z^i, L^i, \theta^i) \) is a subcomponent of the production function.

• Productivity depends on the technology used, \(\theta^i \).

• The subcomponent \(G \) needs to be combined with an intermediate good embodying technology \(\theta^i \), denoted by \(q(\theta^i) \).

• This intermediate good will be sold by the monopolist.

• The term \(\alpha^{-\alpha} (1 - \alpha)^{-1} \) is a convenient normalization.
Economy M (continued)

• The monopolist can create technology θ at cost $C(\theta)$ from the technology menu.

• Once θ is created, the technology monopolist can produce the intermediate good embodying technology θ at constant per unit cost normalized to $1 - \alpha$ unit of the final good.

• It can then set a (linear) price per unit of the intermediate good of type θ, denoted by χ.

• All factor markets are again competitive, and each firm takes the available technology, θ, and the price of the intermediate good embodying this technology, χ, as given.
Economy M (continued)

• Final good producers’ maximization problem:

$$\max_{\substack{Z^i \in Z, L^i \in L, \\ q(\theta) \geq 0}} \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^i, L^i, \theta) \right]^\alpha q(\theta)^{1-\alpha} - w_Z Z^i - \sum_{j=1}^{N} w_L L_j - \chi q(\theta),$$

• Inverse demand for intermediates of type θ as a function of its price, χ:

$$q^i(\theta, \chi, Z^i, L^i) = \alpha^{-1} G(Z^i, L^i, \theta) \chi^{-1/\alpha}.$$

• Isoelastic inverse demand.
Economy M (continued)

- The monopolist’s maximization problem:

$$\max_{\theta, \chi, [q^i(\theta, \chi, Z^i, L^i)]_{i \in \mathcal{F}}} \Pi = (\chi - (1 - \alpha)) \int_{i \in \mathcal{F}} q^i(\theta, \chi, Z^i, L^i) \, di - C(\theta)$$

subject to the inverse demand curve.

Definition 3 An equilibrium in Economy M is a set of firm decisions $\{Z^i, L^i, q^i(\theta, \chi, Z^i, L^i)\}_{i \in \mathcal{F}}$, technology choice θ, and factor prices (w_Z, w_L) such that $\{Z^i, L^i, q^i(\theta, \chi, Z^i, L^i)\}_{i \in \mathcal{F}}$ maximizes profits given (w_Z, w_L) and technology θ, market clearing conditions hold, and the technology choice and pricing decision of the monopolist, (θ, χ), maximize monopoly profits subject to the inverse demand curve.

- As in Economy C, factor demands and technology are decided by different agents; the former by the final good producers, the latter by the technology monopolist.
Economy M (continued)

• Note that the inverse demand function has constant elasticity.
• Profit-maximizing price will be a constant markup over marginal cost
 \[\chi = 1 \]
• Consequently, \(q^i (\theta) = q^i (\theta, \chi = 1, \bar{Z}, \bar{L}) = \alpha^{-1} G(\bar{Z}, \bar{L}, \theta) \) for all \(i \in \mathcal{F} \).
• Therefore, the monopolist’s problem becomes
 \[
 \max_{\theta \in \Theta} \Pi (\theta) = G(\bar{Z}, \bar{L}, \theta) - C (\theta) .
 \]

Proposition 3 Suppose Assumption 2 holds. Then any equilibrium technology \(\theta \) in Economy M is a solution to
\[
\max_{\theta' \in \Theta} F(\bar{Z}, \bar{L}, \theta') \equiv G(\bar{Z}, \bar{L}, \theta') - C (\theta')
\]
and any solution to this problem is an equilibrium technology.
• Relative to Economies D and C, the presence of the monopoly markup implies greater distortions in this economy.
Economy M (continued)

- However, qualitatively equilibrium similar to that in Economy C.
- It is given by the maximization of

\[F(\bar{Z}, \bar{L}, \theta) \equiv G(\bar{Z}, \bar{L}, \theta) - C(\theta) \]

- Most important: as in Economy C, \(F(\bar{Z}, \bar{L}, \theta) \) need not be concave in \((Z, \theta)\), even in the neighborhood of the equilibrium.

- Factor prices again given by:

\[w_Z = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial Z} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial Z} \]

and

\[w_{Lj} = \frac{\partial G(\bar{Z}, \bar{L}, \theta)}{\partial L_j} = \frac{\partial F(\bar{Z}, \bar{L}, \theta)}{\partial L_j} \]

for \(j = 1, \ldots, N \).
Economy O

- Same as Economy M, except that multiple technologies supplied by competing oligopolists.
- Let θ^i be the vector $\theta^i \equiv (\theta^i_1, \ldots, \theta^i_S)$.
- Suppose that output is now given by

$$Y^i = \alpha^{-\alpha} (1 - \alpha)^{-1} \left[G(Z^i, L^i, \theta^i) \right]^\alpha \sum_{s=1}^{S} q_s \left(\theta^i_s \right)^{1-\alpha},$$

- $\theta^i_s \in \Theta_s \subset \mathbb{R}^{K_s}$: technology supplied by technology producer $s = 1, \ldots, S$;
- $q_s \left(\theta^i_s \right)$: intermediate good produced and sold by technology producer s, embodying technology θ^i_s.
Economy O (continued)

• Essentially the same result as in Economy M.

Proposition 4 Suppose Assumption 2 holds. Then any equilibrium technology in Economy O is a vector \((\theta_1^*, ..., \theta_S^*)\) such that \(\theta_s^*\) is solution to

\[
\max_{\theta_s \in \Theta_s} G(\bar{Z}, \bar{L}, \theta_1^*, ..., \theta_s^*, ..., \theta_S^*) - C_s(\theta_s)
\]

for each \(s = 1, ..., S\), and any such vector gives an equilibrium technology.

• Main difference: equilibrium technology no longer given by maximization, but by a fixed point problem.

• Nevertheless, general insights continue to apply.
Relative Bias

- Let us first study relative bias.
- Two factors Z and L.
- Defined factor prices as:

$$w_Z(Z, L, \theta) = \frac{\partial G(Z, L, \theta)}{\partial Z} \quad \text{and} \quad w_L(Z, L, \theta) = \frac{\partial G(Z, L, \theta)}{\partial L},$$
Definitions

Definition 4 An increase in technology θ_j for $j = 1, \ldots, K$ is relatively biased towards factor Z at $(\bar{Z}, \bar{L}, \theta) \in Z \times L \times \Theta$ if $\partial (w_Z/w_L)/\partial \theta_j \geq 0$.

Definition 5 Denote the equilibrium technology at factor supplies $(\bar{Z}, \bar{L}) \in Z \times L$ by $\theta^* (\bar{Z}, \bar{L})$, and assume that $\partial \theta^*_j/\partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, \ldots, K$. Then there is weak relative equilibrium bias at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$ if

$$\sum_{j=1}^{K} \frac{\partial (w_Z/w_L)}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial Z} \geq 0.$$

Definition 6 Denote the equilibrium technology at factor supplies $(\bar{Z}, \bar{L}) \in Z \times L$ by $\theta^* (\bar{Z}, \bar{L})$, and assume that $\partial \theta^*_j/\partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, \ldots, K$. Then there is strong relative equilibrium bias at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$ if

$$\frac{d (w_Z/w_L)}{dZ} = \frac{\partial (w_Z/w_L)}{\partial Z} + \sum_{j=1}^{K} \frac{\partial (w_Z/w_L)}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial Z} > 0.$$
Generalized Relative Bias Theorem

Theorem 1 Consider Economy C, M or O with two factors, Z, L, and two factor-augmenting technologies, A_Z, A_L. Assume that $G(A_Z Z, A_L L)$ is twice differentiable, concave and homothetic, and the cost of producing technologies $C(A_Z, A_L)$, is twice differentiable, strictly convex and homothetic. Let

$$\sigma = -\frac{\partial \ln(Z/L)}{\partial \ln(w_Z/w_L)} \bigg|_{A_Z A_L}$$

be the (local) elasticity of substitution between Z and L, and

$$\delta = \frac{\partial \ln(C_Z/C_L)}{\partial \ln(A_Z/A_L)}.$$ Then:

$$\frac{\partial \ln (A_Z/A_L)}{\partial \ln (Z/L)} = \frac{\sigma - 1}{1 + \sigma \delta},$$

and

$$\frac{\partial \ln (w_Z/w_L)}{\partial \ln (A_Z/A_L)} \frac{\partial \ln (A_Z/A_L)}{\partial \ln (Z/L)} \geq 0,$$

so that there is always **weak relative equilibrium bias**. Moreover,

$$\frac{d \ln (w_Z/w_L)}{d \ln (Z/L)} = \frac{\sigma - 2 - \delta}{1 + \sigma \delta},$$

so that there is **strong relative equilibrium bias** if and only if $\sigma - 2 - \delta > 0$.
Idea of the Proof

• Essentially the same as the simple example in Lecture 1.

• Locally, the economy behaves as if the elasticity of substitution is constant.

• Important that the result is for Economy, C, M or O, since the maximization problem choosing all of Z, L, A_Z and A_L is not concave.

• In fact, this non-concavity is essential for strong bias as we will see shortly.
Can This Result Be Generalized Further?

- **None** of the assumptions of Theorem 1 can be relaxed (for sufficiency).
- In particular, with non-factor augmenting technologies, increase in relative supply of Z can induced technological changes biased against Z.
- This does **not** mean that this “contrarian” result will apply in general.
- But it does mean that we cannot guarantee induced biased to go in the “right direction”.
Counterexample 1

• Suppose

\[G(Z, L, \theta) = \left[Z^\theta + L^\theta \right]^{1/\theta} \]

and \(C(\theta) \) convex and differentiable.

• The choice of \(\theta \) again maximizes \(F(Z, L, \theta) \equiv G(Z, L, \theta) - C(\theta) \):

\[\frac{\partial G(\bar{Z}, \bar{L}, \theta^*)}{\partial \theta} - \frac{\partial C(\theta^*)}{\partial \theta} = 0 \]

and

\[\frac{\partial^2 G(\bar{Z}, \bar{L}, \theta^*)}{\partial \theta^2} - \frac{\partial^2 C(\theta^*)}{\partial \theta^2} < 0 \]

• A counterexample would correspond to a situation where

\[\Delta(w_Z/w_L) \equiv \frac{\partial (w_Z/w_L)}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = -\frac{\partial (w_Z/w_L)}{\partial \theta} \frac{\partial^2 F/\partial \theta \partial Z}{\partial^2 F/\partial \theta^2} < 0. \]
Counterexample 1 (continued)

• Here:

\[w_Z/w_L = (Z/L)^{\theta - 1} \]

increasing in \(\theta \) as long as \(Z > L \), so that higher \(\theta \) is relatively biased towards \(Z \).

• Now choose \(C(\cdot) \) such that \(\theta^* \) is sufficiently small, e.g., \(\bar{L} = 1, \bar{Z} = 2 \), and \(\theta^* = 0.1 \).

• In this case, it can be verified that \(\partial^2 F(\bar{Z}, \bar{L}, \theta^*) / \partial \theta \partial Z < 0 \).

• From the second-order conditions \(\partial^2 F / \partial \theta^2 < 0 \).

• Therefore \((\partial^2 F / \partial \theta \partial Z) \times (\partial^2 F / \partial \theta^2) > 0\).

• Conclusion: an increase in \(Z/L \) reduces \(\theta^* \) and induces technological change technology relatively biased against \(Z \).
Counterexample 2

• Suppose

\[G(Z, L, \theta) = Z\theta + L\theta^2, \]

and

\[C(\theta) = C_0\theta^2/2 \]

for all \(\theta \in \Theta = \mathbb{R} \) and \(L \in \mathcal{L} \subset (0, C_0/2) \).

• The equilibrium technology \(\theta^* \) is given by

\[\theta^* (\bar{Z}, \bar{L}) = \frac{\bar{Z}}{C_0 - 2\bar{L}}, \]

• This is increasing in \(\bar{Z} \) for any \(\bar{L} \in \mathcal{L} \).

• The relative price of factor \(Z \) is decreasing in \(\theta \):

\[w_Z (\theta) / w_L (\theta) = \theta^{-1} \]

• \(\bar{Z} \uparrow \Rightarrow \) technological change relatively biased against \(Z \).
Why the Counterexamples?

- In both cases, the increase in \bar{Z} increases w_Z (at given factor proportions).
- But it increases w_L even more so that w_Z/w_L declines at given factor proportions.
- Perhaps looking at absolute bias more natural.
Absolute Bias: Definitions

• Straightforward definitions of absolute bias (in light of the definitions for relative bias above).

Definition 7 An increase in technology \(\theta_j \) for \(j = 1, \ldots, K \) is **absolutely biased** towards factor \(Z \) at \((\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L} \) if \(\frac{\partial w_Z}{\partial \theta_j} \geq 0 \).

Definition 8 Denote the equilibrium technology at factor supplies \((\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L} \) by \(\theta^* (\bar{Z}, \bar{L}) \) and assume that \(\frac{\partial \theta^*_j \theta}{\partial \bar{Z}} \) exists at \((\bar{Z}, \bar{L}) \) for all \(j = 1, \ldots, K \). Then there is **weak absolute equilibrium bias** at \((\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}) \) if

\[
\sum_{j=1}^{K} \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial \bar{Z}} \geq 0.
\]
Absolute Bias: Local Theorem

Theorem 2 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K and $F(Z, L, \theta)$ is twice continuously differentiable in (Z, θ). Let the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) be $\theta^* (\bar{Z}, \bar{L})$ and assume that $\theta^* (\bar{Z}, \bar{L})$ is in the interior of Θ and that $\partial \theta^*_j / \partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, \ldots, K$. Then, there is **weak absolute equilibrium bias** at all $(\bar{Z}, \bar{L}) \in Z \times L$, i.e.,

$$\sum_{j=1}^{K} \frac{\partial w_Z}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial Z} \geq 0 \text{ for all } (\bar{Z}, \bar{L}) \in Z \times L,$$

with strict inequality if $\partial \theta^*_j / \partial Z \neq 0$ for some $j = 1, \ldots, K$.

Sketch of the Proof

• The result follows from the Implicit Function Theorem.

• Consider the special case where $\theta \in \Theta \subset \mathbb{R}$.

• Since θ^* is in the interior of Θ, we have $\partial F/\partial \theta = 0$ and $\partial^2 F/\partial \theta^2 \leq 0$.

• The Implicit Function Theorem then implies:

$$\frac{\partial \theta^*}{\partial Z} = -\frac{\partial^2 F / \partial \theta \partial Z}{\partial^2 F / \partial \theta^2} = -\frac{\partial w_Z / \partial \theta}{\partial^2 F / \partial \theta^2}, \quad (2)$$

• Therefore:

$$\frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z} = -\left(\frac{\partial w_Z / \partial \theta}{\partial^2 F / \partial \theta^2}\right)^2 \geq 0, \quad (3)$$

establishing the weak inequality.

• Moreover, if $\partial \theta^*/\partial Z \neq 0$, then $\partial w_Z / \partial \theta \neq 0$, so the strict inequality applies.

• The general result somewhat more involved, but a similar intuition.
Intuition

• Again the **market size effect**.

• Locally, an increase in \(Z \) makes technologies that the value of marginal product of \(Z \) more profitable.

• The result applies in all four economies.

• Once again, similarity to LeChatelier Principle.

• Major differences to come soon.
Local Bias Does Not Imply Global Bias

• Theorem 2 is for small changes.

• A natural question is whether it also holds for “large” (non-infinitesimal) changes.

• Interestingly, the answer is No.

• The reason is intuitive: technological change biased towards an particular factor at some factor proportion may be biased against that factor at some other (not too far) factor proportion.

• The next example illustrates this.
No Global Bias without Further Assumptions

• Suppose that $F(Z, \theta) = Z + \left(Z - Z^2/8\right) \theta - C(\theta)$ and $Z \in \mathcal{Z} = [0, 6]$ and $\Theta = [0, 2]$ so that F is everywhere increasing in Z.

• Suppose also that $C(\theta)$ is a strictly convex and differentiable function with $C'(0) = 0$ and $C'(2) = \infty$.

• Note that $F(Z, \theta)$ satisfies all the conditions of Theorem 2 at all points $Z \in \mathcal{Z} = [0, 6]$ (since F is strictly concave in θ everywhere on $\mathcal{Z} \times \Theta = [0, 6] \times [0, 2]$).
No Global Bias without Further Assumptions (continued)

• Now consider $\bar{Z} = 1$ and $\bar{Z}' = 5$ as two potential supply levels of factor Z.

• It can be easily verified that $\theta^*(1)$ satisfies $C'(\theta^*(1)) = 7/8$ while $\theta^*(5)$ is given by $C'(\theta^*(5)) = 15/8$

• The strict convexity of $C(\theta)$ implies that $\theta^*(5) > \theta^*(1)$.

• Moreover, $w_Z(Z, \theta) = 1 + (1 - Z/4) \theta$, therefore $w_Z(5, \theta^*(5)) = 1 - \theta^*(5)/4 < 1 - \theta^*(1)/4 = w_Z(5, \theta^*(1))$.

• Intuition: reversal in the meaning of bias.
A Global Theorem

- For a global result, we need to rule out “reversals in the meaning of bias”
- Somewhat stronger assumptions are necessary.
- Fortunately, reasonable assumptions suffice for this purpose.
- What we need to ensure is that “complements” do not become “substitutes”.
- Natural assumption: supermodularity.
Globality

Definition 9 Let θ^* be the equilibrium technology choice in an economy with factor supplies (\bar{Z}, \bar{L}). Then there is **global absolute equilibrium bias** if for any $\bar{Z}', \bar{Z} \in \mathcal{Z}$, $\bar{Z}' \geq \bar{Z}$ implies that

$$w_Z \left(\tilde{Z}, \bar{L}, \theta^*(\bar{Z}', \bar{L}) \right) \geq w_Z \left(\tilde{Z}, \bar{L}, \theta^*(\bar{Z}, \bar{L}) \right)$$

for all $\tilde{Z} \in \mathcal{Z}$ and $\bar{L} \in \mathcal{L}$.

- Two notions of globality.
 1. the increase from \bar{Z} to \bar{Z}' is not limited to small changes;
 2. the change in technology induced by this increase is required to raise the price of factor Z for all $\bar{Z} \in \mathcal{Z}$.

- The same economic forces will take care of both types of globality.
Supermodularity and Increasing Differences

Definition 10 Let \(x = (x_1, \ldots, x_n) \) be a vector in \(X \subset \mathbb{R}^n \), and suppose that the real-valued function \(f(x) \) is twice continuously differentiable in \(x \). Then \(f(x) \) is **supermodular** on \(X \) if and only if \(\frac{\partial^2 f(x)}{\partial x_i \partial x_i'} \geq 0 \) for all \(x \in X \) and for all \(i \neq i' \).

Definition 11 Let \(X \) and \(T \) be partially ordered sets. Then a function \(f(x, t) \) defined on a subset \(S \) of \(X \times T \) has **increasing differences** (strict increasing differences) in \((x, t)\), if for all \(t'' > t \), \(f(x, t'') - f(x, t) \) is nondecreasing (increasing) in \(x \).
Absolute Bias: The Global Theorem

Theorem 3 Suppose that Θ is a lattice, let \bar{Z} be the convex hull of Z, let $\theta^* (\bar{Z}, \bar{L})$ be the equilibrium technology at factor proportions (\bar{Z}, \bar{L}), and suppose that $F (Z, L, \theta)$ is continuously differentiable in Z, supermodular in θ on Θ for all $Z \in \bar{Z}$ and $L \in \mathcal{L}$, and exhibits strictly increasing differences in (Z, θ) on $\bar{Z} \times \Theta$ for all $L \in \mathcal{L}$, then there is global absolute equilibrium bias, i.e., for any $\bar{Z}', \bar{Z} \in Z$, $\bar{Z}' \geq \bar{Z}$ implies

$$\theta^* (\bar{Z}', \bar{L}) \geq \theta^* (\bar{Z}, \bar{L})$$

for all $\bar{L} \in \mathcal{L}$,

and

$$w_Z \left(\tilde{Z}, \bar{L}, \theta^* (\bar{Z}', \bar{L}) \right) \geq w_Z \left(\tilde{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}) \right)$$

for all $\tilde{Z} \in Z$ and $\bar{L} \in \mathcal{L}$, with strict inequality if $\theta^* (\bar{Z}', \bar{L}) \neq \theta^* (\bar{Z}, \bar{L})$.
Proof Idea

• The proof basically follows from Topkis’s Monotone Comparative Statics Theorem.

• An increase in Z is complementary to technologies that are biased towards Z.

• Therefore, the increase in Z will cause globally (weak) absolute bias.
Global Absolute Bias with Multiple Factors

- The same result generalizes to the case where the supply of a subset of complementary factors increases.
- In this case, technology becomes biased towards all of these factors.
- Let now Z denote a vector of inputs.

Theorem 4 Consider Economy D, C or M. Suppose that Z and Θ are lattices, let \bar{Z} be the convex hull of Z, let $\theta(\bar{Z}, \bar{L})$ be the equilibrium technology at factor proportions (\bar{Z}, \bar{L}), and suppose that $F(Z, L, \theta)$ is continuously differentiable in Z, supermodular in θ on Θ for all $Z \in \bar{Z}$ and $L \in \mathcal{L}$, and exhibits strictly increasing differences in (Z, θ) on $\bar{Z} \times \Theta$ for all $L \in \mathcal{L}$, then there is global absolute equilibrium bias, i.e., for any \bar{Z}', $\bar{Z} \in Z$, $\bar{Z}' \geq \bar{Z}$ implies

$$\theta(\bar{Z}', \bar{L}) \geq \theta(\bar{Z}, \bar{L}) \quad \text{for all } \bar{L} \in \mathcal{L}$$

and

$$w_{Z,j}\left(\tilde{Z}, \bar{L}, \theta(\bar{Z}', \bar{L})\right) \geq w_{Z,j}\left(\tilde{Z}, \bar{L}, \theta(\bar{Z}, \bar{L})\right) \quad \text{for all } (\tilde{Z}, \bar{L}) \in Z \times \mathcal{L} \text{ and for all } j.$$
Strong Bias

- Much more interesting and surprising are the results on strong bias.
- The main result will show that strong bias is quite ubiquitous.
Definition of Strong Bias

Definition 12 Denote the equilibrium technology at factor supplies
$(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$ by $\theta^*(\bar{Z}, \bar{L})$ and suppose that $\partial\theta^*_j/\partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, \ldots, K$. Then there is strong absolute equilibrium bias at
$(\bar{Z}, \bar{L}) \in \mathcal{Z} \times \mathcal{L}$ if

$$\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \sum_{j=1}^{K} \frac{\partial w_Z}{\partial \theta_j^*} \frac{\partial \theta_j^*}{\partial Z} > 0.$$
Main Theorem

Theorem 5 Consider Economy D, C or M. Suppose that Θ is a convex subset of \mathbb{R}^K, F is twice continuously differentiable in (Z, θ), let $\theta^* (\bar{Z}, \bar{L})$ be the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) and assume that θ^* is in the interior of Θ and that $\partial \theta^*_j (\bar{Z}, \bar{L}) / \partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, ..., K$. Then there is strong absolute equilibrium bias at (\bar{Z}, \bar{L}) if and only if $F(Z, L, \theta)$'s Hessian in (Z, θ), $\nabla^2 F_{(Z, \theta)}(Z, \theta)$, is not negative semi-definite at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$.
Sketch of the Proof

• Let us again focus on the case where $\Theta \subset \mathbb{R}$.

• By hypothesis, $\partial F/\partial \theta = 0$, $\partial^2 F/\partial \theta^2 \leq 0$.

• Then the condition for strong absolute equilibrium bias can be written as:

$$\frac{dw_Z}{dZ} = \frac{\partial w_Z}{\partial Z} + \frac{\partial w_Z}{\partial \theta} \frac{\partial \theta^*}{\partial Z},$$

$$= \frac{\partial^2 F}{\partial Z^2} - \left(\frac{\partial^2 F/\partial \theta \partial Z}{\partial^2 F/\partial \theta^2} \right)^2 > 0.$$

• From Assumption 1 or 2, F is concave in Z, so $\partial^2 F/\partial Z^2 \leq 0$, and from the fact that θ^* is a solution to the equilibrium maximization problem

$$\partial^2 F/\partial \theta^2 < 0.$$
Sketch of the Proof (continued)

• Then the fact that F’s Hessian, $\nabla^2 F(z, \theta)(z, \theta)$, is not negative semi-definite at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$ implies that

$$\frac{\partial^2 F}{\partial Z^2} \times \frac{\partial^2 F}{\partial \theta^2} < \left(\frac{\partial^2 F}{\partial Z \partial Z \theta} \right)^2,$$

• Since at the optimal technology choice $\frac{\partial^2 F}{\partial \theta^2} < 0$, this immediately yields $dw_Z/dZ > 0$, establishing strong absolute bias at $(\bar{Z}, \bar{L}, \theta (\bar{Z}, \bar{L}))$.

• Conversely, if $\nabla^2 F(z, \theta)(z, \theta)$ is negative semi-definite at $(\bar{Z}, \bar{L}, \theta^* (\bar{Z}, \bar{L}))$, then the previous relationship does not hold and this together with $\frac{\partial^2 F}{\partial \theta^2} < 0$ implies that $dw_Z/dZ \leq 0$.
Intuition

• When $F(Z, L, \theta)$ is not jointly concave in Z and θ, the equilibrium corresponds to a saddle point of F in the Z, θ space.

• This implies that there exists direction in which output and hence monopoly profits for technology suppliers can be increased.

• Nevertheless, the saddle point is an equilibrium, since Z and θ are chosen by different agents.

• When Z changes by a small amount, then θ can be changed in the direction of ascent.

• This not only increases output but also the marginal product of factor Z that has become more abundant.

• The result is an upward-sloping demand curve for Z.
Simple Example

• Let us suppose $\Theta = \mathbb{R}$ and $F(Z, L, \theta) = 4Z^{1/2} + Z\theta - \theta^2/2 + B(L)$ with the cost of creating new technologies incorporated into this function.

• Clearly F is not jointly concave in Z and θ (for $Z > 1$) but is strictly concave in Z and θ individually.

• Consider a change from $\bar{Z} = 1$ to $\bar{Z} = 4$.

• The first-order necessary and sufficient condition for technology choice gives $\theta(\bar{Z}, \bar{L}) = \theta(\bar{Z}) = \bar{Z}$.

• Therefore, $\theta(\bar{Z} = 1) = 1$ while $\theta(\bar{Z} = 4) = 4$.

• Moreover, for any $\bar{L} \in \mathcal{L}$, $w_Z(\bar{Z}, \bar{L}, \theta) = 2Z^{-1/2} + \theta$

• Therefore, $w_Z(\bar{Z} = 1, \bar{L}, \theta(1)) = 3 < w_Z(\bar{Z} = 4, \bar{L}, \theta(4)) = 5$, establishing strong (absolute) equilibrium bias between $\bar{Z} = 1$ to $\bar{Z} = 4$.
How Likely Is This?

• The key requirement is that technologies and factor demands are not decided by the same agent.

• Once we are in such an equilibrium situation, there is no guarantee that the equilibrium point corresponds to a global maximum.

• Thus the requirements are not very restrictive.

• However, naturally, F cannot be globally concave in all of its arguments.

• Thus some degree of increasing returns is necessary.
How Likely Is This? (continued)

- Therefore an immediate corollary:

Corollary 1 Suppose that Θ is a convex subset of \mathbb{R}^K, F is twice continuously differentiable in (Z, θ), let the equilibrium technology at factor supplies (\bar{Z}, \bar{L}) be $\theta^* (\bar{Z}, \bar{L})$, and assume that $\partial \theta_j^* / \partial Z$ exists at (\bar{Z}, \bar{L}) for all $j = 1, \ldots, K$. Then there cannot be strong absolute equilibrium bias in Economy D.

- Intuitively, in Economy D, F must be negative semi-definite in Z and θ, since the same firms choose both Z and θ.

- However, interestingly, one can construct examples where there is strong bias in Economy D if Θ is a finite set.
How Likely Is This? (continued)

- However, outside of Economy D, strong equilibrium bias easily possible.
- Let $\mathcal{C}^2 [B]$ denote the set of twice continuously differentiable functions over B.
- Let $\mathcal{C}^2_+ [B] \subset \mathcal{C}^2 [B]$ be the set of such functions that are strictly convex.
- Let $\mathcal{C}^2_- [B] \subset \mathcal{C}^2 [B]$ be the set of such functions that are strictly concave in each of their arguments (though not necessarily jointly so).

Theorem 6 Suppose that $\Theta \subset \mathbb{R}$ and $\mathcal{Z} \subset \mathbb{R}_+$ are compact, and denote the equilibrium technology by θ^*, and for fixed $\bar{L} \in \mathcal{L}$, let $G (\bar{Z}, \bar{L}, \theta) \in \mathcal{C}^2_- [\mathcal{Z} \times \Theta]$. For each $C (\cdot) \in \mathcal{C}^2_+ [\Theta]$, let $\mathcal{D}_C \subset \mathcal{C}^2_- [\Theta]$ be such that for all $G (\bar{Z}, \bar{L}, \theta) \in \mathcal{D}_C$ there is strong absolute equilibrium bias. Then we have:

1. For each $C (\cdot) \in \mathcal{C}^2_+ [\Theta]$, \mathcal{D}_C is a nonempty open subset of $\mathcal{C}^2_- [\Theta]$.

2. Suppose that θ^* is an equilibrium technology for both $C_1 (\cdot), C_2 (\cdot) \in \mathcal{C}^2_+ [\Theta]$ and that $\partial^2 C_1 (\theta^*) / \partial \theta^2 < \partial^2 C_2 (\theta^*) / \partial \theta^2$, then $\mathcal{D}_{C_2} \subset \mathcal{D}_{C_1}$ (and $\mathcal{D}_{C_2} \neq \mathcal{D}_{C_1}$).
Global Strong Bias

- In contrast to the weak bias absolute theorem, not much more is necessary for a global version of the strong absolute bias theorem.

- Technical intuition: Fundamental Theorem of Calculus.
Global Strong Bias Theorem

Theorem 7 Suppose that Θ is a convex subset of \mathbb{R}^K and that F is twice continuously differentiable in (Z, θ). Let $\bar{Z}, \tilde{Z}' \in \mathcal{Z}$, with $\tilde{Z}' > \bar{Z}$, $\bar{L} \in \mathcal{L}$, and let $\theta^* \left(\tilde{Z}, \bar{L} \right)$ be the equilibrium technology at factor supplies $\left(\tilde{Z}, \bar{L} \right)$ and assume that $\theta^* \left(\tilde{Z}, \bar{L} \right)$ is in the interior of Θ and that $\partial \theta_j^* / \partial Z$ exists at (\tilde{Z}, \bar{L}) for all $j = 1, ..., K$ and all $\tilde{Z} \in [\bar{Z}, \tilde{Z}']$. Then there is **strong absolute equilibrium bias** at $\left(\{\bar{Z}, \tilde{Z}'\}, \bar{L} \right)$ if $F(\tilde{Z}, \bar{L}, \theta)$'s Hessian, $\nabla^2 F(\tilde{Z}, \bar{L}, \theta)$, fails to be negative semi-definite at $(\tilde{Z}, \bar{L}, \theta^* \left(\tilde{Z}, \bar{L} \right))$ for all $\tilde{Z} \in [\bar{Z}, \tilde{Z}']$.
Conclusions

• Study of direction and bias of technology important both for practical and theoretical reasons.

• Surprisingly tractable framework and many strong results are possible.

• Most interestingly:
 1. In contrast to previous non-micro-founded models, a strong force towards induced bias in favor of factors becoming more abundant (weak bias theorems).
 2. Under fairly reasonable conditions, demand curves can slope upward (strong bias theorems).
Conclusions (continued)

- Many applications of endogenous bias:
 1. Endogenous skill bias (both recently and industry).
 2. Why is long-run technological change labor augmenting?
 3. Technological sources of unemployment persistence in Europe.
 4. Demographics and evolution on innovations in the pharmaceutical industry.
 5. A theory of cross-country income differences.
 6. Possible perspectives on “lost decades”.
 7. The effect of international trade on the nature of innovation and on cross-country income differences.