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Abstract

We study how a misspecified agent learns from endogenous data when their prior

belief can assign probability 0 to a neighborhood of the true model. We show that

only uniform Berk-Nash equilibria can be long-run outcomes, and that all uniformly

strict Berk-Nash equilibria have an arbitrarily high probability of being the long-run

outcome for some initial beliefs. When the agent believes the outcome distribution

is exogenous, every uniformly strict Berk-Nash equilibrium has positive probability of

being the long-run outcome for any initial belief. We generalize these results to settings

where the agent observes a signal before acting.
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1 Introduction

We study the joint evolution of an agent’s actions and beliefs when their action can influence

the distribution of outcomes, and their prior may be misspecified in the sense that it assigns

probability 0 to a neighborhood of the true data generating process. Given the complexity

of the real world, such misspecification is plausible in many settings, and has been studied

in a wide range of applications.

This paper is not about any of these applications in particular. We consider a general

environment with finite actions and outcomes and – unlike most past work – do not restrict

the agent’s prior belief to have a finite support or any specific functional form. In this envi-

ronment, the agent’s prior is a belief over the set of action-contingent outcome distributions,

and the agent is misspecified if they assign probability 0 to a neighborhood of the true map

from actions to distribution over outcomes. The agent’s prior also determines how they per-

ceive the correlation between the outcome distributions induced by different actions, which

we show is a key determinant of the long-run outcome of the learning process.

Our results characterize the possible limit points of the agent’s action and their stability

properties. First, Theorem 1 shows that regardless of the agent’s discount factor, if play

converges to an action a, that action is a uniform Berk-Nash equilibrium. Uniform Berk-

Nash equilibrium, which we introduce in this paper, is a refinement of Berk-Nash equilibrium

(Esponda and Pouzo, 2016). Berk-Nash equilibrium requires that the action is myopically

optimal against some belief that minimizes the Kullback-Leibler (KL) divergence between

the subjective and true outcome distributions given that the agent plays a— that is, a best

response to a “KL minimizer.” Uniform Berk-Nash equilibrium strengthens this by requiring

that the action is a best response to any beliefs with support on these KL minimizers.

We then investigate sufficient conditions for two alternative definitions of what it means

for an action to be a long-run outcome. We say that an action is stable if play converges

to it with arbitrarily high probability for some open set of initial beliefs. Theorem 2 shows

that every uniformly strict Berk-Nash equilibrium is stable, regardless of the agent’s dis-

count factor, where “strict” indicates that the action is the strict myopic best response to

the agent’s beliefs, and “uniformly” requires that this is true for all of the KL-minimizing

outcome distributions (as opposed to being true for at least one of them).

We say that an action is positively attractive if there is positive probability that it is

the limit outcome under every optimal policy for every full-support prior belief. Our setup

allows us to model a number of different forms of misspecified learning. In particular, in the

“subjectively exogenous” case where the agent believes (either rightly or wrongly) that the
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distribution of outcomes is the same for all actions, and in subjective bandit problems, where

the agent believes that the outcomes observed when playing one action are uninformative

about the outcome distributions induced by other actions. In these cases we obtain partial

converses to Theorem 1: All uniformly strict Berk-Nash equilibria are positively attractive,

meaning that they have positive probability of being the limit outcome from any starting

belief. Moreover, in subjective bandit problems that are weakly identified (Esponda and

Pouzo, 2016) we can relax uniformly strict to strict.

To prove these results, we first extend Diaconis and Freedman (1990)’s result that

Bayesian updating is uniformly consistent to the case of misspecified prior beliefs, a fact

that may be of use in future work. We use this extension to guarantee that the agent starts

to play the equilibrium action with positive probability. We then use the stability result from

Theorem 2 to show that, with positive probability, the agent uses the action forever. We

also observe that in a supermodular decision problem, extreme uniformly strict equilibria are

positively attractive. In this setting, the additional structure of the problem lets us dispense

with the first step of the proof.

We also generalize our results to a setting in which the agent observes a signal before

taking an action. Here too a limit action must be a uniform Berk-Nash equilibrium. More-

over, if the agents ignore the predictive value of the signals, i.e., the signals are subjectively

uninformative, every uniformly strict Berk-Nash equilibrium is positively attractive.

We illustrate our findings in three economic examples: a monopolist that is misspecified

about the demand function, a central bank choosing an exchange-rate policy, and a seller

that observes a signal and then decides whether to make an investment.

1.1 Related Work

Misspecified agents are featured in work in a wide range of fields. There are many examples

in behavioral economics, such as the “law of small numbers, ”the “hot-hand fallacy,” the

winner’s curse, and the link between overconfidence and prejudice.1 Macroeconomists have

been interested in misspecified learning both in the form of misspecified least-squares pre-

dictions as well as more sophisticated models of updating and inference.2 In organizational

economics, misspecification has been used to explain e.g. the role of corporate culture and

the low rate and low number of minority inventors.3 In public economics, misspecification

1Kagel and Levin (1986), Rabin and Vayanos (2010), and Heidhues, Kőszegi, and Strack (2019).
2Bray (1982), Bray and Savin (1986), Cho and Kasa (2015), Cho and Kasa (2017), Molavi (2019).
3Gibbons, LiCalzi, and Warglien (2019), Bell et al. (2019)
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helps explain over or under reaction to changes in tax schedules.4 And in political economy,

misspecification has been used to explain the recurrence of populism and political polariza-

tion.5 There is also a related literature on misspecified social learning, where agents learn

from data that is generated by others.6

Theoretical analysis of misspecified learning began in the statistics literature with Berk

(1966), which shows that the beliefs of a misspecified agent asymptotically concentrate on

the set of models that minimize the KL-divergence from the true data generating process

when this process is exogenous. In many economic applications, actions and associated signal

distributions aren’t fixed but change endogenously over time depending on an action taken

by the agent, so the agent’s misspecification has implications for what they observe and

thus for their long-run beliefs. Arrow and Green (1973) gives the first general framework

for this problem, and Nyarko (1991) points out that the combination of misspecification and

endogenous observations can lead to cycles.

There has been a surge of theoretical work on misspecified learning since the seminal work

of Esponda and Pouzo (2016), which defines Berk–Nash equilibrium. This is a relaxation

of Nash equilibrium that replaces the requirement that players’ beliefs are correct with the

requirement that each player’s belief minimizes the Kullback–Leibler divergence to their

observations on the support of their prior. They show that Berk-Nash equilibrium is a

necessary property for limit points when the payoff function is subject to small i.i.d. random

shocks as in Fudenberg and Kreps (1993), and that it is sufficient if in addition the agent is

willing to incur asymptotically negligible optimization losses.

Fudenberg, Romanyuk, and Strack (2017) characterizes the long-run play for non-myopic

agents in a continuous time model with Brownian noise under the assumption that the

support of the agent’s prior contains only two points. Heidhues, Kőszegi, and Strack (2018)

and He (2019) provide conditions for global convergence of play of a non-myopic agent

in a environments with additively separable payoffs that satisfy strong supermodularity

restrictions, where the Berk-Nash equilibrium is unique. Heidhues, Koszegi, and Strack

(2018) establishes convergence to a Berk-Nash equilibrium in environments with a normal

prior and normal signals. Molavi (2019) studies misspecification in a temporary equilibrium

model of macroeconomics; his leading example is where agents mistakenly think that some

4Rees-Jones and Taubinsky (2016) and Morrison and Taubinsky (2019).
5Levy, Razin, and Young (2020) and Eliaz and Spiegler (2018).
6E.g. Bohren (2016), Bohren and Hauser (2018), and Frick, Iijima, and Ishii (2019), and Mailath and

Samuelson (2019). We do not formally explore such models here, but many of them are equivalent to the
case of a single myopic agent in our framework.
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variables have no impact.

The most closely related papers are Esponda, Pouzo, and Yamamoto (2019) (henceforth

EPY) and Frick, Iijima, and Ishii (2020) (henceforth FII). EPY uses stochastic approximation

to establish when the agent’s action frequency converges in an environment with finitely

many actions. FII provides conditions for local and global convergence of the agent’s beliefs

without explicitly modelling the agent’s actions.7

Our paper complements the literature on long-run behavior in misspecified models in

three ways: First, we establish that without the asymptotically vanishing payoff pertur-

bations of Esponda and Pouzo (2016), play never converges to a non-uniform Berk-Nash

equilibrium.8 Second, we introduce conditions under which an action has positive probabil-

ity of being the long-run outcome from any initial belief. Both these contributions build on

our extension to misspecified environments of Diaconis and Freedman (1990)’s result that

Bayesian updating is uniformly consistent, that may have further applications. Finally, our

results provides the first necessary and sufficient conditions for the choices of forward-looking

misspecified agents to converge to a myopic best reply to their beliefs.9

All the previously discussed papers consider misspecified Bayesian agents. There is also

a literature that studies the long-run outcomes under different learning heuristics. Such

heuristics are due to misspecification in the sense that the agent is unable to formulate a

probabilistic assessment of the data generating process. Many of these heuristics feature a

form of neglect of the relevant elements of the environment, similar to the ones we consider in

our Section 4 (see, e.g., Tversky and Kahneman, 1973, Rabin and Schrag, 1999, and Jehiel,

2018).

2 The Model

2.1 Setup

Actions, Utilities and Objective Outcome Distributions We consider a discrete

time problem: In each period t P t1, 2, 3, . . .u an agent chooses an action from the finite set

7Neither model nests the other. FII assumes finite priors, and impose a continuity assumption that our
model can but need not satisfy. Conversely, we rule out the continuum of actions assumed by FII.

8As this uniformity refinement is with respect to the optimality of actions, it has no analog in Frick,
Iijima, and Ishii (2020) which focuses on the convergence of beliefs.

9Theorem 4 of Esponda and Pouzo (2016) shows that Berk-Nash is a necessary condition in games with
payoff perturbations that satisfy an additional identification hypothesis. Other work either assumes myopic
agents or does not obtain convergence to a myopic best reply.

4



A.10 This choice has two effects. First, each action a P A induces an objective probability

distribution p˚a P ∆pY q Ă R|Y | over the finite set of possible outcomes Y .11 Second, the

action, paired with the realized outcome, determines the flow payoff of the agent via the

utility function u : Aˆ Y Ñ R.12

Formally, we consider the probability space pΩ,F ,Pq. The sample space Ω “ pY 8qA

consists of infinite sequences of action dependent outcome realizations pxa,1, xa,2, . . .qaPA,

where xa,k determines the outcome when the agent takes the action a for the k-th time. F
is the product sigma algebra and the probability measure P is the product measure induced

by independent draws from the relevant component of p˚. We denote the outcome observed

by the agent in period t after action at by yt “ xat,k, where k “ |tτ ď t : aτ “ atu| is the

number of times the agent has taken action at up to and including period t.

Subjective Beliefs of the Agent The agent correctly believes that the map from actions

to probability distributions over outcomes is fixed and depends only on their current action,

but they are uncertain about the distribution each action induces. Let P “
Ś

aPA ∆pY q Ă

R|Y |ˆ|A| be the space of all action-dependent outcome distributions, and let pa P ∆pY q

denote the a-th component of p P P. We endow P with the sup-norm topology, and denote

by Bεppq the ball of radius ε around p P P .13 The agent’s uncertainty is captured by a

prior belief µ0 P ∆
`

P
˘

, where ∆
`

P
˘

denotes the metric space of Borel probability measures

on P endowed with the Prokhorov metric, so that it has the topology of weak convergence

of measures. The support of µ0 is the set of distributions over outcomes that the agent

thinks are possible. We call these the conceivable outcome distributions, and denote them

by Θ “ suppµ0. We do not require that the agent’s model is correctly specified, i.e. that

the true outcome distribution p˚ is conceivable. Formally, we will maintain the following

assumption:

Assumption 1 (Regularity).

(i) For all p P Θ and a P A, papyq ą 0 if and only if p˚apyq ą 0.

(ii) The prior µ0 has subexponential decay : there is Φ : R` Ñ R such that for every p P Θ

and ε ą 0 we have µ0pBεppqq ě Φpεq with lim ΦpK{nq exppnq “ 8 for all K ą 0.

10We endow A, as well as any other finite set, with the discrete topology.
11We denote objective distributions with a superscript ˚.
12This modelization of the agent’s choice is the most useful to describe the learning problem of the agent.

From a decision theoretic perspective this static choice can be reformulated as the maximization of the
expected value of a state-dependent utility function as in Dekel et al. (2007).

13For every finite dimensional vector v, we let ||v|| “ maxi vi denote the supremum norm.
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Assumption 1(i) requires that the set of outcomes that the agents thinks are possible

coincides with the set of outcomes that objectively have positive probability. This assumption

guarantees that Bayes rule is always well defined.14 Assumption 1(ii) extends Diaconis and

Freedman (1990)’s notion of φ-positivity to the misspecified case, and adds the requirement

that the bounding Φ vanishes at a subexponential rate around 0. It is always satisfied by

priors with a density that is bounded away from 0 on their support, and by priors with finite

support. 15

Our specification allows the agent’s subjective uncertainty to be correlated across ac-

tions. For example, under causation neglect, the agent has a belief about action-contingent

distributions that is perfectly correlated: they are certain that every action generates the

same outcome distribution.

Updating Subjective Beliefs We assume throughout that the agent updates their beliefs

using Bayes rule. Denote by µtp¨ | pa
t, ytqq the subjective belief the agent obtains using Bayes

rule after action sequence at “ pasq
t
s“1 and outcome sequence yt “ pysq

t
s“1,

µtpC | pa
t, ytqq “

ş

pPC

śt
τ“1 paτ pyτ qdµ0ppq

ş

pPP

śt
τ“1 paτ pyτ qdµ0ppq

. (Bayes Rule)

Since the agent’s prior has support Θ, their posterior belief does as well. We sometimes

suppress the dependence of the posterior belief on the realized sequence and just write µt.

Behavior of the Agent A (pure) policy π :
Ť8

t“0A
t ˆ Y t Ñ A specifies an action for

every history. We assume that the agent’s objective is to maximize the expected discounted

value of per-period utility with discount factor β P r0, 1q, and restrict to optimal policies.

Throughout, we let at`1 “ πpat, ytq denote the action taken in period t. Together, the

probability measure P and a policy π induce a probability measure Pπ on paτ , yτ q
8

τ“1.16

Standard results guarantee that in this setting there is an optimal policy π that depends on

14While Assumption 1(i) is transparent and satisfied in most applications, it is stronger than necessary.
We explain in Online Appendix B.2 how our results extend to weaker assumptions on the support of the
agent’s prior beliefs.

15Dirichlet priors also satisfy Assumption 1(ii), even though they do vanish at the edge of their support.
Fudenberg, He, and Imhof (2017) shows by example that even correctly specified Bayesian updating can
behave oddly when the prior vanishes exponentially quickly.

16Multiple state spaces lead to the same law for the stochastic processes we are interested in. In particular,
we could have started from the probability space of action-dependent outcome realizations pxa,1, xa,2, . . .qaPA
but with xa,k denoting the outcome realization if the agent takes action a in period k. An argument similar
to that of Lemma 5 of Fudenberg and He (2017) shows that this choice would not change our results.
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the history only through the agent’s beliefs and we restrict attention to policies that satisfy

this restriction.

Given a belief ν P ∆pΘq we denote by νa the belief over outcome distributions associated

with action a, i.e. νapCq “
ş

1paPCdνppq for all C Ď ∆p∆pY qq. We denote by Epa rfpyqs “
ř

yPY fpyqpapyq the expectation of f : Y Ñ R under the outcome distribution pa. Am pνq

denotes the set of myopically optimal actions given belief ν, i.e.,

Am pνq “ argmax
aPA

ż

∆pY q

Epa rupa, yqs dνappaq.

2.2 Forms of Misspecification

Our model encompasses many sorts of misspecified learning, including the following special

cases:

2.2.1 Subjectively Exogenous Outcomes

We say that there are subjectively exogenous outcomes when the agent believes that the

realized outcome is not affected by the chosen action. More formally:

Definition 1. Outcomes are subjectively exogenous if for every a, a1 P A and every p P Θ,

we have pa “ pa1 .

Note that the agent can believe in exogenous outcomes independent of whether or not

the action really does influence the distribution; if the action does influence the outcome and

the agent ignores this we say the agent exhibits causation neglect. An agent who thinks the

outcome distribution is exogenous updates their beliefs as if they faced an i.i.d. environment.

This allows us to use a novel extension of the Diaconis and Freedman (1990) result about

uniform consistency with misspecified beliefs to guarantee that the beliefs will concentrate

on the conceivable outcome distributions closest to the empirical average. We use this result

show that if a is a uniformly strict Berk-Nash equilibrium, it is positively attractive.

2.2.2 Subjective Bandit Problems

The other extreme case encompassed by our setup is where the agent thinks that they face

a bandit problem, i.e. they believe that the distributions over outcomes induced by different

actions are independent. This corresponds to the case where the agent’s prior µ0 is a product

measure.
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Definition 2 (Bandit Problem). We say that an agent faces a subjective bandit problem

if µ0 “
Ś

aPA µ0,a P p∆ p∆ pY qqq
A. Each µ0,a P ∆ p∆ pY qq is the agent’s prior about the

distribution over outcomes induced by action a.

We use our extension of Diaconis and Freedman (1990) to show that uniformly strict

Berk-Nash equilibria are positively attractive in this setting as well, provided that the agent

is sufficiently patient.17

2.2.3 One Dimensional Decision Problems

In one-dimensional decision problems, the agent’s uncertainty is summarized by a parameter

γ P R. The parameter determines the distribution over outcomes through a function φ which

maps parameters to action-dependent outcome distributions. Formally, the support of the

agent’s prior µ0 is contained in the image of this function φ.

Definition 3 (One-Dimensional Decision Problems). The decision problem is one-dimensional

if there exists Γ Ď R and a function φ : Γ Ñ P such that Θ Ď tφpγq : γ P Γu. A

one-dimensional decision problem is supermodular if A can be ordered such that pγ, aq ÞÑ

Eφpγqarupa, yqs is supermodular.

EPY provides a sufficient condition for actions to converge in one-dimensional problems

that are supermodular. Heidhues, Kőszegi, and Strack (2018) shows that a unique Berk-Nash

equilibrium is globally attracting in supermodular decision problems where the outcomes are

real numbers and φ is an additive shift. Our Example 7 shows that their result does not

hold in our more general setting: a unique (and uniformly strict) Berk-Nash equilibrium

may not be positively attractive. Under a stronger version of supermodularity, our positive

attractiveness results do extend to extremal uniformly strict Berk-Nash equilibria.

2.2.4 Finite Support

Another common assumption is that the support of the prior is finite. Our general setup

encompasses this case as well, which allows us to highlight an important difference between

environments with finite or infinite support. With a finite-support prior, if behavior converges

17The proof shows that if b is a uniformly strict Berk-Nash equilibrium and the agent is very patient,
then there is positive probability that the agent’s beliefs eventually give b the highest Gittins index. Note
that the agent’s discount factor is irrelevant when the agent thinks the outcome distribution is exogenous,
since then the agent thinks there is no information value in experimenting with other actions.
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to an action a, a is a best reply to all outcome distributions that minimize the Kullback-

Leibler divergence from p˚a, so it is a uniform Berk-Nash equilibrium. However, Example 4

shows that non uniform Berk-Nash equilibria can be limit points when the support of the

prior is infinite if Assumption 1(ii) is not satisfied.

Sharper results can be obtained if the the agent has a binary prior, |Θ| “ 2. Fudenberg,

Romanyuk, and Strack (2017) characterizes the long-run behavior in the case of a binary

prior when the outcome is the sum of the chosen action and a Brownian motion. Bohren

(2016) and Bohren and Hauser (2018) analyze misspecified binary-prior models in the context

of social learning.

2.2.5 Signals

Here we suppose that each period the agent observes a signal s P S before taking an action

a P A. The signal may convey information about the outcome distribution, and it may also

directly enter the payoff function.

We allow the agent to be uncertain about the outcome distributions induced by various

signals and actions. Let P “ p∆pY qqAˆS Ă RYˆAˆS be the space of all signal and action

dependent outcome distributions. The agent’s belief is a probability measure µ over P ,

where ps,apyq denotes the probability under p P P of outcome y after observing signal s

playing action a. Extending the model to signals lets us incorporate the stochastic payoff

perturbations assumed in EP. It also lets us model cases where the agent mistakenly thinks

that the signal is uninformative.

3 Limit Points and Berk-Nash Equilibria

We are interested in when the agent’s actions converge, and what the possible limit points

are. Note that these are different questions than whether the agent’s beliefs converge: Beliefs

can oscillate when actions are fixed, as in Berk’s example where there the agent doesn’t

have an action choice, and conversely actions can oscillate with fixed beliefs if the agent

is indifferent.18 Thus, the agent’s actions might converge without their beliefs converging.

Intuitively, if two outcome distributions explain the observed data equally well on average,

the log-likelihood ratio between them is a random walk and thus oscillates between assigning

high probability to each of the two distributions. Conversely, if the agent is indifferent

18The fact that beliefs can oscillate under a fixed action is the driving force behind the uniformity
requirement in several of our results, see e.g., Theorem 1(ii).
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between multiple actions at the limit belief, their actions might not converge even though

their beliefs do.

Formally, the action process converges to action a if there exists a time period T P N
such that at “ a for all later time periods t ą T . We say that the action process converges to

a with positive probability (resp. with probability 1) under policy π if there is a measurable

set C Ď A8 ˆ Y 8 with PπrCs ą 0 (resp. with PπrCs “ 1) such that at converges to a in C.

Note that there may be several optimal policies for a given prior, and which policy is used

can influence whether the action process converges and if so to which points.

The concept of Berk-Nash Equilibria (Esponda and Pouzo, 2016) will play a key role in

our analysis. Intuitively, a Berk-Nash equilibrium is an action a such that there exists a

belief for which a is myopically optimal, and which assigns positive probability only to the

conceivable outcome distributions that best match the objective outcome distribution p˚a.

Formally, given two distributions over outcomes q, q1 P ∆pY q we define

H pq, q1q “ ´
ÿ

yPY

qpyq log q1pyq.

Note that ´Hpq, q1q is the expected log likelihood of an outcome under subjective distri-

bution q1 when the true distribution is q, so q1 with smaller Hpq, q1q better explain the

true distribution. The Kullback-Leibler (KL) divergence between p˚a and pa is given by

Hpp˚a, paq ´Hpp˚a, p
˚
aq, so any pa that minimizes H pp˚a, pq also minimizes the KL divergence

between p˚a and pa.

Recall pa denotes the outcome distribution that p assigns to action a. For each a, let

Θ̂paq “ argmin
pPΘ

H pp˚a, paq Ă Θ

denote the set of conceivable action-contingent outcome distributions that minimize the KL

divergence relative to the true distribution p˚a given that the agent plays a. Note that the

elements of Θ̂paq specify an outcome distribution for each action a1 P A, even though Θ̂paq

only depends on the distributions corresponding to a. We call Θ̂paq the set of KL-minimizers

for action a.19

From Berk (1966), the agent’s beliefs concentrate on Θ̂paq if they always play a. This

motivates Esponda and Pouzo (2016)’s notion of a Berk-Nash equilibrium. We introduce

variations of this concept to capture different senses in which an action is or is not a long-run

19Note that if p˚ P Θ then each minimizing p explains the observed outcome distribution perfectly,
pa “ p˚a . In particular this is true if µ0 has full support.
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outcome of the agent’s learning process.

Definition 4. Two outcome distributions p and p1 are observationally equivalent under

action a if pa “ p1a. We denote by Eappq Ď Θ the set of outcome distributions in Θ that are

observationally equivalent to p under a.

Definition 5 (Berk-Nash Equilibrium).

(i) Action a P A is a Berk-Nash equilibrium if for some belief ν P ∆pΘ̂paqq, a is myopically

optimal given ν, i.e. a P Ampνq.

(ii) Action a is a strict Berk-Nash equilibrium if for some belief in ν P ∆pΘ̂paqq, a is the

unique myopically optimal action, i.e. tau “ Ampνq.

(iii) Action a is a uniform Berk-Nash equilibrium if for all p P Θ̂paq there exists a belief

ν P ∆ pEappqq such that a P Ampνq.

(iv) Action a is a uniformly strict Berk-Nash equilibrium if for every belief ν P ∆pΘ̂paqq, a

is the unique myopically optimal action, i.e., tau “ Ampνq.

Uniformity requires that for each class of observationally equivalent KL-minimizers for

action a, there is a belief concentrated on that class for which a is the myopically optimal

choice.20 The difference between Berk-Nash equilibrium and uniform Berk-Nash equilibrium

disappears in the correctly specified case, where both concepts coincide with self-confirming

equilibrium. In settings where the KL-minimizer is unique, the uniformity requirement has

no bite. However, in frameworks with additional structure, such as symmetry or parametric

restrictions, multiple KL minimizers can arise naturally. For example, suppose that agent’s

payoff depends on the color y of a ball drawn from an urn, and the agent’s action is to bet

on the color of the drawn ball. The agent correctly believes their action has no impact on

the distribution of outcomes. The urn has 6 balls: 4 of them white, 1 red, 1 blue. Here

there is a finite number of possible outcome distributions corresponding to the possible urn

composition. If the agent is certain that at most half of the balls share the same color, i.e.,

ppyq ď 1{2 for every y P twhite, red, blueu, the two KL minimizers are (3 white, 2 blue, 1

red) and (3 white, 1 blue, 2 red).21

The following result motivates our introduction of uniform Berk-Nash equilibria. It holds

regardless of the agent’s discount factor, and for all optimal strategies. The same is true

20The only other equilibrium refinement we know of that, like uniform Berk-Nash equilibrium, tests for
optimality against all beliefs in a non-singleton set is Fudenberg and He (2020), which studies non-equilibrium
learning in a steady-state model where the agents are correctly specified Bayesians. They do not study the
dynamics away from the steady state.

21Our framework can be extended to model multiple prior preferences (Gilboa and Schmeidler, 1989) in
Ellsberg (1961) urns, but we do not analyze this here.
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for all subsequent results except those where the dependence on the discount factor is made

explicit.

Theorem 1 (Limit Actions are uniform Berk-Nash Equilibria).

If actions converge to a P A with positive probability, a is a uniform Berk-Nash equilibrium.

One implication of Theorem 1 is that limit actions must be Berk-Nash equilibria. In

outline, this follows from the fact that if actions converge to an action then eventually the

agent always plays that action, and Berk (1966)’s result that the agent’s beliefs converge to

the set of KL minimizers when their observations are a sequence of i.i.d. signals.

More strongly, Theorem 1 shows that a limit action must be a uniform Berk-Nash equi-

librium. When a is not a uniform Berk-Nash equilibrium, there is an equivalence class of KL

minimizers such that a is not a myopic best reply when beliefs concentrate on that class.

The example in Figure 1 illustrates the idea of the proof. There are three outcomes

ty1, y2, y3u, and the true outcome distribution under action a is q˚ “ p1{3, 1{3, 1{3q. The

marginals of the outcome distributions in Θ are q̂, q1, q2 and q3, and the KL-minimizers under

action a are q̂, q1, q2. If a is not a uniform Berk-Nash equilibrium, there is a marginal outcome

distribution q̂ such that a is not a myopic best-reply if the beliefs concentrate around the

outcome distributions that have q̂ as marginal for action a.

By the Central Limit Theorem when a is played repeatedly the empirical frequency of

outcomes converges to q˚, with oscillations that die out at speed
?
t. Combining this obser-

vation with the Kochen-Stone Lemma22 we prove that for infinitely many t, the empirical

frequency will be in a ball of radius 1{
?
t centered at q˚p1´ 1{

?
tq ` q̂{

?
t. From our exten-

sion of the Diaconis and Freedman uniform consistency result, when the empirical frequency

enters these balls, the beliefs concentrate at an exponential rate around the outcome distri-

butions that have q̂ as the marginal distribution for action a, so the agent stops playing a.

Example 4 in the Online Appendix shows that Theorem 1 can fail without Assumption 1(ii).

Here the agent’s prior has countable support and assigns vanishingly low probability to dis-

tributions that are close to one of the KL minimizers. However, Assumption 1(ii) does not

ensure that a uniform Berk-Nash equilibrium exists, as shown in the following example. As

a consequence, actions need not converge.

Example 1 (Non-existence of Uniform Berk-Nash equilibrium). A monopolist is uncer-

tain about the demand for their product. Every period the monopolist posts a price a P

t3, 4, 5, 6, 7u, and then a randomly selected consumer observes the price and decides whether

22The Kochen-Stone lemma extends the second Borel-Cantelli lemma to “somewhat correlated” events.
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Figure 1: Intuition behind Theorem 1

to buy py “ 1q or not buy the good py “ 0q. The monopolist’s utility equals price times

quantity sold, upa, yq “ ay, and the true distribution of customer values is uniform on r3, 7s.

The monopolist overestimates the variance of consumer values, and believes that they are

either uniformly distributed on r0, 8s or on r2, 10s. As we show in the Online Appendix, the

unique Berk-Nash equilibrium is nonuniform and strict, with the monopolist setting a price

of 5. Therefore, Theorem 1 implies that the behavior of a myopic monopolist never converges

even though there is a unique and strict Berk-Nash equilibrium.

4 Sufficient Conditions for Long-Run Persistence

Theorem 1 shows that play can only converge to a given action a if that action is a uniform

Berk-Nash equilibrium. This section gives sufficient conditions for a to be a long-run outcome

in two different senses, namely stability and attractiveness.

4.1 Stability

We say that action a is stable if play converges to a with high probability starting from

every belief in a neighborhood of a KL-minimizer for a. For ν P ∆pΘq, let Bεpνq be the

set of beliefs over conceivable distributions that are within ε of ν.23 Define the set Θ̂εpaq as

23Bεpνq “ tν
1 P ∆pΘq|dpν1, νq ď εu.
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all outcome distributions whose marginal distribution with respect to action a is at most ε

away from a KL minimizer,

Θ̂ε
paq “ tp P Θ: there exists p1 P Θ̂paq with ||p1a ´ pa|| ď εu .

Definition 6 (Stability).

(i) A Berk-Nash equilibrium a is stable if for every κ P p0, 1q, there is an ε ą 0 and a

belief ν P ∆pΘq such that for all initial beliefs in Bεpνq, the action prescribed by some

optimal policy converges to a with probability larger than 1´ κ.

(ii) A Berk-Nash equilibrium a is uniformly stable if for every κ P p0, 1q, there is an ε ą 0

such that for all prior beliefs ν P ∆pΘq such that νpΘ̂εpaqq ą 1´ε, the action prescribed

by any optimal policy converges to a P A with probability greater than 1´ κ.

Theorem 1 shows that stable actions must be uniform Berk-Nash equilibria. The next

theorem shows that an action is a uniformly strict Berk-Nash equilibrium if and only if it is

uniformly stable.

Theorem 2. The following are equivalent:

(i) a P A is a uniformly strict Berk-Nash equilibrium.

(ii) a P A is uniformly stable.

Theorem 2 differs from past work by providing the first if and only if characterization

of stability, and by allowing the agent to be non-myopic and thus perceive an information

value from experimentation.24 Its proof has two parts, corresponding to the two directions

of the if and only if statement. To show that every uniformly strict Berk-Nash equilibrium is

uniformly stable, we first derive a neighborhood of action-dependent outcome distributions

that are close to the Kullback-Leibler minimizers such that if the beliefs assign a sufficiently

high probability to that neighborhood, the optimal action is the uniformly strict Berk-Nash

equilibrium a. That such a neighborhood exists for a myopic policy follows from the definition

of uniformly strict Berk-Nash equilibrium. Under a non-myopic policy, since beliefs are not

degenerate, some actions may have an experimentation value. However, when the beliefs are

sufficiently concentrated around the minimizers, the value of any alternative action cannot be

much higher than its value against the most favorable minimizer, and since a is a uniformly

strict Berk-Nash equilibrium this value is strictly lower than that of a. Then we combine an

24FII’s Theorem 1 gives a sufficient condition for stability when the agent’s prior has finite support. The
statement of the theorem leaves the actions and discount factor implicit, but the paper’s three applications
all assume myopic choice.
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observation from FII with a generalization of the arguments in Fudenberg and Levine (1992)

to the misspecified case to argue that a transformation of the odds ratio of this neighborhood

is a positive supermartingale, under the outcome distribution induced by action a. Finally, we

use the Dubins’ upcrossing inequality to guarantee that if the probability initially assigned to

the neighborhood is sufficiently high, that probability is unlikely to drop below the threshold

that makes action a suboptimal.

The proof of the converse direction is much simpler: If a is not a uniformly strict Berk-

Nash equilibrium, there is a distribution p in Θ̂paq that makes some other action b the best

response, and if we set ν to be a point mass on p the agent always plays b.

Theorem 2 is in contrast to the non-convergence in the monopoly pricing example of

Heidhues, Koszegi, and Strack (2018), where there is a continuum of actions, and actions

that are sufficiently near the strict best response are best responses to nearby beliefs. As we

explain in Section 6, it is not clear what the right definition of uniform stability is for that

setting.

Example 1 shows that Theorem 2 does not extend to strict Berk-Nash equilibria that

are not uniformly strict. The next example shows that in Theorem 2 we cannot replace

uniformly stable with stable.

Example 2 (A stable Berk-Nash equilibrium that is not uniformly strict). Suppose there

are 2 actions, a and b, that induce the same distribution on Y “ t0, 1u and such that

upa, ¨q “ upb, ¨q. The agent has an arbitrary belief supported on tp : pa “ pbu, i.e., they know

the actions induce the same distribution. Here, since the agent is always indifferent, even

action a is not a uniformly strict BN it is stable under the (optimal) policy that prescribes

to always play a.

In general there is a gap between uniformly strict Berk-Nash equilibria, and (non-uniform)

stability, but in sufficiently rich problems, this gap is absent.

Definition 7. A problem is rich if for every action a, minimizer p P Θ̂paq and ε ą 0 there

exists a p1 P ΘzΘ̂paq with ||p´ p1|| ď ε such that

Epa rupa, yqs ´max
bPA

Epb rupb, yqs ą Ep1a rupa, yqs ´max
bPA

Ep1b rupb, yqs .

In words, a problem is rich if for every KL-minimizer for every action a, the agent’s prior

includes a nearby distribution under which a performs relatively less well. This rules out the

previous example and also rules out finite-support priors.
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Theorem 3. If a problem is rich, the following are equivalent:

(i) a P A is a uniformly strict Berk-Nash equilibrium.

(ii) a P A is stable.

Richness guarantees that if a is not a uniformly strict equilibrium, there is a KL-minimizer

for action a that can be approximated with a sequence of outcome distributions ppnqnPN under

which action a is strictly suboptimal. To prove this theorem, for every ν we build a sequence

of beliefs pνnqnPN that have have pn has the unique KL-minimizer for action a, and combine

this with Theorem 1 to show that the probability that the actions converge to a starting

from νn is 0.

Thus we can summarize our stability results as:

Uniformly Strict BN “ Uniformly Stable Actions Ď Stable Actions Ď Uniform BN,

where the first inclusion is an equality if the problem is rich.

4.2 Positive Attractiveness

The previous section gave sufficient conditions for an action to be played in the long-run

with high probability for some initial beliefs. Another natural notion of a being a long-run

outcome is that for every initial belief with support Θ there is strictly positive probability

that the agent’s action converges to a.

Definition 8 (Positively attractive). The action a P A is positively attractive if for every

optimal policy π and every inital belief ν with supp ν “ Θ,

Pπ
”

lim
tÑ8

at “ a
ı

ą 0 .

Below we give sufficient conditions for uniformly strict Berk-Nash equilibria to be pos-

itively attractive. Benäım and Hirsch (1999) obtains a similar conclusion for the linearly

stable Nash equilibria of stochastic fictitious play.25 These arguments rely on Lemma 7 in

the appendix, which shows that beliefs about the outcome distribution concentrate around

the distributions that best fit the empirical frequency of outcomes. Importantly, our result

25The Bayesian foundation of fictitious play assumes that the players believe that the environment is
stationary and have Dirichlet priors. Away from a steady state the players are thus misspecified, but when
the system converges to a steady state the stationarity assumption is asymptotically correct. In our setting,
“substantial” misspecification can persist even when behavior converges.
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applies pathwise and does not require that either actions or empirical frequencies converge.

It is based on extensions of arguments made in Diaconis and Freedman (1990) for the case

of agents with full support beliefs.

Our results on positive attractiveness cover three different cases: subjectively exogenous

outcomes, subjective bandit problems, and strongly supermodular problems. In the first two

cases we are able to identify a particular empirical distribution that is sufficient for analyzing

convergence: With subjectively exogenous outcomes, the agent only tracks a single empirical

distribution. In subjective bandit problems, the agent does consider multiple empirical

distributions, but it is sufficient to study the distribution corresponding to the action in

question. In supermodular problems, we instead show that certain outcome realizations can

lead the agent to lock on to the highest or lowest action.

4.2.1 Subjectively Exogenous Problems

Theorem 1 gives a necessary condition for the convergence of beliefs and actions when the

agent believes that the distribution over outcomes is the same for all actions. Example 7 in

the Online Appendix shows that this condition is not sufficient to ensure positive probability

of convergence, even when there is a unique Berk-Nash equilibrium and this equilibrium is

uniformly strict.

The next theorem gives a sufficient condition for a Berk-Nash equilibrium to be positively

attractive.

Theorem 4. Suppose outcomes are subjectively exogenous. If a is a uniformly strict Berk-

Nash equilibrium such that p˚a is absolutely continuous with respect to p˚a1 for all a1 P A, then

it is positively attractive.

The theorem’s assumption implies that the uncontingent empirical outcome distribution

is a sufficient statistic for the agent’s beliefs. To prove the result, we first use Lemma 7

to show that beliefs concentrate around the distributions that minimize the KL divergence

from the empirical frequency on every path of outcome realizations. We then use this con-

centration to show there is a finite sequence of outcomes that has positive probability and

leads the agent to play a. Since a is a uniformly strict Berk-Nash equilibrium, if beliefs

concentrate around the minimizers, a becomes the unique best reply. While using a, the

relative probability the agent assigns to distributions in Θ̂paq increases in expectation, so we

can combine Dubins’ upcrossing inequality with the fact that a is the unique myopic best

reply to beliefs concentrated in Θ̂paq to show that, with positive probability, the agent will

stick to action a forever.
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Corollary 1. Suppose that outcomes are subjectively exogenous, and that the true outcome

distribution p˚ has full support. Then every uniformly strict Berk-Nash equilibrium is posi-

tively attractive.

Proposition 4 in EPY shows that for every uniformly strict Berk-Nash equilibrium a,

there exists at least one prior with support equal to Θ under which the policy converges

to a with positive probability. FII provides sufficient conditions for there to be probability

1 that the system converges to a specific Berk-Nash equilibrium from any initial belief.

Our Theorem 4 concludes that every uniformly strict Berk-Nash equilibrium has positive

probability of being the limit behavior starting from every initial prior without imposing

conditions that imply global convergence to a specific outcome.

Without the assumption of subjectively exogenous outcomes, uniformly strict Berk-Nash

equilibria need not be positively attractive, even if one maintains the full support assumption.

Example 3 (A uniform Berk-Nash equilibrium that is not positively attractive). A central

bank decides between two actions: keep a flexible exchange rate with the dollar a “ f or peg

the currency to the dollar a “ c. The outcome has two binary components, y “ pye, ysq,

where ye says whether the economy is in a boom, and ys whether there is a speculative attack

on the currency. The bank only cares about its action through the action’s effect on the

outcome; the bank likes booms and dislikes speculative attacks,

u pf, yq “ ye; u pc, yq “
3

2
ye ´ ys.

The bank correctly believes that, conditional on its action, whether there is a speculative

attack is independent of the state of the economy. Furthermore, the bank knows that if they

maintain a flexible exchange rate, the probability of a currency attack is 0, and believes that

the probability of a currency attack under a fixed exchange rate is either 20% (the true value)

or 90%. The bank correctly believes that pegging the currency to the dollar increases the

probability of a boom by 33.3̄% over a baseline probability, which the bank believes is either

33.3̄% or 66.6̄%. In truth the baseline is 50%, so the bank is misspecified.26

Here pegging the currency to the dollar is a uniformly strict Berk-Nash equilibrium, but it

is not positively attractive: For every discount factor β, if the prior assigns sufficiently high

probability to the states where a currency attack happens with probability 90% if the currency

is not pegged to the dollar, the bank starts out choosing a flexible exchange rate, and sticks

26That is, the bank believes that the probabilities of a boom with or without peg are either p100%, 66.6̄%q
or p66.6̄%, 33.3̄%q, respectively, while in truth they are p83.3̄%, 50%q.
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with that action forever. To see why, note that when the currency is floating the bank does

not update its beliefs about the likelihood of a currency attack under a pegged exchange rate.

4.2.2 Subjective Bandit Problems

Recall that in a subjective bandit problem (Definition 2), the agent believes that the out-

come distribution is independent across actions. An argument similar to that for subjectively

exogenous problems shows that uniformly strict Berk-Nash equilibrium are positively attrac-

tive in subjective bandit problems if the agent is sufficiently patient. However, uniformly

strict Berk-Nash equilibrium is very demanding concept in subjective bandit problems, as

the Kullback-Leibler divergence between the true and subjective outcome distributions in-

duced by an action does not constrain the “off-path” beliefs about the consequences of other

actions, and very optimistic off-path beliefs can make some other action a better reply.

However, in these problems we can replace the uniformity requirement with the require-

ment that the equilibrium is weakly identified introduced in Esponda and Pouzo (2016).

Definition 9. A Berk-Nash equilibrium a is weakly identified if for all p, p1 P Θ̂paq we have

pa “ p1a.

Weak identification guarantees that once behavior stabilizes on action a, there is no ad-

ditional updating about the relative likelihood of the KL minimizing outcome distributions.

When the agent thinks the outcome distribution is exogenous, weak identification is a rela-

tively strong condition, as it requires that the KL minimizer is unique. Weak identification

is significantly weaker in subjective bandits, as it only requires the existence of a unique

conceivable outcome distribution qa that best matches p˚a, without imposing any restrictions

on what the agent believes about the consequences of other actions.

Theorem 5. For every subjective bandit problem there is a β̄ ă 1 such that if the discount

factor β ě β̄, then every weakly identified strict Berk-Nash equilibrium is positively attractive.

The proof uses the fact that patient agents experiment with actions that they believe

might give them a higher payoff. The conclusion of the theorem is false for myopic agents

even in the correctly specified case, where the Berk-Nash equilibria correspond to the self-

confirming equilibria, and with probability 1 the agent may always play whichever action is

myopically optimal given their initial beliefs.
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4.2.3 Strongly Supermodular problems

Definition 10. We say that the decision problem is strongly supermodular if we can strictly

order the space of actions pA,ąq, outcomes pY,ąq, and the set of conceivable distributions

pΘ,ąq so that:

(i) u is strictly supermodular in a and y;

(ii) if p, p1 P Θ and p ą p1, then for all a P A and y P Y zȳ, we have pa pty
1 : y1 ą yuq ą

p1a pty
1 : y1 ą yuq, where ȳ denotes the highest action.

Theorem 6. In a strongly supermodular decision problem, if p˚a (resp. p˚ā) has full support,

and the highest action ā (resp. the the lowest action a) is a uniform and strict Berk-Nash

equilibrium, then ā (resp. a) is positively attractive.

Strong supermodularity implies that for the highest action ā there is a set of outcome,

the highest y’s, that after having been observed a finite number times will induce the agent

to use action ā. Moreover, the antisymmetric ordering of the elements of Θ guarantees

that every uniform and strict Berk-Nash equilibrium is uniformly strict, and so Theorem 2

guarantees that there is positive probability that the agent will stick to it forever.

5 Signals

Suppose each period before taking an action the agent observes a signal s from a compact

set S, which is equipped with its Borel sigma algebra. Thus the analog of an action in the

previous sections is now a strategy, i.e. a (measurable) map σ : S Ñ A from signals to actions.

Signals may be payoff relevant, so now utility is a map u : A ˆ Y ˆ S Ñ R, and signals

may also be useful for predicting the outcome distributions, so now pa,s P ∆pY q depends

both on this period’s action and on the signal observed at the start of the period. A policy

πpat, yt, st`1q specifies the action in each period t as a function of past actions outcomes and

signals, and is optimal if it maximizes the agent’s subjective discounted payoff.

To complete the model we also need to specify the objective distribution of signals. We

focus on the case where the distribution of s is fixed (iid) with distribution ζ, which is known

to the agent, as in Esponda and Pouzo (2016).27

27Uninformative signals that change payoffs correspond to the payoff perturbations studied in some past
work. We allow for a continuum of signals so these perturbations can generate continuous best-response
distributions.
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Subjective Beliefs The agent correctly believes that the map from actions and signals to

probability distributions over outcomes is fixed, but they are uncertain about the distribution

each signal and action pair induces. Let P “ ∆pY qAˆS be the space of all signal and action

dependent outcome distributions. The agent’s uncertainty is captured by a prior belief

µ0 P ∆
`

P
˘

, again with Θ “ suppµ0
. We need to generalize Assumption 1.

Assumption 11.

(i) For all p P Θ, a P A, and s P S, pa,spyq ą 0 if and only if p˚a,spyq ą 0.

(ii) The prior µ0 has subexponential decay : there is Φ : R` Ñ R such that for every p P Θ

and ε ą 0 we have µ0pBεppqq ě Φpεq with lim ΦpK{nq exppnq “ 8 for all K ą 0.

Let µtp¨ | ps
t, at, ytqq P ∆pP q denote the agent’s subjective belief obtained using Bayes

rule after observing the sequence of signals and outcomes pst, ytq when taking the actions at,

µtpC | ps
t, at, ytqq “

ş

pPC

śt
τ“1 paτ ,sτ pyτ qdµ0ppq

ş

pPP

śt
τ“1 paτ ,sτ pyτ qdµ0ppq

. (1)

When the agent thinks the signals are uninformative, their prior has support on distributions

of y given a that are independent of s. Here the only reason the signals might influence the

agent’s choices is that they may directly enter their payoff function, as in the explicit payoff

perturbations in Fudenberg and Kreps (1993).

We say that two outcome distributions p, p1 P Θ are observationally equivalent under the

strategy σ if pσpsq,spyq “ p1σpsq,spyq for all y P supp p˚σpsq,s, and we let Eσppq denote the outcome

distributions that are observationally equivalent to p under σ. To simplify the analysis, we

make the following assumption, which is satisfied for example if the signals are payoff shocks,

or if there is only a finite number of signals.

Definition 11. The environment is finite dimensional if there is a partition Ξ “ tξ1, ...ξNu

of S into a finite number of measurable sets such that the agent believes the same outcome

distribution applies for all s in ξi: for all p P Θ Y tp˚u, a P A, and s P S, pa,s “ pa,s1 if

ξpsq “ ξps1q.

Under this assumption, we abuse the notation by letting pa,ξi denote the outcome distri-

bution prescribed by p after action a and an arbitrary signal in ξi. With this, the relevant

set of “closest beliefs to the truth” is now

Θ̂pσq “ argmin
pPΘ

ÿ

ξiPΞ

ζpξiqH
`

p˚σpsq,ξi , pσpsq,ξi
˘

.
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We use this modified definition of the minimizers to extend the definition of Berk-Nash

equilibrium and uniformly strict Berk-Nash equilibrium to this more general setting. The

extension to the case of finitely many signals is almost immediate. We allow for a continuum

of payoff-relevant signals to be able to cover past work. This requires additional compactness

arguments that do not provide additional insight about learning, so the proofs for all of the

results of this section are in the Online Appendix.

Definition 12 (Berk-Nash Equilibrium).

(i) Strategy σ is a Berk-Nash equilibrium if there exists a belief ν P ∆pΘ̂pσqq such that σ

is myopically optimal given ν.

(ii) Strategy σ is a uniform Berk-Nash equilibrium if for all p P Θ̂pσq there exists a belief

ν P ∆ pEσppqq such that σ is myopically optimal given ν.

(iii) Strategy σ is a uniformly strict Berk-Nash equilibrium if σ is the unique myopic best

reply to any belief in ν P ∆pΘ̂pσqq.28

Theorem 11. Suppose the agent’s beliefs are finite dimensional. Then if the strategy pre-

scribed by the policy converges to σ with positive probability, then σ is a uniform Berk-Nash

equilibrium.

The proof of this result is very similar to the proof of Theorem 1. The main difference is

that to apply our extension of the Diaconis and Freedman result, the relevant random walk

is the empirical distribution over joint realizations of signals and outcomes.

Similarly, we can extend our result on the stability of uniformly strict Berk-Nash equi-

libria. Specifically:

Theorem 21. Suppose σ is a uniformly strict Berk-Nash equilibrium. Then there is a belief

ν P ∆ pΘq such that for every κ P p0, 1q there exists an ε1 ą 0 such that starting from any

prior belief in Bε1 pνq:

Pπ

«

lim
tÑ8

1

t` 1

t
ÿ

r“0

1πpar,yr,sr`1q“σpsr`1q ě 1´ κ

ff

ą 1´ κ .

Example 8 in the Online Appendix illustrates the long-run biases that can be induced

when the agent mistakenly thinks that signals are uninformative. There, a seller who receives

a signal about the market attendance in the current period and can decide whether to

undertake an investment that may boost sales, with the outcome y the fraction of market

28Here uniqueness is up to a set of signals that have zero probability under ζ.
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participants who buy. The seller does not realize that when more consumers show up, a

lower fraction of them buy, and we show that this can lead to persistent underinvestment

when market attendance is high.

The next result shows that all uniformly strict Berk-Nash equilibria are positively attrac-

tive when the true data generating process has full support.

Theorem 41. If signals are finite and subjectively uninformative and outcomes are subjec-

tively exogenous, then any uniformly strict Berk-Nash equilibrium σ is positively attractive.

The proof of this result is similar to that of Theorem 4, because when signals are subjec-

tively uninformative we can apply our extension of the Diaconis and Freedman (1990) result

to the uncontingent empirical distribution.

6 Concluding Remarks

6.1 Extensions

Learning in Large Population Games The biases we consider are relevant in non-

equilibrium models of learning about the prevailing distribution of strategies. Consider a

finite I player game, and suppose there is a continuum of agents in each player role i P I

who are matched every period to play the game, and observe the actions played in their

matches but nothing else. In a steady state,29 the problem faced by an agent in population

i is equivalent to the one we considered in the previous sections: the agent correctly believes

they are facing a stationary environment, and they realize that they do not affect the next

period’s distribution of opponents’ strategies. Causation neglect corresponds to the bias

of an agent who thinks they are playing a simultaneous-move game, when in reality their

opponents observe the agent’s choice before moving. Subjective bandit problems arise when

the agent has independent beliefs about the responses to different strategies. In games of

incomplete information, the agent may have signal neglect, and incorrectly believe that the

game has independent private values.

Our results help characterize the possible limit actions in these situations. Of course,

extensive-form games may not have strict equilibria, so some of our results will not apply,

but it may be possible to extend some of our conclusions to equilibria that are on-path

strict in the sense of Fudenberg and He (2020). Also, games need not have pure-strategy

29These models do have steady states when there is a steady outflow of agents balanced by an inflow of
new ones (see, e.g., Proposition 3 in Fudenberg and He (2018)).
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equilibria, but it may be possible to apply our methods to setting where each agent plays

deterministically, and different agents in the same player role chose different actions.30

Markov Decision Problems If the agent’s action influences the signal, then the true

model is a Markov decision problem. Even if the agent ignores this, the evolution of their

beliefs and actions becomes more complicated. And if the agent is aware of the Markov

structure, and tries to solve a Markov decision problem as in Esponda and Pouzo (2019)

then the problem is yet more complex. We hope to have more to say about this in future

work.

Infinitely Many Actions When the agent has a finite number of possible actions or stage-

game strategies, as we have assumed in this paper, an equivalent definition of uniformly strict

Berk-Nash equilibrium is an action a that is the unique best response to every belief in a

neighborhood of the KL-minimizers for a. With infinitely many actions and continuous payoff

functions, actions that are sufficiently near the strict best response incur arbitrarily small

losses and are best responses to nearby beliefs. Here the two definitions of uniformly strict

Berk-Nash equilibrium are not equivalent. Indeed, as shown by an example in Heidhues,

Koszegi, and Strack, 2018, some Berk-Nash equilibria that are uniformly strict Berk-Nash

in the sense of Definition 5 may not be positively attractive. However, we conjecture that

the positive attractiveness result continues to hold under the alternative definition.

6.2 Summary and Discussion

In many economically relevant settings it seems plausible that agents misunderstand some

aspects of the world. For this reason it is important to understand what beliefs these agents

will develop and how they will behave. This paper provides sharp characterizations of what

actions arise as the long-run outcomes of misspecified learning. We show that all uniformly

strict Berk-Nash equilibria are stable, and that under a mild condition only uniform Berk-

Nash equilibria can be stable. Moreover we show that play can only converge to uniform

Berk-Nash equilibria.31 Our work thus suggests uniformity should be imposed as a refinement

of Berk-Nash equilibrium. We then provide the first sufficient conditions for an action to

30Alternatively we could consider a model with one agent per player role and payoff perturbations, as in
Fudenberg and Kreps (1993) and Esponda and Pouzo (2016).

31Note that the uniformity issue that we address cannot arise in a correctly specified model, where the
agent always learns the outcome distribution induced by their equilibrium action. Note also that our results
do not imply that actions converge.
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be positively attractive under misspecified learning. Here we highlight the role played by

the correlation that the agent perceives between the outcome distributions associated with

different actions.

In future work we hope to extend our analysis to Markov decision problems, as in Esponda

and Pouzo (2019), and to misspecified learning in multiplayer games, as in Eyster and Rabin

(2005), Jehiel (2005), and Jehiel and Koessler (2008).

A Appendix

Section A.1 states some preliminary technical lemmas which are established in the Online

Appendix, and Section A.2 contains the results of the main text for the models that do not

have signals.

A.1 Preliminary Lemmas and Definitions

Denote the set of conceivable outcome distributions for action a that best match p˚a by

Θ̂apaq “ argmin
pa:pPΘ

H pp˚a, paq Ă ∆pY q.

Lemma 1. For every a P A and ε ą 0, Θ̂paq, Θ̂apaq, Θ̂εpaq, and ∆pΘ̂paqq are compact.

Proof. Compactness of Θ̂paq follows from the generalization of Weierstrass Theorem to

lower-semicontinuous functions (see, e.g., Theorem 2.43 in Aliprantis and Border, 2013).

Since the projection map is continuous, and Θ̂apaq is the projection of Θ̂paq, Θ̂apaq is compact

as well. Since Θ̂apaq is closed, it immediately follows that Θ̂εpaq is closed as well, henceforth

compact. Given the compactness and separability of Θ̂paq, ∆pΘ̂paqq is compact by, e.g.,

Theorem 6.4 in Parthasarathy (2005).

For every p P P and every policy π let Ep,πr¨s denote the expectation operator over action

and outcome sequences that is induced by policy π under outcome distribution p. We work

with the agent’s normalized value throughout, which is

V pπ, νq “

ş

P
Ep,π

“
ř8

t“1 rβ
t´1upat, ytqs

‰

dνppq

1´ β
.

The set of policy functions is

Π “ A
Ť8
t“0 A

tˆY t .
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Lemma 2. Π is compact in the product topology, and for all ν P ∆ pΘq, V p¨, νq is continuous

with respect to the product topology.

Lemma 2 is a consequence of the more general Lemma 9 which covers cases where each

period the agent observes a signal before choosing their action. This lemma is proved in the

Online Appendix.

Next we bound the difference between the value of using action a and the value of any

other action in terms of their expected utility given that beliefs are concentrated around the

outcome distributions Θ̂paq that minimize the Kullback-Leibler divergence from the correct

distribution p˚a induced by a.

Denote the set of beliefs over conceivable distributions that assign at least probability

1´ ε to Θ̂εpaq by

Mε,a “ tν P ∆pΘq : νpΘ̂ε
paqq ě 1´ εu.

Lemma 3. If a P A is a uniformly strict Berk-Nash equilibrium, for every optimal policy π,

there exists an ε̂ ą 0 such that for all ε ă ε̂

ν PMε,a ùñ π pνq “ a.

Proof. Let πa denote the policy that prescribes to always play a. Define Gpεq as the minimal

gain from playing a forever instead of using (one of) the best policy π̃ that does not play a

at a belief ν in Mε,a

Gpεq “ min
π̃:π̃pνq‰a

min
νPMε,a

pV pπa, νq´V pπ̃, νqq .

Notice that by Lemma 2, the space of the policy functions endowed with the product topology

is compact. Since the subset of policy functions that do not prescribe a at the initial history

is closed, this subset is compact as well. Moreover, given that β P r0, 1q, the value function

is continuous at infinity, and therefore V pπa, νq´V p¨, νq is a continuous function of the

policy. Notice also that since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπa, ¨q ´V pπ̃, ¨q

is continuous in ν. Therefore, given that εÑMε,a is an upper hemicontinuous and compact

valued correspondence, we can conclude by the Maximum Theorem that G is continuous in

ε. Since a is a uniformly strict Berk-Nash equilibrium, Gp0q ą 0, and there is an ε̂ such that

if ε ď ε̂, G pεq ą 0. This implies that for any optimal policy π it must be such that ν PMε,a

implies that πpνq “ a, which proves the lemma.

The next Lemma extends an argument of Fudenberg and Levine (1992) to take into

account misspecification. It establishes that if the expectation of the l-th power of the
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likelihood ratio between two subjective outcome distributions is greater 1 then the l-th

power of the likelihood ratio of the subjective probability assigned to small environments of

these outcome distributions is a sub-martingale.

Lemma 4. Let p, p1, p˚ P ∆ pY q, and l P p0, 1q be such that

ÿ

yPY

p˚pyq

ˆ

ppyq

p1pyq

˙l

ą 1. (2)

Then there is ε1 ą 0 such that for all ν P ∆ p∆ pY qq, if we let νpC | yq “
ş

qPC qpyqdνpqq
ş

qP∆pY q qpyqdνpqq
, then

ÿ

yPY

p˚pyq

«

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l
ff

ě

ˆ

νpBε1 ppqq

νpBε1 pp1qq

˙l

.

Proof. The lemma is trivially true if νpBε pp
1qq “ 0 for some ε. Therefore, without loss of

generality, we can assume that νpBε pp
1qq ą 0 for all ε. Let Cε “ ∆pBε ppqq ˆ∆pBε pp

1qq and

define G : R` Ñ R by

Gpεq “ min
pν̄,ν1qPCε

ÿ

yPY

p˚pyq

˜ ş

Bεppq
q̄pyqdν̄ pq̄q

ş

Bεpp1q
qpyqdν 1 pqq

¸l

.

By the Maximum Theorem, the compactness of ∆ pBε pp
1qq and ∆ pBε ppqq and the fact that

Gp0q ą 1 by equation (2), there is ε1 ą 0 such that for all ν 1 P ∆ pBε1 pp
1qq, ν̄ P ∆ pBε1 ppqq

ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
q̄pyqdν̄ pq̄q

ş

Bε1 pp
1q
qpyqdν 1 pqq

¸l

ě 1. (3)

Then

ÿ

yPY

p˚pyq

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l

“
ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
νpBε1 ppqqq̄pyqd

νpq̄q
νpBε1 ppqq

ş

Bε1 pp
1q
ν pBε1 pp1qq qpyqd

νpqq
νpBε1 pp

1qq

¸l

“
ÿ

yPY

p˚pyq

˜ ş

Bε1 ppq
q̄pyqd νpq̄q

νpBε1 ppqq
ş

Bε1 pp
1q
qpyqd νpqq

νpBε1 pp
1qq

¸l
ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

ě

ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l
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where the inequality follows from equation (3).

The next lemma extends Lemma 3 of FII to show that there exists a uniform l such that

all KL-minimizers dominate all the distributions that are ε away from the minimizers in the

sense that the expectation of the l-th power of the likelihood ratio exceeds 1.

Lemma 5. Fix an action a and ε ą 0. There exists an l ą 0 such that for all l ď l for every

KL minimizer q P Θ̂paq and every outcome distribution p1 that is at least ε away from any

KL minimizer, that is, such that p1 R Θ̂εpaq

fl pq, p
1
q :“

ÿ

yPY

p˚apyq

ˆ

qapyq

p1apyq

˙l

ą 1 .

Proof. As noted by FII in their Lemma 3, (i) for each KL minimizer q P Θ̂paq and every

outcome distribution p1 R Θ̂paq there exists an l pq, p1q such that flpq, p
1q ą 1 for all l ď l pq, p1q

and (ii) for all q, q1 P Θ, if l̂ ą l and flpq, q
1q ď 1, then fl̂pq, q

1q ď 1. We will now prove that

there exists a uniform l that works for every q P Θ̂paq and p1 R Θ̂εpaq.

Suppose by way of contradiction that there was no l ą 0 such that for all l ď l, flpq, p
1q ą 1

for all q P Θ̂paq and p1 R Θ̂εpaq. Then define a sequence pqn, p
1
nq such that f 1

n
pqn, p

1
nq ď 1.

Sequential compactness of Θ̂paq ˆ tp P ∆pΘq : pa R Θ̂εpaqqu guarantees that this sequence

has an accumulation point pq, p1q with q P Θ̂paq and p1 R Θ̂paq. However, for n ą 1
lpp̄,p1q

,

f 1
n
pqn, p

1
nq ď 1 implies flpq,p1qpqn, p

1
nq ď 1, and the lower semicontinuity of flpq,p1q at pq, p1q

leads to a contradiction with flpq,p1q pq, p
1q ą 1.

Lemma 4 and 5 will play a crucial role in establishing convergence of beliefs as we use

them to argue that the agent must assign higher and higher probability to an ε environment

of the KL minimizers.

Given two outcome distributions q, q1 P ∆pY q, α P p0, 1q, and ε ą 0, let

Uεpq, q
1, αq “ tq2 P ∆pY q : ||αq ` p1´ αqq1 ´ q2|| ď εu

denote the ball of radius ε around αq ` p1 ´ αqq1. The next result establishes that the

difference in KL divergence between two points at the frequency αq ` p1´ αqq1 differs from

the difference in KL divergence at all points in an ε ball around αq ` p1 ´ αqq1 by at most

Kε.

Lemma 6. Fix q P ∆ pY q with supp q Ď supp p˚a and a compact set C Ď ∆ pY q such that

there exists q̂ P C with supp p˚a Ď supp q̂. Then there exists a K ą 0 such that for every
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f 1 P Uεpq, p
˚
a, αq with supp f 1 Ď supp p˚a

|min
q1PC

H pp1´ αqp˚a ` αq, q
1
q ´H pp1´ αqp˚a ` αq, qq ´min

q1PC
H pf 1, q1q `H pf 1, qq | ď Kε .

The following lemma is about the concentration of beliefs. The lemma considers the

beliefs about outcome distributions, i.e. to elements of ∆pY q, as opposed to elements of
Ś

aPA ∆pY q Ă R|Y |ˆ|A|, so we will lighten notation by working in this smaller space.

Let χ P ∆p∆pY qq be a belief over probability distributions on Y , and let

Qε,χpq̄q “

"

q1 P ∆pY q : Dq2 P argmin
qPsuppχ

H pq̄, qq , ||q1 ´ q2||8 ă ε

*

be the distributions that are within ε of a distribution q
2

that minimizes the Kullback-

Leibler divergence with the given q̄.32 We will show that repeated use of action a implies

that the beliefs about the outcome distribution induced by a concentrate at an exponential

rate around Qε,suppµ0,a , the distributions that best fit the empirical frequency of outcomes

generated by a. Importantly, this result does not require that either actions or empirical

frequencies converge. It is based on arguments made in Diaconis and Freedman (1990), who

considered agents with full support beliefs. It will be important in what follows that these

results apply pathwise.

Lemma 7. Let χ0 P ∆p∆pY qq and suppose that for every t P N, C Ď ∆pY q, and sequence

of outcomes yt P Y t

χtpC | y
t
q “

ş

qPC

śt
τ“1 qpyτ qdχ0pqq

ş

qP∆pY q

śt
τ“1 qpyτ qdχ0pqq

.

Then for all ε ą 0

p1pyq “

řt
τ“1 1yτ“y
t

ùñ
χt pQε,χ0 pp

1q | ytq

1´ χt pQε,χ0 pp
1q | ytq

ě χ0

ˆ

Q gpp1,εq

2Rpp1,εq
,χ0
pp1q

˙

e.5tgpp
1,εq

where

g pp1, εq “ min
pRQε,χ0 pp

1q
H pp1, pq ´ min

pPsuppχ0

H pp1, pq ą 0

and

Rpp1, εq “ sup
q,q1PQε,χ0 pp

1q

|Hpp1, qq ´Hpp1, q1q|

||q ´ q1||
.

32Note that the argmin in this definition need not be continuous because suppχ need not be convex.
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A.2 Proof of Results Stated in the Text

Proof of Theorem 1. We prove the statement by contraposition. Suppose that a is not a

uniform Berk-Nash equilibrium and that the agent uses an optimal policy π. By definition,

there is p1 P Θ̂paq such that if supp ν Ď Eapp1q, then a R Ampνq. We set q “ p1a throughout

this proof.

Claim 1. There exists ε ą 0 such that if

ν ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq

1´ ν ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq
ą

1´ ε

ε
,

then π pνq ‰ a.

Proof. Define

G pνq “ max
π̃
V pπ̃, νq ´ max

π̃:π̃pνq“a
V pπ̃, νq .

From the definition of q, if supp ν Ď tp P Θ: @y P supp p˚a, papyq “ qpyqu, then G pνq ą 0. In-

deed, a R Ampνq, and its experimentation value is 0, because all the outcome distributions in

the support of ν have the same marginal with respect to action a. As shown in Lemma 2, the

space of policy functions endowed with the product topology is compact and V p¨, νq´V p¨, νq

is a continuous function of the policy. Since for every policy π̃, Ep,π̃
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is

continuous in p, V pπ̃, ¨q is continuous in ν, so from the Maximum Theorem G is continuous

in ε.

Suppose that in contradiction to the claim, for every n there exists a νn such that

νn ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă 1{nuq

1´ νn ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă 1{nuq
ě

1´ 1{n

1{n

and a P π pνnq. Because ∆ pΘq is sequentially compact, pνnqnPN has a converging subsequence

of pνniqiPN Ñ ν˚. Thus, ν˚ ptp P Θ: @y P supp p˚a, papyq “ qpyquq “ 1 and G pν˚q “ 0, which

would imply that a P π pν˚q, a contradiction. ˝

Now fix such an ε and for every α P p0, 1q, let fα “ p1´ αqp
˚
a ` αq. Linearity of H in its

first argument implies that for every α P p0, 1q, argminpa:pPΘHpfα, paq “ tqu . Moreover, let
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g be defined as in the proof of Lemma 7. We have

g pp1´ αqp˚a ` αq, εq

ě inf
q1P∆pY qzBεpqq

ÿ

yPY

rp1´ αqp˚a pyq ` αq pyqs log q1 pyq ´
ÿ

yPY

rp1´ αqp˚a pyq ` αq pyqs log q pyq

ě p1´ αq inf
q1P∆pY qzBεpqq

ÿ

yPY

p˚a pyq rlog q1 pyq ´ log q pyqs

` α inf
q1P∆pY qzBεpqq

ÿ

yPY

q pyq rlog q1 pyq ´ log q pyqs

ě 0` α inf
q1P∆pY qzBεpqq

ÿ

yPY

q pyq rlog q1 pyq ´ log q pyqs ě 2αε2,

where the first inequality follows from the definition of g and the fact that the RHS minimizes

over a larger set, the second inequality follows from concavity of the minimum, the third

from the fact that q is a KL minimizer, and the fourth from Corollary 3.5 and Proposition

4.7 in Diaconis and Freedman (1990).

For every t P N, let αt “ 2t´
1
2 . If the empirical frequency is fαt after t periods, and only

action a has been used, then from there exists an I P R`

µt ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq

1´ µt ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq

ě µ0

ˆ

tp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă ε2 2

It
1
2

u

˙

exp
`

tαtε
2
˘

ě Φ

ˆ

ε2 2

It
1
2

˙

exp
´

2t
1
2 ε2

¯

,

where the first inequality follows from Lemma 7 and the second from Assumption 1(ii).

By Lemma 6 there exists a K̂,K 1 ą 0 such that if the empirical frequency is ft after t

periods and ||fαt ´ ft|| ă ||q ´ p
˚
a||t

´ 1
2 {K 1 then

µt ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq

1´ µt ptp P Θ: @y P supp p˚a, |papyq ´ qpyq| ă εuq
ě Φ

ˆ

K̂ε2 2

It
1
2

˙

exp
´

2K̂t
1
2 ε2

¯

.

Fix an outcome y0 P supp p˚a, and let f̃t be the empirical frequency of the other | supp p˚a| ´ 1

outcomes in the support of p˚a. Denote by p̃˚a the true probabilities of the same | supp p˚a| ´ 1

outcomes.

Claim 2. f̃t ¨ t´ p̃
˚
at is a | supp p˚a| ´ 1 dimensional random walk under the distribution p̃˚a,

and the covariance matrix of its increments is nonsingular.
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Proof. Let y P supp p˚azty
0u. The increment of the y dimension at time t` 1 is equal to

f̃t`1pyq ¨ pt` 1q ´ p˚apyq ¨ pt` 1q ´ f̃tpyq ¨ t´ p
˚
apyq ¨ t “ 1yt`1“y ´ p

˚
apyq

and has expected value 0. Therefore, f̃t ¨ t´ p̃
˚
at is a | supp p˚a| ´ 1 dimensional random walk.

The covariance matrix for the increments is given by Σy,y1 “ ´2p̃˚apyqp̃
˚
apy

1q if y ‰ y1 and

2p̃˚apyqp1´ p̃
˚
apyqq if y “ y1.33 If we let D be the identity matrix in part M35 of Theorem 2.3

of Berman and Plemmons (1994), for every y1 P Y , we have that

2p̃˚apy
1
qp1´ p̃˚apy

1
qq “ 2p̃˚apy

1
q
ÿ

y‰y1

p̃˚apyq ą 2p̃˚apy
1
q

ÿ

y‰y1,y0

p̃˚apyq

so the matrix is diagonal dominant and therefore not singular. ˝

By the Central Limit Theorem pf̃t ´ p̃
˚
aq
?
t converges to a Normal random variable with

mean 0 and covariance matrix Σy,y1 . Let Ft “ B ||q´p˚a ||{K
1

?
t

´

p̃˚a `
1?
t
pq ´ p˚aq

¯

. We have that

P
”

f̃t P Ft

ı

“ P
”?

tpf̃t ´ p̃
˚
aq P B||q´p˚a ||{K1 pq ´ p

˚
aq

ı

Taking the limit tÑ 8 yields that

lim
tÑ8

P
”

f̃t P Ft

ı

“ P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı

where Z̃ is a random variable that is Normally distributed with mean ~0 and covariance matrix

Σy,y1 . Consequently, if we denote as Et the event that ft P Ft, it follows that
ř8

t“1 P rEts “ 8.
Moreover,

lim inf
tÑ8

řt
s“1

řt
r“1 P rEs and Ets

`
řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rEs and Ers

`

1
t

ř8

t“1 P rEts
˘2

ď lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2

“
1

limtÑ8 P rEts
“

1

P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı .

It thus follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

33This is verified in Claim 3 of the Online Appendix.
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2.3.20 in Durrett (2008)) that

P

«

8
č

t“1

8
ď

s“t

Es

ff

ě P
”

Z̃ P B||q´p˚a ||{K1 pq ´ p
˚
aq

ı

ą 0 .

The event
Ş8

t“1

Ť8

s“tEs is invariant under finite permutations of the increments
´

1yt“y1 , ...,1
yt“y| supp p˚a |´1 ´ p

˚
a

¯

with different time indices, so the Hewitt–Savage zero–one

law (see, e.g., Theorem 8.4.6 in Dudley, 2018) implies that the probability of the event
Ş8

t“1

Ť8

s“tEs must equal zero or one. As the probability is strictly positive it must equal

one.

This implies that ft P Ft infinitely often with probability 1. It follows that the agent will

eventually take an action different from a, so the action cannot converge to a with positive

probability.

Proof of Theorem 2. (i) ñ (ii) Consider a uniformly strict Berk-Nash equilibrium a, an

optimal policy π and κ P p0, 1q. By Lemma 3, there exists an ε such that if νpΘ̂εpaqq ě 1´ε,

then π pνq “ a.

Recall that for every l P p0, 1q, the function fl : P ˆ P Ñ R̄ is defined by

flpp̄, p
1
q “

ÿ

yPY

p˚apyq

ˆ

p̄apyq

p1apyq

˙l

.

By Lemma 5, and since Θ̂εpaq is compact by Lemma 1, and since fl is lower semicontinu-

ous in its first argument, there exists ε1 P p0, εq such that p̄ P Θ̂ε1paq implies that flpp̄, p
1q ą 1

for all p1 with p1 R Θ̂εpaq. Let K “
`

ε
1´ε

˘l
. Then

¨

˝

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂ε1paq
¯

˛

‚

l

ă K ùñ

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂εpaq
¯ ă

ε

1´ ε

ùñ ν
´

Θ̂ε
paq

¯

ą 1´ ε ùñ π pνq “ a.
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Let ε̄ be such that ν
´

Θ̂ε̄paq
¯

ą 1´ ε̄ implies that

¨

˝

1´ ν
´

Θ̂εpaq
¯

ν
´

Θ̂εpaq
¯

˛

‚

l

ă
K p1´ κq

n
.

Then if the agent starts with a belief ν0 with ν0pΘ̂
εpaqq ą ε̄, A pνq “ tau. Moreover, by

Lemma 4, Dubins’ upcrossing inequality, the compactness of Θ̂εpaq guaranteed by Lemma

1, and the union bound, there is a probability p1´ κq that the positive supermartingale

¨

˝

1´ ν 1t

´

Θ̂εpaq
¯

ν 1t

´

Θ̂εpaq
¯

˛

‚

l

never rises above K, so the action played is always a, and ε̄ satisfies the requirement of the

statement.

piiq ñ piq If a is not a uniformly strict Berk-Nash equilibrium, there exists p P Θ̂paq

and b ‰ a such that tbu P Am pδpq. But then if we let ν “ δp we have that ν
´

Θ̂paq
¯

“ 1.

Moreover, there exists a policy π that prescribes b at belief ν, so that the agent will never

update their belief and will play b forever.

Proof of Theorem 3. piq ñ piiq Immediately follows by Theorem 2.

piiq ñ piq We prove the statement by contraposition. Suppose that a is not a uniformly

strict Berk-Nash equilibrium, and let ν P ∆ pΘq, ε ą 0. We construct an initial belief νε that

is ε close to ν but such that the actions do not converge to a.

Since a is not a uniformly strict Berk-Nash equilibrium, there exists p̂ P Θ̂paq with

tau ‰ Am pδp̂q. Let pCε,iq
n
i“1 be a finite collection of open balls of radius ε in ∆

´

∆ pY qA
¯

that covers Θ̂paq and such that for each Cε,iXΘ̂paq ‰ H. For every Cε,i, choose qε,i P Cε,izΘ̂paq

whose existence follows from the assumption of the theorem.

Define Φε : Θ Ñ 2Θ as

Φε ppq “
!

tqε,i : p P Cε,iu if p P Cε,i for some i

tpu otherwise.

Therefore, the correspondence Φε is Borel measurable and nonempty and closed valued, so it

has a measurable selection φε by the Kuratowski Selection Theorem (see, e.g., Theorem 18.13

in Aliprantis and Border, 2013). Define ν̄ε pCq “ ν pφ´1
ε pCqq, and let p1 P ΘXBεpp̂q be such
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that Hpp1a, p
˚
aq ă minpPsupp ν̄ε Hppa, p

˚
aq and a R Ampδp1q, whose existence is guaranteed by the

richness of the environment. Set νε “ εδp1`p1´ εq ν̄ε. Then νε Ñ ν, but argmin
p1Psupp νε

H pp˚a, p
1
aq “

tp̂u, so by Theorem 1, the probability of converging to a starting from belief νε is 0.

Proof of Theorem 4. Since the agent believes that the action does not change the

distribution over outcomes, every p P Θ can be identified with an element of ∆pY q, and

every belief ν P ∆pΘq can be identified with an element of ∆p∆pY qq.

Consider a uniformly strict Berk-Nash equilibrium a. By Lemma 1, ∆pΘ̂paqq is compact.

To ease notation, in this proof for every ε̄ ą 0 and q P ∆pY q we let Qε̄pqq “ Qε̄,µ0,a pqq. Let

Qε pp
˚
aq denote the closure of Qε pp

˚
aq. By Theorem 2, there exists ε1 ą 0 such that if ε1 ą ε

and ν
`

Qε pp
˚
aq
˘

ą 1 ´ ε implies Am pνq “ tau the probability of playing a forever starting

from belief ν is larger than 1{2.

By the Maximum Theorem, the correspondence Qε is upper-hemicontinuous. Therefore,

we can pick a sequence of outcome realizations yt with corresponding empirical frequency

p̂tpyq “
1
t

řt
i“1 1yi“y sufficiently close to p˚a to have

q̂ P Qε1{2 pp̂tq , q P Qε1{2 pp
˚
aq ùñ ||q̂ ´ q|| ă ε{2.

By the triangle inequality, this implies Qε1{2 pp̂tq Ď Qε1 pp
˚
aq . Thus by Lemma 7 there is a

time T such that for all t1 ą T , if the empirical frequency is p̂t1 “ p̂t, the agent assigns a

relative probability higher than K to an ε1 ball around p˚a

µt1pQε1 pp
˚
aqq

1´ µt1pQε1 pp˚aqq
ě

µt1pQε1{2 pp̂tqq

1´ µt1pQε1 pp˚aqq
ą
K

2
.

Notice that replicating the outcome realizations yt sufficiently many times yields a sequence

of outcomes yt
1

such that the empirical frequency is p̂t1 “ p̂t and t1 ą T . Since p˚a is

absolutely continuous with respect to p˚a1 for all a1 P A, the previous sequence of outcomes

has positive probability, and after this outcome sequence the agent plays a. By Lemma 4 and

the law of iterated expectations, conditional on a being played
´

1´µt1 pQεpp
˚
a qq

µt1 pQε1{2pp̂tqq

¯l

is a positive

supermartingale.

Then, by Dubins’ upcrossing inequality, there is a positive probability that this positive

supermartingale never rises above 1{K l, and therefore a is played forever.

Proof of Theorem 5. Let b be a weakly identified strict Berk-Nash equilibrium. Then

there is ν P ∆pΘ̂pbqq with b “ Ampνq. Since b is strict Berk-Nash equilibrium for the
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independent prior µ0, it is without loss of generality to take ν “ δp where for all a P Aztbu,

pa “ argminp1a:p1PΘ Ep1a rupa, yqs and pb “ argmaxp1b:p1PΘ Ep1b rupb, yqs.
Let ty pbqiu

8

i“1 be a sequence of outcomes such that the empirical frequency 1
n

řn
i“1 1yi“y

is converging to pb. By Lemma 7, for every ε ą 0, there exists Kε such that for all t ą Kε,

µ0,b

`

Bεppbq | y pbq
t
˘

ą 1´ ε.

Let β̄ P p0, 1q and pεaqa P RA
` be such that if β ą β̄ and the belief ν̄ is such that ν̄b P

tµ0,bu
Ť

 

µ0,b

`

¨ | y pbqt
˘(Kεb

t“1

Ť

tν 1b : ν 1b pBεppbqq ą 1´ εu, and for all a1 ‰ b, νa1
`

Bεa1
ppa1q

˘

ą

1 ´ εa1 then the highest Gittins index is the one of action b. Their existence is guaranteed

by tau “ Am pνq and the definition of Gittins index. For each β ą β̄, let εβ ă ε be such

that if ν̄b
`

Bεβpppbqq
˘

ą p1´ εβq then the probability of converging to play action a is larger

than 1
2

under any optimal policy given the discount factor β, whose existence is guaranteed

by Lemma 12 and the fact that b is weakly identified.

For every a ‰ b, let n̄a ě na and ty paqiu
na
i“1 be a sequence of outcomes such that the

empirical frequency p̂na paq converges to pa. By Lemma 7, for every a ‰ b there exists a finite

number na such that after na observations νa pBεappaq | p̂naq ą 1´ εa. Finally, let nb “ Kεβ .

Then the array
`

ty paqiu
na
i“1

˘

aPA
has positive probability, the agent starts to play a after at

most
ř

aPA na periods, and with probability 1
2

continues to play a forever.

Proof of Theorem 6. We prove the statement for ā, the proof for a is analogous. Denote

the optimal policy used by the agent as π. Since the environment is strongly supermodular,

every class of observationally equivalent outcome distributions under action ā is a singleton,

and therefore ā is a uniformly strict Berk-Nash equilibrium. So, by Theorem 2 and the

strong supermodularity of the environment, there exists p̄ P Θ and K P p0, 1q such that if

ν ptp : p ą p̄uq ą K, then the probability that a is used forever is larger than 1
2
. Denote

the highest outcome as ȳ. Since the environment is strongly supermodular, for every action

b P A,

µt`1 ptp : p ą p̄u | pat, ytq , pb, ȳqq

1´ µt`1 ptp : p ą p̄u | pat, ytq , pb, ȳqq
ą

µt ptp : p ą p̄u | pat, ytqq

1´ µt ptp : p ą p̄u | pat, ytqq
.

Therefore, there exists a finite number n pbq such that if at “ b and yt “ ȳ for all t ď n pbq,

then

µt
`

tp : p ą p̄u |
`

at, yt
˘˘

ě K.

Consider the event E that for all b P A and t ď n pbq, xt,b “ ȳ. This event has strictly

positive probability Pπ rEs, and after some T̂ ď
ř

b‰ā pn pbq ´ 1q ` 1, the policy of the agent
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prescribes action ā. After T̂ ` n pāq,

@τ ď T̂ ` n pāq , @y P Y P rxτ,ā “ y|Es “ P rxτ,ā “ ys .

Therefore, by Theorem 2 the probability of converging to ā is at least PπrEs
2

.
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Benäım, Michel and Morris W Hirsch (1999). “Mixed Equilibria and Dynamical Systems

Arising from Fictitious Play in Perturbed Games”. Games and Economic Behavior 29,

pp. 36–72.

Berk, Robert H (1966). “Limiting Behavior of Posterior Distributions when the Model is

Incorrect”. The Annals of Mathematical Statistics 37, pp. 51–58.

Berman, Abraham and Robert J Plemmons (1994). Nonnegative Matrices in the Mathemat-

ical Sciences. SIAM.

Bohren, J Aislinn (2016). “Informational Herding with Model Misspecification”. Journal of

Economic Theory 163, pp. 222–247.

Bohren, J Aislinn and Daniel Hauser (2018). “Bounded Rationality and Learning: A Frame-

work and a Robustness Result”.

Bray, Margaret (1982). “Learning, estimation, and the stability of rational expectations”.

Journal of economic theory 26, pp. 318–339.

Bray, Margaret M and Nathan E Savin (1986). “Rational expectations equilibria, learning,

and model specification”. Econometrica: Journal of the Econometric Society, pp. 1129–

1160.

Cho, In-Koo and Kenneth Kasa (2015). “Learning and model validation”. The Review of

Economic Studies 82, pp. 45–82.

37

https://www.dropbox.com/s/rzt0wezxa2y1636/benaim_hirsch_1999.pdf?dl=0
https://www.dropbox.com/s/rzt0wezxa2y1636/benaim_hirsch_1999.pdf?dl=0


Cho, In-Koo and Kenneth Kasa (2017). “Gresham’s Law of Model Averaging”. American

Economic Review 107, pp. 3589–3616.

Dekel, Eddie et al. (2007). “Representing Preferences with a Unique Subjective State Space:

A Corrigendum 1”. Econometrica 75, pp. 591–600.

Diaconis, Persi and David Freedman (1990). “On the Uniform Consistency of Bayes Esti-

mates for Multinomial Probabilities”. The Annals of Statistics 18, pp. 1317–1327.

Dudley, Richard M (2018). Real Analysis and Probability. Chapman and Hall/CRC.

Durrett, Richard (2008). Probability Models for DNA Sequence Evolution. Springer Science

& Business Media.

Eliaz, Kfir and Ran Spiegler (2018). “A Model of Competing Narratives”. arXiv preprint

arXiv:1811.04232.

Ellsberg, Daniel (1961). “Risk, ambiguity, and the Savage axioms”. The quarterly journal of

economics, pp. 643–669.

Esponda, Ignacio and Demian Pouzo (2016). “Berk–Nash equilibrium: A Framework for

Modeling Agents with Misspecified Models”. Econometrica 84, pp. 1093–1130.

— (2019). “Equilibrium in Misspecified Markov Decision Processes”. arXiv preprint arXiv:1502.06901.

Esponda, Ignacio, Demian Pouzo, and Yuichi Yamamoto (2019). “Asymptotic Behavior of

Bayesian Learners with Misspecified Models”. arXiv: 1904.08551.

Eyster, Erik and Matthew Rabin (2005). “Cursed Equilibrium”. Econometrica 73, pp. 1623–

1672.

Frick, Mira, Ryota Iijima, and Yuhta Ishii (2019). “Misinterpreting Others and the Fragility

of Social Learning”.

— (2020). “Stability and Robustness in Misspecified Learning Models”.

Fudenberg, Drew and Kevin He (2017). “Player-compatible Equilibrium”. arXiv preprint

arXiv:1712.08954.

— (2018). “Learning and type compatibility in signaling games”. Econometrica 86, pp. 1215–

1255.

— (2020). “Payoff information and learning in signaling games”. Games and Economic Be-

havior 120, pp. 96–120.

Fudenberg, Drew, Kevin He, and Lorens A Imhof (2017). “Bayesian posteriors for arbitrarily

rare events”. Proceedings of the National Academy of Sciences 114, pp. 4925–4929.

Fudenberg, Drew and David M Kreps (1993). “Learning Mixed Equilibria”. Games and

Economic Behavior 5, pp. 320–367.

38

https://arxiv.org/abs/1904.08551


Fudenberg, Drew and David K Levine (1992). “Maintaining a Reputation When Strategies

are Imperfectly Observed”. Review of Economic Studies 59, pp. 561–581.

Fudenberg, Drew, Gleb Romanyuk, and Philipp Strack (2017). “Active Learning with a

Misspecified Prior”. Theoretical Economics 12, pp. 1155–1189.

Gibbons, Robert, Marco LiCalzi, and Massimo Warglien (2019). What situation is this?

Coarse cognition and behavior over a space of games. Tech. rep. Department of Manage-
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B Online Appendix

B.1 Proofs of the preliminary Lemmas

Proof of Lemma 6. First, notice that by the Maximum Theorem, the set

Ĉ :“
ď

εPr0,1s

ď

αPr0,1s

ď

fPUεpq,p
˚
a ,αq

argmin
q1PC

H pf, q1q

is compact, so there is a K1 such that ´minyPsupp p˚a minq1PĈ q
1 pyq ă K1.

Then we have that for every α P r0, 1s, ε ą 0, and f P Uεpq, p
˚
a, αq:

|min
q1PC

H pp1´ αqp˚a ` αq, q
1
q ´H pp1´ αqp˚a ` αq, qq ´min

q1PC
H pf 1, q1q `H pf 1, qq |

ď |min
q1PC

H pp1´ αqp˚a ` αq, q
1
q ´min

q1PC
H pf 1, q1q | ` |2ε min

yPsupp p˚a
log q pyq |

ď |2K1ε| ` |2ε min
yPsupp p˚a

log q pyq |,

and if we define K “ 2pK1 ´minyPsupp p˚a log q pyqq ą 0, it satisfies the requirement of the

statement.

Proof of Lemma 7. Let p1pyq “
řt
τ“1 1yτ“y

t
and fix ε ą 0. To ease notation, in this proof

for every ε̄ ą 0, we let Qpε̄q “ Qε̄,χ0 pp
1q. By definition of Rpp1, εq,

min
pRQpεq

H pp1, pq ´ max
pPQ

´

gpp1,εq

2Rpp1,εq

¯

H pp1, pq ě .5g pp1, εq .

From the definition of χt we have that for all yt such that the corresponding empirical

distribution is p1,

χt pQpεq | y
tq

1´ χt pQpεq | ytq
“

ş

Qpεq

ř

yPY qpyq
tp1pyq p1´ qpyqqtp1´p

1pyqq dχ0pqq
ş

suppχ0zQpεq

ř

yPY qpyq
tp1pyq p1´ qpyqqtp1´p

1pyqq dχ0pqq

ě

ş

Q
´

gpp1,εq

2Rpp1,εq

¯ expp´tH pp1, qqqdχ0pqq

expp´tminpRQpεqH pp1, pqq

“

ż

Q
´

gpp1,εq

2Rpp1,εq

¯

exppt min
pRQpεq

H pp1, pq ´ tH pp1, qqqdχ0pqq

ě χ0

ˆ

Q

ˆ

gpp1, εq

2Rpp1, εq

˙˙

e.5tgpp
1,εq,
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where the first inequality follows from gpp1,εq
2Rpp1,εq

ď ε.

Claim 3. Let p̃˚at and f̃t be defined as in the proof of Theorem 1. Then the covariance

matrix for the increments of f̃t ¨ t ´ p̃˚at is given by Σy,y1 “ ´2p̃˚apyqp̃
˚
apy

1q if y ‰ y1 and

2p̃˚apyqp1´ p̃
˚
apyqq if y “ y1.

Proof. To see this, the covariance between 1y and 1y1 is given by:

p̃˚a pyq p1´ E p1yqq p0´ E p1y1qq ` p̃
˚
a py

1
q p0´ E p1yqqp1´ E p1y1qq

` p1´ p̃˚a py
1
q ´ p̃˚a pyqq p0´ E p1yqqp0´ Ep̃˚a p1y1qq

“ p̃˚a pyq p1´ p̃
˚
a pyqq p´p̃

˚
a py

1
qq ` p̃˚a py

1
q p´p̃˚a pyqq p1´ p̃

˚
a py

1
qq

` p1´ p̃˚a py
1
q ´ p̃˚a pyqq p´p̃

˚
a py

1
qq p´p̃˚a pyqq

“ ´p̃˚a pyq p̃
˚
a py

1
q rp1´ p̃˚a pyqq ` p1´ p̃

˚
a py

1
qqs ` p̃˚a py

1
q p̃˚a pyq p1´ p̃

˚
a py

1
q ´ p̃˚a pyqq

“ ´p̃˚a pyq p̃
˚
a py

1
q r2´ p̃˚a pyq ´ p̃

˚
a py

1
qq ` 1` p̃˚a py

1
q ` p̃˚a pyqs “ ´2p̃˚a pyq p̃

˚
a py

1
q .

Computations for Example 1

The monopolist’s payoff function if the valuations are uniformly distributed on r0, 8s is

Erupa, yq|y „ Upr0, 8sqs “ 8´a
8
a, so the unique optimal price from the set t3, 4, 5, 6, 7u equals

a “ 4. If valuations are uniformly distributed on r2, 10s, the payoff function is Erupa, yq|y „
Upr2, 10sqs “ 10´a

8
a, so the unique optimal price is a “ 5.

Let pL “ p8´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

low and pH “ p10´a
8
qaPt3,4,5,6,7u be the vector of conditional probabilities when the demand is

high. It is easy to check that the KL minimizers are given by

Θ̂p3q “ tpHu Θ̂p4q “ tpHu Θ̂p5q “ tpL, pHu Θ̂p6q “ tpLu Θ̂p7q “ tpLu .

Thus, a “ 5 is the only pure Berk-Nash equilibrium. Note that a “ 5 is not a uniform

Berk-Nash equilibrium, because at the low belief the optimal action is 4.

Example 4

Example 4. This example shows that Theorem 1 (ii) does not hold without Assumption

1(ii). Let the action space be ta, bu, the outcome space be Y “ t0, 1u, and suppose the agent
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correctly believes that the action has no impact on the outcome distribution, and that p˚ “ 1
2
.

Assume that the agent assigns positive probabilities to the following countable set:

"

3

4

*

Y

"

1

4
´

1

n2
: n ě 3

*

,

where distributions are indexed by the probability that they assign to outcome 1. Note that 1
4

is in Θ even though it doesn’t exactly correspond to any of the agent’s conceivable outcome

distributions. Let ppnq “ 1
4
´ 1

n2 .

Finally, suppose that the agent’s utility function is given by upa, 0q “ 0 “ upb, 1q, upa, 1q “

1, upb, 0q “ 4{5. Then b is not preferred to a for any beliefs with ν pt3{4uq ą 1{2 and it is

strictly preferred to a if ν pt3{4uq ă 1{3. Then a is a Berk-Nash equilibrium but not a uniform

Berk-Nash equilibrium, yet play can converge to it with positive probability from a prior µ0

we specify below.

In the claim below we show that for every n P N there exists a ln ą 0 such that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

.

Then by Dubins’ upcrossing inequality34, for all K1, and K2 there exists Cn ď
1
n2

2
ř8
n“3

1
n2

such that if µ0 pppnqq ď Cn and µ0

`

3
4

˘

ą 1
2
, the probability that lim supt

µtpppnqq

µtp 3
4q

ą 1
n2K1 is

smaller then 1
n2K2. Let µ0 pppnqq “ Cn and µ0

`

3
4

˘

“ 1 ´
ř8

n“3Cn ą
1
2
, K2 ă

1
ř8
n“3

1
n2

and

K1 ă
1

2
ř8
n“3

1
n2

. By the union bound with probability

1´K2

8
ÿ

n“3

1

n2
ą 0

we have that

lim sup
t

ř8

n“3 µt pppnqq

µt
`

3
4

˘ ď

8
ÿ

n“3

lim sup
t

µt pppnqq

µt
`

3
4

˘ ď K1

8
ÿ

n“3

1

n2
ă

1

2
.

Claim 4. Notice that the outcome distribution most favorable to action b and least favorable

34See, e.g., page 27 of Neveu, 1975
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to action a is pp3q “ 1{4´ 1{9 “ 5{36. Therefore, if νt pt3{4uq ą 1{2,

ż

∆pY q

Ep rupa, yqs dνppq ě
8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ě
5

36
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ą 4{9

and

ż

∆pY q

Ep rupb, yqs dνppq ď

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ď
31

36
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq ă 4{9.

If νt pt3{4uq ă 1{3,

ż

∆pY q

Ep rupa, yqs dνppq ď

8
ÿ

n“3

ppnqupa, 1qνptppnquq `
3

4
upa, 1qνpt3{4uq

ď
1

4
upa, 1qp1´ νpt3{4uqq `

3

4
upa, 1qνpt3{4uq ă

5

12

and

ż

∆pY q

Ep rupb, yqs dνppq ě

8
ÿ

n“3

p1´ ppnqqupb, 0qνptppnquq `
1

4
upb, 0qνpt3{4uq

ě
3

4
upb, 0qp1´ νpt3{4uqq `

1

4
upb, 0qνpt3{4uq “

7

15
.

Finally, notice that

1 ď p˚ p1q

ˆ 3
4

ppnq p1q

˙ln

` p˚ p0q

ˆ 1
4

ppnq p0q

˙ln

“
1

2

ˆ 3
4

1
4
´ 1

n2

˙ln

`
1

2

ˆ 1
4

3
4
` 1

n2

˙ln

where

ln “
log

´

1´ 1
4
n2`3

¯

log
´

1
1´ 4

n2

¯

` log 3
ą 0.
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B.2 The role of Assumption 1(i)

All results in the paper except the non-myopic part of Theorem 1 continue to hold under a

weaker version of Assumption 1(i):

Assumption 1(i1q For all p P Θ and ε ą 0, there exists p1 P Θ with ||p1 ´ p|| ă ε such that

for all a P A, if p˚apyq ą 0 then p1apyq ą 0.

Assumption 1(i1) implies that the support of the belief does not change after a finite number

of observations. This is the only consequence of Assumption 1(i) that is used in any of the

proofs, except for establishing Claim 1 in the proof of Theorem 1 when the agent is not

myopic.35

The next example shows that without Assumption 1(i1), limit points need not be Berk-

Nash equilibria.

Example 5 (Role of Assumption 1(i1)). Suppose there are two actions a and b, and two

outcomes Y “ t0, 1u, and let upa, 0q “ upb, 1q “ 1 ´ upa, 1q “ 1 ´ upb, 0q. Identify the

elements of ∆pY q with the probability they assign to outcome 1, and let p˚a “
2
3

and p˚b “ 1.

Suppose that the agent believes that the outcome distribution does not depend on the action,

and that Θ “ t1
3
, 1u. Here b is the unique Berk-Nash equilibrium, and it is uniformly strict.

However, if the prior assigns sufficiently high probability to 1{3, the agent will start playing

a, and with positive probability they will observe outcome 0 in the first period. But after this

observation, the posterior assigns probability 1 to p “ 1{3 and the action converges to a.

When we weaken Assumption 1(i) to (i1) and allow the supports the various outcome

distributions to differ, we need to generalize the definition of observational equivalence as

follows:

Definition 13. Two outcome distributions p and p1 are observationally equivalent under

action a if papyq “ p1apyq for all y P supp p˚a.

Thus we now say that two beliefs are observationally equivalent under a if they assign

the same probability to each outcome that realizes with positive probability. This definition

is equivalent to the one in the main text under Assumption 1(i).

The reason Theorem 1 only holds for myopic agents when we weaken (i) to (i1) is that

Claim 1 can fail. The intuition is that even if the agent plays a many times, they may still

think that playing a again will give them a non-trivial amount of information, as in the next

example.

35When the agent is myopic Claim 1 continues to hold under Assumption 1(i1.
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Example 6. Let A “ ta, b, cu, Y “ t0, ȳ, y1u, and Θ “ tp̄, p1u. Suppose that p̄c pȳq “

1´ p̄c p0q “ 0.9 “ 1´ p1c p0q “ p1c py
1q and that u pc, yq “ ´0.1 for all y P Y . Thus, the agent

thinks that by playing c they pay a small cost, and with a very high probability they discover

the correct model for sure, and otherwise receive an uninformative signal.

For action b suppose that p̄b p0q “ 1 “ p1b p0q and u pb, yq “ 0 for all y P Y . That is, the

agent thinks that action b is uninformative but safe.

Finally the agent thinks that action a produces the same information of action c but its

payoffs are riskier: p̄a pȳq “ 1 ´ p̄a p0q “ 0.9 “ 1 ´ p1a p0q “ p1a py
1q u pa, ȳq “ ´100 and

u pa, y1q “ 1.

Here, c is not a a Berk-Nash equilibrium, because it is weakly dominated by action b, and

it is never a myopic best reply. However, suppose that p˚c p0q “ 1, that the agent starts with

a uniform prior over Θ, and the discount factor β “ 1
2
. Then every optimal policy prescribes

starting with action c to get information, and then switching to a forever after observing y1,

to b forever after observing ȳ and trying c again after observing 0. Since p˚c p0q “ 1, the

agent will continue to use c forever, because the believe that with high probability the true

outcome distribution will be revealed next period.

Assumption 1(i) guarantees that when beliefs concentrate around a set of of outcome

distributions that are observationally equivalent under a, i.e. ν P ∆pEpaqppqq for some

p P Θ, the experimentation value of a is weakly lower than that of some other action.

This fact is used in Claim 1 to show that Gpνq ą 0 for every ν P ∆pEpaqppqq. Claim 1

holds under Assumption 1(i1) for myopic agents because for these agents all actions have 0

experimentation value.

Assumption 1(i1) is still sufficient for all the problems considered in Section 4.2. More

generally, (i1q is sufficient when paired with with this additional assumption:

Assumption 2. p, p1 P Epaqppq ñ papyq “ p1apyq for all y P Y .

This assumption is trivially satisfied if all beliefs in the support of the agent’s subjec-

tive prior assign positive probability only to signals which objectively occur with positive

probability, i.e. papyq ą 0 ñ p˚apyq ą 0 for all p P Θ, a P A.

B.3 Extensions to Signals

B.3.1 Preliminaries

Here we expand the probability space of our basic model in the obvious way: The sample

space Ω “ S8ˆpY 8qA consists of infinite sequences of signal and action dependent outcome
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realizations psk, xa,s1,kqkPN,aPA,s1PS and xa,s1,k determines the outcome when the agent takes

the action a for the k-th time after s. Formally, we consider the probability space pΩ,F ,Pq,
where F is the discrete sigma algebra and the probability measure P is the product measure

induced by independent draws (across signal, actions, and time) according to p˚.

We denote the outcome observed by the agent in period t after action at by yt “ xat,st,k,

where k is the number of times the agent has taken action at after signal st up and including

period t. A (pure) policy π :
Ť8

t“0 S
t`1 ˆ At ˆ Y t Ñ A specifies an action for every history

ps1, a1, y1, s2, a2, y2, . . . , st, at, yt, st`1q, and an initial action a1. Throughout, we denote by

at`1 “ πpst`1, at, ytq the action taken in period t where pst`1, at, ytq is a sequence of realized

signals, actions, and outcomes. For every p, p1 P Θ Y tp˚u, denote the supnorm distance

between p and p1:

||p´ p2|| “ max
sPS,aPA,yPY

|pa,spyq ´ p
1
a,spyq|.

Given our finite dimensionality assumption, the maximand depends on s only through the

finite partition Ξ, so the supremum is attained. In this setting, a policy π converges to a

strategy σ if there exists a T such that for all t ě T , ξ P Ξ, p P ΘY tp˚u and y P Y

ÿ

aPA

ζ
` 

s P ξ : π
`

aT , yT , s
˘

“ a
(˘

pa,s pyq “
ÿ

aPA

ζ pts P ξ : σ psq “ auq pa,s pyq

that is, there is finite time convergence over the behavior in the finite dimensional partition

of signals considered by the agent. This restriction is without loss of generality if S is finite.

Lemma 8. For every σ P AS and ε ą 0, Θ̂pσq and Θ̂εpσq are compact.

Proof of Lemma 8. Compactness of Θ̂pσq follows from the generalization of Weierstrass

Theorem to lower-semicontinuous functions (see e.g. Theorem 2.43 in Aliprantis and Border,

2013). Since the projection map is continuous it follows that Θ̂εpσq is closed, so it is compact.

Now we extend Lemma 2 to the case where the agent observes signals and has finite-

dimensional beliefs. Since we restricted the policy function of the agent to be measurable in

their beliefs, the set of policy functions is

Π “
`

AS
˘

Ť8
t“0pA

tˆY tˆΞtq
.
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We endow the set AS of measurable maps from S to A with the metric

dζ pσ, σ
1
q “ ζ pts P S : σ psq ‰ σ1 psquq .

Then Π is the (countable) product space of measurable maps with index set
Ť8

t“0 pA
t ˆ Y t ˆ Ξtq.

Lemma 9. Π is compact in the product topology, and for every ν P ∆pΘq, V p¨, νq is contin-

uous with respect to the product topology.

Proof. By Tychonoff’s theorem AS is compact in the product topology. Suppose that σn

converges pointwise to σ, and let Cn “ ts P S : @m ě n, σm psq “ σ psqu. We have that

Cn Ò S,

dζpσn, σq “ ζ pts P S : σn psq ‰ σ psquq ď 1´ ζpCnq

and so dζpσn, σq Ñ 0. Thus the product topology is finer than the topology induced by dζ ,

and so AS is compact also in pAS, dζq. Applying Tychonoff’s theorem again, Π is compact

in the product topology. Continuity follows from the fact that for every period t P N the set

pAt ˆ Y t ˆ Ξtq is finite, and discounting.

We next generalize a couple of definitions given in the text to allow for signals. For every

strategy σ and action contingent outcome distribution p, we let

pσ “

ż

S

p˚σpsq,sp¨qdζpsqq

denote the distribution over outcomes induced by the use of strategy σ. Let Θ̂εpσq denote

the conceivable outcome distributions that are ε close to one of the elements of Θpaq:

Θ̂ε
pσq “ tp P Θ : Dp1 P Θ̂pσq, ||p1σ ´ pσ|| ď εu.

Similarly, we denote the set of beliefs over conceivable distributions that assign at least

probability 1´ ε to Θ̂εpσq by

Mε,a “ tν P ∆pΘq : νpΘ̂ε
pσqq ě 1´ εu.

Next we extend Lemma 3 to this setting.

Lemma 10. If σ is a uniformly strict Berk-Nash equilibrium, then for every optimal policy
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π and every λ there exists an ε̂ ą 0 such that for all ε ă ε̂

ν PMε,σ ùñ |ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ. (4)

Proof. Fix a belief ν P Mε,σ. Let πσ denote the policy that always plays σ, and let Πλ

denote the set of policy functions π̃ such that:

|ζ pts P S : π̃ pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ě λ

Define Gpεq as the gain from playing σ forever instead of using (one of) the best policies

π̃ P Πλ

Gpεq “ min
π̃PΠλ

min
νPMε,a

pV pπa, νq´V pπ̃, νqq .

Notice that by Lemma 9 the space of the policy functions endowed with the product topology

is compact. Since the subset of policy functions that satisfy 4 is closed, this subset is

compact as well. Moreover, given that β P p0, 1q, the value function is continuous at infinity,

and therefore V pπa, νq´V p¨, νq is a continuous function of the policy. Notice also that

since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπa, ¨q ´V pπ̃, ¨q is continuous in ν, so

since ε Ñ Mε,σ is an upper hemicontinuous and compact valued correspondence, from the

Maximum Theorem G is continuous in ε. Since σ is a uniformly strict Berk-Nash equilibrium,

Gp0q ą 0, and there is an ε̂ such that if ε ď ε̂, G pεq ą 0. This implies that for any optimal

policy π it must be such that ν PMε,σ implies that π satisfies (4), which proves the lemma.

Lemma 11. Fix a strategy σ and ε ą 0. There exists an l ą 0 such that for all l ď l for

every KL minimizer q P Θ̂pσq, every p1 R Θ̂εpσq, and every σ1 P Blpσq we have

fl pσ
1, q, p1q :“

ÿ

yPY

pσ1pyq

ˆ

qσ1pyq

p1σ1pyq

˙l

ą 1 .

Proof. As noted by FII in their Lemma 3, for each KL minimizer q P Θ̂pσq and every

outcome distribution p1 R Θ̂pσq there exists an l pσ, q, p1q such that flpσ, q, p
1q ą 1 for all

l ď l pσ, q, p1q. They also pointed out that for all q, q1 P Θ, and σ1 P AS, if l̂ ą l and

flpσ
1, q, q1q ď 1, then fl̂pσ

1, q, q1q ď 1. We will now prove that there exists a uniform l that

works for every q P Θ̂pσq and p1 P Θ̂εpσq, and every strategy σ1 sufficiently close to σ.
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Suppose by way of contradiction that there was no l ą 0 such that for all l ď l,

flpσ
1, q, p1q ą 1 for all q P Θ̂pσq and p1 R Θ̂εpσq, σ1 P Blpσq. Then we can define a sequence

pσn, qn, p
1
nq such that f 1

n
pσn, qn, p

1
nq ď 1, and σn P B1{npσq. The sequential compactness of

AS ˆ Θ̂pσq ˆ tp P ∆pΘq : pa R Θ̂εpσqqu derived in Lemma 8 guarantees that this sequence

has an accumulation point pσ, q, p1q. However, for, n ą 1
lpp̄,p1q

, f 1
n
pσn, qn, p

1
nq ď 1 implies

flpq,p1qpσn, qn, p
1
nq ď 1, but then the lower semicontinuity of flpq,p1q at pσ, q, p1q leads to a

contradiction with flpq,p1q pσ, q, p
1q ą 1.

Lemma 12. Let p, p1, p˚ P ∆ pY q, and l P p0, 1q be such that

ÿ

yPY

p˚pyq

ˆ

ppyq

p1pyq

˙l

ą 1. (5)

Then there is ε1 ą 0 such that for all ν P ∆ p∆ pY qq, if we let

νpC | yq “

ş

qPC
qpyqdνpqq

ş

qP∆pY q
qpyqdνpqq

,

then
ÿ

yPY

rpyq

«

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l
ff

ě

ˆ

νpBε1 ppqq

νpBε1 pp1qq

˙l

.

for all r P Bε1pp
˚q

Proof. The lemma is trivially true if νpBε pp
1qq “ 0 for some ε. Therefore, without loss

of generality, we can assume that νpBε pp
1qq ą 0 for all ε. Let Cε “ Bε pp

˚q ˆ ∆pBε ppqq ˆ

∆pBε pp
1qq and define G : R` Ñ R by

Gpεq “ min
pr,ν̄,ν1qPCε

ÿ

yPY

rpyq

˜ ş

Bεppq
q̄pyqdν̄ pq̄q

ş

Bεpp1q
qpyqdν 1 pqq

¸l

.

By the Maximum Theorem, the compactness of ∆ pBε pp
1qq and ∆ pBε ppqq (see, e.g, Theorem

6.4 in Parthasarathy, 2005) and the fact that Gp0q ą 1 by equation (5), there is ε1 ą 0 such

that for all r, ν 1, ν̄ P Cε1

ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqdν̄ pq̄q

ş

Bε1 pp
1q
qpyqdν 1 pqq

¸l

ě 1. (6)
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Then,

ÿ

yPY

rpyq

ˆ

νpBε1 ppq | yq

νpBε1 pp1q | yq

˙l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
νpBε1 ppqqq̄pyqd

νpq̄q
νpBε1 ppqq

ş

Bε1 pp
1q
ν pBε1 pp1qq qpyqd

νpqq
νpBε1 pp

1qq

¸l

“
ÿ

yPY

rpyq

˜ ş

Bε1 ppq
q̄pyqd νpq̄q

νpBε1 ppqq
ş

Bε1 pp
1q
qpyqd νpqq

νpBε1 pp
1qq

¸l
ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

ě

ˆ

νpBε1 ppqq

ν pBε1 pp1qq

˙l

where the inequality follows from equation (6).

B.3.2 Proof of Theorem 1’

If σ is not a uniform Berk-Nash equilibrium, there is p̄ P Θ̂pσq such that if supp ν Ď Eσpp̄q,
then σ is not a myopic best reply to ν. We fix such a p̄ throughout this proof.

Claim 5. There exists ε ą 0 such that if

ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ ν
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ą

1´ ε

ε
,

then σ is not a myopic best reply to ν.

Proof. Define

G pνq “ max
π
V pπ, νq ´ max

π̃:π̃pνq“σp¨q
V pπ̃, νq .

From the definition of p̄, if

supp ν Ď tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu,

then G pνq ą 0. By Lemma 9 the space of policy functions is compact and the value

function is continuous in the policy, so V p¨, νq´V p¨, νq is a continuous function of the

policy, and since Ep,π
“
ř8

t“1 rβ
t´1upat, ytqs

‰

is continuous in p, V pπ, ¨q is continuous in ν.

Therefore, we can conclude by the Maximum Theorem that G is continuous.
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Now suppose that in contradiction to the claim, for every n there exists a νn such that

νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯

1´ νn

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă 1{nu
¯ ě

1´ 1{n

1{n

and σ P π pνnq. Because ∆ pΘq is sequentially compact, pνnqnPN has a converging subsequence

pνniqiPN Ñ ν˚. Thus, ν˚
´

tp P Θ: @s P S, @y P supp p˚σpsq,s, pσpsq,spyq “ p̄σpsq,spyqu
¯

“ 1 and

G pν˚q “ 0, which would imply that σ P π pν˚q, a contradiction. ˝

Now fix such an ε. Because the agent’s beliefs are finite-dimensional, the agent believes

that the outcome distribution depends on the signals only via the partition Ξ. We now define

a finer partition of signals Ξσ such that for every two signals in the same cell i) the agent

thinks they induce the same outcome distribution, i.e., they belong to the same cell of Ξ,

and ii) σ prescribes the same action. Formally, Ξσ is the collection of subsets of signals of

the form

ts P ξi X σ
´1
paq for some ξi P Ξ and a P Au.

With a small abuse of notation, for every ξ P Ξσ let σ pξq denote the action that strategy σ

prescribes after every signal in ξ, and let pa,ξ be the probability distribution over outcomes

induced under p after action a and any signal in ξ. Set W “ Ξσ ˆ Y , and for each p P Θ, let

pσ be the unique probability measure over W that satisfies

pσ pξ, yq “ ζ pξq ppσpξq,ξq pyq @ξ P Ξσ, y P Y.

Finally, define νσ P ∆ p∆ pW qq by

νσ pCq “ ν ptp : p̄ P Cuq @C P B pSq ˆ 2Y .

For every α P p0, 1q, let

fα “ p1´ αqp
˚σ
` αp̄σ.

Linearity of H in its first argument implies that for every α P p0, 1q,

p P argmin
pPΘ

Hpfα, p
σ
q ùñ pσ “ p̄σ.
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Let g be defined as in Lemma 7 with W replacing Y . We have

2g pp1´ αqp˚σ ` αp̄σ, εq

ě inf
qP∆pW qzBεpp̄σq

ÿ

wPW

rp1´ αqp˚σ pwq ` αp̄σ pwqs log q pwq ´
ÿ

wPW

rp1´ αqp˚σ pwq ` αp̄σ pwqs log p̄σ pwq

ě p1´ αq inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p˚σ pwq rlog q pwq ´ log p̄σ pwqs

`α inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p̄σ pwq rlog q pwq ´ log p̄σ pwqs

ě 0` α inf
qP∆pW qzBεpp̄σq

ÿ

wPW

p̄σ pwq rlog q pwq ´ log p̄σ pwqs ě 2α pεq2 ,

where the first inequality follows from the definition of g and the fact that the RHS

minimizes over a larger set, the second inequality follows from concavity of the minimum,

the third from the fact that p̄ is a KL minimizer, and the fourth from Corollary 3.5 and

Proposition 4.7 in Diaconis and Freedman (1990).

For every t P N, let αt “ 2t´
1
2 . If the empirical frequency is fαt after t periods, and only

strategy σ has been used, then from Lemma 7 and part (ii) of Assumption 5, there exists

ḡ ą 0

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

“
µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

1´ µ̄t ptp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă εuq

ě µ0

ˆ

tp P Θ: @w P supp p˚σ, |p˚σpwq ´ p̄σpwq| ă ε2 2

ḡt
1
2

u

˙

exp
`

tαtε
2
˘

ě Φ

ˆ

ε2 2

ḡt
1
2

˙

exp
´

t
1
2 ε2

¯

.

By Lemma 6 there exists a K̂,K 1 ą 0 such that if the empirical frequency is ft after t

periods and ||fαt ´ ft|| ă ||p̄
σ ´ p˚σ||t´

1
2 {K 1 then

µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯

1´ µt

´

tp P Θ: @s P S, @y P supp p˚σpsq,s, |pσpsq,spyq ´ p̄σpsq,spyq| ă εu
¯ ě Φ

ˆ

K̂ε2 2

ḡt
1
2

˙

exp
´

K̂t
1
2 ε2

¯

.

Fix an outcome w0 P supp p˚σ, and let ft be the empirical frequency of the other | supp p˚σ|´1

outcomes in the support of p˚σ. Denote by p˚σt the true probabilities of the same | supp p˚σ|´

1 outcomes.
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An argument that mimics the proof of Claim 2 shows that ft ¨ t´ p
˚σt is a | supp p˚σ| ´ 1

dimensional random walk with nonsingular covariance matrix Σw,w1 for the increments.

By the Central Limit Theorem pft´ p
˚σq
?
t converges to a Normal random variable with

mean 0 and covariance matrix Σw,w1 . Let Ft “ B ||p̄σ´p˚σ ||{K1
?
t

´

p˚σ ` 1?
t
pp̄σ ´ p˚σq

¯

. We have

that

P rft P Fts “ P
”?

tpft ´ p̄
˚
q P B||p̄σ´p˚σ ||{K1 pp̄

σ
´ p˚σq

ı

Taking the limit tÑ 8 yields that

lim
tÑ8

P rft P Fts “ P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

where Z̃ is a random variable that is Normally distributed with mean ~0 and covariance

matrix Σw,w1 . Consequently, if we denote as Et the event that ft P Ft, it follows that
ř8

t“1 P rEts “ 8. Moreover,

lim inf
tÑ8

řt
s“1

řt
r“1 P rEs and Ets

`
řt
s“1 P rEss

˘2 “ lim inf
tÑ8

1
t2

řt
s“1

řt
r“1 P rEs and Ers

`

1
t

ř8

t“1 P rEts
˘2 ď lim inf

tÑ8

1
t2

řt
s“1

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2

“ lim inf
tÑ8

1
t

řt
r“1 P rErs

`

1
t

řt
s“1 P rEss

˘2 “
1

limtÑ8 P rEts
“

1

P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄σ ´ p˚σq
ı .

It thus follows from the Kochen-Stone lemma (see Kochen and Stone (1964) or Exercise

2.3.20 in Durrett (2008)) that

P

«

8
č

t“1

8
ď

s“t

Es

ff

ě P
”

Z̃ P B||p̄σ´p˚σ ||{K1 pp̄
σ
´ p˚σq

ı

ą 0 .

The event
Ş8

t“1

Ť8

s“tEs is invariant under finite permutations of the increments
`

1wt“w1 , ...,1wt“w| supp p˚σ |´1 ´ p˚σ
˘

with different time indices, so the Hewitt-Savage zero-one

law (see, e.g., Theorem 8.4.6 in Dudley (2018)) implies that the probability of the event
Ş8

t“1

Ť8

s“tEs must equal zero or one. As the probability is strictly positive it must equal

one.

This implies that ft P Ft infinitely often with probability 1. It follows that the agent will

eventually want to take an action different from σ:

P rat ‰ σ pstq for some ts “ 1 .
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Thus the strategy can not converge to σ with positive probability.

B.3.3 Proof of Theorem 2’

Consider a uniformly strict Berk-Nash equilibrium σ, an optimal policy π and κ P p0, 1q. By

Lemma 10, for every λ P p0, 1q there exists an ε such that if νpΘ̂εpσqq ě 1´ ε, then

|ζ pts P S : π pν, sq “ auq ´ ζ pts P S : σ psq “ auq | ă λ.

For every l P p0, 1q, define the function fl,σ : P ˆ P Ñ R̄ is defined by

flpσ
1, p̄, p1q “

ÿ

yPY

p˚σ1pyq

ˆ

p̄σ1pyq

p1σ1pyq

˙l

.

By Lemma 11, since Θ̂εpσq is compact by Lemma 8, and since fl is lower semicontinuous,

there exists ε1 P p0, εq such that p̄ P Θ̂ε1pσq implies that flpσ, p̄, p
1q ą 1 for all p1 with

p1 R Θ̂εpσq. Let K “
`

ε
1´ε

˘l
. Then

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂ε1paq
¯

˛

‚

l

ă K ùñ

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯ ă

ε

1´ ε

ùñ ν
´

Θ̂ε
pσq

¯

ą 1´ ε ùñ π pνq “ a.

By Lemma 8, Θ̂εpσq is compact, and therefore it admits a finite cover of

tp P Θ : ||qia ´ pa|| ď εuni“1

where qi P Θ̂εpσq.

Let ε̄ be such that ν
´

Θ̂ε̄pσq
¯

ą 1´ ε̄ implies that

¨

˝

1´ ν
´

Θ̂εpσq
¯

ν
´

Θ̂εpσq
¯

˛

‚

l

ă
K p1´ κq

n
.

Then if the agent starts with a belief ν0 with ν0pΘ̂pσqq ą ε̄, σ is the unique best reply ν
1

0.

Moreover, by Lemma 12, Dubins’ upcrossing inequality, and the union bound, there is a
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probability p1´ κq that the positive supermartingale

¨

˝

1´ ν 1t

´

Θ̂εpσq
¯

ν 1t

´

Θ̂εpσq
¯

˛

‚

l

never rises above K, and with probabilty p1´ κq

|ζ pts P S : π pµ1t, sq “ auq ´ ζ pts P S : σ psq “ auq | ď λ,

for all t P N. Then the statement follows from the Hewitt-Savage 0 ´ 1 Law ((see, e.g.,

Theorem 8.4.6 in Dudley, 2018).

B.4 Proof of Theorem 4’

Under the assumptions of the theorem, Θ Ď ∆ p∆ pY qq. Consider a uniformly strict Berk-

Nash equilibrium σ. By an obvious extension of Lemma 1 to the case with signals, ∆
´

Θ̂pσq
¯

is compact. Similarly, since S is compact and σ is the unique optimal best reply strategy

at the beliefs in ∆
´

Θ̂pσq
¯

, Lemma 3 can be extended to guarantee that there exists ε ě 0

such that if

ν
´

Qε pp̄σq
¯

ě p1´ εq

then the myopic best reply to ν is σ. By the same argument of the proof of Theorem 2, there

exists an l P p0, 1q and ε1 P p0, ε̂q, such that if p P Qε1 pp̄σq and p1 R Qε̂ pp̄σq then flpp, p
1q ě 1.

Using the Maximum Theorem again we can find a sequence of outcome realizations yt

such that if p̂t is the corresponding empirical frequency, it is sufficiently close to p̄σ to have

Qε̂{2 pp̂tq Ď Qε̂ pp̄σq .

Therefore by Lemma 7, there exists a time period T such that for all t1 ą T , if the

empirical frequency p̂t1 “ p̂t, the agent assigns a relative probability higher than K to an ε̂

Ball around p̄. That is,

µt1pQε̂ pp̄σqq

1´ µt1pQε1 pp̄σqq
ě

µt1pQε̂{2 pp̄σqq

1´ µt1pQε1 pp̄σqq
ą 2

p1´ ε̂q

ε̂
.

Notice by replicating the outcome realizations yt sufficiently many time, we have a sequence

of outcomes yt
1

such that the empirical frequency p̂t1 “ p̂t and t1 ą T . Since supp p˚a,s “ Y
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for all pa, sq P A ˆ S, the previous sequence of outcomes has positive probability, and after

this outcome sequence the agent plays σ. By Lemma 4 and the law of iterated expectations,

conditional on a being played
´

1´µt1 pQε1 pp̄σqq

µt1 pQε̂pp̄σqq

¯l

is a positive supermartingale.

Then, by Dubins’ upcrossing inequality, there is a positive probability that this positive

supermartingale never rises above ε̂
p1´ε̂q

, that in turns imply that µt1pQε1{2 pp̂tqq never goes

below p1´ ε̂q and therefore σ is always played after the sequence yt.

B.5 Additional Examples

Example 7 (A uniform Berk-Nash equilibrium that isn’t positively attractive). In this

example the prior has support tp1, p2, p3u. Here a “ 3 is the only Berk-Nash equilibrium

and is uniformly strict. However, if the agent takes an action a P t1, 2u then the subjective

likelihood assigned to p3 goes down and thus play never converges to a “ 3 if the prior assigns

sufficiently low probability to p3. The details are in the following table:

a a “ 1 a “ 2 a “ 3
Hpp˚a, ¨q

Ampδp¨qqy 1 2 3 1 2 3 1 2 3

u 1 0 0 0 1 0 0 0 1 a “ 1 a “ 2 a “ 3

p˚ 0.1 0.9 0 0.9 0.1 0 0.1 0.1 0.8

p1 0.5 0.3 0.2 0.5 0.3 0.2 0.5 0.3 0.2 1.15 0.74 2.03 a “ 1

p2 0.3 0.5 0.2 0.3 0.5 0.2 0.3 0.5 0.2 0.74 1.15 2.03 a “ 2

p3 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 2.3 2.3 0.64 a “ 3

Example 8 (Signal Neglect). A seller in a physical marketplace can hire one shop assistant

to work for the day aH or not hire anyone aN . The outcome y P Y is the percentage of

consumers in the marketplace that buy the good, with two possibilities, yh ą yl.

Before choosing whether to hire, the agent observes the the number of people at the market

that day s P tsh, slu, with sh ą sl. The payoff function is upa, y, sq “ sy ´ 1a“aH . The seller

realizes that the signal is payoff relevant, but falsely believes that it does not provide any

information about the outcome. The agent is uncertain about how useful it is to hire a

shop assistant, and in particular they do not know whether hiring is ineffective, i.e., for all

a P A, y P Y , papyq “ 1{2, or if it is not, i.e., p1aH pyHq “ 3{4 and p1aN pyHq “ 1{4.

The fraction of consumers who buy varies with the signal: On days with fewer consumers,
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the ones that actually come to the market are more likely to purchase the good. Formally:

p˚sH ,aH pyHq “ 1{2, p˚sH ,aN pyHq “ 1{4, p˚sL,aH pyHq “ 3{4, p˚sL,aN pyHq “ 1{2.

Let slpyh´ylq
4

ă 1 ă shpyh´ylq
4

, so that it is not objectively optimal to hire a shop assistant

after sL, and it is objectively optimal to hire an assistant after sH . The following argument

shows that the only Berk-Nash equilibrium is that the shop assistant is never hired: If the

agent followed the objectively optimal strategy, they would observe the same frequency of sales

in days with s “ sH and with the shop assistant hired as in days with s “ sL and without the

shop assistant: p˚sH ,aH pyHq “ 1{2 “ p˚sL,aN pyHq. This holds because the shop assistant offsets

the lower per-customer demand on days with high attendance. However, this observation

supports the belief that the shop assistant is useless. Since the myopic best reply to δp is to

never hire the shop assistant, by Theorem 1’ this suboptimal action is the only possible limit

action.
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