Indirect reciprocity with simple records

Daniel Clark*,†, Drew Fudenberg*,‡,§, and Alexander Wolitzky*,†

*Department of Economics, Massachusetts Institute of Technology, Cambridge, MA 02139

Contribution by Drew Fudenberg, March 18, 2020 (sent for review December 17, 2019; reviewed by Michihiro Kandori, Martin A. Nowak, and Andrew Postlewaite)

Indirect reciprocity is a foundational mechanism of human cooperation. Existing models of indirect reciprocity fail to robustly support social cooperation: Image-scoring models fail to provide robust incentives, while social-standing models are not informationally robust. Here we provide a model of indirect reciprocity based on simple, decentralized records: Each individual’s record depends on the individual’s own past behavior alone, and not on the individual’s partners’ past behavior or their partners’ partners’ past behavior. When social dilemmas exhibit a coordination motive (or strategic complementarity), tolerant trigger strategies based on simple records can robustly support positive social cooperation and exhibit strong stability properties. In the opposite case of strategic substitutability, positive social cooperation cannot be robustly supported. Thus, the strength of short-run coordination motives in social dilemmas determines the prospects for robust long-run cooperation.

People (and perhaps also other animals) often trust each other to cooperate even when they know they will never meet again. Such indirect reciprocity relies on individuals having some information about how their partners have behaved in the past. Existing models of indirect reciprocity fall into two paradigms. In the image-scoring paradigm, each individual carries an image that improves when the individual helps others, and (at least some) individuals help only those with good images (1, 2). In the standing paradigm, each individual carries a standing that typically improves when the individual helps others with good standing, but not when the individual helps those with bad standing, and individuals with good standing help only other good-standing individuals (3, 4).

Neither of these paradigms provides a robust explanation for social cooperation. In image-scoring models, there is no reason for an individual to help only partners with good images: Since the partner’s image does not affect one’s future payoff, helping some partners and not others is optimal only if one is completely indifferent between helping and not helping. In game-theoretic terms, individuals never have strict incentives to follow image-scoring strategies, and hence such strategies can form at best a weak equilibrium. Closely related to this point, image-scoring equilibria are unstable in several environments (5, 6). Standing models do yield strict, stable equilibria, but they fail to be informationally robust: An individual’s standing is a function of not only the individual’s past behavior, but also the individual’s past partners’ behavior, their partners’ partners’ behavior, and so on ad infinitum. In the absence of centralized record keeping or some way of physically marking bad-standing individuals, computing such a function requires information that is likely unavailable in many groups (7).

We develop a theoretical paradigm for modeling indirect reciprocity that supports positive social cooperation as a strict, stable equilibrium while relying only on simple, individualistic information: When two players meet, they observe each other’s records and nothing else, and each individual’s record depends only on the individual’s own past behavior. [Individualistic information is also called “first-order” (8–10).]

As our model of individual interaction, we use the classic prisoner’s dilemma (“PD”) with actions C, D (“cooperate,” “defect”) and a standard payoff normalization, where the gain from unilateral defection, g, and the loss from unilateral cooperation, l, are both positive and satisfy the condition g < l + 1, which means that joint payoffs are maximized by mutual cooperation (Fig. 1, Left). This canonical game can capture many two-sided interactions, such as business partnerships (11), management of public resources (12, 13), and risk sharing in developing societies (14), as well as many well-documented animal behaviors (15).

A critical feature of the PD is whether it exhibits strategic complementarity or strategic substitutability. Strategic complementarity means that the gain from playing D is greater when the opponent also plays D. In the PD payoff matrix displayed in Fig. 1, this corresponds to the condition

$$g < l.$$

[Strategic Complementarity]

The opposite case of strategic substitutability arises when the gain from playing D is greater when the opponent plays C: Mathematically, this occurs when

$$g > l.$$

[Strategic substitutability]

Many previous studies of indirect reciprocity restrict attention to the “donation game” instance of the PD where g = l, as in Fig. 1, Right (16). Our analysis reveals this to be a knife-edge case that obscures the distinction between strategic complementarity and reciprocal cooperation.

Significance

Indirect reciprocity is a foundational mechanism of human cooperation, and understanding the social structures that allow it to arise continues to be a core issue in both the social sciences and evolutionary biology. This paper analyzes a model of indirect reciprocity in steady-state equilibria, where players observe only their partners’ records, and each individual’s record depends on the individual’s own past behavior alone. We show that tolerant trigger strategies based on these simple records can robustly support positive social cooperation in games with sufficient “strategic complementarity,” both in the prisoner’s dilemma and in some multiplayer public goods games, and we show that the resulting cooperative equilibria have strong stability properties.

Author contributions: D.C., D.F., and A.W. designed research, performed research, and wrote the paper.

Reviewers: M.K., The University of Tokyo; M.A.N., Harvard University; and A.P., University of Pennsylvania.

The authors declare no competing interest.

Published under the PNAS license.

†D.C., D.F., and A.W. contributed equally to this work.

‡To whom correspondence may be addressed. Email: drew.fudenberg@gmail.com.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921984117/-/DCSupplemental.

First published May 12, 2020.

* However, the g ≠ l case has also received significant attention: For example, the seminal article of Axelrod and Hamilton (17) took g = 1 and l = 1/2.
An organism retains some aspect of a coordination game, so that playing C generally yields a higher return than D. It implies that although a player has defected crosses a threshold. We assume this normalization for “donation games,” in which choosing G (Give) instead of S (Shirk) incurs a personal cost c and gives benefit b > c to the opponent.

\[(g < l) \text{ and substitutability } (g > l)\]

This distinction has long been known to be of critical importance in economics (18, 19), while its implications for cooperation in the repeated prisoner’s dilemma have been noted more recently (8, 9). When a player’s record depends only on the player’s own past actions, the future reward for cooperation (or future penalty for defection) is independent of the player’s current opponent’s record. Therefore, to obtain an equilibrium where a player has a strict incentive to cooperate if and only if the opponent’s record is good, the cost of cooperation must be lower against an opponent with a good record (who cooperates) than against one with a bad record (who defects): That is, cooperation requires \(g < l\).

Strategic complementarity is a common case in realistic social dilemmas. It implies that although D is always selfishly optimal (a defining feature of the PD), the social dilemma nonetheless retains some aspect of a coordination game, so that playing C is less costly when one’s partner also plays C. For example, mobbing a predator is always risky (hence costly) for each individual, but it is much less risky when others also mob (20).

In our model, each player’s record is an integer, which evolves with the number of times the player has defected (or cooperated and was hit by noise). The level \(l\) is sometimes called a “tolerance” of \(\delta\). Here the level of noise \(\epsilon\) affects the individual’s record updates as if the individual had played D instead.1 Here the level of noise \(\epsilon\) is known to play a significant role. For example, in Fig. 1. The prisoner’s dilemma. (Left) Matrices show how any prisoner’s dilemma can be represented by the standard normalization with \(g = (T - R)/2(R - P)\) and \(l = (P - S)/(R - P)\), where \(T > R > P > S\). (Right) Matrices illustrate this normalization for “donation games,” in which choosing G (Give) instead of S (Shirk) incurs a personal cost \(c\) and gives benefit \(b > c\) to the opponent.

\[
\begin{array}{c|cc}
C & R & S \\
D & T & P \\
\end{array}
\quad
\begin{array}{c|cc}
G & b - c & -c \\
S & b & 0 \\
\end{array}
\]

Fig. 1. The prisoner’s dilemma. (Left) Matrices show how any prisoner’s dilemma can be represented by the standard normalization with \(g = (T - R)/(R - P)\) and \(l = (P - S)/(R - P)\), where \(T > R > P > S\). (Right) Matrices illustrate this normalization for “donation games,” in which choosing G (Give) instead of S (Shirk) incurs a personal cost \(c\) and gives benefit \(b > c\) to the opponent.

\[
\begin{array}{c|cc}
C & 1 & -l \\
D & 1 + g & 0 \\
\end{array}
\quad
\begin{array}{c|cc}
G & 1 & -c/(b - c) \\
S & 1 + c/(b - c) & 0 \\
\end{array}
\]

Under this condition, the tolerance level \(K\) can be tuned so that GrimK strategies support positive social cooperation in a steady-state equilibrium.

To see how to tune the threshold \(K\), note that since even individuals who always try to cooperate are sometimes recorded as playing D due to noise, \(K\) must be large enough that the steady-state share of the population with good records is sufficiently high: With any fixed value of \(K\), a population of sufficiently long-lived players would almost all have bad records. However, \(K\) also cannot be too high, as otherwise an individual with a very good record (that is, with a very low number of Ds) can safely play D until the individual’s record approaches the threshold. Another constraint is that an individual with record \(K - 1\) who meets a partner with a bad record must not be tempted to deviate to C to preserve the individual’s own good record. These constraints lead to an upper bound on the maximum share of cooperators in equilibrium. As lifetimes become long and noise becomes small, this upper bound converges to 0 whenever \(g > l/(1 + l)\) and to \(l/(1 + l)\) whenever \(g < l/(1 + l)\) (Fig. 2), and we show that this share of cooperators can in fact be attained in equilibrium in the \((\gamma, \epsilon) - 0, 0\) limit. Thus, greater strategic complementarity (higher \(l\) and lower \(g\)) not only helps support cooperation; it also increases the maximum level of cooperation in the limit, as shown in Fig. 3.

\[g < \frac{l}{1 + l} \]

We also show that, in the \((\gamma, \epsilon) - 0, 0\) limit, no trigger strategies can support a positive equilibrium share of cooperators if \(g > l/(1 + l)\), and no trigger strategies can support an equilibrium share of cooperators greater than \(l/(1 + l)\) if \(g < l/(1 + l)\). Thus, when lifetimes are long and noise is small, GrimK strategies attain optimum equilibrium cooperation within the class of trigger strategies. The logic of this result is that the constraints on the performance of GrimK strategies imposed by players’ incentives and the presence of noise apply equally to any strategy in the trigger class.

Stability, Convergence, and Evolutionary Properties. GrimK strategies also satisfy desirable stability and convergence properties. These derive from an important monotonicity property of GrimK strategies: When the distribution of individual records is
more favorable today, the same will be true tomorrow, because players with better records both behave more cooperatively and induce more cooperative behavior from their partners. (See Methods for a precise statement.) From this observation it can be shown that, whenever the initial distribution of records is more favorable than the best steady-state record distribution, the record distribution converges to the best steady state. Similarly, whenever the initial distribution is less favorable than the worst steady state, convergence to the worst steady state obtains (Fig. 4). These additional robustness properties are not shared by more complicated, nonmonotone strategies that can sometimes support cooperation for a wider range of parameters than GrimK.

We also analyze evolutionary properties of GrimK equilibria. When \(g < \frac{l}{1 + l} \), there is a sequence of GrimK equilibria that are “steady-state robust to mutants” and attain the maximum limit cooperation share of \(\frac{l}{1 + l} \). By this we mean that, when a small fraction of players adopt some mutant GrimK’ strategy where \(K' \neq K \), there is a steady-state distribution of records where it remains strictly optimal to play according to GrimK. We also perform simulations of dynamic evolution when a population playing a GrimK equilibrium is infected by a mutant population playing GrimK’ for some \(K' \neq K \) (SI Appendix, Fig. S1).

Multiplayer Public Goods Games. Although our main analysis takes the basic unit of social interaction to be the standard two-player PD, many social interactions involve multiple players: The management of the commons and other public resources is a leading example (12, 13). In SI Appendix we establish that, when strategic complementarity is sufficiently strong, robust cooperation in the multiplayer public goods game can be supported by a simple variant of GrimK strategies, wherein a player contributes to the public good if and only if all of the player’s current partners have good records. In contrast, with strategic substitutability the unique strict equilibrium involves zero contribution. As the n-player public good game is a generalization of the PD, this implies that individualistic records preclude cooperation in the PD with strategic substitutability, as indicated in the red region in Fig. 3.

Discussion

We have shown how individualistic records robustly support indirect reciprocity in supermodular PD and multipayer public goods games. To place our results in context, recall that scoring models do not provide robust incentives, while standing models compute records as a recursive function of a player’s partners’ past actions and standing, their partners’ actions and standing, and so on, and thus require more information than may typically be available. The simplicity and power of individualistic records suggest that they may be usefully adapted to specific settings where cooperation is based on indirect reciprocity, such as online rating systems (24, 25), credit ratings (10, 26), decentralized currencies (27, 28), and monitoring systems for conflict resolution (29). Individualistic records may also prove useful in modeling the role of costly punishment in the evolution of cooperation (30–33).

We interpret individualistic records and GrimK strategies as both a theoretical demonstration that simple strategies can sometimes support cooperation using only first-order information and an approximation of human behavior in a range of environments. For example, when meeting a potential business
could first arise. In our model, it is a strict equilibrium for all agents to always defect, so that equilibrium is also an evolutionarily stable strategy. To explain how society might move from such a state to a more cooperative equilibrium such as GrimK, we could appeal to random mutations. Given our continuum population, this could be modeled as a deterministic drift as in ref. 34, but we do not develop that argument here.

We have also assumed that everyone shares the same assessment of each individual’s record. This “public information” assumption is known to be critical in some prior models of indirect reciprocity. In our model, allowing heterogeneous assessments of a player’s record would not change the analysis very much, so long as both partners learn their opponents’ assessments of their records before taking actions (35–37). The more complex situation where each partner’s assessment of the other’s record is private information would be interesting to study in future research.

Methods

Here we summarize the model and mathematical results; further details are provided in SI Appendix.

A Model of Social Cooperation with Individualistic Records. Time is discrete and doubly infinite: \(t \in \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \). There is a population of individuals of unit mass, each with survival probability \(\gamma \in (0, 1) \), so each individual’s lifespan is geometrically distributed with mean \(1/(1 - \gamma) \). An inflow of \(1 - \gamma \) newborn players each period keeps the total population size constant. We thus have an infinite-horizon dynamic model with overlapping generations of players (38).

Every period, individuals randomly match in pairs to play the PD (Fig. 1). Each individual carries a record \(k \in \mathbb{N} := \{ 0, 1, 2, \ldots \} \). Newborns have record 0. Under the counting Ds record system, whenever an individual plays D, the individual’s record increases by 1, while whenever an individual plays C, the individual’s record remains constant with probability \(1 - \varepsilon \) and increases by 1 with probability \(\varepsilon \); thus, \(\varepsilon \in (0, 1) \) measures the amount of noise in the system (39–43). More generally, a record system specifies an arbitrary next-period record as a function of the current-period record and the current-period recorded action, which equals D if the individual plays D, equals C with probability \(1 - \varepsilon \), and equals D with probability \(\varepsilon \) if the individual plays C.

When two players meet, they observe each other’s records and nothing else. A strategy is a mapping \(s : \mathbb{N} \times \mathbb{N} \to \{ C, D \} \), with the convention that the first component of the domain is a player’s own record and the second component is the other player’s record. We assume this strategy does not change the analysis very much, noting that this must be the case in every strict equilibrium in a symmetric, continuum-agent model like ours. (Of course, players who have different records and/or meet opponents with different records may take different actions.)

The state of the system \(\mu \in \Delta(\mathbb{N}) \) describes the share of the population with each record, where \(\mu_k \in [0, 1] \) denotes the share with record \(k \).

When all players use strategy \(s \), let \(\rho_s : \Delta(\mathbb{N}) \to \Delta(\mathbb{N}) \) denote the resulting update map governing the evolution of the state. (The formula for \(\rho_s(\mu) \) is in SI Appendix.) A steady state under strategy \(s \) is a state \(\mu \) such that \(\rho_s(\mu) = \mu \).

A strategy \(s \) and state \(\mu \), the expected payoff of a player with record \(k \) is \(\pi(s, \mu) = \sum_{k'} \mu_k \phi(s(k'), k') \), where \(\phi \) is the PD payoff function. Denote the probability that a player with current record \(k \) has record \(k' \) \(T \) periods in the future by \(a(k, a) \). The continuation payoff of a player with record \(k \) is then \(\psi(s, \mu) = (1 - \gamma) \sum_{k'} \mu_k \phi(s(k'), k') a(k, a) \). Note that we have normalized continuation payoffs by \((1 - \gamma) \) to express them in per-period terms. A player’s objective is to maximize the expected lifetime payoff.

A pair \((s, \mu) \) is an equilibrium if \(\mu \) is a steady state under \(s \) and, for each own record \(k \) and opponent’s record \(k' \), the prescribed action \(s(k, k') \in \{ C, D \} \) maximizes the expected lifetime payoff from the current period onward, given by \((1 - \gamma) a(k, a) \phi(s(k'), k') \gamma \sum_{k''} \mu_k' \phi(s(k''), k'') a(k', a') \). The prescribed action \(\phi(s, \mu) \) of an individual with record \(k \) that takes action \(a \) acquires next-period record \(k' \). Note that this expression depends on the opponent’s record only through the predicted current-period opponent action, \(s(k', k) \). In addition, the ratio \((1 - \gamma)/\gamma \) captures the weight that players place on their current payoff relative to their continuation payoff from tomorrow on. We study

Clark et al. PNAS May 26, 2020 vol. 117 no. 21 11347
limits where this ratio converges to 0, as opposed to time-average payoffs which give exactly 0 wt to any one period’s payoff, because in the latter case optimization and equilibrium impose unduly weak restrictions [44]. An equilibrium is strict if the maximizer is unique for all pairs (k, k’); i.e., the optimal action is always unique. Note that this equilibrium definition allows agents to maximize over all possible strategies, as opposed to only strategies from some preselected set. We focus on strict equilibria because they are robust: They remain equilibria under “small” perturbations of the model. Note that the strategy “always defect,” i.e., sI(k, k’) = D for all (k, k’), together with any steady state is always a strict equilibrium.

S I Appendix, Lemma 2 characterizes the steady states for any GrimK strategy, as well as the γ, ε, γ, l parameters for which the steady states are equilibria.

Limit Cooperation under GrimK Strategies. Under GrimK strategies, a matched pair of players cooperate if and only if both records are below a prespecified cutoff K. That is, sI(k, k’) = C if max{k, k’} < K, and sI(k, k’) = D if max{k, k’} ≥ K.

We call an individual a defector if the individual’s record is below K and a defector otherwise. Note that individuals may be a defector for some periods of their life and a defector for other periods, rather than being programmed to cooperate or defect for their entire life.

Given an equilibrium strategy GrimK, let μ ≜ ∑γ,ε,γ, l μγC denote the corresponding steady-state share of cooperators. Note that, in a steady state with cooperators share μC, mutual cooperation is played in share (γμC) of all matches. Let μC(γ, ε, l) be the maximal share of cooperators in any tolerant grim trigger equilibrium (allowing for every possible K) when the survival probability is γ and the noise level is ε.

S I Appendix, Theorem 1 characterizes the performance of equilibria in GrimK strategies in the double limit where the survival probability approaches 1—so that players expect to live a long time and the “shadow of the future” looms large—and the noise level approaches 0—so that records are reliable enough to form the basis for incentives. (This long-lifespan/low-noise limit is the leading case of interest in theoretical analyses of indirect reciprocity [8, 45–49].) S I Appendix, Theorem 1 shows that, in the double limit (γ, ε) → (1, 0), μC(γ, ε, l) converges to 1/(1 + l) when g < 1/(1 + l) and converges to 0 when g > 1/(1 + l).

The formal statement and proof of this result are contained in S I Appendix.

Barring knife-edge cases, tolerant grim trigger strategies can thus robustly support positive cooperation in the double limit (γ, ε) → (1, 0) if and only if the gain from defecting against a partner who cooperates is significantly smaller than the loss from cooperating against a partner who defects: g < 1/(1 + l). Moreover, the maximum level of cooperation in this case is 1/(1 + l). Here we explain the logic of this result.

We first show that g < μC in any GrimK equilibrium. Newborn individuals have continuation payoff equal to the average payoff in the population, which is (μC)2. Thus, since a newborn player plays C if and only if matched with a partner, (μC)2 = (1 − γ)μC + γμC V C + (1 − γ) μC V D, where V C and V D are the expected continuation payoffs of a newborn player after playing C and D, respectively. Newborn players have the highest continuation payoff in the population, so V C ≥ V D = (μC)2. For a newborn player to prefer not to cheat a cooperative partner, it must be that V D < V C = (1 − γ)μC / γ, so when μC < 1 (as is necessarily the case with any noise), (μC)2 < (1 − γ)μC + γ μC (1 − γ)/(1 − γ). This inequality can hold only if g < μC.

We next show that γ(1 − ε)μC < 1/(1 + l) in any GrimK equilibrium. The continuation payoff V C−1 of an individual with record K − 1 satisfies V C−1 = (1 − γ)μC + γ(1 − ε)μC V C−1, or V C−1 = (1 − γ)μC [1/(1 − γ) − (1 − ε)μC]. A necessary condition for an individual with record K − 1 to prefer to play D against a defector partner is (1 − γ)(1 − ε)μC < 1/(1 + l). Combining this inequality with the expression for V C−1, yields (1 − ε)μC < 1/(1 + l), which in the (γ, ε) → (1, 0) limit gives μC < ε/(1 + l).

We have established that tolerant grim trigger strategies can support positive cooperation in the (γ, ε) → (1, 0) limit only if g < 1/(1 + l) and that the maximum cooperation share cannot exceed 1/(1 + l). The proof of S I Appendix, Theorem 1 is completed by showing that when g < 1/(1 + l), by carefully choosing the tolerance level K, GrimK can support cooperation shares arbitrarily close to any value between g and 1/(1 + l) in equilibria when the survival probability is close to 1 and the noise level is close to 0.

Limit Cooperation under General Trigger Strategies. GrimK strategies are an instance of the more general class of trigger strategies, which are defined by the following properties: 1) The set of all possible records can be partitioned into two classes, good records G and bad records B. 2) Partners cooperate if and only if they both have good records: sI(k, k’) = C for all pairs (k, k’) ∈ G × G, and sI(k, k’) = D for all other pairs (k, k’). 3) The class B is absorbing: If k ∈ B, then every record k’ that can be reached starting at record k is also in B.

S I Appendix, Theorem 9 shows that, in the (γ, ε) → (1, 0) double limit, the maximum steady-state share of good-record players that can be supported in any trigger strategy equilibrium converges to zero if g > 1/(1 + l) and converges to 1/(1 + l) if g < 1/(1 + l). Thus, in this double limit, tolerant grim trigger strategies attain the most equilibrium cooperation that any trigger strategy can support.

The intuition for this result is that the necessary conditions g < μC and γ(1 − ε)μC < 1/(1 + l) derived above for GrimK strategies apply equally to any trigger strategy. The argument to establish the necessity of g < μC is similar to that for GrimK strategies, except we must now consider the incentives of a player with whichever record k yields the greatest equilibrium continuation payoff, which is no longer necessarily a newborn (i.e., we no longer have k ∈ B). The argument to establish necessity of γ(1 − ε)μC < 1/(1 + l) is also similar to that for GrimK strategies, but now we consider the incentives of any player with a “marginal” good record that will become bad if the player is recorded as playing one additional D, which is no longer necessarily a player who has been recorded as playing K − 1 Ds for some fixed cutoff K.

Convergence of GrimK Strategies. Fix an arbitrary initial record distribution μC ∈ Δ(N). When all individuals use GrimK strategies, the population share with record k at time t, μCk, evolves according to

\[μCk^{t+1} = 1 - γ + γ(1 - ε)μC k \muD k \]

where μC = ∑k′ μC k′ is the distribution for all pairs (k′, k′) ∈ G × G, and μD = ∑k′ μD k′ is the distribution for all pairs (k, k′) ∈ B × G. Fixing K, we say that distribution μD dominates (or is more favorable than) distribution μC if, for every k ∈ G, ∑k′ μD k′ ≥ ∑k′ μC k′. That is, if for every k ∈ K the share of the population with record no worse than k is greater under distribution μD than under distribution μC. Under the GrimK strategy, let μC denote the steady state with the largest share of cooperators, and let μD denote the steady state with the smallest share of cooperators.

S I Appendix, Theorem 12 shows that, if the initial record distribution is more favorable than μC, then the record distribution converges to μC; similarly, if the initial record distribution is less favorable than μC, then the record distribution converges to μD. Formally, if μC dominates μD, then limt→∞ μCk = μC; similarly, if μC is dominated by μD, then limt→∞ μCk = μD.

In Fig. 4A the blue trajectory corresponds to the initial distribution where all players have record 0, the red trajectory is constant at the unique steady-state value μC ≈ 0.2484, and the yellow trajectory corresponds to the initial distribution where all players have defector records. Here all of the trajectories converge to the unique steady state. In Fig. 4B, the red trajectory is constant at the largest steady-state value μC ≈ 0.9855, the yellow trajectory is constant at the intermediate steady-state value μC ≈ 0.9184, and the green trajectory is constant at the smallest steady-state value μC ≈ 0.6471. The blue trajectory corresponds to the initial distribution where all players have record 0 and converges to the largest steady-state share of cooperators. The green trajectory corresponds to the initial distribution where all players have defector records and converges to the smallest steady-state share of cooperators.

Code Availability. All simulations and numerical calculations have been performed with MATLAB R2017b and Wolfram Mathematica 11.3.0.0. In S I Appendix, we provide the MATLAB scripts used to generate Fig. 4 as well as those to simulate evolutionary dynamics and generate S I Appendix, Fig. S1.

ACKNOWLEDGMENTS. This work was supported by National Science Foundation Grants SES-1643517 and SES-1555071 and Sloan Foundation Grant 2017-9633.

