Demand Composition
and the Strength of Recoveries

Martin Beraja Christian Wolf
MIT Chicago/MIT

Harvard, November 2020
Consumer Spending in Recessions

Average of past U.S. recessions

Contribution to Real PCE change (%)

Durables Services + Non-Durables
Consumer Spending in Recessions

1973 (Oil crisis) U.S. recession

Average of past U.S. recessions

Contribution to Real PCE change (%)

Durables Services Durables Services
+ Non-Durables + Non-Durables
Consumer Spending in Recessions

1973 (Oil crisis) U.S. recession

Average of past U.S. recessions

Covid-19 U.S. recession

Contribution to Real PCE change (%)

Durables Services + Non-Durables
Durables Services + Non-Durables
Durables Services + Non-Durables
Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?
Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

1. **Theory**

 • Setting: multi-sector NK model + agg. & sectoral supply & demand shocks

 Note: all sectors symmetric except for durability
This Paper

Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

1. Theory

- Setting: multi-sector NK model + agg. & sectoral supply & demand shocks
 Note: all sectors symmetric except for durability

- Prediction: \textbf{weaker recovery} after \textbf{services-led} recession
 Measure: cumulative output impulse response condt’l on recession today
Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

1. Theory

- Setting: multi-sector NK model + agg. & sectoral supply & demand shocks
 Note: all sectors symmetric except for durability

- Prediction: **weaker recovery** after **services-led** recession
 Measure: cumulative output impulse response cond’t’l on recession today
 - In simplest model: cycle is V-shaped for services vs. Z-shaped for durables

 Mechanism: **pent-up durables demand** boosts recovery
Is this mechanism empirically plausible & quantitatively relevant?
Is this mechanism empirically plausible & quantitatively relevant?

2. Measurement

- Strong support for key testable implication: durables IRF > services IRF
 Main check: monetary policy shocks
Is this mechanism empirically plausible & quantitatively relevant?

2. **Measurement**

- Strong support for key testable implication: durables IRF > services IRF

 Main check: monetary policy shocks

- **Quantification:** effect of pent-up demand on recovery dynamics

 (a) Semi-structural *shift-share*

 (b) Calibrated structural *model*

 \[\text{COVID-19 split} \approx 70\% \text{ costlier than usual} \]
What does this mean for macro stabilization policy?
What does this mean for macro stabilization policy?

3. **Policy implications**

- CB objective: stabilize output given sectoral & aggregate shocks

- Exercise: characterize eq’m by **sectoral shock incidence** & **CB info set**
This Paper

What does this mean for macro stabilization policy?

3. Policy implications

• CB objective: stabilize output given sectoral & aggregate shocks

• Exercise: characterize eq’m by sectoral shock incidence & CB info set

 a) Aggregate output

 ○ Continually under-stimulate in services-led recession
 ○ Measurement: output loss fully characterized by shift-share estimates
This Paper

What does this mean for macro stabilization policy?

3. Policy implications

- CB objective: stabilize output given sectoral & aggregate shocks

- Exercise: characterize eq’m by sectoral shock incidence & CB info set

a) Aggregate output
 ○ Continually under-stimulate in services-led recession
 ○ Measurement: output loss fully characterized by shift-share estimates

b) Sectoral output
 ○ Perfect output stabilization attainable with simple rule
 ○ Policy is easier for longer in services recession
Related Literature

• Sectoral heterogeneity & business cycle dynamics
 ◦ Supply-side mechanisms
 ◦ Durables spending
 Mankiw (1982), Barsky et al. (2007), Berger-Vavra (2015), McKay-Wieland (2020)

• Strength & shape of recoveries
 Hall (2016), Benigno-Fornaro (2018), Hall-Kudlyak (2020)

• COVID-19 recession
 ◦ Sectoral incidence
 Chetty et al. (2020), Cox et al. (2020), Guerrieri et al. (2020)
 ◦ Recovery shapes
 Reis (2020), Gregory-Menzio (2020)
The Pent-Up Demand Mechanism
Model Overview

- Environment: multiple goods + Keynesian block
 - Today only durables + services, in paper N sectors i with durability $\{\delta_i\}_{i=1}^N$
 - Rest of the economy: sticky prices, labor-only production
Model Overview

• Environment: multiple goods + Keynesian block
 ○ Today only durables + services, in paper N sectors i with durability $\{\delta_i\}_{i=1}^N$
 ○ Rest of the economy: sticky prices, labor-only production

• Agg. risk: shocks $\{b^c_t, b^d_t, b^s_t\}$ to (sectoral) demand = consumption utility
 ○ Solution method: first-order perturbation (= perfect foresight transition)
 ○ Notation: hats = log deviations from steady state
Model Overview

• **Environment:** *multiple goods + Keynesian block*

 ◦ Today only *durables + services*, in paper N sectors i with durability $\{\delta_i\}_{i=1}^N$

 ◦ Rest of the economy: sticky prices, labor-only production

• **Agg. risk:** shocks $\{b_{c}^{t}, b_{d}^{t}, b_{s}^{t}\}$ to *(sectoral) demand* = consumption utility

 ◦ Solution method: first-order perturbation (= perfect foresight transition)

 ◦ Notation: hats = log deviations from steady state

• **Use boldface notation to refer to cumulative IRFs (CIR), e.g.**

\[
y^{d} = \mathbb{E} \left[\sum_{h=0}^{\infty} \hat{y}_{t+h} \mid b_{0}^{d} \right]
\]
Model Details I

- Representative household with preferences

\[\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ e^{b^c_t} \left[e^{b^s_t} \phi^\zeta s_t^{1-\zeta} + e^{b^d_t} (1 - \phi^\zeta) d_t^{1-\zeta} \right] \right] \frac{1-\gamma}{1-\zeta} - 1 - \nu(l_t) \right\} \]

 - \(b^c_t \): aggregate demand shifter (uncertainty, income risk, deleveraging, …)
 - \(\{ b^s_t, b^d_t \} \): sectoral demand shifters (preference changes, disease risk, …)

- Budget constraint:

\[p^s_t s_t + p^d_t \underbrace{[d_t - (1 - \delta) d_{t-1}]}_{e_t} + \frac{\kappa}{2} \left(\frac{d_t}{d_{t-1}} - 1 \right)^2 d_t + a_t = w_t l_t + \frac{1 + r^n_{t-1}}{1 + \pi_t} a_{t-1} + q_t \]
• Representative household with preferences

\[\mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ \frac{e^{b^c_t} \bar{s}^{1-\zeta} + e^{b^d_t} (1 - \bar{\phi})^{1-\zeta}}{1 - \gamma} d_t^{1-\zeta} \right\}^\frac{1-\gamma}{1-\zeta} - 1 - \nu(l_t) \right] \]

- \(b^c_t \): aggregate demand shifter (uncertainty, income risk, deleveraging, …)
- \(\{ b^s_t, b^d_t \} \): sectoral demand shifters (preference changes, disease risk, …)

• Budget constraint:

\[p^s_t s_t + p^d_t \left[d_t - (1 - \delta) d_{t-1} \right] + \kappa \left(\frac{d_t}{d_{t-1}} - 1 \right)^2 d_t + a_t = w_t l_t + \frac{1 + r^n_t}{1 + \pi_t} a_{t-1} + q_t \]

• Normalizations: \(\bar{s} = \phi, \delta \bar{d} = \bar{e} = 1 - \phi \), so \(\bar{y} = 1 \)
• Rest of the economy
 ○ **Production**: sticky prices, single common intermediate good
 Empirical relevance: small relative price movements/elastic durables supply
 \[
 \begin{align*}
 \hat{y}_t & = \phi \hat{s}_t + (1 - \phi) \hat{e}_t \\
 \hat{\pi}_t & = \zeta \hat{m}_t + \beta \mathbb{E}_t [\hat{\pi}_{t+1}]
 \end{align*}
 \]
Model Details II

• Rest of the economy
 ○ **Production**: sticky prices, single common intermediate good
 Empirical relevance: small relative price movements/elastic durables supply
 \[
 \hat{y}_t = \phi \hat{s}_t + (1 - \phi) \hat{e}_t \\
 \hat{\pi}_t = \zeta \hat{m}_t + \beta E_t [\hat{\pi}_{t+1}]
 \]
 ○ **Policy**: neutral monetary policy = fix expected real rate
 Later: numerical solution with other kinds of rules
• Rest of the economy

 ◦ **Production**: sticky prices, single common intermediate good
 Empirical relevance: small relative price movements/elastic durables supply

 \[
 \hat{y}_t = \phi \hat{s}_t + (1 - \phi) \hat{e}_t \\
 \hat{\pi}_t = \zeta \hat{m}_t + \beta \mathbb{E}_t [\hat{\pi}_{t+1}]
 \]

 ◦ **Policy**: neutral monetary policy = fix expected real rate
 Later: numerical solution with other kinds of rules

• **Equilibrium selection**: \(\lim_{t \to \infty} \hat{y}_t^b = 0 \)
 = continuity at indeterminacy boundary, see Lubik & Schorfheide (2003, 2004)
The Pent-Up Demand Mechanism

Intuition in a Special Case
• **Experiment**: $\zeta = \gamma$, $\kappa = 0$, iid shocks. Normalize trough to -1%.
Demand Composition & Recovery Dynamics

- **Experiment**: \(\zeta = \gamma, \kappa = 0 \), iid shocks. Normalize trough to -1%.

1. Pure durables demand shock \(b^d_t \): recovery led by pent-up demand

\[
y^d = -1 + (1 - \delta) = -\delta
\]
Demand Composition & Recovery Dynamics

- **Experiment**: $\zeta = \gamma, \kappa = 0$, iid shocks. Normalize trough to -1%.

2. Pure service demand shock b_t^s: lost output is never recovered

$$y^s = -1$$
Demand Composition & Recovery Dynamics

- **Experiment**: $\zeta = \gamma$, $\kappa = 0$, iid shocks. Normalize trough to -1%.

3. Ordinary recession b^c_t: dominated by pent-up demand effects

$$\lim_{\beta \to 1} y^c = -1 + \frac{(1 - \phi)}{\phi \delta^2 + (1 - \phi)(1 - \delta)} (1 - \delta) \gg -1 + \frac{\bar{e}}{\bar{y}} (1 - \delta)$$
Demand Composition & Recovery Dynamics

- **Experiment**: $\zeta = \gamma$, $\kappa = 0$, iid shocks. Normalize trough to -1%.

4. COVID-19 mix of b^c_t and b^s_t: weak pent-up demand
The Pent-Up Demand Mechanism

A General Forecasting Result
The Full Model

• Return to full model, AR(1) shocks, but keeping $\zeta = \gamma$.

Details

1. Incomplete markets: fraction μ of hand-to-mouth households
2. Many sectors: N sectors heterogeneous in durability and adjustment costs
3. Supply shocks: shocks to relative productivity of different sectors

Proposition

 Normalize the shocks $\{b_{d,t}, b_{s,t}\}$ to move output on impact by -1%. Then where $\theta_d \in [0,1)$. If $\theta_d < 1 - \delta$, then $b_{y,d,t} > b_{y,s,t}, \forall t > 0$.

Empirical Relevance
The Full Model

- Return to full model, AR(1) shocks, but keeping $\zeta = \gamma$. Similar for:

 1. **Incomplete markets**: fraction μ of hand-to-mouth households
 2. **Many sectors**: N sectors heterogeneous in durability and adjustment costs
 3. **Supply shocks**: shocks to relative productivity of different sectors
The Full Model

- Return to full model, AR(1) shocks, but keeping $\zeta = \gamma$. Similar for:

 1. **Incomplete markets**: fraction μ of hand-to-mouth households
 2. **Many sectors**: N sectors heterogeneous in durability and adjustment costs
 3. **Supply shocks**: shocks to relative productivity of different sectors

Proposition

Normalize the shocks $\{b_{t}^d, b_{t}^s\}$ to move output on impact by -1%. Then

$$y^d = -\frac{1}{1 - \rho_b} \frac{\delta}{1 - \theta_d}, \quad y^s = -\frac{1}{1 - \rho_b}$$

where $\theta_d \in [0, 1)$.
The Full Model

- Return to full model, AR(1) shocks, but keeping $\zeta = \gamma$. Similar for: ▶ Details

 1. **Incomplete markets**: fraction μ of hand-to-mouth households
 2. **Many sectors**: N sectors heterogeneous in durability and adjustment costs
 3. **Supply shocks**: shocks to relative productivity of different sectors

Proposition

Normalize the shocks $\{b^d_t, b^s_t\}$ to move output on impact by -1%. Then

$$y^d_t = -\frac{1}{1 - \rho_b} \frac{\delta}{1 - \theta_d}, \quad y^s_t = -\frac{1}{1 - \rho_b}$$

where $\theta_d \in [0, 1)$. If $\theta_d < 1 - \delta$, ▶ Empirical Relevance, then

$$\hat{y}^d_t > \hat{y}^s_t, \quad \forall t > 0$$
Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?
Forecasting Recoveries

Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

• Need to map IRFs to forecasts:

\[
E \left[\hat{y}_{t+h} \mid \{\hat{s}_{t-\ell}, \hat{e}_{t-\ell}\}_{\ell=0}^{\infty} \right]
\]
Forecasting Recoveries

Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

• Need to map IRFs to forecasts:

\[\mathbb{E} [\hat{y}_{t+h} \mid \{ \hat{s}_{t-l}, \hat{e}_{t-l} \}_{l=0}^{\infty}] \]

Proposition

Let \((\sigma_c, \sigma_d, \sigma_s) > 0\) and let \(u_t = (u_t^s, u_t^d)')\) denote the forecast residuals of a reduced-form \(VAR(\infty)\) in \((\phi\hat{s}_t, (1 - \phi)\hat{e}_t)')\).
Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

• Need to map IRFs to forecasts:

\[
\mathbb{E} [\hat{y}_{t+h} | \{\hat{s}_{t-l}, \hat{e}_{t-l}\}_{l=0}^{\infty}]
\]

Proposition

Let \((\sigma_c, \sigma_d, \sigma_s) > 0\) and let \(u_t = (u_t^s, u_t^d)'\) denote the forecast residuals of a reduced-form VAR(\(\infty\)) in \((\phi\hat{s}_t, (1 - \phi)\hat{e}_t)'\). Then, for all \(h \geq 0\):

\[
\mathbb{E} [\hat{y}_{t+h} | \{u_t^s = -\omega_s, u_t^d = -\omega_d\}] = -[\omega_s \cdot \hat{y}_t^s + \omega_d \cdot \hat{y}_t^d]
\]
Forecasting Recoveries

Observe two recessions, one biased towards services, one biased towards durables. Should we expect the recoveries to look different?

• Need to map IRFs to forecasts:

\[\mathbb{E} [\hat{y}_{t+h} | \{\hat{s}_{t-l}, \hat{e}_{t-l}\}_{l=0}^{\infty}] \]

Proposition

Let \((\sigma_c, \sigma_d, \sigma_s) > 0\) and let \(u_t = (u^s_t, u^d_t)'\) denote the forecast residuals of a reduced-form VAR(\(\infty\)) in \((\phi\hat{s}_t, (1 - \phi)\hat{e}_t)'\). Then, for all \(h \geq 0\):

\[
\mathbb{E} [\hat{y}_{t+h} | \{u^s_t = -\omega_s, u^d_t = -\omega_d\}] = -[\omega_s \cdot \hat{y}^s_t + \omega_d \cdot \hat{y}^d_t]
\]

and so in particular

\[
\mathbb{E} [y^\omega | \{u^s_t = -\omega_s, u^d_t = -\omega_d\}] = -\left[\omega_s \cdot \frac{1}{1 - \rho_b} + \omega_d \cdot \frac{1}{1 - \rho_b} \frac{\delta}{1 - \theta_d}\right]
\]
Supporting Empirical Evidence
Empirical Evidence

• Testable implication: PUD effects \Leftrightarrow durables IRF above services IRF

$$\hat{e}_t^c \gg \hat{s}_t^c, \quad \forall t$$
Empirical Evidence

• Testable implication: PUD effects ⇔ durables IRF above services IRF

\[\hat{e}^c_t \gg \hat{s}^c_t, \quad \forall t \]

• **Ideal laboratory**: monetary policy transmission

 1. IRF ranking applies without change to monetary policy shocks
 2. Relatively standard approach to time series identification is available

 Today: simple recursive VAR
Empirical Evidence

• Testable implication: PUD effects ⇔ durables IRF above services IRF

\[\hat{e}_t^c \gg \hat{s}_t^c, \ \forall t \]

• **Ideal laboratory**: monetary policy transmission
 1. IRF ranking applies without change to monetary policy shocks
 [Proposition]
 2. Relatively standard approach to time series identification is available

Today: simple recursive VAR

• **In paper**: uncertainty & oil shocks, Wold error transmission
 [Details]
Results

Figure: Quarterly IRFs, with trough response normalized to -1% for all.

- **Main result**: Z-cycle for Durables, V-cycle for Services
Results

Figure: Quarterly IRFs, with trough response normalized to -1% for all.

- **Main result**: Z-cycle for Durables, V-cycle for Services
 - Test: Bayesian posterior credible sets for CIR ratios \(\{s^m/e^m, nd^m/e^m\} \)
 - Consistent with previous work documenting overshoot in durables
 Erceg-Levin (2006), McKay-Wieland (2020)
Quantification
Objective: Quantify the effect of pent-up demand on recoveries

\[\frac{\partial \mathbb{E}(\text{recovery strength})}{\partial \text{spending composition}} \]

Recall mini model: these effects may be sizable

Now:

1. Semi-structural shift-share: re-weight VAR IRFs
2. Full structural model: explore large parameter space & model extensions
Recession Composition & Recovery Strength

Objective: Quantify the effect of pent-up demand on recoveries

\[
\frac{\partial \mathbb{E} \text{(recovery strength)}}{\partial \text{spending composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega \) is the CIR for a recession with sectoral split \(\{\omega_i\} \):

\[
y^\omega = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \hat{y}_t \mid \{ u_{0,i} = -\omega_i \} \right]
\]
Recession Composition & Recovery Strength

Objective: Quantify the effect of pent-up demand on recoveries

\[
\frac{\partial \mathbb{E}(\text{recovery strength})}{\partial \text{spending composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega \) is the CIR for a recession with sectoral split \(\{\omega_i\} \):

\[
y^\omega = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \hat{y}_t | \{u_{0,i} = -\omega_i\} \right]
\]

• Recall mini model: these effects may be sizable

\[
y^s = -1, \quad y^d = -\delta
\]
Objective: Quantify the effect of pent-up demand on recoveries

\[\frac{\partial E(\text{recovery strength})}{\partial \text{spending composition}} \equiv \frac{\partial y^\omega}{\partial \omega} \]

where \(y^\omega \) is the CIR for a recession with sectoral split \(\{\omega_i\} \):

\[y^\omega = E_0 \left[\sum_{t=0}^{\infty} \hat{y}_t \mid \{u_{0,i} = -\omega_i\} \right] \]

• Recall mini model: these effects may be sizable

\[y^s = -1, \quad y^d = -\delta \]

\[\frac{y^{\text{covid}}}{y^{\text{normal}}} > 2 \]
Objective: Quantify the effect of pent-up demand on recoveries

\[
\frac{\partial \mathbb{E} (\text{recovery strength})}{\partial \text{spending composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega \) is the CIR for a recession with sectoral split \(\{ \omega_i \} \):

\[
y^\omega = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \hat{y}_t \mid \{ u_{0,i} = -\omega_i \} \right]
\]

- Recall mini model: these effects may be sizable
 \[
 y^s = -1, \quad y^d = -\delta
 \]

- Now: quantitative measurement
 1. **Semi-structural shift-share**: re-weight VAR IRFs
 2. **Full structural model**: explore large parameter space & model extensions
Quantification

Semi-Structural Shift-Share
Proposition

Extend the model to feature monetary shocks of persistence ρ_m. Let

$$\hat{y}_t^\omega = \omega_s \hat{s}_t^m + \omega_d \hat{e}_t^m$$

where m superscripts denote impulse responses to monetary policy shocks.

Then \hat{y}_t^ω is equal to the IRF of output to a pair of sectoral demand shocks (b^s_t, b^d_t) with $\rho_b = \rho_m$ and $\sigma_s = \frac{\sigma_m}{1-\rho_m} \omega_s \bar{y}_s$, $\sigma_d = \frac{\sigma_m}{1-\rho_m} \omega_d \bar{y}_d$.
Proposition

Extend the model to feature monetary shocks of persistence ρ_m. Let

$$\hat{y}_t^\omega = \omega_s \hat{s}_t^m + \omega_d \hat{e}_t^m$$

where m superscripts denote impulse responses to monetary policy shocks.

Then \hat{y}_t^ω is equal to the IRF of output to a pair of sectoral demand shocks (b_t^s, b_t^d) with $\rho_b = \rho_m$ and $\sigma_s = \frac{\sigma_m}{1-\rho_m} \omega_s \bar{y}_s$, $\sigma_d = \frac{\sigma_m}{1-\rho_m} \omega_d \bar{y}_e$.

Take-away: weighted averages of monetary policy IRFs give y^ω, $\omega \in [0, 1]$
Semi-Structural Shift-Share

• Implementation
 ○ **Range**: lower bound is pure services, upper bound is pure durables
 ○ Shares for **avg. recession** and **COVID-19** match historical composition
Semi-Structural Shift-Share

• Implementation
 ○ **Range**: lower bound is pure services, upper bound is pure durables
 ○ Shares for **avg. recession** and **COVID-19** match historical composition

• Find: service-led recession ≈ **70 per cent costlier** in output PV
Quantification

Structural Model
Structural Model

- **Environment**: baseline model + two further twists:
 1. **Many shocks**
 - Aggregate & sectoral supply & demand shocks
 - Allow for heterogeneous shock persistence \(\{\rho_b, \rho_z\} \)
 2. **Standard monetary policy rule**

 \[
 \hat{r}_t^n = \phi \hat{\pi}_t, \quad \phi > 1
 \]
Structural Model

- **Environment**: baseline model + two further twists:
 1. Many shocks
 - Aggregate & sectoral supply & demand shocks
 - Allow for heterogeneous shock persistence \(\{ \rho_b, \rho_z \} \)
 2. Standard monetary policy rule
 \[
 \hat{r}_t^n = \phi \hat{\pi}_t, \quad \phi > 1
 \]

Challenge: 1. & 2. break diagonal structure, so IRFs \(\neq \) forecasts
Structural Model

• **Environment**: baseline model + two further twists:

 1. **Many shocks**
 - Aggregate & sectoral supply & demand shocks
 - Allow for heterogeneous shock persistence \(\{\rho_b, \rho_z\} \)

 2. **Standard monetary policy rule**
 \[
 \hat{r}_t^n = \phi_\pi \hat{\pi}_t, \quad \phi_\pi > 1
 \]

 Challenge: 1. & 2. break diagonal structure, so IRFs \(\neq \) forecasts

• **Experiment**

 - Compute conditional expectation
 \[
 y^\omega = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \hat{y}_t \mid \left\{ u_0^s = -\omega, u_0^d = -(1 - \omega) \right\} \right]
 \]

 for ordinary composition vs. COVID-19 composition
Parameterization

- **Background**: mostly calibrate to standard business-cycle targets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Discount Rate</td>
<td>0.99</td>
<td>Annual Real FFR</td>
</tr>
<tr>
<td>γ</td>
<td>Inverse EIS</td>
<td>1</td>
<td>Literature</td>
</tr>
<tr>
<td>ζ</td>
<td>Elasticity of Substitution</td>
<td>1</td>
<td>$=$ EIS</td>
</tr>
<tr>
<td>ϕ</td>
<td>Durables Consumption Share</td>
<td>0.1</td>
<td>NIPA</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation Rate</td>
<td>0.068</td>
<td>BEA Fixed Asset</td>
</tr>
<tr>
<td>Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Inflation Response</td>
<td>1.5</td>
<td>Literature</td>
</tr>
<tr>
<td>Shocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>Demand Shock Persistence</td>
<td>0.83</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Supply Shock Persistence</td>
<td>0.85</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>σ_b^z/σ_z^z</td>
<td>Relative Demand Volatility</td>
<td>0.28</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>σ_i^i/σ_i^i</td>
<td>Relative Sectoral Volatility</td>
<td>1</td>
<td>Foerster et al. (2011)</td>
</tr>
</tbody>
</table>
Parameterization

- **Background**: mostly calibrate to standard business-cycle targets

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Discount Rate</td>
<td>0.99</td>
<td>Annual Real FFR</td>
</tr>
<tr>
<td>γ</td>
<td>Inverse EIS</td>
<td>1</td>
<td>Literature</td>
</tr>
<tr>
<td>ζ</td>
<td>Elasticity of Substitution</td>
<td>1</td>
<td>$=$ EIS</td>
</tr>
<tr>
<td>ϕ</td>
<td>Durables Consumption Share</td>
<td>0.1</td>
<td>NIPA</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>Depreciation Rate</td>
<td>0.068</td>
<td>BEA Fixed Asset</td>
</tr>
<tr>
<td>Policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Inflation Response</td>
<td>1.5</td>
<td>Literature</td>
</tr>
<tr>
<td>Shocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_b</td>
<td>Demand Shock Persistence</td>
<td>0.83</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>ρ_z</td>
<td>Supply Shock Persistence</td>
<td>0.85</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>σ_b^i/σ_z^i</td>
<td>Relative Demand Volatility</td>
<td>0.28</td>
<td>Lubik & Schorfheide (2004)</td>
</tr>
<tr>
<td>σ_i^s/σ_i^c</td>
<td>Relative Sectoral Volatility</td>
<td>1</td>
<td>Foerster et al. (2011)</td>
</tr>
</tbody>
</table>

- **Then**: vary adjustment costs & slope of NKPC
Results

How many % costlier is the COVID-style recession in CIR terms?
Policy Implications
Policy Implications

• **Practice**: policymakers focussed on aggregate employment shortfalls
Policy Implications

- **Practice**: policymakers focussed on aggregate employment shortfalls

- **Our setting**
 - As before: sectoral + aggregate demand shocks \(\{b_t^C, b_t^S, b_t^d\} \)
 - Policy: set \(r_t^H \) before time-\(t \) shocks are realized, fixed prices

26
Policy Implications

• **Practice**: policymakers focussed on aggregate employment shortfalls

• **Our setting**
 ○ As before: sectoral + aggregate demand shocks \(\{ b_t^c, b_t^s, b_t^d \} \)
 ○ Policy: set \(r_t^p \) before time-\(t \) shocks are realized, fixed prices

• **Experiment**
 (a) **Incidence**: at \(t = 0 \) arbitrary sectoral demand shock mix s.t. \(\hat{y}_0 = -1 \)
 (b) **Information**: given information set \(\mathcal{F}_t \), central bank sets real rates so that

\[
\mathbb{E} [\hat{y}_{t+h} | \mathcal{F}_t] = 0 \quad \forall h > 0
\]
Policy Implications

• **Practice**: policymakers focussed on aggregate employment shortfalls

• **Our setting**

 ◦ As before: sectoral + aggregate demand shocks \(\{b^c_t, b^s_t, b^d_t\} \)

 ◦ Policy: set \(r^n_t \) before time-\(t \) shocks are realized, fixed prices

• **Experiment**

 (a) **Incidence**: at \(t = 0 \) arbitrary sectoral demand shock mix s.t. \(\hat{y}_0 = -1 \)

 (b) **Information**: given information set \(\mathcal{F}_t \), central bank sets real rates so that

 \[
 E [\hat{y}_{t+h} | \mathcal{F}_t] = 0 \quad \forall h > 0
 \]

How do outcomes vary with (a) and (b)?
Aggregated Output Gap

For $F_t = H_t(\hat{y})$: perfect stabilization in ordinary recessions ...

Figure: Stabilization policy in an ordinary recession
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: … but too little stimulus in services recessions …

Figure: Stabilization policy in a services recession
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: ... and then only partially correct the shortfall over time

Figure: Stabilization policy in a services recession
Aggregate Output Gap

For $\mathcal{F}_t = \mathcal{H}_t(\hat{y})$: … and then only partially correct the shortfall over time

Figure: Stabilization policy in a services recession
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: … and then only partially correct the shortfall over time.

Figure: Stabilization policy in a services recession.
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: … and then only partially correct the shortfall over time

Figure: Stabilization policy in a services recession
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: … and then only partially correct the shortfall over time

Figure: Stabilization policy in a services recession
Aggregate Output Gap

For $F_t = H_t(\hat{y})$: ... and then only partially correct the shortfall over time

Figure: Stabilization policy in a services recession
Aggregate Output Gap

Result I: For $F_t = H_t(\hat{y})$, the eq’m output CIR scales with the (unknown) CIR of the sectoral demand shock mix.

Full Result
Result I: For $\mathcal{F}_t = \mathcal{H}_t(\hat{y})$, the eq’m output CIR scales with the (unknown) CIR of the sectoral demand shock mix.

Proposition

Suppose that $\mathcal{F}_t = \mathcal{H}_t(y)$, and let

- \hat{y}_t^b: IRF to actual time-0 shock $\{b^c_0, b^s_0, b^d_0\}$
- \hat{y}_t^u: IRF to reduced-form forecast innovation $u_t \equiv \hat{y}_t - \mathbb{E}[\hat{y}_t | \mathcal{H}_t(y)]$

Then the actual equilibrium output path is given as

$$\mathbb{E}_0\left[\sum_{t=1}^{\infty} \hat{y}_t \right] = \frac{\sum_{t=0}^{\infty} \hat{y}_t^b}{\sum_{t=0}^{\infty} \hat{y}_t^u} - 1$$
Aggregate Output Gap

Result I: For $F_t = \mathcal{H}_t(\hat{y})$, the eq’m output CIR scales with the (unknown) CIR of the sectoral demand shock mix. ▶ Full Result

Proposition

Suppose that $F_t = \mathcal{H}_t(y)$, and let

- \hat{y}_t^b: IRF to actual time-0 shock $\{b_0^c, b_0^s, b_0^d\}$
- \hat{y}_t^u: IRF to reduced-form forecast innovation $u_t \equiv \hat{y}_t - E[\hat{y}_t | \mathcal{H}_t(y)]$

Then the actual equilibrium output path is given as

$$E_0 \left[\sum_{t=1}^{\infty} \hat{y}_t \right] = \frac{\sum_{t=0}^{\infty} \hat{y}_t^b}{\sum_{t=0}^{\infty} \hat{y}_t^u} - 1$$

Measurement: service-led recession adds extra 70% to expected CIR
Result II: For $\mathcal{F}_t = \mathcal{H}_t(\{\hat{y}_i\}_i)$, achieve perfect stabilization with simple VAR-based rule, independent of sectoral incidence.

Figure: Easier-for-longer stabilization policy in a services recession
Conclusions

Consumer theory + demand-determined output \(\Rightarrow\) composition of household spending matters for likely strength of recovery
Conclusions

Consumer theory + demand-determined output \implies composition of household spending matters for likely strength of recovery

- **This paper**: formalize, test, quantify
 - PUD effects are present & big in standard models + time series data
 - Measurement: service-led recession $\approx 70\%$ costlier than otherwise identical, ordinary durables-led contraction
Conclusions

Consumer theory + demand-determined output \implies composition of household spending matters for likely strength of recovery

- **This paper**: formalize, test, quantify
 - PUD effects are present & big in standard models + time series data
 - Measurement: service-led recession $\approx 70\%$ costlier than otherwise identical, ordinary durables-led contraction

- Implications for **policy design**
 1. No one-size-fits-all response to aggregate output gaps
 2. *Easier-for-longer* in services recession ensures 0 expected output gap
Thank you!
Extensions

- Incomplete markets
 - A fringe μ of households has the same preferences, but is hand-to-mouth
 - Assume their income follows
 $$\phi \tilde{s}_t^H + (1 - \phi) \tilde{e}_t^H = \eta \hat{y}_t$$
 \[\Rightarrow\] Irrelevance result: HtMs scale IRFs up or down, but leave shapes unchanged

- Supply shocks
 - Intermediate good is turned into services at rate z_t^s and durables at rate z_t^d
 - Then supply shocks show up in two places:
 1. Prices in the household budget constraint satisfy
 $$\hat{p}_t^s = -\hat{z}_t^s, \quad \hat{p}_t^d = -\hat{z}_t^d$$
 2. The output market-clearing condition becomes
 $$\hat{y}_t = \phi(-\hat{z}_t^s + \tilde{s}_t) + (1 - \phi)(-\hat{z}_t^d + \tilde{e}_t)$$
Monetary Policy Equivalence

Proposition

Consider the following two shocks:

(i) A common demand shock b^c_t with persistence ρ_b and volatility σ^c_b

(ii) An innovation m_t to the rule

$$\hat{r}^n_t = \mathbb{E}_t [\hat{\pi}_{t+1}] + m_t$$

with persistence $\rho_m = \rho_b$ and volatility $\sigma_m = (1 - \rho_b)\sigma^c_b$

The impulse responses of all real aggregates $x \in \{s, e, d, y\}$ to the two shocks are identical:

$$\hat{x}^c_t = \hat{x}^m_t$$
Empirics: Uncertainty

• Second main experiment: uncertainty shocks
 Implementation as in Basu & Bundick (2017)

• Find: V- vs. Z-shape as for monetary policy
Empirics: Other Experiments

• Oil shocks
 ○ Project granular sectoral spending series on oil shock series
 ○ Find: PUD for durables/gas/transport, not for food/clothes

• Reduced-form dynamics
 ○ Estimate reduced-form VAR in all spending components
 ○ Find: services CIR 120% larger than for durables
Shift-Share: Uncertainty Shocks

The diagram illustrates the % Deviation over time (Horizon) for different scenarios:
- Range
- Avg. Recession
- COVID-19
Why will we invariably have $\theta_d \ll 1 - \delta$?
Forecasting by $\rho_b = \rho_z$ & ϕ_π
How much less persistent would a services shock need to be to offset the pent-up demand effects?

• Straightforward calculation: services persistence ρ_s must satisfy

$$\rho_s = 1 - \frac{1 - \theta_d}{\delta} + \frac{1 - \theta_d}{\delta} \rho_b$$

• Example calibration

 ○ Set $\rho_b = 0.83$, $\delta = 0.068$, $\beta = 0.99$, $\kappa = 0.15$, so get $\theta_d = 0.4966$

 ○ Then $\rho_s = -0.2586$
Proposition

Suppose that \(\mathcal{F}_t = \mathcal{H}_t(y) \), and let

- \(\hat{y}_t^b \): IRF to actual time-0 shock \(\{b_0^c, b_0^s, b_0^d\} \)
- \(\hat{y}_t^u \): IRF to reduced-form forecast innovation \(u_t \equiv \hat{y}_t - \mathbb{E}[\hat{y}_t | \mathcal{H}_t(y)] \)

Then:

\[
\mathbb{E}_0 [\hat{y}_t] = \hat{y}_t^b - \sum_{h=0}^{t-1} \hat{y}_{t-h}^u \mathbb{E}_0 [\hat{y}_h]
\]

and so

\[
\mathbb{E}_0 \left[\sum_{t=1}^{\infty} \hat{y}_t \right] = \frac{\sum_{t=0}^{\infty} \hat{y}_t^b}{\sum_{t=0}^{\infty} \hat{y}_t^u} - 1
\]
Proposition

Suppose that $\mathcal{F}_t = \mathcal{H}_t(\{\hat{y}_i\}_i)$. Then

$$E_0[\hat{y}_t] = 0, \text{ for } t = 1, 2, \ldots$$

The real interest rate is set as

$$r_t - E[r_t | \mathcal{F}_{t-1}] = \sum_{i=1}^{N} \phi_{y_i} u_{it}$$

where the response coefficients $\{\phi_{y_i}\}_i$ depend on model parameters and the $\{u_{it}\}_i$ are reduced-form VAR forecast errors:

$$u_{it} = y_{it} - E[y_{it} | \mathcal{F}_{t-1}]$$