Demand Composition and the Strength of Recoveries

Martin Beraja Christian K. Wolf
MIT Chicago/MIT

VMACS Junior Conference, September 2020
Figure: Composition of consumption declines in U.S. recessions from 1960 - 2019 (peak-to-trough) and for the COVID-19 recession (February - May 2020)
Composition of consumption declines in a demand-driven recession determines the strength of the recovery

• Recovery from an ordinary, durables-led recession is stronger than the recovery from an equally deep services-led recession like Covid-19

• Why?
 Basic consumption theory
 + demand-determined output
 • Durable cuts in a recession = depreciated stock of durables in the future
 • After an ordinary durables-led recession, households seek to replenish it
 • This pent-up demand boosts aggregate spending, generating an internal tendency towards recovery that is missing after services-led recessions

• What we do:
 simple model + VAR evidence + quantify $\frac{\partial \text{recovery strength}}{\partial \text{demand composition}}$
This paper

Composition of consumption declines in a demand-driven recession determines the strength of the recovery

• Recovery from an ordinary, **durables-led** recession is **stronger** than the recovery from an equally deep **services-led** recession like Covid-19
Composition of consumption declines in a demand-driven recession determines the strength of the recovery

• Recovery from an ordinary, **durables-led** recession is **stronger** than the recovery from an equally deep **services-led** recession like Covid-19

• **Why?** Basic consumption theory + demand-determined output

 ○ Durable cuts in a recession \implies depreciated stock of durables in the future
 ○ After an ordinary durables-led recession, households seek to replenish it
 ○ This **pent-up demand** boosts aggregate spending, generating an internal tendency towards recovery that is missing after services-led recessions
This paper

Composition of consumption declines in a demand-driven recession determines the strength of the recovery

• Recovery from an ordinary, **durables-led** recession is **stronger** than the recovery from an equally deep **services-led** recession like Covid-19

• **Why?** Basic consumption theory + demand-determined output

 ○ Durable cuts in a recession ⟷ depreciated stock of durables in the future

 ○ After an ordinary durables-led recession, households seek to replenish it

 ○ This **pent-up demand** boosts aggregate spending, generating an internal tendency towards recovery that is missing after services-led recessions

• **What we do:** simple model + VAR evidence + quantify $\frac{\partial \text{recovery strength}}{\partial \text{demand composition}}$
A Simple Model of Pent-Up Demand
Baseline Model

- **Representative household** with preferences over services s_t, durables d_t and hours worked ℓ_t are represented by the utility function

$$
\mathbb{E}_0 \left[\sum_{t=0}^{\infty} e^{b^c_t} \left[e^{b^s_t \phi \rho s_t^{1-\rho}} + e^{b^d_t (1-\phi)^\rho d_t^{1-\rho}} \right]^{\frac{1-\gamma}{1-\rho}} - 1 \right] - \chi \frac{\ell_t^{1+\frac{1}{\phi}}}{1 + \frac{1}{\phi}}
$$

where b^c_t, b^s_t, b^d_t are demand drivers following AR(1) processes

- The **budget constraint** is

$$
p^s_t s_t + p^d_t [d_t - (1-\delta)d_{t-1}] + a_t = w_t \ell_t + e_t + \frac{1 + r^n_t}{1 + \pi_t} a_{t-1} + q_t
$$
Baseline Model

- **Representative household** with preferences over services s_t, durables d_t and hours worked ℓ_t are represented by the utility function

\[
\mathbb{E}_0 \left[\sum_{t=0}^{\infty} e^{b_t^c} \left[e^{b_t^s} \phi^t s_t^{1-\rho} + e^{b_t^d} (1 - \phi)^t d_t^{1-\rho} \right]^{\frac{1-\gamma}{1-\rho}} \right] - 1 - \chi \frac{\ell_t^{1+\frac{1}{\phi}}}{1+\frac{1}{\phi}}
\]

where b_t^c, b_t^s, b_t^d are demand drivers following AR(1) processes

- The **budget constraint** is

\[
p_t^s s_t + p_t^d \left[d_t - (1 - \delta) d_{t-1} \right] + a_t = w_t \ell_t + \frac{1 + r_{t-1}^n}{1 + \pi_t} a_{t-1} + q_t
\]

- Model closure: **fully demand-determined output**

 - Market clearing requires $y_t = s_t + e_t$
 - Ensure market clearing through labor rationing (fixed nominal rate & prices)
• **Experiment:** $\rho = \gamma + \text{iid shocks } \{b^c_t, b^d_t, b^s_t\}$. Normalize trough to -1%.

 ○ Look at PDV of output loss as measure of strength of recovery:

 $$y \equiv \sum_{t=0}^{\infty} \beta^t \hat{y}_t$$
Demand Composition and Strength of Recoveries

- **Experiment:** $\rho = \gamma + \text{iid shocks } \{b^c_t, b^d_t, b^s_t\}$. Normalize trough to -1%.

1. Pure durables demand shock b^d_t: recovery led by pent-up demand

$$\lim_{\beta \to 1} y^d_t = -1 + (1 - \delta) = -\delta$$
Demand Composition and Strength of Recoveries

- **Experiment**: \(\rho = \gamma + \text{iid shocks} \{ b^c_t, b^d_t, b^s_t \} \). Normalize trough to -1%.

1. Pure service demand shock \(b^s_t \): lost output is never recovered

\[y^s = -1 \]
Demand Composition and Strength of Recoveries

- **Experiment**: \(\rho = \gamma + \text{iid shocks } \{b^c_t, b^d_t, b^s_t\} \). Normalize trough to -1%.

3. Ordinary recession \(b^c_t \): dominated by pent-up demand effects

\[
\lim_{\beta \to 1} y^c = -1 + \frac{(1 - \phi)}{\phi \delta + (1 - \phi)} (1 - \delta) > -1 + \frac{\bar{e}}{\bar{y}} (1 - \delta)
\]
Demand Composition and Strength of Recoveries

- **Experiment**: $\rho = \gamma + \text{iid shocks } \{b^c_t, b^d_t, b^s_t\}$. Normalize trough to -1%.

4. COVID-19 mix of b^c_t and b^s_t: weak pent-up demand
1. **Quadratic adjustment cost (κ) on changes in durables**
 - Delayed adjustment, so depreciation does more of stock adjustment:
 \[-y^d = \sum_{\ell=0}^{\infty} \theta^\ell_d \delta = \frac{1}{1 - \theta_d} \delta\]
 where $\theta_d = \theta_d(\kappa)$ is the persistence of durables holdings
Extensions

1. **Quadratic adjustment cost \((\kappa)\) on changes in durables**
 - Delayed adjustment, so depreciation does more of stock adjustment:
 \[
 -y_d = \sum_{\ell=0}^{\infty} \theta_d^\ell \delta = \frac{1}{1 - \theta_d} \delta
 \]
 where \(\theta_d = \theta_d(\kappa)\) is the persistence of durables holdings

2. **Richer preferences**
 - Continuum of sectors with heterogeneous durability \(\delta_i\): harmonic mean of depreciation rates = overweight durable sectors
 \[
 -y_d = \mathbb{E}_i (\delta_i^{-1})^{-1} \leq \mathbb{E}_i (\delta) = \bar{\delta}
 \]
 - Move away from \(\rho = \gamma\): In the empirically relevant case of \(\rho < \gamma\), recoveries from services-led recessions are even weaker
1. **Quadratic adjustment cost (κ) on changes in durables**
 ○ Delayed adjustment, so depreciation does more of stock adjustment:
 \[
 -y^d = \sum_{\ell=0}^{\infty} \theta_{d}\delta = \frac{1}{1 - \theta_d}\delta
 \]
 where $\theta_d = \theta_d(\kappa)$ is the persistence of durables holdings

2. **Richer preferences**
 ○ Continuum of sectors with heterogeneous durability δ_i: harmonic mean of depreciation rates = overweight durable sectors
 \[
 -y^d = \mathbb{E}_i (\delta_i^{-1})^{-1} \leq \mathbb{E}_i (\delta) = \bar{\delta}
 \]
 ○ Move away from $\rho = \gamma$: In the empirically relevant case of $\rho < \gamma$, recoveries from services-led recessions are even weaker

3. **Incomplete markets**
 ○ Identical conclusions with acyclical employment risk [e.g. see Werning (2015)]
Extensions

1. **Quadratic adjustment cost (κ) on changes in durables**
 - Delayed adjustment, so depreciation does more of stock adjustment:

 $$-y^d = \sum_{\ell=0}^{\infty} \theta_{d}\delta = \frac{1}{1 - \theta_d}\delta$$

 where $\theta_d = \theta_d(\kappa)$ is the persistence of durables holdings

2. **Richer preferences**
 - Continuum of sectors with heterogeneous durability δ_i: harmonic mean of depreciation rates = overweight durable sectors

 $$-y^d = \mathbb{E}_i \left(\delta_i^{-1}\right)^{-1} \leq \mathbb{E}_i (\delta) = \bar{\delta}$$

 - Move away from $\rho = \gamma$: In the empirically relevant case of $\rho < \gamma$, recoveries from services-led recessions are even weaker

3. **Incomplete markets**
 - Identical conclusions with acyclical employment risk [e.g. see Werning (2015)]

4. **Richer supply side**
 - Partially fixed prices (or wages): V- and Z-shapes similar to baseline
Empirical Evidence
Empirical Evidence

Q: Do we see pent-up demand in aggregate time series data?
Q: Do we see pent-up demand in aggregate time series data?

- Ideal laboratory: monetary policy shock
 1. **Sharp prediction**: Z-shaped for d, V-shaped for s (why? MP shock = b^C_t)
 2. Relatively standard approach to identification is available

Q: Do we see pent-up demand in aggregate time series data?

• Ideal laboratory: monetary policy shock
 1. **Sharp prediction**: Z-shaped for d, V-shaped for s (why? MP shock = b_t^c)
 2. Relatively standard approach to identification is available

• Implementation:
 - Estimate VAR in output, prices, the ff rate, total consumption and one consumption category at a time (durables, non-durables and services)
 - Identification via **recursive ordering**, with the rate ordered last
Empirical Evidence

Q: Do we see pent-up demand in aggregate time series data?

- Ideal laboratory: monetary policy shock

 1. **Sharp prediction:** Z-shaped for \(d \), V-shaped for \(s \) (why? MP shock = \(b_t^C \))

 2. Relatively standard approach to identification is available

- Implementation:

 - Estimate VAR in output, prices, the ff rate, total consumption and one consumption category at a time (durables, non-durables and services)

 - Identification via **recursive ordering**, with the rate ordered last

- In paper: other checks (uncertainty, oil, uncond’tl dynamics & spectra)
Confirm: Z-cycle for Durables, V-cycle for Services

Figure: Quarterly IRFs, with trough response normalized to -1% for all.
Quantification
Objective: Quantify the “causal effect”

\[
\frac{\partial \text{recovery strength}}{\partial \text{demand composition}}
\]
Objective: Quantify the “causal effect”

\[
\frac{\partial \text{recovery strength}}{\partial \text{demand composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega \) is the PDV response to weighted shock pair \(\{\omega b^d_t, (1 - \omega) b^s_t\} \):

\[
\hat{y}_t^\omega = \omega \times \hat{y}_t^d + (1 - \omega) \times \hat{y}_t^s
\]
Objective: Quantify the “causal effect”

\[
\frac{\partial \text{recovery strength}}{\partial \text{demand composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega\) is the PDV response to weighted shock pair \(\{\omega b^d_t, (1 - \omega) b^s_t\}\):

\[
\hat{y}^\omega_t = \omega \times \hat{y}^d_t + (1 - \omega) \times \hat{y}^s_t
\]

1. Semi-structural shift-share

 • **Approach:** compute weighted average of VAR monetary policy IRFs

 \[
 \omega \times \hat{e}^m_t + (1 - \omega) \times \hat{s}^m_t
 \]

 • **Claim:** with fixed relative prices & interest rates this gives \(y^\omega\) for \(\rho^b = \rho^m\)

 Note: shift-share theorem allows for incomplete markets, adjustment costs, …
Objective: Quantify the “causal effect”

\[
\frac{\partial \text{recovery strength}}{\partial \text{demand composition}} \equiv \frac{\partial y^\omega}{\partial \omega}
\]

where \(y^\omega\) is the PDV response to weighted shock pair \(\{\omega b^d_t, (1 - \omega) b^s_t\}\):

\[
\hat{y}_t^\omega = \omega \times \hat{y}_t^d + (1 - \omega) \times \hat{y}_t^s
\]

1. **Semi-structural shift-share**
 - **Approach:** compute weighted average of VAR monetary policy IRFs
 \[
 \omega \times \hat{e}_t^m + (1 - \omega) \times \hat{s}_t^m
 \]
 - **Claim:** with fixed relative prices & interest rates this gives \(y^\omega\) for \(\rho^b = \rho^m\)

 Note: shift-share theorem allows for incomplete markets, adjustment costs, …

2. **Quantitative structural model**
 - **Estimated model,** relaxes fixed prices & fixed shock persistence
Semi-Structural Shift-Share

• Implementation
 ○ **Range**: lower bound is pure services, upper bound is pure durables
 ○ Shares for **avg. recession** and **COVID-19** match historical composition
Semi-Structural Shift-Share

- Implementation
 - **Range**: lower bound is pure services, upper bound is pure durables
 - Shares for **avg. recession** and **COVID-19** match historical composition
Quantitative Model (preliminary!)

- **Framework**: baseline + partially sticky prices + adjustment costs
 - Slope of NKPC follows recent estimates, MP rule is standard
 - *Del Negro-Giannoni-Schorfheide (2015), Lubik et al. (2020)*
 - Adjustment costs set to match relative volatilities of \(c \) and \(d \)
Quantitative Model (preliminary!)

- **Framework**: baseline + partially sticky prices + adjustment costs
 - Slope of NKPC follows recent estimates, MP rule is standard

 "Del Negro-Giannoni-Schorfheide (2015), Lubik et al. (2020)"

 - Adjustment costs set to match relative volatilities of c and d

- Find: service-led recession ≈ 70 per cent costlier in output PDV
Conclusions & Outlook

• Consumer theory + demand-determined output \implies **Composition of demand matters for strength of recoveries**

 ○ Relevant for **COVID-19** as a services recession: missing pent-up demand?
Conclusions & Outlook

• Consumer theory + demand-determined output \Rightarrow **Composition of demand matters for strength of recoveries**
 - Relevant for **COVID-19** as a services recession: missing pent-up demand?

• **This paper**: formalize, test, quantify
 - PUD effects are present in standard models & time series data
 - Find significant effects of demand composition on recovery strength
Conclusions & Outlook

• Consumer theory + demand-determined output \(\Rightarrow\) **Composition of demand matters for strength of recoveries**

 ○ Relevant for **COVID-19** as a services recession: missing pent-up demand?

• **This paper**: formalize, test, quantify

 ○ PUD effects are present in standard models & time series data
 ○ Find significant effects of demand composition on recovery strength

• **Next step**: richer quantitative model, tests in real-time consumption data
Thank you!