The Origins and Control of Forest Fires in the Tropics

Clare Balboni, Robin Burgess, and Benjamin A. Olken*

Preliminary Draft

December 18, 2020

Abstract

Pigou (1920) pointed to “uncompensated damage done to surrounding woods by sparks from railway engines” as the canonical example of an environmental externality. We study a modern corollary -- tropical forest fires -- which are used as a cheap, though illegal, means of land clearance by firms but pose the risk that, once set, they burn out of control creating significant local, national and global externalities. To do so, we merge 15 years of daily satellite data on fire hotspots over time and space to construct, for over 100,000 unique fires, the point of ignition and the extent of fire spread. We document that fire patterns are consistent with intentional actions, as fires systematically follow deforestation and occur predominately in oil palm and paper pulp concessions which regularly clear large swaths of land. To examine whether firms exercise greater control over their use of fire when the costs of it spreading are higher, we use the fact that fires are predictably more likely to spread on windy days, but the degree to which this is an externality depends on who owns surrounding land. We find that firms overuse fire relative to what they would if all spread risks were internalized, but this difference depends on which types of lands would be burned. Specifically, firms appear to take into account the risks of government punishment, which is focused on burning near protected forest or highly populated areas, but appear to worry much less about burning unleased national forest areas, which attract less government attention. Our estimates suggest that if firms treated the fire spread risks to surrounding lands the same as they do for their own lands, fires would be reduced by 14 percent. However, if firms were as concerned about spread risks to surrounding lands as they are to protected forest or populated areas, fires would be reduced by 67 or 80 percent, respectively.

*We thank Kelsey Jack, Reed Walker and numerous seminar participants for helpful comments. We thank Menna Bishop, Helen Gu, Anton Heil, Amri Ilmma, Alyssa Lawther, Jonathan Old, Victor Quintas-Martinez and Sam Solomon for outstanding research assistance. Burgess thanks ERC Grant 743278 and Balboni thanks Conservation International’s Seligmann Innovation Fund for financial support.
1 Introduction

Environmental economics is rooted in the study of environmental externalities. Early forerunners of the modern field (Marshall 1890, Pareto 1909, Pigou 1920) highlighted the failure of market economies to properly account for the environmental consequences of economic activity. This failure rests importantly on the possibility that one agent’s utility or production function may depend directly on real variables chosen by another without an offer of compensation for their effect (see, for example, Salanié 2000). For example, Pigou (1920) pointed to the “uncompensated damage done to surrounding woods by sparks from railway engines” as the canonical example of an environmental externality.

Much of the early analysis of environmental externalities lay in the theoretical realm, with a focus on developing a consistent theoretical framework to analyze market failure as well as design corrective policies. For example, Pigou (1920)’s discussion of corrective taxes and subsidies was succeeded by theoretical contributions relating to tradable permits (Dales 1968) and the possibility that an efficient solution to externalities may under certain circumstances be achieved by private negotiations (Coase 1960) or decentralized self-regulation (Ostrom 1990, Ostrom 1998). In the aftermath of the credibility revolution in economics (Angrist and Pischke 2010), a wave of empirical papers focused on estimating the health and other impacts of different types environmental externalities, for example, pollution (Chay and Greenstone 2003, Deryugina et al. 2019, Currie et al. 2009), forest fires (Frankenberg et al. 2005, Jayachandran 2009, Koplitz et al. 2016, Kim et al. 2017) and emissions-induced climate change (Schlenker et al. 2005, Burke et al. 2009, Burgess et al. 2017).

By contrast, there has been comparatively less empirical attention given to the economic question of how externalities affect private decision making in the first place - that is, the degree to which private actors change their behavior depending on the extent to which the environmental damage they cause is an externality - particularly in developing country contexts. This is an important question as the actions of private individuals and firms account for the of the bulk of environmental externalities (Greenstone and Jack 2015).¹

In this paper, we study this question by examining a modern corollary of Pigou’s “sparks from railway engines”: tropical forest fires in Indonesia. Fires are used in many tropical countries, including Indonesia, as a cheap -- though illegal -- means of land clearance by firms but pose the risk that, once set, they burn out of control.² Many features make fires an almost ideal environment in which to analyze private agents’ externality-generating activities and what incentivizes them to control how much they are used. Fires are observable from space, and using the data sets we have assembled,
we can track their precise ignition point and daily spread. This daily fire data can be superimposed
on geocoded maps of different types of land use zones, which vary from highly protected forest
such as national parks to areas where property rights are less well defined. Finally, the riskiness of
using fire depends on wind speed, which increases the probability a fire spreads to surrounding land.
The combination of varying wind speeds over time and space, as well as differences in who owns
surrounding land, generates variation in the degree to which the use of fire represents an externality.
This enables us to discern the degree to which fire starters take into account the externality that
their actions cause, and to consider how alternative policy environments may affect their decisions.

Understanding why tropical forest fires start and how they might be controlled is important in its
own right, as they represent a significant source of local, national and global externalities (Cochrane
prevalence is increasing as the earth warms (Parry et al. 2007, Pitman et al. 2007, Abatzoglou and
Williams 2016). Vast systems of fires regularly erupt in Indonesia and have burned millions of
hectares of forest in recent years. While we focus on local externalities due to fire spread in this
paper, more broadly, the externalities generated by these fires are manifold and often extend beyond
Indonesia’s borders, including significant health impacts (Frankenberg et al. 2005, Jayachandran
2009, Koplitz et al. 2016, Kim et al. 2017), ecosystem loss (Yule 2010) and global warming (Page
et al. 2002, Permadi and Oanh 2013). For example, the major 2015 Indonesian fires alone released
about 400 megatons of CO₂ equivalent (Van Der Werf et al. 2017), at their peak emitting more daily
greenhouse gases than all US economic activity, and are estimated to have caused over 100,000 excess
deaths across Indonesia, Malaysia and Singapore (Koplitz et al. 2016).

To conduct this analysis, we created a novel fire dataset on fire ignitions and spread. We begin
with 15 years of daily hotspot data from the MODIS satellites, which records – for every 1 square km
pixel, each day – whether there is a fire in that pixel or not, calculated from the 4 MODIS flyovers
that occur each day (Giglio and Justice 2015). The MODIS datasets can detect quite small fires – as
small as 50 m² – within each pixel. To track fire ignition and spread, we merge this data across time
and space to trace the likely path of each fire; that is, we assign contiguous pixels burning on adjacent
days to be part of the same fire. This allows us to determine the most likely location where each fire
started and, for each ignition, the area over which it ultimately spread. This procedure yields over
107,000 unique fires in our data, covering all main forest islands of Indonesia for the period October
2000 to January 2016. We merge these data with detailed geospatial data on boundaries for the
Indonesian national forest estate, protected forest areas and every logging, wood fiber and palm oil
concession in the Indonesian national forest system.

These data confirm that fire spread is a tail risk event – and that these risks entail an important
local externality. The vast majority of fires burn for a single day (87% of all fires) and do not spread
beyond their initial ignition area (89%). But the fires that do spread can become enormous: the
largest fire in our data spread to cover 466 times its initial area and the largest single fire in our
data burned 764 square kilometers. Twenty nine percent of the total area burned by fires over our
study period is outside the initial extent burned by the fires on the day they were ignited. Moreover, a substantial part of the damage from spreading fires is borne by others: across all multi-day fires, 32% of land burned outside the initial ignition area is outside the concession of ignition.

The data reveal that fires do not occur randomly but rather are associated with human activity, and appear likely to be used systematically as part of the clearing process by firms, consistent with qualitative evidence (Neslen 2016; Cossar-Gilbert and Sam 2015; BBC 2015; Mahomed 2019; Schlanger 2019; Mellen 2019; Karmini and NG 2019; Nicholas 2019). We show that fires are eight times more likely (per hectare) to occur in oil palm or wood fiber concessions – for which land is cleared completely and then replanted – compared to logging concessions, which are selectively logged and never cleared. Since we focus on firms’ incentives to start fires as a cheap means of land clearance for conversion to industrial plantations, we concentrate our analysis of externalities and the control of forest fires on the 39,079 fires started inside wood fiber and palm oil concessions across the study period.

We also combine our fires data with annual satellite data on deforestation from Hansen et al. (2013). Doing so, we find that fires are vastly more likely to occur immediately following recent deforestation, consistent with the notion of ‘slash and burn’. In particular, increasing the share of a pixel deforested from 0 to 100 percent leads to a 275 percent increase in the probability of fire in that pixel in the subsequent year. This is unlikely due to the fact that deforestation simply makes the land naturally more flammable: we find that the year after that – i.e. just two years after the deforestation event – the pixel is in fact less likely to burn than before deforestation took place. Combined, these patterns suggest that many of the fires we observe are indeed directly associated with forest use activity, particularly in wood fiber and palm oil plantations.

Having documented the human origins of many of these fires, we then turn to the central question of how externalities play into the decision to use fire. We use the fact that wind influences the likelihood that fires spread, and that the degree to which the costs of a spreading fire are borne by others depends on how much surrounding land is part of the owner’s parcel or belongs to someone else. We first show empirically that wind speed does, indeed, predict the degree of fire spread: one standard deviation higher wind speed (equivalent to about 5km/hr) increases the area of fire spread by 284 percent.3

Combining variation in wind speeds over time and space with cross-sectional variation in who owns surrounding land, we show that fire setters do appear to take the externalities from fire setting into account. We find that fire ignitions are substantially less likely to be started on windy days in areas where the fire would be more likely to spread inside the same concession compared to when it would spread to lands owned by others. Landowners therefore avoid burning their own land relative to that of others, suggesting that a Coasian bargain has not been reached. This is interesting as, in theory, landholders could arrive at agreements to bring forest burning down to an efficient level

3One might also expect wind to predict the direction of fire spread in addition to the overall likelihood of fire spread, but this does not appear to be true in the data. We discuss this in more detail below.
without the need for government intervention.

We then compare the degree to which firms avoid imposing externalities on adjacent private property depending on the costs they might incur, by examining the heterogeneity in what type of land lies just outside their borders. To do so, for each of the more than 300,000 1km² pixels inside palm oil and wood fiber concessions in our data, we calculate what share of the surrounding pixels are made up of different types of land. We focus on four types of land: other private concessions, protected areas (i.e., national parks and watershed protected areas), areas outside the national forest system (i.e. normal private land, which contains the vast bulk of the population), and unleased productive forest (i.e. areas that could be assigned as future concessions, but has not been assigned to date). We also calculate the average population density in the surrounding area. We then compare how fire ignitions change on windy vs. non-windy days – i.e. when spread risk is high vs. when it is low – depending on what kinds of land are nearby.

By classifying land in this way, we can benchmark the degree to which property owners avoid damaging other types of land to the way they behave vis-a-vis unleased national forest land, which tends to be largely unprotected by the government (or anyone else). In particular, we examine how landowners treat national parks, which are explicitly protected by the government, and land outside the national forest system, which is typically comprised of villages and smallholders. To examine how government concerns with burning vary across land types, we analyze data from the first government investigations into private firms for causing forest fires in 2015. The government published the initials of each firm they investigated, which we match to firm names in our concession and fires data. We can then ask what types of fires were most likely to lead to government investigation. We find that, conditional on the total area burned, the government is substantially more likely to investigate firms whose fires ended up burning land in protected areas and areas with high population density. By contrast, the government does not seem differentially likely to investigate cases where the fire damage is largely in other concessions. A fraction of firms that were investigated suffered consequences – such as having their licenses revoked – which indicates the commitment of the government to punish landholders whose fires end up burning national parks and populated lands.

We then bring in our data on fire externalities and compare how landholders treat externalities on the types of land for which the government is potentially a protector to how they treat externalities on other private lands. We show that, indeed, the relative weights on different types of fires the government appeared to use in these investigations line up with the relative weights on different types of risks that firms appear to use when deciding whether or not to use fires. This suggests that firms do behave as if they are responding to Pigouvian-style (1920) incentives: even if the level of fire use is still excessive compared to the social optimum given the regional and global externalities it creates, firms internalize which types of fires are relatively more costly in terms of fire spread and local damage.

The results thus suggest that firms are strategic in two senses: 1) they overuse fire relative to what they would do if all spread risks were internalized, but 2) they do take into account the risks
of government punishment and this deters them from burning near protected or highly populated areas. But on net, the social damages from fires still vastly exceed the likely private benefits – for example, the estimated external damages for the 1997/1998 Indonesian fires range from 1,286 (Glover and Jessup 1999) to 6,074 (Varma 2003) 2020 USD per ha burnt, while the average private benefits (difference in per ha cost of burning vs. mechanical clearance) average 52.02 2020 USD per ha after taking into account fertilizers and other costs (Guyon and Simorangkir 2002). Benefit cost ratios of 0.04 and 0.008, which lie well below 1, suggest that while qualitatively the government is deterring the fires that are relatively more costly, on net the government may wish to deter substantially more fires than it is currently doing.

Given this, the final part of the paper uses our analysis to derive some implications for the design of policies to better control these externalities, taking into account the responsiveness of private actors that we estimate here. We find several results. First, even if firms treated all surrounding land the way they treat their own land – i.e. a fully-Coasian solution where who owns the land does not matter for fire setting behavior – fires would only be reduced by 14 percent. This suggests that creating better property rights on unleased government land, and relying on private solutions à la Coase, will only have a relatively small effect on fires. Similarly, our counterfactuals suggest that a tort reform that allowed existing concessions to recover damages – i.e. so that land owners treated all surrounding existing privately owned land as their own – would only reduce fires by 6 percent.

Second, we consider stronger Pigouvian responses. We simulate what would happen if enforcement were to increase such that existing property owners treated the risk of fire spread – anywhere – the same as they do that in the categories the government currently punishes most severely, i.e. populated areas and national parks. We find this would have a substantial effect: if firms were as concerned about spread risks to surrounding lands as they are about spread to populated areas or protected forest, fires would be reduced by 80% or 67%, respectively. By comparison, an enforcement regime that prevented any fires from spreading outside the concession of ignition would result in an estimated 23% reduction in the area burned, while entirely preventing spread into protected and populated areas alone would result in only a 2% reduction in the area burned.

The remainder of this paper is organized as follows. Section 2 puts together the necessary data sets to look at when and why forest fires are started. Section 3 describes the patterns of forest fires in our empirical setting and examines their relationship with spatial land use and land clearance. Section 4 looks at results on factors that affect the propensity to start forest fires. A key finding is that both public and private regulation have not been effective in containing forest fire externalities. To gain insights into what policies might be effective, Section 5 considers how different policy counterfactuals would affect the extent to which forest fires are started and spread. Section 6 concludes.
2 Setting and Data

2.1 The forest sector

The Indonesian national forest system – known as the ‘forest estate’ (*kawasan hutan*) – is a vast system of national forest, covering over 130 million hectares, equivalent to the size of the U.S. states of Texas, California, and Washington combined. This comprises about 70% of Indonesia’s total land area, and it almost twice as large as the U.S. national forest system.

While technically owned by the government, much of this land, in the so-called “production” forest, has been leased out through long-term concessions for both logging and plantations. These two types of concession entail very different land-use patterns which, as we will see below, lead to very different uses of fire. Logging concessions are required to sustainably manage the forest through selective logging. Plantations, by contrast, are typically clear-cut (harvesting the valuable timber and clearing the rest), and after having been cleared, are planted either with fast-growing species used for paper pulp (wood fiber plantations) or for oil palm. These plantation sectors are vast. For example, two very large pulp mills in the Riau province have a combined capacity to process over six million tons of pulp and paper products annually and pulping from two of Indonesia’s largest firms is estimated to have been responsible for the deforestation of over 2.5 million hectares. Indonesia is also the world’s largest producer of palm oil (Hsiao 2020), the world’s most commonly used vegetable oil. Oil palm plantations have grown fourfold since 2000, and now occupy 7 percent of Indonesia’s land area (Edwards 2019).

The remaining national forest land (i.e. that land not in a concession) falls into two categories. The Indonesian government has designated 43 percent of the national forest as ‘protected’ forest estate for watershed and biodiversity protection, including national parks, with logging and other extractive activities prohibited. The remaining unleased production forest is considered to be ‘no man’s land’, with unclear ownership and extraction rights. Other than a few scattered squatter settlements, almost all populated land falls outside the national forest.

Despite the existence of legislation regarding forest clearing and zoning, adherence to these laws is imperfect. For example, district heads (responsible for monitoring legal logging and controlling illegal logging since 1999) have been found to allow logging outside official concessions (Resosudarmo et al. 2006). They also facilitate the creation of new oil palm plantations inside national forest areas and sanction the transport and processing of illegally harvested logs (Casson 2001). Incomplete documentation of land ownership also renders the legitimacy of some land clearing activities unclear.
2.2 Use of fire for land clearing

Although illegal\(^4\), fire is often used as a means of land clearance. After valuable timber has been harvested, land is burned to clear away the remaining debris prior to planting. Fire is attractive to concession holders because it is cheap: for example, estimates from Riau province in 2000 suggest that burning primary forest is 44% cheaper than alternative clearance methods (e.g. bulldozers) for oil palm plantations, and 70% cheaper for wood fiber and timber plantations (Simorangkir 2007). Other benefits of fires for concession holders in this context have also been documented, including rapid nutrient release and inhibiting the spread of plant diseases.

2.3 Data

2.3.1 Identifying fire ignition and spread from fire hotspots

To create data on fires, we begin with data on fire hotspots. We start with data collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We use the MODIS Terra daily Level 3 fire product, a 1km gridded composite of fire pixels detected in each grid cell over each 24 hour period (Giglio and Justice 2015) from October 2000 to January 2016. This is derived from the MODIS satellites, which collectively take 4 images of virtually the entire planet each day. MODIS routinely detects flaming and smoldering fires with a size of 1000 m\(^2\) and under optimal observation conditions can detect fires as small as 50m\(^2\).

We link daily MODIS observations over time in order to track the ignition and spread of individual fires across Indonesia during our study period. We create a ‘fire’ observation using an iterative procedure. This starts with an initial fire, denoted \(A_X\), comprising a given pixel, or set of contiguous pixels, that is on fire on day \(X\). A 1-pixel buffer is then created on each side of \(A_X\) and if any pixel within this buffer is on fire on day \(X + 1\), we call this a continuation of fire \(A_X\). If a contiguous set of pixels is on fire on day \(X + 1\) but only some of them intersect the buffer, all of them are classified as a continuation of fire \(A_X\). A 1-pixel buffer is in turn created around the fire on day \(X + 1\), and this process is iterated forward over time. If a pixel is covered by cloud on a given day, the next day’s observation is used instead.

An example of this procedure is shown in Figure 1. In the Figure, pixels outlined in black had a fire on Day 1 according to that day’s MODIS hotspot data, and pixels colored red had a fire on Day 2. The white boxes A, B, and C denote three fires that we classify as single fires, with ignition area as the black area and total spread extent as the union of the black and red areas.

This procedure yields a total of 176,855 fires across Indonesia from October 2000 to January 2016. Summary statistics are presented for all fires, but we restrict attention to Indonesia’s major forested islands (excluding Java and the Lesser Sunda Islands) and to pixels inside the forest estate.

\(^4\)All burning of forests was prohibited without exception in 1999, pursuant to Article 50, Law No. 41/1999. The 2009 Environmental Protection and Management Law (No. 32/2009) allows the burning of two hectares of land per family head for the planting of local varieties; this excludes oil palm and timber and should not affect fires in the large-scale concessions we study here. It also reduced the maximum punishment for burning forest.
yielding a total of 107,331 fires. The focus of our study is a quantitative analysis of firms’ incentives to start fires as a relatively cheap means of land clearance for conversion to industrial plantations. The majority of the paper’s analysis therefore concentrates on the 39,079 fires started inside wood fiber and palm oil concessions across the study period, although we present robustness checks for alternative sample restrictions including logging concessions at Appendix A.4.

2.3.2 Land classification and concessions

We overlay the fire data with data on land classifications and forest concessions. First, land is divided into areas within and outside the forest estate. Second, within the forest estate, land is demarcated into conservation and protection zones, hereafter referred to as ‘protected forest’, as opposed to forest in which production can take place. The map, which we obtained from Global Forest Watch, is shown in Figure 2, displaying forest estate and conservation/ protection zones across Indonesia.

Third, we overlay these broad categorizations with concession boundaries. Data on concessions were obtained from Global Forest Watch on the location of logging concessions (for the selective logging of natural forests), palm oil concessions (allocated for industrial-scale palm oil production) and wood fiber plantation concessions (allocated for the establishment of fast-growing tree plantations to produce timber and wood pulp for paper and paper products). The data are compiled from different government, NGO and other sources and include georeferenced shapefiles demarcating the extent of each concession as well as information on firm – and, in some cases, firm group – name. The data are imperfect but provide the best available data on concession boundaries in Indonesia during our study period. For instance, the data are known to be incomplete and subject to inaccuracies as a result of overlaps between different concession types where permits are issued by different ministries, out of date maps and different dates of data from different provenances (Greenpeace 2015).

Figure 3 shows the distribution of concessions in Sumatra, alongside areas demarcating the forest estate and protection/ conservation zones. As shown in the Figure, the majority of concession holdings are within the forest estate but outside protection and conservation zones.

These classifications yield four land categories of interest for the analysis: protected forest, productive forest (land in the forest estate that is not in protected areas) inside concessions, unleased productive forest (land in the forest estate that is neither in protected areas nor inside concessions) and areas outside the forest estate.

2.3.3 Deforestation data

We augment this data with data on deforestation. Annual deforestation data from 2001-2014 across Indonesia was extracted from Hansen et al. (2013) at a resolution of 1 arc-second (approximately

5For instance, the data are known to be incomplete and subject to inaccuracies as a result of overlaps between different concession types where permits are issued by different ministries, out of date maps and different dates of data from different provenances (Greenpeace 2015).

6There are two additional land categories which are not of interest for the analysis and which are therefore suppressed in the results. These are protected forest inside concessions (these areas comprise only 2% of the total land area and are likely due to mapping inaccuracies) and concession areas that fall outside the forest estate (5% of total land area).
30m per pixel at the equator). This was used to calculate the area of each of the pixels used in our analysis that was deforested in a given year.

2.3.4 Wind data

Data on the vector components of daily wind at 297 grid points across Indonesia over our study period was downloaded from the National Oceanic and Atmospheric Administration’s NCEP-DOE Reanalysis 2 Gaussian Grid\(^7\). This was used to calculate daily wind speed, from which monthly averages were calculated, at each of these 297 points. The inverse distance weighted interpolation tool in ArcGIS was used to interpolate this data in order to assign a wind speed to each of the 1km\(^2\) pixels used in our analysis.

2.3.5 Data on public and private regulation

In late 2015, lists of firms investigated and sanctioned by the Indonesian government for starting forest fires throughout Sumatra and Kalimantan islands was released by the Ministry of Forestry and the Environment\(^8\). All firms identified in the initial investigative list were investigated for possible administrative sanctions, including requiring firms to rehabilitate land, license suspensions, requirements of public apologies, and the possibility of having their concessions revoked. By the end of 2015, 56 firms had received sanctions of some form, including 23 firms whose licenses were revoked, suspended, or otherwise referred for government sanctions.

3 The Origins of Forest Fires

We begin in Section 3.1 by describing the patterns of forest fires and their relationship with spatial land use throughout Indonesia. Section 3.2 examines the relationship between fire and land clearing by merging fire data with data on deforestation from previous years.

3.1 Descriptive statistics: fire and land-use

To illustrate the relationship between fires and land use, Figure 4 zooms in on the province of Riau in central Sumatra, an area of substantial forest activity, to show the distribution of fire ignitions in our data overlaid with the land classification and concessions data, at a fine geographic scale. Each 1km\(^2\) grid cell in Figure 4 shown represents a grid cell in which we detect at least one fire ignition. Concessions are outlined (yellow for wood fiber; orange for oil palm). Protected forest zones are shown in dark green; regular forest estate areas are shown in light green; and areas outside the forest

\(^7\)https://esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.gaussian.html

\(^8\)The list of investigated firms was released in September 2015 (http://www.mongabay.co.id/2015/09/18/inilah-ratusan-perusahaan-dengan-lahan-terbakar-yang-bakal-kena-sanksi/) and the list of sanctioned firms in December 2015 (http://www.mongabay.co.id/2015/12/22/baru-23-perusahaan-terindikasi-bakar-lahan-kena-sanksi-administrasi/).
are shown in white. Note that not all of the regular forest estate is allocated to a concession; substantial parcels of the forest estate remain unallocated.

Several patterns are worth noting. First, there are a vast number of fires. The area shown in the map covers approximately 7,700 square km, slightly larger than the US state of Delaware, and has over 3,400 separate fire ignitions during the period of our study. The fires are clearly geographically clustered in areas of intense fire activity.

Second, it is worth noting that the spatial patterns of land use appear to be related to ignition patterns. A ‘natural’ rate of fire ignition across space would suggest that the shares of land area and fire ignitions by each forest zone should be approximately equivalent. Yet in this relatively high fire area, we observe relatively almost no fires started in the preservation area (Zamrud National Park, previously known as the Tasik Serkap Wildlife Reserve) shown in the middle-right of the map. Similarly, we see almost no fires shown in the area outside of the forest estate in the bottom left, which is a small town.

Similar patterns emerge when we consider the entire dataset of over 100,000 fires. Figure 5a compares the share of Indonesia’s land area by land use zone with the share of ignitions in each zone. As in the example described above, ignitions are substantially less likely to occur in protected areas, and more likely to occur in production forest areas.

The patterns even more striking when we look across difference concession types in Figure 5b, which shows that fires are much more likely in the types of concessions associated with land-clearing. Specifically, Figure 5b shows that, among all fires started within concessions, 46 percent of fires are started in oil palm concessions – which drain and clear existing forest before planting oil palm – even though they comprise just 25 percent of total concession land area. Similarly, 42 percent of fires are started in wood fiber plantations – which clear land after wood is harvested before replanting – even though these comprise just 22 percent of land area. By contrast, logging concessions, which practice selective logging, rather than clear cutting, have a much lower share of ignitions – just 12 percent of fires, even though they comprise 52 percent of total concession areas. This is consistent with evidence that fires are the most profitable form of land clearance in the ‘first rotation’ when clearing vegetation and converting forests to oil palm (Simorangkir 2007).

3.2 Fire as part of the land-clearing process

The data above suggest that fires are more likely in the types of forest concessions – oil palm and wood fiber – where land is cleared and converted to alternate uses, rather than in logging concessions, which focus on selective logging. To establish this link more precisely, however, we can move to the pixel level, and look at the relationship between deforestation and subsequent fires.

To do so, we use the Hansen et al. (2013) global deforestation dataset. Since this dataset is based on Landsat, it has a resolution of approximately 30m per pixel at the equator, which is much finer.

9As discussed above, we exclude Java and the Lesser Sunda Islands, which have relatively little forest, from our analysis.
than the 1km resolution of the MODIS-based hotspot data. We therefore calculate, for each of the
1km pixels in our MODIS-based fire hotspot data, the share of that pixel that was deforested in year
t based on the Hansen et al. (2013) data.

To illustrate these patterns, Figure 6 shows part of the same area of Riau province as Figure
4, zoomed in further given the high spatial resolution of the deforestation data. The map shows
ignition areas in 2013, with 1km boxes (the resolution of the MODIS fire data) illustrating all pixels
where an ignition was detected in 2013. We overlay this with the fine-resolution deforestation data,
showing in orange all deforestation that took place in 2012. The map illustrates that, at least in this
area, almost all of the ignitions took place in areas that had experienced deforestation the previous
year.

To analyze this more formally across our entire data, we estimate a fixed effects Poisson panel
regression of the form:

$$E[Ignitions_{it}] = \gamma_i \exp(\beta_1 Forestloss_{it-1} + \beta_2 Forestloss_{it-2}$$
$$+ \beta_3 Forestloss_{it-3} + \delta_m + \delta_t)$$ (1)

where an observation is a MODIS-sized 1km pixel in a given year. In this specification, γ_i is a pixel
fixed effect, δ_m are month fixed effects and δ_t are year fixed effects. Note that this is a count model
since multiple fires can start in the same pixel within the same year, since fires are measured daily.
Robust standard errors (i.e. robust to arbitrary variance of the error term, as long as the expectation
in (1) is correctly specified), clustered using 50km x 50km grid cells, are shown in parentheses.

Two important aspects of this specification are worth noting. First, pixel fixed effects are impor-
tant, because they capture fixed differences in land-use (e.g. protection areas vs national park areas)
and land characteristics over time. This nets out fixed differences that may lead some areas to be
more vulnerable to fire than others. Second, time fixed effects capture the fact that some years are
more likely to experience fires (due to drought, for example), which may happen to be correlated
with previous deforestation patterns.

The results are shown in Table 1, focusing in on wood fiber and palm oil concessions.\(^{10}\) We
find that fire ignition is more likely in recently deforested areas. The magnitudes are substantial:
a 1km pixel that was completely deforested is expected to have 275 percent more ignitions than
it would have otherwise. Interestingly, subsequent lags of the deforestation variable are negative.
This suggests that the timing between deforestation and fire use is quite tight, consistent with the
use of fires as part of the land clearing process, rather than recent deforestation simply making the
land more flammable by natural causes (in which case one would expect subsequent lags to also be
positive). Combined, these results suggest a clear picture: many of the fires we observe appear to be
a systematic part of the land clearance process.

\(^{10}\) Appendix Table A5 and A6 show this for all concessions, and all forest land, and shows similar patterns.
4 Externalities and the Control of Forest Fires

4.1 Ignitions, wind speed, and fire spread risks

A key risk from using fire for land clearance is that the fire may spread beyond the initial ignition area. To quantify this risk, we use our processing of the MODIS hotspot data, which allows us to separate areas of initial ignition and areas of subsequent fire spread. Note that this procedure may underestimate spread – since we classify all adjacent pixels that have a hotspot on the same day as a single ‘ignition’, this procedure counts only spread occurring over multiple days, rather than spread within a single day.

Nevertheless, our data reveal that there are tail risks associated with fire-setting behavior. Eighty-seven percent of the 107,331 fires in our sample burn for only one day and 89% do not spread beyond their original ignition area. However, the long tails of these distributions reveal that there is a small chance that fires burn for much longer than this (up to a maximum of 36 days) and spread to cover an area much greater than their ignition area (up to a maximum of 466 times the ignition area) and very large areas in absolute terms (up to a maximum of 764 1km² pixels). The risk of fire spread also imposes a risk of externalities: across all multi-day fires started inside concessions, 36% of the total land burned is outside the concession in which the fire was ignited.

The risks of fire spread may vary over time depending on wind speed. Greater winds can increase fire spread for several reasons. Increased winds supply more oxygen, which increases the intensity of the fires. Winds also exert pressure on the fire to move, igniting new areas, rather than simply burning existing areas.\(^\text{11}\)

To investigate this in our data, we merge our fire data with data on average prevailing wind speeds in each month, obtained from the NOAA global wind speed model, as described above. Given the high percentage of fires that do not spread, we implement a fixed effects Poisson specification of the form:

\[
\mathbb{E}[\text{FireSpread}_{it}] = \gamma_i \exp(\beta_1 \text{Windspeed}_{it} + \beta_2 \text{Ignitions}_{it} + \delta_t)
\]

where \(\text{FireSpread}_{it}\) is a count of the average number of pixels of fire spread area (burned area minus ignition area) of all fires started in pixel \(i\) during month \(t\), \(\text{Windspeed}_{it}\) is the average wind speed in pixel \(i\) during month \(t\) (measured in standard deviation units), \(\text{Ignitions}_{it}\) is the number of ignitions in pixel \(i\) during month \(t\), \(\gamma_i\) are pixel fixed effects and \(\delta_t\) are time fixed effects. As above, we use robust standard errors to allow for arbitrary distributions of the error term.

The results are shown in Table 2 and demonstrate that an ignited fire is more likely to spread to cover a larger area when prevailing winds are strong. Column 1 shows the results with just pixel fixed effects, column 2 shows the results with both pixel and time fixed effects. Because these models include pixel fixed effects – which is important to capture fixed differences in spread risks across

\(^{11}\)While intuitively one may expect the direction of the wind to influence the direction of fire spread, wind direction at the ground is very complex and influenced by the convection currents of the fire itself, and is notoriously hard to predict.
different soil types and other fixed land characteristics – this regression is identified on the 5,445 pixels for which we observe at least one spreading fire during our period.

The resulting magnitudes suggest that wind substantially increases the risk of fire spread. Focusing on the results in column 2, a one-standard deviation increase in wind speed – equivalent to about 5km/hr – increases the extent of fire spread by 284 percent. Combined, the results in this section suggest not only that fire is risky due to the risk that it spreads, but that that this risk is predictable – high winds substantially increase the risk of spread.

4.2 Externalities in fire spread and containment

Use of fire entails a risk of spread, but the degree to which spread risk is costly depends on what type of land it could spread to. One could imagine, for example, that a fire spreading into unoccupied forest land may be of less concern to a landowner than a fire that spreads into a city or town.

To measure the degree to which potential fire users are deterred by the externalities they may cause, we use the product of two factors which together create riskiness of starting a particular fire that varies across time and locations. First, as described above, we use monthly data on wind speed at each pixel (as described in Section 2.3), which yields spatial and temporal variation in the probability of fire spread. Second, there is local variation in the cost of fire spread driven by the types of land that surround each pixel. To quantify the latter, for each pixel in our data, we construct the share of pixels by land category in a 6km radius surrounding each pixel, exemplified in Figure 7.12

The expected external cost of starting a fire in a particular pixel in a particular month depends on the product of these two factors – wind speed in that pixel in that month, and the composition of the types of land that surround the pixel.

We next consider whether fire-setting behavior is influenced by the likelihood of fires spreading to particular land types. We consider the effects of fires being differentially likely to spread to (i) land with the same versus different owners, and (ii) land types where there may be a differential threat of punishment. In both cases, we consider the impact on ignition probability and, conditional on a fire starting, on the probability of containment.

We investigate this with the following specification:

\[
\mathbb{E}[\text{Ignitions}_{it}] = \gamma_i \exp(\beta_1 \text{WindSpeed}_{it} + \sum_j \beta_2 \text{NeighborLandType}_{ij} \times \text{WindSpeed}_{it} + \beta_4 X_i \times \text{WindSpeed}_{it} + \delta_t)
\]

(3)

where \text{NeighborLandType}_{ij} is the share of land in the 6km radius buffer surrounding pixel \(i\) that is in land type \(j\); the coefficient(s) on this interaction, \(\beta_2\), capture(s) whether potential fire setters differentially use fires depending on the magnitude of their expected externality. Equation (3) includes pixel fixed effects (\(\gamma_i\)) and time fixed effects (\(\delta_t\)), which absorb fixed pixel characteristics and common

12A radius of 6km was chosen to estimate the area at risk of fire spread. This is the 90th percentile of the distribution of the maximum distance between fire ignition centroids and the boundary of extents burned for multi-day fires.
time shocks. We also include interactions of wind speed with island, concession type, the total size of the concession (to account for the fact that in larger concessions more pixels will mechanically have smaller shares of pixels outside the concession), and with baseline forest cover. We consider specifications where $NeighborLandType_i$ is divided according to whether or not land in the 6km buffer surrounding pixel i is in the same concession as pixel i (for land inside concessions only), and where $NeighborLandType_j$ is divided according to land type classifications.

4.3 Magnitude of externalities: burning your own vs others’ land

We begin by examining results where we split land surrounding each pixel based on what fraction is part of the concession in which the pixel is located, vs. is ‘external’ to the concession owner. To do so, we estimate equation (??), using as the the key $NeighborLandType$ interaction the variable $FractionBufferOwn$, which calculates what share of the 6km buffer pixels as in the same concession as the central pixel.

The results, shown in Table 3, reveal that fire ignitions inside wood fiber and palm oil concessions are significantly less likely on windy days in areas where the fire would be more likely to spread inside the same concession compared to where spread would be external. Table 3 includes specifications including pixel, month and year fixed effects and successive controls for wind speed \times island, wind speed \times concession type, wind speed \times 2000 forest cover and wind speed \times concession area.13,14

The coefficients of interest are interactions, i.e. they estimate $\frac{\partial \mathbb{E}[Ignitions_{it}]}{\partial WindSpeed} \cdot \frac{\partial \mathbb{E}[Ignitions_{it}]}{\partial FractionBufferOwn}$, and hence require some care to interpret. The negative coefficients we find says that land owners are more sensitive to spread risks (induced by stronger winds) when the area to which the fire would spread (i.e. the buffer zone) is largely their own land. To gauge magnitudes, we consider the semi-elasticity of ignitions with respect to the share of the buffer with the same owner as the central pixel. This can be interpreted as the percentage change in ignitions resulting from an additional buffer pixel in one’s own land, for a given wind speed. Taking the derivative of the estimating equation 3 with respect to the fraction of the buffer in the same concession as the central pixel and re-arranging terms yields this semi-elasticity as:

$$\frac{\partial \mathbb{E}[Ignitions_{it}]}{\partial FractionBufferOwn_i} / \mathbb{E}[Ignitions_{it}] = \beta_2 WindSpeed_{it}$$

(4)

where β_2 is the estimated interaction coefficient.

The estimated β_2 coefficients in Table 3 – i.e., the coefficients on $WindSpeed$ interacted with $FractionBufferOwn$ – range from -0.007746 to -0.002101. At the mean wind speed, these coef-

13In an especially demanding specification including concession fixed effects interacted with wind speed, fire ignitions inside concessions are again found to be less likely on windy days in areas where the fire would be more likely to spread inside the same concession compared to where spread would be external, although the results are no longer significant at conventional levels in this case (see Appendix Table A1).

14Appendix tables A3 and A4 present results separately for wood fiber and palm oil concessions: while effects are stronger in the case of the former, the point estimates are similar.
ficients imply that one additional buffer pixel in one’s own land decreases ignitions by 0.2%-0.7%. We next use these semi-elasticities to ask what the effect would be of a typical buffer being entirely owned by the same owner as the central pixel. Using the fact that the 6km buffers contain 137 pixels and that the mean number of buffer pixels in the same concession as the central pixel is 96, this suggests that a typical buffer being owned entirely by the same owner as the central pixel would reduce ignitions by 8% to 25% when the wind speed takes its mean value. An equivalent calculation when the wind speed is at the 95th percentile value suggests that this effect would be much larger – 22% to 61% – on very windy days.\(^\text{15}\)

The central results in Table 3 thus reveal that fire setters do appear to take the externalities from fire-setting into account, suggesting a failure of Coasian (1960) bargaining to fully internalize externalities. In principle, part of the explanation for this might lie in the difficulty of contracting where pixel buffers contain land owned by several different parties. We do not, however, find significantly different results in specifications that restrict attention only to those pixels whose entire 6km buffer is in either the same concession as the central pixel or in a single other private party’s concessions, suggesting that the externality is present even in cases involving only a single property border between two private firms (see Appendix Table A2). This is a tighter test of Coase and suggests that multiple-party contracting issues are not necessarily driving the results.

In addition to studying the impacts on fire spread, we also look at whether, conditional on a fire starting, it is less likely to spread when the spread would be to neighbors’ land. Efforts to reduce fire spread may reflect actions taken either prior to a fire starting (such as building in fire breaks), or actions taken after the fire starts (i.e. firefighting effort), or a combination thereof. Importantly, actions to reduce fire spread once a fire has started might be undertaken by the government or other private actors, so that externality-containing (or inducing) behavior is more difficult to attribute to the owner of the concession in which the fire starts in this case. We estimate this using the following OLS specification to determine how the spread of fire \(f\) ignited in pixel \(i\) at time \(t\) is influenced by the prevailing wind speed interacted with surrounding land type:

\[
FireSpread_{fit} = \alpha + \gamma_i + \delta_t + \beta_1 WindSpeed_{it} + \sum_j \beta_2 j \times NeighborLandType^j_i \times WindSpeed_{it} + \sum_k \beta_3 k \times OwnLandType^k_i \times WindSpeed_{it} + \beta_4 X_i \times WindSpeed_{it} + \epsilon_{fit} \tag{5}
\]

The results of this analysis, shown in Table 4, reveal no significant effect in this case.\(^\text{15}\)

\(^{15}\)Note that direct (i.e., uninteracted) effects of \(FractionBufferOwn\) are captured in the fixed effect of equation (3), and hence do not appear in equation (4). Presumably, one would expect these to be negative (more land in own buffer would lead to more caution about use of fire, even with little wind), in which case the estimates in this paragraph are a lower bound.

\[\]
4.4 Does it matter who your neighbors are?

We next benchmark the degree to which property owners avoid damaging other types of land to the way they behave vis-a-vis unleased national forest land, which tends to be largely unprotected by the government (or anyone else). We implement this by re-estimating equation (3), dividing $\text{NeighborLandType}_i^j$ according to land type classifications that distinguish private land owned by the same concession-holder as the central pixel; private land owned by other concession-holders; national parks and conservation areas, which are explicitly protected by the government; land outside the national forest system, which is typically comprised of villages and smallholders; and unleased productive forest outside concession boundaries (which is the omitted category). We also examine the overall population density in the buffer area as a measure of the risk that fires would spread into populated areas.\(^{16}\)

The results of this exercise are shown in Table 5 (ignitions results) and 6 (spread results). These suggest that concession owners make more of an effort to avoid starting fires that risk spreading into their own land, protected forest or land outside the forest estate, relative to those that risk spreading into unleased productive forest. They appear to treat other firms’ concessions similarly to land that lies in the unleased productive forest estate, suggesting that private party enforcement is not particularly strong in this context.

We can again use the semi-elasticity of ignitions with respect to the share of the buffer that is comprised of different land types (e.g. equation (4)) to interpret the magnitude of these coefficients. The results suggest that one additional buffer pixel in protected forest versus unleased productive forest decreases ignitions by 0.9% at the mean wind speed and 2.7% when the wind speed is at the 95th percentile. The deterrent effect of surrounding land outside the forest estate is even stronger: in this case, these figures are 1.5% and 4.6% respectively.

The containment results broken down by land type in Table 6 suggest that, once fires are started, concession owners may also make a particular effort to avoid fires spreading to their own and others’ concession land. This suggests that private fire enforcement / mitigation prevention may be substantially more effective in privately managed lands than in public lands in this context.

4.5 Do agents internalize government preferences?

Intentionally burning areas of the wood fiber and palm oil forest concessions we study was illegal throughout our study period, but the government may implicitly place different sanctions on different types of fires depending on what types of land are damaged. To back out the government’s implicit weights on different types of fire damage, we use data on firms investigated by the Indonesian government for forest fire violations, as described in Section 2.3, to consider what the Government punishment function looks like. We then consider how aligned this is with the fire-setting behavior

\(^{16}\)This is calculated by (i) assigning a population density to each 1km grid cell based on the population density of the desa in which the grid cell centroid lies; and (ii) finding the average population density of the grid cell centroid points that lie within each pixel’s 6km buffer.
of concession holders.

To estimate the government’s decision rule, we estimate the following equation at the level of concessions c:

$$
Pr(Punished_c) = F(\alpha + \sum_j \beta_j\text{BurnedArea}_j^c + \gamma\text{TotalBurnedArea}_c + \delta\text{PopnBurnedArea}_c + \eta\text{ConcArea}_c)
$$

where $F(\cdot)$ is the CDF of logistic distribution; $Punished_c$ is a dummy equal to 1 if concession c appeared on the list of investigated concessions; BurnedArea_j^c is the number of pixels in land type j burned by fires started in concession c in the 12 months prior to the release of the investigated firm lists (September 2014 to August 2015); TotalBurnedArea_c is the total area burned by fires started in concession c during that time; PopnBurnedArea_c is the population in areas burned by fires started in concession c during that time; and ConcArea_c is the area of concession c.

The results are shown in Table 7. Larger fires are clearly more likely to be punished; conditional on fire size, the government is also likely to target larger concessions. Looking in terms of the types of area burned suggests a few key patterns. First, the government is substantially more likely to punish those firms whose fires spread into populated areas. Second, the government is also likely to target those firms whose fires spread into protected zones (though the coefficient is statistically significant only in the specification with province fixed effects). Pixels in unleased productive forest are treated no differently than land in the concession itself. What is remarkable about these patterns is that they very much mirror the patterns of avoidance behavior we saw in Table 5, suggesting that concession owners substantially avoid the same types of land that trigger government investigations. This suggests that firms do behave as if they are responding to Pigouvian (1920) incentives, and that these are stronger than the Coasian solution for burning other private lands.

5 Counterfactuals and Implications for Policy

In this section, we use our estimates to consider several counterfactual simulations in order to understand how alternative land allocations would change the degree of fire use. The 1967 Basic Forestry Law gave the national government the exclusive right of forest exploitation in the so-called Forest Estate (kawasan hutan), an area equivalent to three-quarters of the nation’s territory (ROI 1967, Barber 1990). The allocations in the forest estate today thus represent conscious decisions on the part of the state; likewise, the state in principle has substantial flexibility in how to configure future forest concessions, or how to reconfigure long-term concessions when they come up for renewal.

One important implication of the results in Section 4 is that being surrounded by one’s own land has a deterrent effect on fire-setting. As such, a more concentrated distribution of concession rights should be expected to reduce the incidence of fires. We investigate this by using our estimated coefficients and conducting a simulation exercise that assigns all concessions to a single owner, in order to estimate how many fewer hectares would have been burned by fires started inside wood fiber
and palm oil concessions over our study period in this case.

A second implication of the results from the previous section is that fire-setters are also deterred by the likelihood of a fire spreading into neighboring protected forest or populated areas. This points to an alternative potential policy: namely, zoning more land to be designated as protected land. A second counterfactual simulation exercise therefore estimates the implied reduction in ignitions inside wood fiber and palm oil concessions as a result of zoning all unleashed productive forest as protected forest.

We extend these counterfactual simulations to consider how far ignitions would be reduced if agents treated all buffer land as if it were part of their own concession or as if it were the land type with the strongest deterrent effect, populated land outside the forest estate.

We benchmark the size of the estimated effects in these simulation exercises by comparing the results to a series of alternative counterfactuals that can be investigated using our data. We estimate the reduction in hectares burned were all fires started inside wood fiber and palm oil concessions prevented entirely from (i) spreading beyond the concession in which they started, and (ii) extending into protected forest and populated areas. Finally, we match our data to individual firms’ membership of a large private sustainability organization, the Roundtable on Sustainable Palm Oil (RSPO) to estimate how many fewer hectares would have been burned by fires started inside palm oil concessions had the RSPO been successful in preventing any fires from starting inside concessions owned by its members.

Each simulation exercise is discussed in turn in the subsections below, and the full set of results is summarized in Table 8.

5.1 Counterfactuals

How far might more concentrated allocations of concession rights reduce the incidence of fires?

The results in the previous section suggest that a more concentrated allocation of concession rights should reduce the incidence of fires. This arises because a more concentrated allocation of concessions increases the likelihood that a given pixel’s buffer has the same owner as the central pixel and, as shown in Table 3, this has a deterrent effect on externality-inducing fire-setting. We investigate this by using the coefficients estimated in Table 3, combined with a simulation exercise that achieves a more concentrated allocation of concession rights by assigning all concessions to have a single owner while keeping constant the total area allocated to concessions.

The first step in the simulation exercise is to estimate the coefficients in equation (2), focusing
on $\text{FractionBufferOwn}_i$:

$$
\mathbb{E}[\text{Ignition}_{it}] = \gamma_i \exp(\beta_1 \text{WindSpeed}_{it} \\
+ \beta_2 \text{FractionBufferOwn}_i \times \text{WindSpeed}_{it} \\
+ \beta_3 X_i \times \text{WindSpeed}_{it} + \delta_t)
$$

(7)

We then simulate the value of the dependent variable under the counterfactual scenario by replacing $\text{FractionBufferOwn}_i$ with the number of buffer pixels in the same ‘aggregate concession’ as pixel i under this counterfactual, keeping all other covariates (including the pixel fixed effects) unchanged.17

$$
\hat{\mathbb{E}}[\text{Ignition}_{it}] = \hat{\gamma}_i \exp(\hat{\beta}_1 \text{WindSpeed}_{it} \\
+ \hat{\beta}_2 \text{FractionBufferOwn}_i \times \text{WindSpeed}_{it} \\
+ \hat{\beta}_3 X_i \times \text{WindSpeed}_{it} + \hat{\delta}_t)
$$

(8)

This exercise suggests that assigning all concessions to have the same owner would result in a 6% reduction in ignitions inside wood fiber and palm oil concessions within the forest estate over our study period as a result of lower externality-inducing fire-setting.

What if agents treated all buffer land in the same way as their own land?

The previous counterfactual experiment can also be extended to consider how far ignitions would be reduced if agents treated all land – including land not already allocated to concessions – as if it were their own concession land, using the same approach but setting $\text{FractionBufferOwn}_i$ to be equal to 100%. In this case, the simulations suggest that ignitions would instead be reduced by 14%.

How far might designating more protected forest land reduce the incidence of fires?

One approach one could feasibly take is to zone all remaining land in the national forest that has not yet been leased out as protected forest. We calculate the implications of this through a similar approach, i.e. designating unleased productive forest to be protected forest land and using the estimated coefficients in Table 5. This exercise suggests that this alternative policy would result in a much larger decline in ignitions inside wood fiber and palm oil concessions within the forest estate over our study period, at 26%.

17This implies that pixels in which no ignitions were observed over the study period will also contain no ignitions under the counterfactuals. While some covariates might also be expected to change under the counterfactuals, the key effect of interest is the change in incentives induced by the changing externality effect.
What if agents treated all buffer land in the same way as the land type with the strongest deterrent effect?

The results in Table 5 reveal that buffer land outside the forest estate – which is where the population lives – has the strongest deterrent effect on would-be fire-setters of all of the land types considered. The final counterfactual simulation examines the potential reduction in ignitions if agents acted as if all land in each buffer were in this land category. This may not be feasible, of course, but it is a useful counterfactual to illustrate the degree to which enhanced government enforcement could matter.18 This counterfactual simulation results in a sharp 80\% reduction in ignitions were agents to treat all land as if it were land outside the forest estate. A slightly smaller reduction of 67\% would be achieved were agents to instead treat all land as if it were protected forest.19

5.2 Benchmarking simulation results

We benchmark the magnitude of the estimated effects in Section 5.1 by comparing these effects to those of alternative counterfactual policies based on stricter enforcement regimes.

The first of these considers the impact of preventing the spread of fires started inside wood fiber and palm oil concessions from crossing property boundaries. This can be estimated from our data by identifying the share of the burned area of each fire that falls outside the concession of ignition, and assuming that this share of the burning was prevented. This counterfactual simulates the effect of, for instance, effective regulation or enforcement of punishments for burning land owned by other concession holders or public lands. The results suggest that a total of 12.1 million hectares would have been burned by fires started inside wood fiber and palm oil concessions over our study period had these fires been prevented from crossing property boundaries. This represents a sizable reduction of 23\% relative to the 15.6 million hectare total area that was burned over the period.

An alternative counterfactual considered is the effect of preventing the spread of fires started inside wood fiber and palm oil concessions into protected forest and populated areas only. This corresponds to, for instance, policies that implement effective enforcement of punishment for, or fire-fighting efforts to prevent, encroachment into public lands. The results suggest that in this case the total area burned would have been much closer to the level actually observed. The total burned area in this case is estimated to be 15.3 million hectares, which represents only a 2\% reduction on the observed area burned.

18In this case, the counterfactual aims to capture only the deterrent effect of surrounding land associated with all buffer land being treated as if it were land outside the forest estate. Of course, reassigning buffer pixels inside concessions to be a different land type would mechanically also change the categorization of the central pixels, and therefore the sample of ignitions considered in the analysis, but given that this is not the effect of interest that we are aiming to consider with this counterfactual we abstract from this effect. This effect therefore captures the effect of increased enforcement as if all land outside a concession was in a particular land category.

19Note that this result is substantially higher than in the calculation in the previous subsection because we are now considering the counterfactual of treating all land as if it were protected, whereas the previous counterfactual only rezoned ‘unleased forest estate land’ as protected.
An alternative form of regulation implemented over the period is private regulation via membership of the RSPO, a multi-stakeholder organization founded in 2003 that encourages the production and trade of certified sustainable palm oil and promotes a zero burning policy. To consider the relative potential efficacy of this initiative compared to our counterfactuals, we simulate the effect of perfect enforcement of the zero burning policy promoted by the RSPO among its members. To do so, we simulate the area burned by fires started inside concessions owned by RSPO members at the time of ignition. Removing the burned area from all of these fires from the total area burned by fires started inside wood fiber and palm oil concessions over our study period implies only a 3% reduction in the total area burned to 15.2 million hectares.

Overall, the results in this section suggest that relatively modest effects would result from either improving property rights and relying on Coasian private bargaining, or tort reform that allows existing concessions to recover damages. In contrast, stronger Pigouvian incentives that encouraged property owners to treat the risk of any fire spread similarly to spread into land types that the government currently punishes most severely would achieve much stronger reductions.

6 Conclusions

We consider how far Indonesia’s devastating forest fires may be driven by the local externality that arises as a result of concession owners’ failure to internalize the externality that a spreading fire may cause to the property of other landowners. Our results suggest that, over the period 2000-2016, fire setters do appear to take the externalities from fire setting into account: ignitions are significantly less likely on windy days in areas where the fire would be more likely to spread inside the same concession versus cases in which spread would be to land with a different owner. Our estimates suggest that the prevalence of fires would be reduced by between 22 and 61 percent if the damage risk to others’ land was treated equally to the risk of damaging one’s own property on windy days. The analysis also considers how concession holders’ fire-setting behavior is influenced by other types of neighboring land. The results suggest that surrounding land that lies in protected forest estate

20 Existing studies find muted evidence for reduced incidence of fires in RSPO-certified concessions. For example, Carlson et al. (2018) find that RSPO certification reduced deforestation but not fire or peatland clearance and Cattau et al. (2016) find that the prevalence of fires in Sumatra and Kalimantan from 2012-2015 was lower in RSPO-certified concessions only in areas and under climatic conditions when the likelihood of fire is relatively low. Consistent with this, in our data imprecisely estimated results suggest that palm oil concessions owned by RSPO members may be associated with fewer ignitions. We do not find that RSPO membership affects the degree to which concession owners internalize the costs of fires on neighbors.

21 RSPO certification explicitly prohibits burning but the unit of certification is an oil palm mill and its surrounding supply base, which cannot be mapped directly to our concessions data. However, the first step towards RSPO certification is RSPO membership, which can be matched to our concessions data. While not an explicit pledge of zero burning, RSPO membership requires firms to work towards certification, to provide annual progress reports and acknowledgement of the RSPO Statutes and Principle and Criteria. RSPO members are matched to our concessions data by classifying a concession as an RSPO member if the concession name, or the company group to which the concession belongs, appears in the list of RSPO members published on the RSPO website (https://www.rspo.org/members/all). This list also includes the date on which each member acceded to the RSPO. Over our study period, 23% of company groups, owning 12% of palm oil concessions, became members of the RSPO.
lands or populated areas outside the forest estate does have a deterrent effect, consistent with these
being the land types in which fires are most likely to lead to government sanctions.

The results thus suggest that firms are strategic in two senses: 1) they overuse fire relative to what
they would do if all spread risks were internalized à la Coase, but 2) they do take into account the risks
of government punishment à la Pigou, and this deters them from burning near protected or highly
populated areas. The social damages from fires, however, still vastly exceed the private benefits and
so we build different policy counterfactuals to examine different routes into better controlling forest
fires in the tropics. This is an important consideration not just for Indonesia, but more generally for
other countries in the tropics where the incidence of forest fires is increasing and likely to increase
further with climate change and economic development associated with land conversion.

The analysis has considered a particular externality associated with forest fires, namely the local
externality that arises if others own the land burned by a spreading fire. There are, however, a
wide range of other local and global externalities associated with forest fires, including health and
economic costs of smoke and haze, ecosystem loss and global warming induced by greenhouse gas
emissions. We use our estimate of the reduction in the prevalence of forest fires were the damage
risk to others’ land to be treated equally to the damage risk to one’s own property, together with the
literature quantifying wider impacts of Indonesia’s forest fires, to calculate a back-of-the-envelope
estimate of the implied wider potential savings. Based on the estimated impacts of forest fires in
Indonesia\(^{22}\), and assuming that impacts are directly proportional to the area burned, our estimated
reductions would have implied savings from Indonesia’s 2015 forest fires\(^{23}\) of 676 to 1,874 million
2015 USD (0.08–0.2% of Indonesia’s 2015 GDP), global carbon emission reductions of 0.08 to 0.73
Gigatonnes (up to 7.5% of the global carbon emissions from fossil fuels) and avoided the premature
deaths of up to 15,386 adults and 4,445 children under 3. These figures suggest that the damages
from failing to internalize local externalities can be substantial.

\(^{22}\)The most extensive literature quantifying the impacts of Indonesia’s forest fires is based on the severe fires in
1997-1998, which resulted in the burning of over 5 million hectares of land (Varma, 2003) and the vast spread of haze
throughout Southeast Asia. While there are several reasons to expect that impacts may be heterogeneous across other
fire episodes, this literature is helpful in considering the potential order of magnitude of wider effects. Short-term
costs and damages of the 1997-1998 fires for Indonesia and neighboring countries have been conservatively estimated
at 4,475 million 1997 USD, mainly in medical costs, airport closures and tourism, and damages to ecosystems and
biodiversity (Glover and Jessup, 1999). Subsequent studies estimated the associated carbon emissions at 0.81–2.57
Gigatonnes (Page et al., 2002) and resulting premature deaths at 22,000–54,000 adults (Heil, 2007) and 15,600 children
under 3 (Jayachandran, 2009).

\(^{23}\)The 2015 fires burned an estimated 2.6 million hectares of land in Indonesia.
References

Dales, J. (1968): “Pollution Property and Prices,” .

Tables and Figures

Figure 1: Example of Fire Identification Algorithm

Notes: Example showing how we merge hotspots into contiguous multi-day 'fires'. In this example, Pixels outlined in black had a fire on Day 1, and pixels colored red/orange/yellow had a fire on Day 2. The white boxes A, B, and C denote three fires that we classify as single fires, with ignition area as the black area and total spread extent as the union of the black and red areas.

Figure 2: Forest estate and protection/conservation zones
Figure 3: Sumatra concessions, forest estate and protection/conservation zones
Figure 4: Fire ignitions and concession areas in an area of Riau province, Sumatra

Figure 5: Ignitions and land-use

(a) Share of Land Area and Ignitions by Forest Zone

(b) Share of Land Area and Ignitions Inside Concessions by Concession Type
Figure 6: Riau 2012 deforestation and 2013 ignitions
Table 1: Impact of Deforestation on Ignitions

<table>
<thead>
<tr>
<th>Dependent variable = Number of fires in pixelmonthyear</th>
<th>Pixel FE</th>
<th>Pixel Month & Year FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest loss (km2) in year t-1</td>
<td>1.0917*** (0.1238)</td>
<td>1.3327*** (0.1311)</td>
</tr>
<tr>
<td>Forest loss (km2) in year t-2</td>
<td>-0.3618*** (0.1334)</td>
<td>-0.3072** (0.1339)</td>
</tr>
<tr>
<td>Forest loss (km2) in year t-3</td>
<td>-0.5377*** (0.1805)</td>
<td>-0.3487** (0.1489)</td>
</tr>
</tbody>
</table>

Observations 3,223,584 3,223,584
Mean of Dep. Var. 0.0100 0.0100

Poisson regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands.

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Table 2: Impact of Wind Speed on Fire Spread

<table>
<thead>
<tr>
<th>Wind speed in standard deviation units</th>
<th>Pixel FE</th>
<th>Pixel Month & Year FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9600***</td>
<td>(0.1805)</td>
<td>1.3462***</td>
</tr>
<tr>
<td>(0.1805)</td>
<td></td>
<td>(0.2195)</td>
</tr>
<tr>
<td>Observations</td>
<td>5,445</td>
<td>5,445</td>
</tr>
<tr>
<td>Mean of Dep. Var.</td>
<td>4.748</td>
<td>4.748</td>
</tr>
</tbody>
</table>

Poisson regressions. Standard errors clustered at level of 50km2 grid cells. All regressions control for number of ignitions in pixel-month. All pixels inside wood fiber and palm oil concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands.

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 3: Ignition Results by Surrounding Land Ownership

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fires in pixelmonthyear</td>
<td>1.9628***</td>
<td>2.2217***</td>
<td>2.1218***</td>
<td>1.4299***</td>
<td>1.8673***</td>
<td>2.4957***</td>
</tr>
<tr>
<td>(0.1776)</td>
<td>(0.1718)</td>
<td>(0.1724)</td>
<td>(0.2150)</td>
<td>(0.1657)</td>
<td>(0.2439)</td>
<td></td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in same concession as central pixel</td>
<td>-0.007746***</td>
<td>-0.005191***</td>
<td>-0.003580***</td>
<td>-0.007112***</td>
<td>-0.003328***</td>
<td>-0.002101*</td>
</tr>
<tr>
<td>(0.001665)</td>
<td>(0.001715)</td>
<td>(0.001515)</td>
<td>(0.001508)</td>
<td>(0.001469)</td>
<td>(0.001266)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,728,600</td>
<td>4,728,600</td>
<td>4,728,600</td>
<td>4,720,860</td>
<td>4,728,600</td>
<td>4,720,860</td>
</tr>
<tr>
<td>Mean of Dep. Var.</td>
<td>0.00823</td>
<td>0.00823</td>
<td>0.00823</td>
<td>0.00823</td>
<td>0.00823</td>
<td>0.00823</td>
</tr>
</tbody>
</table>

Poisson regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate in Indonesia excl Java and Lesser Sunda Islands. Omitted category “Num pixels in 6km buffer outside same concession as central pixel” and its interaction.

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 4: Spread Results by Surrounding Land Ownership

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread extent (total fire area minus ignition area)</td>
<td>0.5793</td>
<td>1.1781</td>
<td>0.6191</td>
<td>-0.3529</td>
<td>0.0035191</td>
<td>0.0006899</td>
</tr>
<tr>
<td>(0.5961)</td>
<td>(0.8233)</td>
<td>(0.5952)</td>
<td>(0.5159)</td>
<td>(0.5295)</td>
<td>(0.006451)</td>
<td>(0.006634)</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in same concession as central pixel</td>
<td>0.007467</td>
<td>0.009626</td>
<td>0.005191</td>
<td>0.006634</td>
<td>0.00823</td>
<td>0.00823</td>
</tr>
<tr>
<td>(0.006610)</td>
<td>(0.006271)</td>
<td>(0.006610)</td>
<td>(0.006456)</td>
<td>(0.006486)</td>
<td>(0.006823)</td>
<td>(0.006823)</td>
</tr>
<tr>
<td>Observations</td>
<td>23,745</td>
<td>23,745</td>
<td>23,745</td>
<td>23,694</td>
<td>23,745</td>
<td>23,694</td>
</tr>
</tbody>
</table>

OLS regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category “Num pixels in 6km buffer outside same concession as central pixel” and its interaction.

* p < 0.1, ** p < 0.05, *** p < 0.01
Table 5: Ignition Results by Surrounding Land Type

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Pixel Number of fires in pixelmonthyear</th>
<th>Pixel M & Y FEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed in standard deviation units</td>
<td>2.1496***</td>
<td>(0.3252)</td>
<td>2.3262***</td>
<td>(0.3267)</td>
<td>2.1431***</td>
<td>(0.3282)</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in same concession as central pixel</td>
<td>-0.008085***</td>
<td>(0.000373***)</td>
<td>-0.004262</td>
<td>(0.000619***)</td>
<td>-0.004867***</td>
<td>(0.000489***)</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in different concession from central pixel</td>
<td>0.002356</td>
<td>(0.002469)</td>
<td>0.003093</td>
<td>(0.003398)</td>
<td>0.003198</td>
<td>(0.003559)</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer outside forest estate</td>
<td>-0.017737***</td>
<td>(0.001219)</td>
<td>-0.019222***</td>
<td>(0.000386)</td>
<td>-0.011848***</td>
<td>(0.000577)</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in protected forest</td>
<td>-0.016323***</td>
<td>(0.000327)</td>
<td>-0.019333***</td>
<td>(0.000083)</td>
<td>-0.012622***</td>
<td>(0.000414)</td>
</tr>
<tr>
<td>Wind speed * Average population density in 6km buffer</td>
<td>0.002440</td>
<td>(0.002112)</td>
<td>0.001960</td>
<td>(0.003441)</td>
<td>0.002375</td>
<td>(0.004233)</td>
</tr>
<tr>
<td>Mean of Dep. Var.</td>
<td>0.008228</td>
<td>0.008228</td>
<td>0.008228</td>
<td>0.008228</td>
<td>0.008228</td>
<td>0.008228</td>
</tr>
</tbody>
</table>

Observations: 4,728,600

Control: Wind speed × Island
Control: Wind speed × Concession Type
Control: Wind speed × Forest Cover 2000
Control: Wind speed × Concession Area
Mean of Dep. Var.

Poisson regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category “Num pixels in 6km buffer in productive forest outside concession” and its interaction. Suppressed categories “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer outside forest estate in concession”, “Num pixels in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG” and their interactions.

*p < 0.1, **p < 0.05, ***p < 0.01

Table 6: Spread Results by Surrounding Land Type

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Pixel Spread extent (total fire area minus ignition area)</th>
<th>Pixel M & Y FEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed in standard deviation units</td>
<td>0.2030**</td>
<td>(0.1118)</td>
<td>0.2077*</td>
<td>(0.1109)</td>
<td>0.2314**</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in same concession as central pixel</td>
<td>-0.001054**</td>
<td>(0.0008822)</td>
<td>-0.001544*</td>
<td>(0.000836)</td>
<td>-0.001558*</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in different concession from central pixel</td>
<td>-0.001106**</td>
<td>(0.001046)</td>
<td>-0.001933**</td>
<td>(0.001082)</td>
<td>-0.001558*</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer outside forest estate</td>
<td>-0.00000602**</td>
<td>(0.00000649)</td>
<td>-0.00005555</td>
<td>(0.00005755)</td>
<td>-0.00006780</td>
</tr>
<tr>
<td>Wind speed * Num pixels in 6km buffer in protected forest</td>
<td>-0.000288**</td>
<td>(0.0002624)</td>
<td>-0.000203**</td>
<td>(0.000315)</td>
<td>-0.0002282</td>
</tr>
<tr>
<td>Wind speed * Average population density in 6km buffer</td>
<td>-0.00005555**</td>
<td>(0.00002996)</td>
<td>-0.00006780</td>
<td>(0.00002986)</td>
<td>-0.00005221</td>
</tr>
</tbody>
</table>

Observations: 23,745

Control: Wind speed × Island
Control: Wind speed × Concession Type
Control: Wind speed × Forest Cover 2000
Control: Wind speed × Concession Area
Mean of Dep. Var.

OLS regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category “Num pixels in 6km buffer in productive forest outside concession” and its interaction. Suppressed categories “Num pixels in 6km buffer in protected forest in concession”, “Num pixels in 6km buffer outside forest estate in concession”, “Num pixels in 6km buffer in sea”, “Num pixels in 6km buffer in Malaysia / PNG” and their interactions.

*p < 0.1, **p < 0.05, ***p < 0.01
Table 7: Government Punishment Results

<table>
<thead>
<tr>
<th>Dummy = 1 if firm investigated</th>
<th>No FEs</th>
<th>Island FEs</th>
<th>Province FEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels outside forest estate burned by fire</td>
<td>0.02429</td>
<td>0.03267</td>
<td>0.01924</td>
</tr>
<tr>
<td>(0.06056)</td>
<td>(0.04975)</td>
<td>(0.05594)</td>
<td></td>
</tr>
<tr>
<td>Pixels in unleased productive forest burned by fire</td>
<td>-0.05307</td>
<td>-0.02794</td>
<td>-0.02845</td>
</tr>
<tr>
<td>(0.03541)</td>
<td>(0.03040)</td>
<td>(0.02809)</td>
<td></td>
</tr>
<tr>
<td>Pixels in protected forest burned by fire</td>
<td>0.03855</td>
<td>0.07682</td>
<td>0.08669**</td>
</tr>
<tr>
<td>(0.05530)</td>
<td>(0.04927)</td>
<td>(0.03602)</td>
<td></td>
</tr>
<tr>
<td>Total area of fires burned Sep 2014-Aug 2015</td>
<td>0.01825**</td>
<td>0.01351*</td>
<td>0.01379*</td>
</tr>
<tr>
<td>(0.008609)</td>
<td>(0.007932)</td>
<td>(0.007505)</td>
<td></td>
</tr>
<tr>
<td>Concession area (km2)</td>
<td>0.001142**</td>
<td>0.001618***</td>
<td>0.001715**</td>
</tr>
<tr>
<td>(0.0005171)</td>
<td>(0.0005695)</td>
<td>(0.0006754)</td>
<td></td>
</tr>
<tr>
<td>Population in fire extent</td>
<td>0.0006063***</td>
<td>0.0004342**</td>
<td>0.0004410**</td>
</tr>
<tr>
<td>(0.0001889)</td>
<td>(0.0001905)</td>
<td>(0.0001956)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations</th>
<th>599</th>
<th>599</th>
<th>567</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Dep. Var.</td>
<td>0.160</td>
<td>0.160</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Logit regressions. Standard errors clustered at level of 50km2 grid cells. All pixels inside wood fiber and palm oil concessions inside forest estate excl Java and Lesser Sunda Islands. Omitted category “Pixels in productive forest in concession burned by fire”. Suppressed categories “Pixels in Malaysia / PNG burned by fire”, “Pixels in concession outside forest estate burned by fire”, and “Pixels in concession in protected forest burned by fire”.

* p < 0.1, ** p < 0.05, *** p < 0.01

Table 8: Counterfactual simulation results

<table>
<thead>
<tr>
<th>Counterfactual</th>
<th>% reduction in ignitions</th>
<th>% reduction in area burned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign all concessions to single owner</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Agents treat all buffer pixels as concession land with same owner</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Zone all unleased productive forest as protected forest</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Agents treat all buffer pixels as land outside forest estate</td>
<td>80%</td>
<td>23%</td>
</tr>
<tr>
<td>Agents treat all buffer pixels as protected forest</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Prevent fires from spreading beyond concession in which they started</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevent fires from extending into protected forest and populated areas</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>No fires started inside palm oil concessions owned by RSPO members</td>
<td></td>
<td>3%</td>
</tr>
</tbody>
</table>

In first four counterfactuals, concessions and associated ignitions are wood fiber and palm oil concessions within the forest estate only.