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I. Introduction 

Predictive models have taken on newfound importance in response to the spread of the 

COVID-19 illness, and the SARS-CoV-2 virus that causes it. The fast pace of reports, 

predictions, and policy changes that have gripped much of the world since March have 

highlighted both the political relevance and the great uncertainty associated with real-time 

forecasting in complex systems.  On Thursday March 12, Boris Johnson announced that the U.K. 

would not limit large gatherings or close schools because “The scientific advice is that this could 

do more harm than good at this time;”7 Patrick Vallance, the chief science advisor to the 

government, described a containment plan based on herd immunity, noting that this would likely 

require 60% of the population to contract the virus (Robinson and Blanchard (2020)).  Four days 

later, Johnson reversed course and stated “now is the time for everyone to stop non-essential 

contact with others”8, coordinating his announcement with a related briefing on a new study 

from Imperial College to indicate that the results of that study had influenced the government’s 

change in policy (Booth (2020)).  The United States also changed its guidelines that same day, 

suggesting that gatherings be limited to ten people (after the CDC had suggested a different limit 

of 50 people the day before)9, with Dr. Deborah Birx, Coronavirus Response Coordinator for the 

White House Coronavirus Task Force, also referencing the Imperial College report in support of 

the policy change: “What had the biggest impact in the model is social distancing, small groups, 

not going in public in large groups” (Fink (2020)).  From a modeling perspective, Birx’s 

 
7 https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-12-march-2020 
8 https://www.gov.uk/government/speeches/pm-statement-on-coronavirus-16-march-2020 
9 There is some suggestion that the United States previously more relaxed policy had been influenced by a blog post 
by law professor Richard Epstein with back of the envelope calculations suggesting no more than 500 deaths due to 
the epidemic in the United States (Dawsey et al., (2020)).  We discuss Epstein’s estimate in Section V. 
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comment is telling because those predictions about the relative impact of different distancing 

procedures are completely driven by ad hoc assumptions about how each affects contacts. 

One perplexing element of these references to the Imperial College study was that 

government officials cited predictions that varied by surprising orders of magnitude.  Donald 

Trump has emphasized the prediction of 500,000 deaths in the UK and 2.2 million deaths in the 

U.S. from uncontrolled spread of the epidemic, whereas Patrick Vallance focused on a prediction 

of 20,000 deaths in the UK from an extreme response of “suppression” (Ferguson et al., 2020) 

which requires substantive changes in behavior until the production of a vaccine (Johnston, 

2020).  On March 31, Deborah Birx reported that the White House consulted “five or six 

international or domestic modelers,” and concluded that full mitigation would reduce total deaths 

in the United States to 100,000 to 200,000.  At the same time, Anthony Fauci, Director of the 

National Institute of Allergy and Infectious Diseases, cast doubt on these predictions: noting that 

“… I know my modeling colleagues are going to not be happy with me, but models are as good 

as the assumptions you put into them.  And as we get more data, then you put it in and that might 

change.”10   

At present, after several weeks of “social distancing,” deaths that have been officially 

linked to SARS-CoV-2 in the UK and US have only amounted to a fraction of those projected in 

the most pessimistic scenarios for the Imperial College model, but are also already above the 

predictions of other widely publicized projections.  Since it is still an early phase of the 

pandemic, there should be a role for well-founded models to provide information and guide 

critical policy decisions.  This paper provides a critical review of the literature from several 

 
10 https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-
coronavirus-task-force-press-briefing-15/ 
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fields with the goal of providing a foundation for economists and other social scientists to 

conduct original research that may both save lives and bolster economic outcomes.   

Economists have responded energetically and have produced a considerable amount of 

policy-oriented research related to the spread of the pandemic in a short period of time.  Of most 

relevance to this paper, Atkeson (2020a) and Berger, Herkenhoff, and Mongey (2020) apply and 

propose extensions to the standard (“SIR”) epidemiological model, while Stock (2020) argues 

that policy analysis is limited for the moment given the limitations of existing data.  We discuss 

several other recent papers by economists in the text and conclusion.  

The paper proceeds as follows.  Section 2 outlines the types of models generally used in 

the ecology/epidemiology literature to study the spread of disease.  Section 3 describes a number 

of heterogeneities that are important in practice but are not incorporated in the baseline versions 

of these models.  Section 4 describes how existing data is frequently used to parameterize 

existing models; we also include an appendix that lists standard and novel sources of data about 

the pandemic and hope it will be a useful resource for researchers.  Section 5 discusses how this 

data guides the choice of parameters for the standard dynamic model of the spread of disease.  

Section 6 provides detail of five estimates of the spread reported to have influenced government 

policy and critiques the models used to provide those estimates.  Section 7 discusses outstanding 

policy questions and suggests pressing research questions for economists to take on.  Section 8 

concludes.   
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II. Types of Models and Their General Properties 

 There are two primary approaches for modeling the spread of disease: (1) “Mechanistic” 

and (2) “Phenomenological”.11  The distinction between these models is generally analogous to 

the distinction between structural and reduced form models in economics.  Just as proponents of 

structural work tout the ability to extend their models to conduct counterfactual analysis, 

advocates for mechanistic approaches to disease modeling highlight the importance of out of 

sample predictions: “All other things being equal, mechanistic models are more powerful since they 

tell you about the underlying processes driving patterns. They are more likely to work correctly when 

extrapolating beyond the observed conditions.” (Bolker (2008), p. 7). 

 As a biological process, disease spread is usually much better characterized by models 

that focus on rates of change, rather than models that focus on the states of individual variables 

themselves. Thus, models usually end up with the same general components, e.g. representing 

the rates at which new individuals become infected, at which infected individuals recover or die, 

etc. The primary distinction between phenomenological and mechanistic models in 

epidemiology, therefore, tends to be more directly related to how models have been 

parameterized than on the functional forms themselves. Models fit based on a priori biological 

assumptions, or boots-on-the-ground efforts to identify infected individuals and trace their 

contacts and resulting infections, tend to be labeled as mechanistic.  In this sense, mechanistic 

models in this literature may be seen as analogous to macroeconomic models that fit some 

parameters to data and then calibrate other parameters to match external evidence.  Models that 

are parameterized through curve-fitting based on reported case or mortality data, tend to be 

labeled as phenomenological. 

 
11 See Hurford (2012) for further discussion.  
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The most common approach that has been used to model the spread of SARS-CoV-2 is 

the “Susceptible / Infectious / Recovered” (SIR) model.12  In essence, SIR models can be viewed 

as continuous-time Markov chain models where only a limited number of transitions between 

states are possible.  In its most basic form, the SIR model considers dynamics within a single 

homogeneous population (i.e. what physicists would call a “mean-field model”), with form  

dS/dt  =  - βIS / N 

dI/dt  =  βIS / N – γI  

dR/dt  =  γI 

where S, I, and R are the abundance of the three model states, β combines information about 

encounter rates and infectivity, and γ describes the combined rates of recovery and mortality 

from the disease.13 

 In this model, the disease will increase in incidence until βIS / N= γI (i.e. S / N = γ/β), at 

which point new infections can no longer keep up with the recovery rate (n.b. this point will 

always be reached eventually, since recovery results from a linear rate process that is directly 

proportional to I, whereas infection rates are non-linear and depend jointly on I and S). 

Thereafter, the number of new infections will begin to drop, and the disease will die out.  This 

threshold (often referred to as the “herd immunity” threshold) describes the minimum size of the 

susceptible pool required for the infection to spread through a well-mixed population. 

Importantly, individuals continue to become infected (especially if the infected pool is large), but 

 
12 Kermack and McKendrick published seminal articles studying this model from 1927 to 1933.  These articles were 
republished in 1991 (Kermack and McKendrick (1991a), (1991b), (1991c)).  Sattenspiel (1990) provides a detailed 
discussion of the history of models of the spread of infectious disease. 
13 Chapter 15 of Lehman, Loberg, and Clark (2019) provides a textbook description of the SIR and other models.  
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on average, the number of new infections per time step will begin to decrease once the herd 

immunity threshold has been reached. 

One potentially confusing aspect of the basic SIR model is that commonly used methods 

for identifying and analyzing point equilibria are not necessarily indicative of states that will be 

realized as time goes to infinity. This is because of the "inertia" in the model caused by existing 

infections. Although the rate at which new individuals become infected drops after the herd 

immunity threshold is reached (and, recall that this threshold represents the "equilibrium" where 

dI/dt = 0 and dS/dt = -dR/dt), the fraction of the population that will ultimately be infected 

depends on a number of other factors, including the current number of infections, the rate at 

which new individuals are infected, and the recovery rate.  Under some specialized conditions, 

equilibria in the SIR model can be derived in closed form. (Harko, Lob, and Mak (2014)).  

Note that individuals in the SIR model are assumed to be infinitely divisible (i.e. there is 

no “minimum” step size for transitions among states), and that all state transitions are modeled as 

exponential processes which can be characterized by their half-lives.  Additional compartments 

can be used to incorporate time-lags into the model.  For example, since the incubation period for 

SARS-CoV-2 is estimated to be about five to six days, the extension of SIR to SEIR to allow for 

a fourth state (“Exposed”) has been especially common for studying SARS-CoV-2 (Hethcote & 

Driessche (1991) and Li & Muldowney (1995)), although many other variants of the model exist 

(e.g. “SAIR” models, which include an additional “Asymptomatic” infected state).  Collectively, 

these models are known among epidemiologists as “compartmental models”.14  

 
14 See Brauer (2008) and in Blackwood & Childs (2018) for general reviews of this term and associated concepts. 
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The structure of transfer rates and states, and of resulting model predictions can vary 

enormously even within a specific type of compartmental model. Some factors that differ across 

SIR models include separation of β into terms describing contacts vs. infection events 

(Blackwood & Childs (2018)), separation of γ and the “Recovered” bin to distinguish between 

recoveries and deaths (Gallos & Fefferman (2015)), inclusion of geographic (Bolker (1999)), and 

demographic (Hethcote (2000)) structure, the application of reproduction and death rates across 

population bins (Harko et al. (2014)), and loss of immunity (Hethcote & Driessche (1991)).  

Although these many variants of the model allow it to capture different kinds of biological 

nuance, it can also inhibit comparisons of predictions across models, e.g. if parameters describe 

fundamentally different processes or relate to very different types of individuals. 

Bolker has compiled a list of more than 40 open source models of the SARS-CoV-2 

epidemic.15  These models are mostly SIR models with considerable overlap in mathematical 

structure.  Some primary differences among them involve: (i) the number and identity of 

compartments in the model; (ii) whether time-steps are continuous or discrete; (iii) whether 

dynamics are entirely deterministic or include stochastic aspects; (iv) how any incorporated 

stochasticity is introduced into the model (e.g. discrete time-steps, Gillespie’s method, tau-

leaping)16; (v) whether methods are employed to quantify or reduce observation error; (vi) the 

inclusion of demographic and/or spatial structure in the model; and (vii) the types of scenarios 

and outcomes that they are able to consider (e.g. hospital capacity, number of ICU beds, social 

distancing strategies, etc.). Jointly, these models and methods provide a summary of the “state of 

the art” methods currently available for simulating and parameterizing SIR-like models. 

 
15 https://docs.google.com/spreadsheets/d/1hUZlVDPfa5C8KgURoP_3dAiUQgI6rdb7A5e_g8NcPaY/edit#gid=0) 
16 See Wilkinson (2011) and Gillespie’s notes (https://www.slideshare.net/csgillespie/the-27257701) for details.  
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There is a distinct literature that models the spread of disease in a network context.  

These models typically take bilateral links between people as exogenous primitives and study the 

probabilistic spread of infection from an initial set of infected people through the rest of the 

network.  It is possible to solve for steady state levels of disease in some versions of a network 

model with SIR structure, where this steady state level varies with the geometry of the network 

and the underlying properties of the infection.17   The epidemiological models that we discuss in 

Section 5 do not seem to make use of network techniques. 

A notable shortcoming of the basic SIR model is that it does not allow for heterogeneity 

in state frequencies and rate constants.18  We discuss several different sources of heterogeneity in 

more detail in Section 2.   

The most important and challenging heterogeneity in practice is that individual behavior 

varies over time.  In particular, the spread of disease likely induces individuals to make private 

decisions to limit contacts with other people.  Thus, estimates from scenarios that assume 

unchecked exponential spread of disease, such as the reported figures from the Imperial College 

model of 500,000 deaths in the UK and 2.2 million in the United States, do not correspond to the 

behavioral responses one expects in practice.  Further, these gradual increases in “social-

distancing” that can be expected over the courses of an epidemic change dynamics in a 

continuous fashion and thus blur the distinctions between mechanistic and phenomenological 

models.19  Each type of model can be reasonably well calibrated to an initial period of spread of 

 
17 See Acemoglu and Ozdaglar (2009) and Easley and Kleinberg (ch. 21, 2010) for class and textbook summaries of 
the SIR model in a network context. 
18 Murray et al. (2020) specifically argues that a phenomenological approach has an advantage over SEIR models 
that base transition probabilities on an assumption of “random mixing”.   
19 See Wood (2001) for an example of a “semi-mechanistic” model that incorporates phenomenological components 
in an otherwise mechanistic model.  
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disease, but further assumptions, often necessarily ad hoc in nature, are needed to extend either 

type of model to later phases of an epidemic.   

In addition to problems related to heterogeneity, there are three additional challenging 

aspects of SIR models that make their dynamics especially difficult to predict. First, because the 

model is nonlinear, small changes in parameter values and initial states can have large effects on 

dynamics. For example, given the reported doubling-times of SARS-CoV-2 early in the 

epidemic, comparing two otherwise identical regions that begin with 1 vs. 100 infected 

individuals can lead to more than a three-week lag-time in case numbers. This challenge is 

especially pernicious because of the high uncertainty that is usually associated with all of these 

values, meaning that predictions that fully incorporate uncertainty often span many orders of 

magnitude. Second, because dynamics in these models tends to be both complex and non-

monotonic, classic model diagnostics and fitting tools may not be good indicators of whether a 

model will produce good extrapolations. For example, many models have high predictive ability 

when fit to the early stages of an epidemic, where growth in the number of infected individuals is 

approximately exponential. However, comparatively few models are able to accurately predict 

the saturation point at which the number of new infections begins to decline or the expected 

number of infected individuals at the peak of the epidemic. Third, these problems are 

compounded by the fact that disease transmission involves substantial time lags. Not only can 

these lags confound models that fail to incorporate them correctly, but they also make it difficult 

to identify the effects of interventions on disease spread, since changes in observed case numbers 

lag infection events by at least several days.  

 Sadly, all three of these challenges seem to be particularly acute for SARS-CoV-2. 

Uncertainty in rates and states are especially high for the current pandemic, both because 
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forecasts must be made in real-time, and because there are unprecedented stresses at a global 

scale on the institutions that are typically responsible for collecting and reporting data. Due to the 

unusually high asymptomatic rate of infection, it is also difficult to distinguish differences in 

reported case numbers that are driven by differences in actual infections vs. differences in  

reporting processes, so nonlinearities and saturation points are relatively difficult to identify. 

Because SARS-CoV-2 appears to have a particularly long latent stage in comparison to similar 

diseases, lags between policy interventions and observable changes in dynamics have often taken 

a week or longer. 

 

III.  Heterogeneities and Modeling 

Several sources of heterogeneity complicate any modeling approach to SARS-CoV-2; it 

would be natural to attempt to incorporate one or more of them in future models.   

Heterogeneous Exposure 
 

The standard SIR model assumes a single transmission rate for the entire population, but 

systematic differences in the routine of daily life may result in different patterns of social 

interactions.  Some of these differences are predictable functions of population density, and, 

thus, it is natural to expect different levels of social contact in urban than in rural areas.  But 

daily routines may also be quite different across major cities: more than half of daily commuters 

take public transit in New York City, whereas only ten percent do so in Los Angeles.20   

Household and building structure may also promote or inhibit the spread of disease.  

Nursing homes and long-term care facilities may be particularly susceptible because of the heavy 

degree of interactions between residents and staff that take place on a moment-to-moment basis.   

 
20 https://en.wikipedia.org/wiki/List_of_U.S._cities_with_high_transit_ridership 
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Some early statistics are consistent with the hypothesis that residents in these facilities are at 

unusual risk of infection: as of April 14, residents and workers at long-term care facilities 

accounted for 13.8% of all positive tests (3,907 of 28,163) in Massachusetts.21  Similarly, 36% of 

residents at Pine Street Inn, a homeless shelter in Boston, tested positive for SARS-CoV-2.22  

It also appears that some types of social contacts may be unusually likely to transmit 

SARS-CoV-2.  A single “Beer Pong” party where participants shared drink glasses at an 

Austrian ski resort is credited with producing hundreds of infections in Denmark, Germany, and 

Norway (Hruby, 2020).  A soccer game with record attendance may help to explain why 

Bergamo is an epicenter of the pandemic, perhaps exacerbated by the outcome of the game, as 

fans hugged and kissed each time Atalanta (the team from Bergamo) scored. Atalanta won the 

game 4 to 1 (Azzoni and Dampf (2020)).  A March 10th choir practice in Washington State with 

60 attendees resulted in 45 infections and two deaths.23  The phenomenon of “superspreaders” is 

well known in the epidemiology literature: as Stein (2011) summarizes, “The minority of 

individuals who infect disproportionately more susceptible contacts, as compared to most 

individuals who infect few or no others, became known as super-spreaders, and their existence is 

deeply rooted in history.” (See Hethcote and Van Ark (1987) for a model that incorporates some 

of these heterogeneities.) 

Early studies of the spread of SARS-CoV-2 highlight the importance of networks and the 

advantages of flexible jobs that enable some people to work from home (Dingel and Neiman 

(2020) assess variations across cities and industries in terms of feasibility of working from 

home.)  Geographic concentrations of infections in New York and Italy can be traced to the 

 
21 https://www.mass.gov/doc/covid-19-cases-in-massachusetts-as-of-april-14-2020/ 
22 https://www.wbur.org/commonhealth/2020/04/14/coronavirus-boston-homeless-testing 
23 https://www.cnn.com/2020/04/01/us/washington-choir-practice-coronavirus-deaths/index.html 

32
C

ov
id

 E
co

no
m

ic
s 1

2,
 1

 M
ay

 2
02

0:
 2

1-
68



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

strength of network ties to early cases (Kuchler et al. (2020), see also Borjas (2020)), while 

people have taken greatest steps for social distancing in regions with relatively high median 

incomes and internet access (Chiou and Tucker, 2020).  These observations suggest that there 

may be systematically different trajectories for the spread of disease across incomes and regions, 

and perhaps even across regions according to political predilections (Allcott et al. (2020)).  Case 

counts to date suggest possible differences for infection rates by race and ethnicity (Kendi 

(2020)) but testing rates may vary across these groups and data for the race of infected 

individuals is very spotty.24 

 

Heterogeneous response across people 

Observational data suggests strong correlations between age, sex, existing medical 

conditions, and risk from SARS-CoV-2 infection.  On March 26, the Center for Disease Control 

(CDC) reported that people aged 65 and over accounted for approximately half of 

hospitalizations and ICU admissions and 80% of deaths and those aged 85 and over were 

particularly affected.25  The standard SIR model assumes equal mortality rates for all infected 

people; the SIR models that we discuss typically allow for differential risks by age, but often do 

not incorporate other factors that appear to be strongly correlated with risk.  

 Though the United States is not tracking deaths by gender (Gupta (2020)), the observed 

mortality rate has been at least 50% higher for men than for women in 12 of the 14 countries for 

which data is available.26  In addition, the CDC warns that “people of any age who have serious 

 
24 In Massachusetts, for example, “Hispanic” (22.4%) and “Non-Hispanic Black/African American” (15.7%) groups 
are disproportionately represented among people with a positive test and a reported category for Race/Ethnicity but 
Race/Ethnicity is listed as “Unknown” for 45% and as “Missing” for 18% of people with positive tests.  
(https://www.mass.gov/doc/covid-19-cases-in-massachusetts-as-of-april-14-2020)  
25 https://www.cdc.gov/mmwr/volumes/69/wr/mm6912e2.htm 
26 http://globalhealth5050.org/covid19/, retrieved April 7, 2020.  
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underlying medical conditions might be at higher risk for severe illness from COVID-19.”27  

These guidelines are consistent with retrospective analysis of multi-center data from Wuhan, 

China, which found that hypertension, diabetes, and heart disease were the most common 

comorbidities and that Sequential Organ Failure Assessment (SOFA) and d-dimer scores were 

significantly associated with death for hospitalized patients (Zhou et al. (2020)).  Since the CDC 

includes “severe obesity” (BMI > 40) as an underlying medical condition that increases risk in 

this case, the high rate of adult obesity may increase the mortality rate from SARS-CoV-2 in the 

United States (Ludwig and Malley (2020)).  Anthony Fauci noted that “comorbidities … are, 

unfortunately, disproportionately prevalent in the African American population,” suggesting 

another reason that there might be variations in outcomes by race and ethnicity.28  It may be 

possible to account for these variations in risk across cities, countries, and subgroups by post-

stratifying the final size of the epidemic by the estimated proportions falling within specific risk 

groups, but that would require information on the interactions between underlying medical 

conditions and mortality rates from SARS-CoV-2 that is not yet available. 

 
Medical Capacity by Location  
 

The standard SIR model also assumes consistent medical response independent of one’s 

geographic location.  Yet, there may be important variation in medical capacity across locations.  

The United States ranks 32nd in the world with a bit less than 3 hospital beds per thousand 

people.  By comparison, South Korea, Japan, and Germany each have at least 8 hospital beds per 

thousand people, though the United States has greater per-capita ICU capacity than any of those 

 
27 https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/groups-at-higher-risk.html 
28 https://www.whitehouse.gov/briefings-statements/remarks-president-trump-vice-president-pence-members-
coronavirus-task-force-press-briefing-april-7-2020/ 
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countries.29  Hospital capacity may be of most importance at moments of peak local infection.  

To avoid the strain of going overcapacity in some places, France (Chang (2020)) and Germany 

(Ellyat (2020)) have been moving patients to under-utilized hospitals.  By contrast, in the United 

States, so far there has only been movement of medical personnel to New York City and other 

hot spots of disease.   

 
Dosage and the Nature of Exposure 
 

The standard SIR model does not adjust the risk of infection or mortality rates conditional 

on infection to account for the dose of exposure, or more generally, for the nature of social 

contact.  Some researchers have conjectured that exposure to a higher “viral load” can result in 

more severe illness, perhaps motivated in part by the death of Li Wenliang, the 33 year old 

ophthalmologist who worked to publicize the disease in December, 2019.  As American doctors 

Rabinowitz and Bartman comment, “Dose sensitivity has been observed for every common acute 

viral infection that has been studied in lab animals, including coronaviruses”. (Rabinowitz and 

Bartman (2020)).  Early evidence from China and Italy only finds a strong association between 

viral load and the likelihood of infecting others, not an association between viral load and the 

outcome for the person with that viral load. (See Cereda et al. (2020), He et al. (2020), Geddes 

(2020), and Heneghan, Brassey, and Jefferson (2020) for discussion of this point.)  

 

Multiple strains of virus  

At present, eight strains of SARS-CoV-2 have been identified by researchers, though it is 

not clear how many other strains might exist.  These original eight strains are sufficiently similar 

that it seems that the virus is not mutating quickly enough to produce a version that is more 

 
29 https://en.wikipedia.org/wiki/List_of_countries_by_hospital_beds 
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deadly to humans (Weise (2020)).  While anti-viral immunity can be long lasting, it is not certain 

that a person who has been exposed to one strain of SARS-CoV-2 will be immune to exposure to 

other strains.    Contrary to some statements in the popular media, it remains unclear whether less 

virulent (i.e. less deadly) SARS-CoV-2 strains will emerge on time scales that are relevant for 

this epidemic. First, although these sorts of changes are well-supported by theory30, in practice 

they seem to occur very slowly, especially for diseases with relatively low mortality rates. 

Moreover, the same geographic heterogeneity that may work to slow the spread of the virus will 

almost certainly slow the spread of less virulent strains, even if they have a considerable fitness 

advantage over other strains. 

IV. Data  

The World Health Organization (WHO) defines a pandemic as “the worldwide spread of 

a new disease”.31  Data collection in the early stages of a pandemic is both especially important 

and especially challenging because a pandemic typically involves a relatively novel disease, and 

by definition involves a globally occurring stress on public institutions which can make 

information gathering and dissemination difficult.     

Early aggregate statistics for infections and hospitalizations in an epidemic are 

notoriously unreliable.  Many regions will be slow to identify and test the first people who 

contract a new disease, and those who are infected might not be inclined to go to a hospital for 

treatment and might not be admitted given the seemingly common nature of their symptoms.  By 

contrast, death rates have been seen as more reliable measures for tracking the initial spread of 

diseases such as Ebola and SARS.   

 
30 See Read (1994) and Lively (1999) for discussions of evolutionary models of virulence. 
31 https://www.who.int/csr/disease/swineflu/frequently_asked_questions/pandemic/en/ 
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Several factors limit the value of death rates for short-run analysis in modeling the spread 

of SARS-CoV-2.  Deaths seem to lag exposures by at least two weeks, so any analysis based on 

death rates requires a substantial time lag and reduces one’s ability to assess the effect of a policy 

change.  There may also be an additional time lag before deaths are incorporated in 

administrative data; official revisions have resulted in upward adjustments of previously reported 

deaths by as much as 78% in the United Kingdom (Giles (2020)).  Further, there is often 

ambiguity in the cause of death from SARS-CoV-2 because it interacts so frequently with an 

underlying condition and because pneumonia is frequently the proximate cause of death.  There 

may even be systemic differences across countries - for instance, doctors in the United States 

have much more discretion in the choice of cause of death than doctors in the UK (Henriques, 

2020). The difficulty of assessing death rates from historical data is underscored by the ongoing 

debate about the effects of the 1918 Flu,32 and similar uncertainty exists even for more recent 

widespread influenza outbreaks. 

An alternative method for assessing death rates is to use year-over-year difference-in-

difference comparisons of all deaths at a regional level, comparing areas with known infections 

to other areas, though that approach is often not possible in real time.  Using this method, there is 

growing evidence that the number of deaths attributed to SARS-CoV-2 is a substantial 

underestimate of the actual effect of the disease.33  The difference-in-difference method also 

likely includes the effect of negative externalities of the epidemic, such as the loss of resources 

for doctors to treat other medical conditions, in the death rates ascribed to SARS-CoV-2.  While 

 
32 For example, Johnson and Mueller (2002) and Spreeuwenberg, Kroneman, and Paget (2018) provide dramatically 
different estimates of these death rates. 
33 https://www.economist.com/graphic-detail/2020/04/03/covid-19s-death-toll-appears-higher-than-official-figures-
suggest 
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it is essential to account for negative externalities in cost-benefit analyses, they likely distort 

estimates of the spread of disease that are based on death rates in overwhelmed areas.   

There is now an abundance of data at a local and daily level on test results and 

hospitalizations.  Unfortunately, these data are incomplete and inconsistent across cities and 

countries because testing is not universal and because there is no universal standard for 

hospitalization.  Asymptomatic individuals may make up a substantial share of the infected, and 

are now believed to be contagious, but are infrequently tested. (See Stock, Aspelund, Droste, and 

Walker (2020) for estimates from Iceland, which has tested 6% of its citizens).  Since we don’t 

know how the tested population is related to the general population in almost any location, it is 

not clear what we learn from observing aggregate test results by region or country.   

Sero-surveys   

Properties of the standard “polymerase chain reaction” (PCR) test for SARS-CoV-2 are not 

known with certainty.  The proportion of false negative tests may vary by site (Cummins, 2020) 

and may be as large as 30%.  Given the absence of reliable test information for representative 

samples of the population, Dushoff (2020) and others suggest that we should try to conduct 

retrospective blood-based tests known as sero-surveys to determine the population infection rate.  

Sero-surveys test for the existence of antibodies in the blood as evidence of past infection.  The 

Johns Hopkins Center for Health Security estimates that the sensitivity—the fraction of infected 

people who test positive—is 93.8% and the specificity—the fraction of non-infected who test 

negative—is 95.6% for the RDT serology test, the first test approved for use in the U.S.34  The 

 
34 http://www.centerforhealthsecurity.org/resources/COVID-19/Serology-based-tests-for-COVID-19.html 
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CDC plans to conduct national sero-surveys, but will not start them until summer 2020 

(Branswell (2020)).  One initial study provides serology results for a sample of 3,330 people in 

Santa Clara County, California (Bendavid et al. (2020)), but the interpretation of those results are 

complicated by uncertainty about the specificity of the test that was used (Gelman (2020)).    

We provide a more comprehensive list of data sources that might be of interest to 

researchers in the Appendix.  

 

V. Estimating Parameter Values for the SIR Model  

The basic reproduction number R0 describes the expected number of new infections that 

will be produced by a single infected individual in a “naive” population (i.e. where all other 

individuals are susceptible). It is a very helpful statistic for comparing different models and tends 

to be one of the rate parameters that is easiest to accurately measure. In general, there are two 

methods that can be used to estimate R0.  

The first, more mechanistic, approach is to use contact-tracing data from early in an 

epidemic.  Health organizations often deploy contact tracing to attempt to slow or eradicate the 

spread of disease – identifying and quarantining all people who come in contact with the earliest-

known patients.   Because very few individuals are infected, and because institutions are 

comparatively unstressed, it is ideally possible to identify and test all individuals who came into 

contact with an infected individual, and from that to accurately compute R0 (Ferretti et al., 

(2020)). However, this approach is less effective as the number of infected individuals grows 

large, as it can be difficult to definitively identify the source of new infections, and because 

comprehensive testing of contacts may no longer be feasible. Additionally, this method of 

estimation may fail to accurately capture heterogeneity in infectiousness among individuals or 

regions, especially if the distribution has a long tail (e.g. due to “super-spreaders”). The second, 
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more phenomenological, approach is often straightforward to implement for the early stages of 

an epidemic, e.g. fitting the rate of growth to a known functional form.  However, as case 

numbers grow, this approach becomes less effective, and because it is parametrized based on the 

number of confirmed cases, biased or temporally inconsistent testing will reduce the reliability of 

this estimate.  Nevertheless, there has been high similarity in phenomenologically estimated R0 

values across different countries, suggesting that there is some underlying biological reality to 

these estimates.35  

Even under ideal circumstances, it is important to note that parameterizing an SIR model 

with reported case data is necessarily a tricky endeavor. A classic method used in many textbook 

exercises would be to fit the basic model we introduce at the beginning of this text by setting the 

recovery rate γ = 1/(mean infectious period) and R0 = β/γ. This approach is especially well-suited 

for some types of models, e.g. individual-based stochastic simulations, as it treats the rate terms 

as waiting times drawn from an exponential distribution. Thus, if one were to simulate an initial 

cohort of infected individuals within an arbitrarily large susceptible population, and track them 

until all of the original infected individuals recovered, one would find that the average duration 

of infection across those original individuals was 1/γ, and that the total number of new infections 

directly caused by the original individuals, divided by the total number of original individuals, 

would be R0. However, this definition is somewhat problematic in practice, as it requires the 

ability to fully track outcomes of all individuals in the initial cohort, until the entire cohort has 

recovered. If any individuals are omitted – e.g. because they had especially mild cases and 

recovered before they could be identified or infect others, or because they had especially severe 

 
35 Ridenhour, Kowalik, and Shay (2014) estimate somewhat different values of R0 across countries for the 2009 flu 
epidemic.  
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cases and did not recover before the end of the study, the resulting rate coefficients will be 

biased. One partial solution is to fit rates based on “typical” rather than “average” outcomes. For 

example, if we know that 50% of patients recover within t1/2 days, then we can estimate γ from 

the half-life of the infection – i.e. - γ ≈ log(1/2)/t1/2. Similarly, we can roughly approximate R0 in 

terms of the average number of new infections per half-life of the infection – i.e. R0  + 1 ≈ exp(β 

t1/2), and thus β ≈ log(R0 + 1)/t1/2, where “R0 +1” signifies R0 new infections over t1/2 days, plus 

the original infection. The advantage of this approach is that it can be applied even when only 

partial data from a cohort is available, and does not require information about individual-level 

outcomes, which can be difficult to acquire for legal and logistical reasons. We stress, however, 

that in modern applications of disease models, parameterization approaches are generally much 

more sophisticated than those that we present here – see Massaud et al. (2010) for examples of 

some suitable methods.   

 Economists might consider other approaches for estimating R0 or might develop models 

for which this parameter is not fundamental, as the similarity in existing estimates of R0 across 

countries can be viewed as suspicious.  A structural economic model would provide 

microfoundations so that R0 emerges endogenously in equilibrium from a model of social 

interactions.  Further, economists might focus on a more specific parameter, such as the 

probability of transmission per interaction (or possibly per unit of time of interactions) to 

facilitate analysis of policies that limit or penalize interactions.  An alternative reduced form 

model might estimate R0 as a function of city characteristics, policies adopted, and the degree to 

which people self-modify behavior as a function of prevalence. 

While R0 for SARS-CoV-2 can be estimated with comparatively high accuracy relative to 

other rate coefficients, there remains considerable uncertainty even about the (average) value of 
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this parameter.  For example, a collation of studies by the Germany’s Robert Koch Institute36 

suggests that in the absence of control measures, R0 falls between about 2.4 and 3.3 (although 

they acknowledge excluding several studies with especially high estimates). If we assume that 

half of infected individuals recover within 5-6 days, these rates would imply a doubling-time of 

about 2.5-3.5 days, which closely matches initial growth rates of confirmed case numbers in 

most countries (though again, all of these estimates are highly uncertain). Although this is a 

deceptively small range, it is important to remember that small changes in rates have major 

consequences. After a month of uncontrolled growth starting from a single infection, a doubling 

time of 2.5 days would yield about 4000 infections, whereas a doubling time of 3.5 would lead to 

about 400.  Note, however, that much of this uncertainty is ultimately related to the generation 

time of the infection, rather than the rate at which it spreads in a population.  Thus, 

phenomenological estimates of overall growth rates in confirmed case numbers have generally 

been less variable than estimates of R0, and, correspondingly, tend to provide more accurate 

short-term forecasts of case numbers.   

There is minimal data for estimating parameters other than R0, and in many cases 

uncertainty spans a wide range of possible values. Using the summary statistics of the Robert 

Koch Institute, as reported on 7 April 2020, as an example: incubation time has been reported to 

be about 5-6 days, but with observed values ranging from 1 to 14 days; reported case mortality 

rates (i.e. deaths divided by confirmed cases) range from 0.1% to 22%; the fraction of confirmed 

cases relative to actual cases (i.e. including undetected cases) has been roughly estimated at 5-

9.2% based on early reports from China; the duration of contagiousness is so uncertain that no 

 
36 See https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html for summary statistics and 
related citations (in German): 
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range is provided. Because each of these ranges of values contributes additional uncertainty to 

model forecasts, it seems likely that predictions which fully incorporate all of these sources of 

uncertainty will likewise span at least an order of magnitude, and likely much more. 

Estimates for the fraction of infections that have been detected include at least two 

sources of uncertainty: first, that in most locations, not all symptomatic people can be tested, and 

second, not all people infected with SARS-CoV-2 are symptomatic (or at least, their infections 

are “sub-clinical”, in that they are not sick enough to seek medical care).  Stock (2020) defines 

the “asymptomatic rate” as the fraction of the infected who are not recorded as infected.  Early 

estimates of asymptomatic rates ranged from 18% to 31% (Stock, 2020), but more recent data 

suggests values in a much higher range, with Stock et al. (2020) estimating a value of 90% based 

on more representative sampling in Iceland.  Stock (2020) also observes that different reports of 

the asymptomatic rate may not be comparable because they do not also use the same definition 

of “asymptomatic”.  Uncertainty about the asymptomatic rate is closely linked with uncertainty 

about the mortality rate for SARS-CoV-2; Atkeson (2020b) shows that existing data are 

consistent with a wide range of mortality rates. 
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VI.  Existing Models and Predictions 

A handful of models that have received attention in the media and yield a fairly disparate 

set of results; we review five of them here.37   

Epstein Estimates 

Richard Epstein predicted that the “adaptive response” and other factors would 

dramatically limit the spread of disease: “Even if there is some undercounting, it is highly 

unlikely, given the relatively short (two-week) incubation period, that the number of current 

cases will more than double or triple.” (Epstein (2020)) This model is largely mechanistic, in that 

it hypothesizes specific processes that drive dynamics, although the specific rates chosen for the 

model have been heavily criticized.  Epstein initially predicted 500 deaths or fewer in the United 

States, then later revised that estimate to 5,000 deaths.  Needless to say, these predictions have 

already been falsified.   

Oxford Study 

Lourenco et al (2020) consider three scenarios with a range of point estimates from 36% 

to 68% of UK adults infected as of March 19.  The twin implications of these estimates was that 

the country was already likely close to the herd immunity point and – dividing observed deaths 

by the implied number of infected people – that the mortality rate for the disease must be quite 

low and thus that the Imperial College projections were dramatic overestimates.  But the paper 

essentially assumes these conclusions: “Our ov*erall approach rests on the assumption that only 

 
37 We chose to review the Epstein, Ferguson, and Murray models because they have been reported to be used by 
governments, the Lourenco model because it gained attention for providing a prediction contrary to that of 
Ferguson, and the Kissler model because one of the co-authors of that paper, Marc Lipsitch, has been publicly 
identified as one of the modelers consulted by the U.S. government.  Rogers and Molteni (2020) provide a very 
detailed popular account of the relationship between policy choices and the projections of various disease models.  
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a very small proportion of the population is at risk of hospitalisable illness.”  (Their MCMC 

estimation starts from a prior that the case fatality rate is about 1/700 in some versions and about 

1/7000 in others.)  This model is largely mechanistic, and follows a relatively standard SIR form. 

IHME 

The IHME paper (Murray et al. (2020)) is designed to estimate the demand for hospital 

beds, and thus to guide local-level policy decisions.  At the same time, it yields estimates for 

caseload and deaths, and those estimates have been widely publicized and used by state 

governments for planning purposes.   

This model takes as data the observed death rates on a day-by-day basis for each U.S. 

state and fits a cumulative Gaussian cdf to produce the predicted future course of the log of death 

rates in each state after accounting for state-level variations in age distribution.  It then works 

backwards from future predicted death rates to project the demand for hospital beds and ICU 

admissions per capita for each state through the course of the epidemic.38   

These results rely on two critical modeling assumptions.  First, the authors assume a 

single change in behavior (and thus the nature of the fitted curve) at the time of the formal 

announcement of social distancing measures in each state.  Second, the authors assume that 

social distancing induces changes in death rates that are analogous to the rises and falls indicated 

by the official statistics for Wuhan.  As the paper comments, “Modeling for US states based on 

one completed epidemic, at least for the first wave, and many incomplete epidemics is 

intrinsically challenging.  The consequent main limitation of our study is that observed epidemic 

 
38 The general method of fitting a deterministic curve to a cumulative set of observed cases tends to produce biased 
results because it does not adequately account for uncertainty.  King et al. (2015) use simulation results to 
demonstrate this bias for predictions of the spread of Ebola.  
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curves for COVID-19 deaths define the likely trajectory for US states.”  Over time, IHME has 

been using Bayesian methods to incorporate data from the U.S. as it is released, while still 

putting heavy weight on the entire cycle of results observed in Wuhan. 

The lockdown in Wuhan was more strict and more strictly enforced than any in the US—

even after the recent reopening there are limits on how long residents can spend out of their 

residential compounds and checkpoints at which authorities take residents’ temperatures and 

check a phone app that indicates if they are considered at risk of being infected. Accordingly, it 

seems likely that US infection rates will not decline as quickly as in Wuhan given our less 

stringent practices of social distancing. For this reason, the IMHE model may underestimate the 

fraction of deaths which will occur after the peak.     

The IHME model is probably the most phenomenological of all of the models that we 

consider here, in that its predictions are primarily based on fitting curves to historical data, rather 

than on a priori biological assumptions about disease dynamics. This property has allowed the 

model to provide real-time location-specific forecasts. However, it has also led to intense 

criticism based on the suggestion that its predictions are more strongly driven by statistical and 

functional form assumptions than they are indicative of actual likely trends.  

Kissler Seasonality Model 

Kissler et al., (2020) use historical data from five years of US hospital admissions for two 

strains of coronavirus (HCoV-HKU1 and HCoV-OC43, which typically induce common colds) 

to fit parameters for an mechanistic SIR model that vary on a seasonal basis and allows for 

periods of immunity and cross-immunity after recovery from a given infection.  They then 

expand the model to include SARS-CoV-2 as a third coronavirus under the assumption that it has 
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similar seasonality to the two milder strains, which have been shown to spread in any season, 

though with different peaks by season. Focusing on scenarios where policies do not prevent the 

herd immunity threshold from being reached, they note that substantial uncertainty about the 

strength and duration of immunity following an infection and levels of cross-immunity makes 

many future patterns possible. SARS-CoV-2 outbreaks might recur in regular annual or biennial 

intervals, or the virus could seemingly be mostly eliminated and then resurge five years later.  

Ferguson / Imperial College Model  

Ferguson et al. (2020) is likely the closest of the five we examine to a structural 

economics model.  It uses Census data to model the spread of disease in a mechanistic SIR 

model at a fairly local level, considering four sources of social interactions that could produce 

“transmission events”: within household, at work, in school, or in the community at large.  The 

model is parameterized so that initial transmission events occur approximately equally at home, 

at school/work, or in the community, matching a stylized fact from previous studies suggesting 

that approximately one-third of transmissions occur in each of these places.  

The model accounts for social distancing by applying particular rules for the effect of five 

different interventions: “Case Isolation”, “Voluntary Home Quarantine”, “Social Distancing of 

those over age 70”, “Social Distancing of entire population”, “Closure of schools and 

universities”.  For example, it assumes that closing schools increases contact rates within 

affected families by 50% and also increases contact rates by 25% in the community in general.  

Any combination of these five interventions is assumed in the model to induce specific changes 

in social contacts, and in turn determines the transmission rate R0 in one’s local area at time t.  
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The changes in contact rates assumed in this model are never justified and, in fact, appear 

to be entirely arbitrary and in some cases clearly inaccurate.39  Economists would likely prefer 

the transparency of Atkeson (2020a), which characterizes the behavioral and institutional 

response to the spread of infection in reduced form with a change in the value of R0.   

Comparison of the Five Models 

One critical distinction between the predictions of IMHE and Ferguson is that IMHE 

predicts a much earlier peak and steeper decline in the rate of infection, presumably because 

IMHE puts so much weight on the experience of Wuhan, where an extreme form of social 

distancing was enforced.40  Much as this modeling choice for IMHE seems to have a huge 

influence on the qualitative nature of the results, the contrarian predictions of Epstein and 

Lourenco appear to follow directly from their assumptions.  The conclusion of Kissler et al. 

(2020) that SARS-CoV-2 could have peaks in any season appears to follow similarly from their 

modeling choice to use patterns from other coronaviruses to model the spread of SARS-CoV-2.  

Confidence Intervals and Scenarios  

Stock (2020) argues that there is too little information to calibrate SEIR models of SARS-

CoV-2 at this time, and in particular, that due to selection into testing, we know neither the true 

number of people who are infected in any country, nor the mortality rate conditional on 

infection.41  Stock then demonstrates that two distinct plausible values of the asymptomatic rate 

(the proportion of infected people who have no symptoms if illness) suggested by data from 

different subsamples in Wuhan yield dramatically different predictions for the effects of three 

 
39 The scenario for the closing of schools and universities assumes that 25% of universities remain open, though in 
the United States, it seems that all but Liberty University will be closed from mid-March through at least May 1.   
40 Bergstrom suggests that this feature of the model has led to systemic errors in its predictions for Italy and Spain.  
https://twitter.com/CT_Bergstrom/status/1250304069119275009. 
41 See also Bendavid and Bhattacharya (2020). 
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social distancing polices.  These simple simulations cast profound doubt on the precision of any 

existing model that provides predictions of the future course of the spread of SARS-CoV-2.  

Unfortunately, there seems to be a general tendency for researchers to report a greater 

degree of confidence than is warranted for an existing model, in part because it is not 

straightforward to quantify parameter uncertainty or to trace the effect of those uncertainties in a 

non-linear model.  Realistic confidence intervals in this context would also be so wide as to seem 

vacuous.  As Jonathan Dushoff commented in an e-mail communication, “Retrospectively, the 

most successful looking model is also likely to be a model with narrow confidence intervals, 

where there was some luck involved in making the model forecasts look good. In cases where 

there's a lot of models, and not so many realizations, this is very likely to happen.” 

Among the five models we discuss in the previous section, only Murray’s (2020) IMHE 

model provides explicit confidence intervals for any predicted results.  For example, that paper 

reports a 95% confidence interval of (38,242, 162,106) for total deaths in the United States.  

While this is a reasonably wide range, it is not clear from the paper how this interval was 

computed, and it still seems likely to be too narrow.42  In particular, the paper seems to make no 

attempt to allow for uncertainty over the degree of reduction in contacts in the United States 

from mid-March on: presumably this confidence interval is the range of possible values 

 
42 The paper explains that uncertainty in the forecast is driven primarily by variance in the "fixed" and "random" 
effects in the model.  It does not provide further details of the computation of any confidence intervals. In a standard 
hierarchical modelling framework, this version of forecasting errors would imply that their estimates include both 
variability attributable to differences in mortality rates (of reported deaths) among localities, modelled as "random" 
parameters drawn from a hyperprior (typically a Gaussian distribution), and uncertainty in the mean mortality rate 
computed across all localities, modelled as a "fixed" effect. One caveat for such an approach is that this estimate of 
uncertainty is predicted on two assumption: (1) the data used to fit the model represents an unbiased sample of the 
true underlying process; and (2) that the true process generating dynamics matches the analytical function 
hypothesized in their model.  See also Bergstrom’s critique of this approach.  
https://twitter.com/CT_Bergstrom/status/1243838213086539776  
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conditional on the assumed functional form for deaths, which maintains that deaths rise and fall 

symmetrically about some peak. The functional form is said to have been chosen because others 

“did not fit the data as well.”  This is implicitly relying heavily on reported data from the two 

epidemics that have risen and fallen, Wuhan and South Korea, and this dependence is 

presumably not taken into account. 

The four other papers report mean estimates for a range of scenarios, suggesting a 

confidence interval interpretation without using that language.  For example, Lourenco (2020) 

states that the results from analysis of various scenarios of the Oxford Model indicate 

“significant population level immunity accruing by mid March in the UK as ρ is decreased to 

plausible values”, where ρ is the proportion of the population susceptible to hospitalisable 

illness.  Kissler et al (2020) report five qualitative implications of their analysis, justifying them 

with statements such as “In all modeled scenarios”, “many scenarios lead to”.  Similarly, 

Ferguson et al (2020) states, “Such policies are robust to uncertainty in both the reproduction 

number, R0 (Table 4) and in the severity of the virus (not shown)," but allowing for a small 

degree of variation in a single parameter is hardly a reasonable test of robustness.43   

In sum, the language of these papers suggests a degree of certainty that is simply not 

justified.  Even if the parameter values are representative of a wide range of cases within the 

context of the given model, none of these authors attempts to quantify uncertainty about the 

validity of their broader modeling choices.  

 

 

 
43 The paper only provides the results for variations in the value of R0 and only appears to consider variation in this 
parameter in a range from 2.0 to 2.6, which appears to be a much narrower range than a 95% confidence interval for 
R0.  
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VII. “Flattening the Curve” and Future Policy Considerations 

The policy response to SARS-CoV-2 in the US (and several other nations) has been a 

tragic failure. By the end of this month the US will have lost tens of thousands of lives. The two 

trillion dollar relief package will ameliorate only a portion of economic suffering that has 

resulted from the outbreak.  And the most rosy realistic forecast for the future is that after 

another month of social distancing we might be roughly back to a state of the world that is about 

as promising as where we could have been in mid-March given better policy. Even in that 

scenario, the number of infections will likely be much higher in mid-May than they were in mid-

March.  The infectious will be more dispersed. Production of personal protective equipment will 

have increased, but this will likely be offset by depletion of the existing stockpile. At present, 

testing capacity in the United States is dramatically higher than it was, but still lags what South 

Korea achieved.  

With this sobering realization in mind, we still need to address the question of policy 

going forward.  A starting point for thinking about optimal policies is to work backwards from 

the end. In the long run we will presumably reach one of three endgames.  

First, we may work to hold infections to a moderate level until an effective vaccine 

becomes available, perhaps in 12 to 24 months. An optimal policy reaching this endpoint would 

make tradeoffs between holding down infection levels and sustaining economic activity until the 

vaccine is available. 

Second, we may get some good news that leads us to choose to allow the infection to 

spread at a more rapid, but controlled, rate. This news could involve learning that some antiviral 

treatment or some practice like universal wearing of N95 masks reduces the health consequences 
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of infection or slows its spread (Abaluck et al. (2020) summarize existing evidence on the virtues 

of universal adoption of masks).  Or we might learn that the virus is less harmful than is 

currently believed, e.g because asymptomatic cases are more comm3333on than we know.  

Third, we may reach the point where we cannot or choose not to adopt policies that keep 

transmission rates in check, and infection proceeds to the point where herd immunity stops the 

spread. Current simulations suggest that the health consequences of reaching this endpoint 

rapidly would be very, very bad (Greenstone and Nigam (2020), see also Rowthorn (2020)).  

And there would likely be severe economic disruption even if we abandoned all government-

mandated distancing efforts–few people would want to go to work, send their children to school, 

or eat in a restaurant if we reached a peak where 10% of the US population was currently 

infectious.  

Flattening the rate at which the disease expands has the obvious advantage of reducing 

the possibility of overloading hospital systems and thereby reducing negative externalities. It 

also buys time, potentially allowing a larger fraction of those who will eventually become 

infected to benefit from more effective treatments that may be developed. “Flattening the curve” 

will also reduce the extent to which a disease is able to over-shoot the herd immunity threshold 

(since the incidence of the disease at the point that the threshold is reached determines the 

number of additional cases that will still occur before the disease dies out). For example, if we 

take the simple three-compartment model described at the beginning of the paper with R0 of 2.6 

and a 5.5 day half-life for the infectious period (i.e. β = log(R0+1)/5.5 = 0.23, - γ = log(1/2)/5.5 = 

- 0.13) and 0.0013% of the population (i.e. 100,000 out of 7.5 billion people) infected at the start 

of the simulation, then we would expect an “uncontrolled” spread of the disease to ultimately 

infect about 75% of the population, a peak incidence of about 13%, and for 99% of all infections 
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to occur within about 6 months. In contrast, if control methods are put into place to prevent the 

incidence from ever exceeding 1% of the population, only about 56% of the population will 

ultimately be infected (roughly equivalent to the herd immunity threshold in this case), but it 

would take more than one and a half years for 99% of the infections to occur.   

That is, “flattening the curve” is no panacea, as it lengthens the time required to reach the 

herd immunity threshold and still is projected to produce a large number of deaths. It is possible 

that we will learn that asymptomatic infections are currently much larger than is known and this 

endpoint is not so bad in less densely populated areas. Some countries, especially in the 

developing world may find that they cannot avoid it even if it is as bad as feared. The same could 

be true in the US given the incomplete social distancing in place and rising discord regarding 

even these incomplete measures. But we focus here on thinking about optimal policies that reach 

one of the first two endpoints. 

We think it is useful to think separately about two types of policies that may be 

implemented to alleviate health-related and economic suffering while waiting for an effective 

vaccine/treatment.  

First, we may pursue an aggressive policy of testing and contact tracing. Such policies are 

thought to be a key part of how South Korea, Hong Kong, and Singapore have mostly kept 

infection rates in check. Absent failures to build testing capacity in the US, we could perhaps 

have achieved comparable success. Effective contract tracing, however, requires a capacity for 

testing and public health outreach that is far beyond what could be implemented today in the US. 

And once contract tracing alone cannot effectively mitigate the spread, and strong social 

distancing policies are adopted, the incremental value from contact tracing is reduced. 
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If, in the future, active cases have been reduced to a point where contact tracing is again 

feasible, it could become a central part of our approach to SARS-CoV-2. Controlling the disease 

while distancing only those who are known to be infected is extremely attractive from an 

economic viewpoint. Whether the US could hope to keep R0 below one mostly by these means, 

however, is unclear. Many countries practicing contact tracing have done so in part by making 

extensive mandated use of phone-based and other geolocation data that the US has not yet 

contemplated. And even with such aggressive use of technology, reports from Hong Kong 

suggest that it has been challenging to keep R0 below one without also implementing some social 

distancing measures. Much of the US is much less densely populated than is Hong Kong, so less 

aggressive contact tracing might suffice. It is even conceivable that testing-based policies may 

allow us to simultaneously reduce infections and sustain economic activity even if distancing 

cannot first reduce infections to a low level. For example, the cost and availability of home-

pregnancy-style tests could fall to such a degree that a substantial fraction of the population 

could take one every day.44 But we are now very far from that level, and have not been making 

the massive investments in testing research and developing the public health infrastructure that 

such an aspiration would seem to require. 

Second, we will pursue some set of social distancing measures. Many variants of social 

distancing have been implemented. We find it useful to think of individual restrictions as lying 

on a continuum in terms of the ratio of economic costs incurred per unit of virus-slowing. At one 

extreme, there are some policies with a negative ratio – society would be better in both 

dimensions if long lines and crowded waiting rooms at the department of motor vehicles were 

 
44 Silver (2020) provides a detailed analysis of the implications of future testing scenarios given the possibilities of 
both false positives and negatives.  See also https://twitter.com/zbinney_NFLinj/status/1245789672833417217. 
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replaced with expanded online services and scheduled appointments with minimal waits. 

Consensus seems to be shifting that universal wearing of facemasks may also provide substantial 

benefits – the slower spread of the virus and low number of deaths in Japan is intriguing and 

suggests that universal adoption of high-grade facemasks could be incredibly valuable. Costs are 

certainly minimal compared to most other interventions, so any substantial benefit would make 

the ratio attractive. Work-from-home and distance education have more substantial costs, but 

also presumably provide substantial benefits. Shutting construction sites, at least relative to 

continuing with modified work practices that increase social distancing, mask usage, and 

handwashing, seems like a yet larger ratio of economic costs to disease slowing benefits. Many 

other activities have not been suspended presumably because the economic costs are seen as 

prohibitive. Recent reductions in new hospitalizations are encouraging, but to some extent we 

have been taking it on faith that R0 can be reduced below one without taking the more extreme 

measures used in China.45  

Absent successful contact tracing, reductions in social distancing would likely induce a 

transmission rate R0 > 1 and could lead to recurrence of disease.  Cyclical peaks are well known 

from prior diseases: measles outbreaks took place every few years for decades in England and 

the U.S. (Dalziel et al., 2016).  There is reason to believe that subsequent outbreaks of the 

disease will be less intense, since people who previously contracted it may remain immune for 

some time, and will grow more slowly than the initial outbreak (and presumably, that they will 

therefore be easier to control).  Nevertheless, in biological models there are rarely any 

guarantees, and a well-known counterexample to this phenomenon is the 1918 influenza 

 
45 Flaxman et al. (2020) examining European data up through March 28, 2020 estimate confidence intervals for R0 
which include a fairly wide range of values above and below one. 
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pandemic, for which the second wave of infections was more severe than the first in many 

locations. Theoretically, we would also not expect the effect to be very large unless the 

susceptible fraction has moved substantially away from one. If our current distancing efforts 

limit infections to just a few percent of the population, as we hope, then this effect would not be 

large.  

Serology testing will be a third component of policy response. Having at least some 

random serology testing seems very important – the information it provides on how widespread 

infection has been is tremendously important for thinking about how the virus will spread and 

how severe the health consequences will be. It can also provide economic benefits in that those 

who are immune can safely return to work. But this economic benefit may not be large in 

practice, both because we hope that we can avoid a situation where a large share of the 

population is infected, and because there will be uncertainty about how strongly and for how 

long prior infection is protective.  

An optimal policy for the period until vaccines/treatments become salient will 

presumably involve choosing some point on the social distancing spectrum and whether to 

attempt aggressive contact tracing at each point in time.46 The costs and benefits of policies will 

naturally vary with the current prevalence of active infections, both because the number of future 

infections prevented by a unit decrease in R0 is proportional to the number currently affected and 

because economic impacts will vary. For example, the loss of learning when schools move 

online will be smaller if the alternative was to have teachers calling in sick and leaving classes in 

 
46 It is unclear a priori whether the optimal control policy should be stationary. (We are grateful to Michael Kremer 
for suggesting this point.)  Morris et al. (2020) and Alvarez, Argente, and Lippi (2020) provide separate analyses for 
SIR models where the optimal control policy is not stationary.  
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the hands of substitutes. Hence, the optimal policy will be an adaptive one with measures that 

adjust to prevailing conditions.  

If the optimal policy keeps society in the region where the susceptible fraction S is close 

to one, then the optimal control problem of choosing an optimal policy for each (I, S) might be 

thought of as mostly just a one-dimensional problem where one must choose an optimal policy 

for each I. Depending on what we learn about fatality rates, rates of spread, and the effects of 

various policies on these characteristics, it is plausible that the optimal policy might take on one 

of several forms.  

In an optimistic scenario, we may find that social distancing policies similar to those we 

have adopted, plus more face masks, can drive R0 far below one.  In that case, continuing these 

policies for a moderate period of time may get us to the point where we can switch to primary 

reliance on contact tracing combined with just the most efficient distancing policies on the 

spectrum. To be prepared to take advantage of such an opportunity, should it present itself, it 

might be sensible to start practicing for it right away by attempting to immediately institute 

aggressive contact tracing in areas of the country that are relatively isolated and where 

prevalence is low.  

It is also plausible that the combination of contact tracing and highly efficient social 

distancing measures will not be enough to keep cases from expanding. In that case, it may be that 

we need to also adopt social distancing practices intermediate on the spectrum alongside contact 

tracing for quite some time. For example, it may be that schools will not open for 1-2 years, and 

we should start preparing for such eventualities.  
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There may also be inherent nonconvexities in the set of social distancing policies 

available to us. For example, it may be that the combination of shutting schools, shutting bars, 

restaurants, and retail stores, encouraging work from home, and limiting gathering is more 

efficient than an intermediate policy involving a subset of these elements. An optimal control 

framework might say that the best thing to do in such a situation is to adopt a policy where we 

mix in continuous time between the aggressive distancing and testing plus moderate distancing 

alternatives.  

But in practice, there are presumably transition costs incurred whenever stores open and 

close, firms shift to work from home, and so on. In this case, the optimum could potentially be an 

alternation between more and less strict shutdown policies, with new shutdowns triggered every 

time the disease prevalence reaches some threshold. An appealing side-benefit of extensive 

testing and contact tracing is that it can make it easier to recognize when prevalence has moved 

into the region where testing hits its capacity constraint and more aggressive distancing is 

needed. Alternation between periods of low and high prevalence of disease could also be optimal 

in a world where occasional returns to more normal activity can help to maintain worker-firm 

connections and allow firms to occasionally clear bottlenecks in production and shipping that 

arise from social distancing.  

A limitation of any such strategy is that periods with R0 > 1 must be balanced with 

periods with R0 < 1 to keep prevalence in check. Given that R0 is well above one under minimal 

social distancing, we will be unable to spend much time in such a regime if the R0 in the social 

distancing regime is only a little below one.  There will also be a temptation to loosen restrictions 

in the summer if seasonal differences slow the spread at that time. Whether that is advisable 

depends on whether the effect of a restriction is smaller in proportional terms.    
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New policy discussions will need to occur whenever the best available treatment changes 

or when knowledge about the epidemiology changes. Most consequentially, as the set of 

available treatments improves we will need to think about whether social distancing restrictions 

then in force are still warranted.  

An important consideration for all policy discussions is that we must recognize that we 

are making decisions under substantial uncertainty. For all the reasons we noted earlier, we still 

know very little about the epidemiology of SARS-CoV-2. And we are also following an 

economic path that is unprecedented in modern times and should recognize that there is great 

uncertainty about how quickly and well modern economies will recover from shorter vs. longer 

and more vs. less extensive shutdowns. Some heuristics that we may want to keep in mind for 

dealing with such uncertainty are that it may be useful to try to keep the economy and disease 

situation as close as we can to situations with which we have some experience, and that we 

should think about worst-case consequences of policies. Adaptive policies that implement stricter 

policies whenever prevalence is increasing are appealing in part because they are well adapted to 

uncertainty in these ways.  
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VIII. Conclusion and Opportunities for Further Research 

There are some ways in which we are now better positioned than when we first faced the 

SARS-CoV-2 threat.  Most importantly, we have more information about what we are facing.  

Current and future research is extremely valuable because we still face great uncertainty and 

there are momentous decisions to come.   

In the past month, economists and political scientists have produced new and valuable 

research with papers that may guide the way for future efforts.  There is an urgent need for better 

data (Stock (2020), Stock, Aspenlund, Droste, and Walker (2020)), and for creative and 

entrepreneurial methods of interpreting the limited data that is available (Fang et al (2020), 

Harris (2020)).  It is not clear that models of the spread of disease have played a wholly positive 

role in shaping policy in the first three months of 2020.  Similarly, some reports suggest that a 

misguided understanding of behavioral science (the fear of “behavioral fatigue”) delayed the 

response of the UK government to the spread of the pandemic.47  But there have already been 

clear contributions in recent weeks for both behavioral approaches (Barari et al. (2020), Bricese 

et al. (2020)) and theoretical modeling (Atkeson (2020), Berger, Herkenhoff, and Mongey 

(2020)).  

After an initial policy debate about whether and when to close down businesses and 

schools in February and March 2020, we can anticipate the next debate about how and when to 

reopen them in May and June 2020 and beyond.  Using the information we have and will gain to 

make better policy choices in our second opportunity is critically important. 

  

 
47 https://behavioralscientist.org/why-a-group-of-behavioural-scientists-penned-an-open-letter-to-the-uk-
government-questioning-its-coronavirus-response-covid-19-social-distancing/ 
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Appendix:  COVID-19 Data Resources (as of April 16, 2020) 

 

We have compiled a list of data sources, mostly publicly available, that researchers may find useful.  
Some are just repackaging of official government statistics on infections, hospitalizations, deaths, and so 
forth, but, depending on the particular website, they might be from different governments and at different 
levels of aggregation.  Others are entirely novel data sources, often shared by private firms who have 
collected them in the course of their business practice or as a public service.  With the exception of the 
data on the 1918 Flu Pandemic, all data sets cover a period of time relevant for study of the current 
pandemic. 

We offer the list with the caveat that new data dumps, curated repositories, and official statistics are 
becoming available on a daily basis.  Furthermore, links might become stale as websites are moved or 
removed.  (We try to offer searchable descriptions to help researchers track down the data sources.) 

1.  Statistics on infections, hospitalizations, recoveries, and deaths at the country level 
a. https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases 
b. European CDC data https://www.ecdc.europa.eu/en/covid-19-pandemic 
c. Institute for Health Metrics and Evaluation data http://www.healthdata.org/covid 

2. Statistics on infections, hospitalizations, recoveries, and deaths at the US state level, as well as 
data on ventilator, hospital, and ICU usage and number of tests 

a. https://ourworldindata.org/covid-testing 
b. https://covidtracking.com/data 

3. Statistics on infections, hospitalizations, recoveries, and deaths at the US county level  
a. https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/ (where it says 

Download data (Jan. 22- April 6)) 
4. NY Times data at the US county level of confirmed cases and deaths by day 

a. https://www.nytimes.com/article/coronavirus-county-data-us.html, available at 
https://github.com/nytimes/covid-19-data 

5. New York City-specific data 
a. https://www.nytimes.com/article/coronavirus-county-data-us.html, available at 

https://github.com/nychealth/coronavirus-data 
6. Historic data for 43 US cities on the 1918 Flu Epidemic, including deaths, death rates, and non-

pharmaceutical interventions (such as social distancing), from US Census data---used in Markel, 
Lipman, and Navarro (2007), but not clear if and where the data are available for download 

a. https://jamanetwork.com/journals/jama/fullarticle/208354 
7. Data on the timing of non-pharmaceutical interventions (social distancing, closure of schools 

and universities, closure of nonessential business, gathering size limitations, etc.) in the US  
a. www.keystonestrategy.com/covid-19/, available at  

https://github.com/Keystone-Strategy/covid19-intervention-data/ 
8. Data on distances traveled using cell phone movements from Unacast---can view and interact 

with their mobility map, but not download the data.  (They may be offering it to universities and 
non-profits for free.) 

a. https://www.unacast.com/covid19/social-distancing-scoreboard 
9. Mobility data is becoming available from other sources as well, such as Google, CityMapper, 

and SafeGraph 
a. https://www.google.com/covid19/mobility/ 
b. https://citymapper.com/cmi 
c. https://safegraph.com 
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10. Restaurant reservation data by city and day for Australia, Canada, Germany, Ireland, Mexico, 
United Kingdom, and the United States from Open Table 

a. https://www.opentable.com/state-of-industry 
11. Data on airport usage---can view map but not available for download 

a. https://wanderlog.com/coronavirus-airports-effect 
12. Data on fever incidence from Kinsa, a firm that makes smart thermometers---can view 

infographics, but not available for download 
a. https://www.kinsahealth.co/images-and-infographics-from-kinsas-health-weather-map-

and-data/ 
13. Data on air pollution (at weekly or daily frequency) 

a. For European countries: https://www.eea.europa.eu/themes/air/air-quality-and-
covid19/monitoring-covid-19-impacts-on 

b. Worldwide: https://www.covidexplore.com/PM25 
(https://github.com/mayukh18/covidexplore) 

c. India and China (though they might have data on more countries): 
https://energyandcleanair.org/blog/ 

d. https://aqicn.org/data-platform/covid19/ 
14. Satellite data on air pollution data in Europe 

a. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-
5P/Coronavirus_lockdown_leading_to_drop_in_pollution_across_Europe 
(https://scihub.copernicus.eu) 

15. Data from Foursquare on consumer location, derives measures of impacts on flights, stocking up 
behavior, sit-down restaurants, fast food, etc.---can view article, but data not available for 
download 

a. https://enterprise.foursquare.com/intersections/article/understanding-the-impact-of-
covid-19/ 

16. Data on planned, ongoing, and completed trials for medical interventions 
a. https://covid-evidence.org 

17. Google Trends, a free tool offered to allow researchers to download (normalized) data on search 
volumes over time and across geographic regions 

a. https://trends.google.com/trends/ 
b. Example article using these data  

https://www.nytimes.com/2020/04/05/opinion/coronavirus-google-searches.html 
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