Texting to Save Lives:
Evidence from Cardiovascular Treatment Reform in Mexico*

Ari Bronsoler †

MIT

November 29, 2021

Abstract

Can widely available technologies be leveraged to reduce healthcare fragmentation in a cost-effective way? I evaluate a program implemented by the largest public healthcare provider in Mexico (IMSS) to reduce heart attack mortality by minimizing the time to treatment for patients. The program improves within-hospital capabilities and increases across-hospital transfer coordination through a set of group chats, most commonly on WhatsApp, that substantially improved the ability of physicians in each hospital network to communicate with one another on transfer decisions. I first document a large effect among hospitals that have a higher survival gap relative to the specialized centers they send patients to: survival rates increase by 29% (12 percentage points) and transfers by 85% (5 percentage points). I then present a model that disentangles the capabilities and communication channels and allows me to link the reduced-form results to structural parameters. A counterfactual policy analysis shows that the chat groups are responsible for 68% of the survival effect and that, without the improvements in capabilities, transfers would have been substantially higher. Additional exercises highlight a degree of substitution between both components and large returns to utilizing widely available technology.

This paper is updated frequently. The latest version can be found here.

*I am immensely grateful to my advisors Jonathan Gruber, Joseph Doyle, John Van Reenen and Abhijit Banerjee for their enthusiasm and guidance. I thank David Autor, Amy Finkelstein, Ben Olken, Jim Poterba and Frank Schilbach for their useful comments on the project as well as participants in the development, organizational and PF lunches at MIT for useful questions and discussions. I am grateful to Kensuke Teshima and Hitoshi Shigeoka for their contributions on earlier stages of the project as well as Christian Norton and Kevin Schmidt for their collaboration. I am especially grateful to Dr. Gabriela Borrayo for her willingness and openness to discuss the Codigo Infarto program in detail.

†aribro@mit.edu
1 Introduction

Radical improvements in information and communication technology (ICT) have been referred to as the “fourth industrial revolution” due to their potential to dramatically increase productivity and reshape the way we interact. Industries such as transportation, home entertainment, and food delivery have experienced dramatic changes and now rely on applications that automate and optimize service delivery.

Healthcare is one of the industries in which this technological revolution could have its most transformative impacts. Healthcare delivery requires physicians to analyze information from multiple sources in order to properly diagnose and treat their patients. The doctor must be able to see the full picture to make the right decision. A lack of coordination and efficient communication across providers hinders medical professionals’ ability to provide high-quality care by causing delays in treatment and increasing the risk of misdiagnosis and mistreatment, especially after transferring patients to different healthcare providers. The risk that such effects will be fatal increases if the patient has an acute condition that requires immediate attention or is receiving treatment from several specialists for a complicated illness. The failure to coordinate can be costly, as it leads to double testing and over-prescribing.1

In principle, ICT can help overcome most barriers to information sharing and coordination by automating reports and providing immediate access to a patient’s medical history through electronic health records (EHR), which represent a substantial improvement over having to interpret another physician’s illegible handwriting or imagining the results while talking on the phone. In an influential RAND study, Hillestad et al. (2005) argue that the effective and widespread implementation of EHR could generate savings of over $81 billion per year in the U.S. while improving healthcare efficiency and safety. Several nations have recognized ICT’s potential to improve healthcare efficiency and clinical outcomes, and have spent billions of dollars to develop centralized EHR systems capable of exchanging information.

For example, the US Health Information Technology for Economic and Clinical Health (HITECH) Act, passed in 2009 as part of the Affordable Care Act, allocated $30 billion to increase the take-up of EHRs, and the 21st Century Cures Act aims to regulate EHR systems to ensure that information is efficiently shared across systems. Figure 1 displays the evolution of hospital EHR adoption in the United States. It illustrates that prior to the HITECH Act, EHR adoption was less than 20\% and has since increased dramatically to over 85\%. Despite these large investments, however, the literature finds small positive effects of health information technology (IT) adoption on health outcomes and costs; there is vast heterogeneity, and many adopters obtain no positive returns. A simple explanation for these results

1Levick et al. (2013)
is that the systems do not communicate well across providers. A subsequent RAND study, Kellermann and Jones (2013), shows that the predicted effects of a shift to EHR did not materialize in part due to a lack of information sharing across providers.

In this paper I investigate whether a low-cost intervention to leverage a widespread technology to improve communication can enhance provider coordination and patient outcomes. I exploit the implementation of a policy that improved communication across hospitals in the Mexican public healthcare sector by creating a set of group chats, most commonly on WhatsApp, that substantially improved the ability of physicians in each hospital network to communicate with one another on transfer decisions.

The Mexican public healthcare system serves 83% of the country’s population and is composed of several institutions. The largest is the Instituto Mexicano del Seguro Social (IMSS), which services over 70 million people with 1,522 primary care clinics, 256 secondary care, general, hospitals, and 36 tertiary (high-specialty) hospitals. IMSS services are organized into regions that combine all three levels of service to provide care for a certain area. Unless it is an emergency, patients are referred from their primary care clinic to the secondary care hospital, and onto a tertiary center if needed. 2

Most care organizations rely on general physicians or hospitals to treat most cases, and specialized hospitals to treat only complicated cases. In principle, this is an efficient system design when there is significant heterogeneity across patients and many can be treated cost effectively at less specialized hospitals. But the system only works well if there is effective coordination between the various levels of provision – particularly for acute conditions that require an immediate transfer to a specialized hospital. Without effective communication, inefficient transfers between levels of care could result in unnecessary costs and even deaths.

Heart attacks are one example of a condition that requires specialist care. A heart attack can be treated by either fibrinolytic therapy (FT) or percutaneous coronary intervention (PCI). FT consists of drugs that help the body dissolve clots and is widely available. PCI is a more complicated procedure that involves inflating a tiny balloon in the artery and inserting a stent to unblock it; it helps patients who have suffered a severe heart attack to survive. The latter procedure needs to be performed by a specialist and not every hospital can do so. Efficient transfers are key, because if a patient requires PCI, every minute that passes increases the likelihood of death. Current American Heart Association (AHA) guidelines recommend performing this procedure less than 90 minutes after arrival if the hospital is a PCI-capable center, commonly known as a reperfusion center (RC), and in under 120 minutes after the first contact if the patient arrived to a non-PCI-capable general hospital (GH).

Heart attack treatment is a useful setting in which to examine fragmentation within a system,

since poor coordination generates large differences in productivity among hospitals that have different capabilities but are close to each other. Without inefficiencies, patients who need PCI would be transferred quickly and the disparities in treatment would be small. Rathod et al. (2020) document that the difference in survival between arriving with a heart attack at a PCI-capable hospital and others is less than 1.5% in London. In contrast, in IMSS hospitals in Mexico City, the gap is much wider: heart attack patients who come directly to a PCI-capable hospital have an 86% survival rate, while those who arrive at a non-PCI-capable hospital first have only a 54% chance of survival. Figure 2 presents the 23 networks that IMSS has for treating heart attacks and highlights the difference in survival rate by hospital of arrival within Mexico City.

The lack of coordination described above could be partly responsible for Mexico having a 4 times higher heart attack mortality rate than the Organization for Economic Co-operation and Development (OECD) average as presented on figure 3. Before the program’s implementation, to transfer a patient a doctor had to call the RC, talk to a secretary and explain the need to talk to a physician. Then they had to wait for that person to find someone to come to the phone and then make the case to transfer the patient. After getting transferred to the RC, the patient would then be assigned to the next available physician in the emergency wing. The emergency wing doctor would have to read through the notes made at the GH for the first time and would potentially order additional tests to assess the patient’s status before treatment. Scholz et al. (2018) estimates that every additional 10 minutes it takes to transfer a patient with cardiogenic shock increases their risk of death by more than 3 pp; this kind of fragmentation is therefore deadly.

In such a situation, policy makers have two options to improve outcomes: (1) enhance communication to allow for more effective transfers across hospitals or (2) invest in the capabilities of secondary hospitals to allow them to treat more complicated patients. In 2015, the economist running IMSS, together with the head of the Cardiology Department at a RC in Mexico City, set up the “Código Infarto” (CI) program that aims to reduce the time-to-treatment for heart attack patients in IMSS hospitals through both components. The first channel is surprisingly simple and cost effective: doctors in low- and high-specialty hospitals created chat groups on common apps (mainly WhatsApp) to share patient information. These groups allowed doctors to send electrocardiogram (ECG) scans to other physicians and coordinate transfers much more quickly. The second channel involved a sizeable investment in care at secondary hospitals: the program trained every staff member on the basic symptoms of a heart attack and prioritized a room for heart attack patients so they would be treated more quickly.

The program started in Mexico City’s southern network and has since expanded to all 23 networks and the 191 hospitals that treat heart attacks. In each network, a PCI-capable RC oversees GHs
and can receive transferred patients from a GH who require PCI. To study the CI program’s effect, I use detailed case-level data for 80,354 individuals who suffered heart attacks.

I begin with a case study of Mexico City’s experience, drawing on a natural control group of hospitals in Mexico City’s northern network that did not participate in the program until later on. I then expand the analysis to the entire nation, using the timing of implementation within networks to create a quasi-experimental evaluation framework. Because the intervention started on a different date for each network, I use a stacking procedure to prevent negative weighing and a difference-in-differences (DID) approach to estimate the effect of the intervention.

I find that the CI program led to a 7% (3.7pp) increase in the survival rate and a 25% (2.5pp) rise in transfers; transfers became 33% (4 hours) faster on average. This is an enormous increase in survival rates, which is almost 50% larger than the mean 2.6pp improvement in heart attack mortality in OECD countries from 2007 to 2017. Moreover, I find further evidence that this effect is causal by showing that it is driven by hospitals that have a larger survival rate gap compared to their RC. Hospitals in the top tercile exhibit a 29% (12pp) increase in survival and an 85% (5pp) increase in transfers.

The results suggest a significant role for the group chats in driving the effect, as opposed to the contemporaneous investment in capabilities at secondary hospitals. First, despite these capability investments at secondary hospitals, transfers rose, suggesting that improved communication is causing more effective transfer. Second, we see direct evidence of the ICT effect in terms of the time it takes to transfer someone. Finally, hospitals that have a larger survival rate gap compared to their RC experience a larger effect, suggesting that the program’s effect is larger where there is more to gain from transfers. While the higher survival effect among these hospitals could be explained in part by a larger increase in capabilities due to a lower baseline, the bigger transfer effect among them could not.

The above results show that the intervention is effective and that the ICT component is playing a role. However, we cannot draw accurate conclusions about the mechanisms or what kind of patients benefit from them since calculating either of the program component’s contributions by conditioning on transfer status would be biased by a selection effect. The within-hospital improvement component probably reduced transfers for patients who were on the line between being transferred or not, and the across-hospital improvement component reduced transfer risks, which probably induced additional transfers of more complicated patients. Disentangling each component’s contribution is key from a policy perspective, as replicating the communication component of the program is straightforward in other settings faced with similar barriers to coordination.

Understanding transfer decisions between hospitals and the mechanisms through which they

3 O.E.C.D (2019)
can become more effective is key to any healthcare network that relies on advanced centers to help treat complicated patients that arrive to basic hospitals. In the United States, Veinot et al. (2012) report that 44% of heart attack cases are transferred from the emergency departments they initially encountered if PCI is not available. Concannon et al. (2012) explains that transfers will play a role in the U.S system for a while, even with big investments. The paper reports that 79% of the U.S population is within a 60 minute drive to a PCI capable center and highlights that a 44% increase of hospitals that are PCI capable between 2001 and 2006 only led to an increase of 1% in the share of population that are under 60 minutes away. The fact that, after the investment, only 36% of U.S hospitals are able to perform PCI highlights that relying on transfers for the remaining 20% of the population is probably efficient.

Two studies based on data from the Acute Coronary Treatment and Intervention Outcomes Network Registry document that the U.S is not efficient in transferring patients. Dauerman et al. (2015) document that more than one third of patients fail to achieve door-to-PCI in under 120 minutes. Moreover, Wang et al. (2011) document that only 11% of transferred patients left their original hospitals in the first 30 minutes, with mortality for patients that took longer at 5.9%, almost 3 times as much as patients that were transferred timely. Having a framework to think how better communication and increased capabilities can help improve outcomes is key to develop effective policies.

To identify each component’s contribution, I develop a structural model in which physicians at hospitals with heterogeneous capabilities decide how to treat a heart attack patient. The model focuses on the decision that physicians face after receiving a patient at a hospital; they can potentially transfer the individual to a more advanced healthcare center, but doing so would have a cost in terms of health severity for the patient as increased time to treatment worsens conditions. Doctors will choose to transfer a patient if the expected gain in their probability of survival is high enough to make the investment worthwhile.

The model shows that reducing the transfer costs (by improving coordination) would increase transfers as well as survival rates among more complicated patients. This component’s effect will be bigger the larger the productivity gap between sending and receiving hospitals is, since there is more to gain from better transfers. Moreover, enhancing capabilities would lead to fewer transfers and would benefit all patients that get treatment at the original emergency department they get to. This channel’s effect will be bigger the less transfers are present in the network, since patients who are transferred cannot benefit from improved treatment at the original hospital. To the best of my knowledge, the model I present is the first to analyze transfer decisions by physicians as a function of capabilities at their hospital, capabilities at the potential receiving hospital and the severity cost of transferring a patient.

I employ the reduced-form estimates to back out the model’s structural parameters, which I use
to perform a counterfactual policy analysis. I conclude that facilitating across-hospital transfers through better communication would have provided 68% of the total effect alone, but with substantially more transfers. Moreover, I document that both components are substitutes, as the capabilities component would have induced 65% of the effect. The components substitute for each other because patients who are transferred cannot experience the benefits of better service at the sending hospital. Lastly, I estimate that the cost per life saved of the ICT component is $10,625 dollars and show that the ICT component alone would have had large returns.

To the best of my knowledge, this paper is the first to directly observe the role of technology adoption on coordination across hospitals, and is the first project to evaluate the effect of adopting ICT on health outcomes in a developing country. More generally, the study highlights the role that widespread and widely accessible technologies can play in improving healthcare, which is important as some hospitals are exploring the use of apps to increase the speed of communication. While relying on HIPAA compliant software, hospitals in the U.S. are starting to create applications that mirror common chat-apps to increase transfer efficiency. As an example, Mount Sinai Hospital launched a mobile app to optimize care for heart attack patients that relies on the same mechanisms as the CI program.\footnote{For more details, see here}

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature. Section 3 describes the background of the IMSS system and the CI program. Section 4 discusses the data. Section 5 presents the results of the main DID estimations. Section 6 explores the channels through which each component of the program may have contributed and presents the model for interpreting the DID results. Section 7 concludes.

2 Literature Review

This paper contributes to at least five strands of the literature. The first assesses how fragmentation affects outcomes. Agha et al. (2019) show that patients who move to a more fragmented region use more services and substitute away primary care. Kellermann and Jones (2013) argues that one of the main reasons why health IT has not showed its potential to save billions of dollars and improve healthcare is because IT systems are inoperable across providers. Could a lack of communication explain these poor outcomes? This project is the first to analyze how improving communication across hospitals can improve health outcomes.

Second, this paper adds to the vast literature on how ICT affects health outcomes by providing evidence of the high returns to simple technology improvements in a developing country. Atasoy et al. (2019) provides an overview of why ICT should help improve health outcomes. While the medical
literature finds mostly positive effects, the economics literature shows substantial heterogeneity across the variety of settings, technologies, and populations analyzed. For example, Agha (2014) show, based on US Medicare data, that EHRs do not improve outcomes, but increase spending. However, Miller and Tucker (2011) demonstrate that using health IT reduces infant mortality. Moreover, McCullough et al. (2016) illustrates that IT primarily helps patients with more complicated health complaints. Parente and McCullough (2009) examine three technologies—EHR, picture archiving, and communication systems—and find that only EHR clearly enhances patient safety, while Athey and Stern (2002) conclude that adopting ICT at emergency call centers in the US that links caller identification to a location database increased the survival rate of heart attack patients. Bronsoler et al. (2021) presents an in-depth review of the economics and medical literatures, which contains several meta reviews.

Third, the paper advances research on how better management practices affect patient outcomes. To the extent that the CI program can be regarded as a better management practice, I establish a direct causal link between better management quality and improved patient health outcomes. While my paper is the first to directly link management practices to health outcomes, several previous studies have highlighted that management practices can improve productivity (for a review, see Bloom and Van-Reenen (2011)). Health IT is particularly important because healthcare staff are often resistant to change and fail to implement new technologies (see a review in Gnanlet et al. (2019)). The current paper highlights that implementing health IT initiatives based on widely used technology could avoid the buy-in problem.

Fourth, this paper contributes to the literature on the efficient allocation of patients to hospitals, as CI changes patient allocation within treatment networks. Doyle et al. (2015) explain that health outcomes substantially depend on which hospital they are taken too, with patients taken to more expensive hospitals having better outcomes. Dranove et al. (2003) finds in the US context that publishing information on a hospital’s performance leads to changes in patient selection, as higher-scoring hospitals receive patients with more severe conditions. Likewise, Bloom et al. (2013) conclude that hospital competition leads to better hospital management and improved health outcomes for patients in the UK. Other related studies include Chan (2015), who finds that teamwork by doctors increases medical outputs by reducing moral hazard, and Chandra and Staiger (2007) argues that hospitals that are better at intensive treatment can more successfully treat individuals in need of such attention. We analyze one implication of such heterogeneity via the impact of ICT: does changing patients’ hospital allocation affect patient outcomes?

Lastly, to the best of my knowledge, this paper is the first to conduct an in-depth analysis of the effect of a program such as CI and the insights presented here are also useful to programs that rely on telehealth support for urban centers, like the MGH telestroke application evaluated by Pervez et al.
Several medical studies have examined the relationship between lower time to treatment and mortality \cite{Cannon2000, McNamara2006, Lambert2010, Menees2013, Wang2011, Dauerman2015}, while others have evaluated similar programs through pre-post strategies, including an evaluation of the CI program \cite{Gomez-Hospital2012, Cordero2016, Borrayo-Sanchez2017}. However, none of these studies offers a causal estimation of the effect, a description of the mechanisms through which the program operates, or an explanation of why it has heterogeneous effects across hospitals.

3 IMSS and the "Código Infarto" (CI) Program

Health care in Mexico is provided primarily by several public sector institutions. The largest is IMSS, the single-payer insurance plan for the country’s formal sector workers, their families, and students as well as a voluntary enrollment option that comprises fewer than 1% of the plan’s beneficiaries. Private employers are required to enroll all employees in IMSS. This service is paid for in three parts: the government contributes 5.3\% of employees’ base wages, employers contribute 16.5\%, and employees another 2.5\%.\footnote{Law of Social Security.} IMSS runs its own 1,522 primary care clinics, 256 general care hospitals, and 36 specialized hospitals. There are smaller but similar public options for particular sectors such as government workers (ISSSTE), the navy (SEMAR), the army (SEDENA), and well as employees of the state-owned oil company (PEMEX).\footnote{IMSS (2020)}

IMSS has over 70 million beneficiaries. Its medical networks are organized into three levels. Primary care clinics treat regular illnesses that do not require complicated surgery, general (low-specialty) hospitals treat almost all illnesses and provide surgery services for beneficiaries, and high-specialty hospitals are equipped with cutting-edge technologies to treat the most complicated cases. Each IMSS beneficiary is assigned to a primary care clinic based on where they live. Each clinic is then ascribed to a GH, which in turn is assigned to a specialized tertiary unit. IMSS’ heart attack treatment structure is organized into 23 networks; each has several non-PCI capable general hospitals (GHs) and one PCI-capable reperfusion center (RC) hospital to which severe patients can be transferred for advanced procedures.\footnote{Not every tertiary center treats heart attacks since some are highly specialized. Oncology and psychiatry are examples}

Figure 2 maps the location of each of IMSS network and provides a close-up of Mexico City’s two networks. The Close-up highlights the stark difference in survival probability by arriving to a GH or a RC.

A heart attack occurs when the flow of blood to the heart is blocked. The blockage is most often caused by a buildup of fat, cholesterol, and other substances that form a plaque in the arteries that
feed the heart (coronary arteries). When the plaque ruptures, it can form a clot that blocks the blood flow, causing a heart attack. The interrupted flow deprives the heart of oxygen, which causes it to start dying. Heart attack patients must be promptly treated at a hospital with either FT or PCI. The 2013 American Heart Association (AHA) guidelines suggest a maximum of 30 minutes door to needle (FT) and 90 minutes door to balloon (PCI), or 120 minutes if a transfer is required. Thus heart attack patients should be transferred to a PCI-enabled hospital in less than 120 minutes or, if that is not feasible, FT should be administered within the first 30 minutes to stabilize the patient, and a potential transfer should be evaluated over the next 24 hours. Figure 4 summarizes the algorithm. Receiving treatment quickly has a significant impact on survival rates: Scholz et al. (2018) estimates a 3.5pp increase in the likelihood of death for every additional 10 minutes that a patient with cardiogenic shock takes to get to the RC.

The CI program aims to reduce the time between a patient’s admission and treatment being provided, ultimately reaching the timeline proposed in the AHA guidelines. To achieve these goals, CI comprises two simple interventions. First, across hospitals, the program created chat groups between doctors at GHs and RCs so they can communicate efficiently about patient cases, prepare for incoming heart attack patients, and coordinate transfers more effectively—a very inexpensive intervention. Second, within hospitals, the program improves the emergency procedures in low-specialty hospitals by clearly labeling the room where heart attack patients should be treated and prioritizing its use for such ailments as well as by providing training on the main heart attack symptoms to all staff (security, cleaning, etc.) and instructing everyone to help incoming individuals with potential heart attacks receive treatment quickly.

On the one hand, Incorporating group chats as a means of communication can significantly improve coordination between hospitals as, before the intervention, it was necessary for a doctor to call the hospital, wait for a secretary to find a physician and only then explain why a transfer was necessary. Moreover, the treating physician at the emergency wing would not be alerted of an incoming heart attack patient nor be able to observe the ECG scan before the patient’s arrival, adding key minutes to the transfer process. The program asks doctors at both GH and RC to enter a group chat on the common app WhatsApp. The program enables GH physicians to send basic clinical information for each potential heart attack patient along with a picture of the ECG scan if they want to solicit a transfer. A Physician at the RC is assigned the responsibility of monitoring the group at any given time and is in charge of authorizing the transfer. Once a transfer is authorized, the RC doctor is also responsible for forwarding the clinical data and the ECG scan to the emergency department so that they can prepare for the incoming patient.

8 O’gara et al. (2013)
On the other hand, improving organization within a GH can make a big difference for heart attack patients. Before the intervention, heart attack patients would be placed in the first room available after diagnosis and usually had to wait for several minutes before being treated because the room would not be ready to apply FT and monitor the patient. In order to properly treat a patient, a room should be equipped with cardiopulmonary resuscitation equipment, a functional defibrillator, transcutaneous pacemaker, ECG equipment, oxigen supply, Balloon endotracheal tubes and several medicines. In 2014, a newspaper reported that a heart attack patient who was diagnosed waited for treatment for 4 hours until he perished without being treated. The CI program aims to improve treatment capabilities by clearly labeling a room that will be able to treat heart attacks immediately and making sure that the necessary equipment is operational and not spread across the hospital. Moreover, the program asks all the staff to help get any heart attack patient in so that they can begin treatment faster.

Thus the CI program improves medical attention through two components. First, it improves hospitals’ ability to treat heart attacks by reorganizing the way in which they provide care. Second, the program uses ICT to increase the flexibility and efficiency of transfers from non-PCI-capable hospitals to PCI-capable hospitals. Figure 5 describes the improvements generated by the CI program.

CI was first launched in February 2015 in Mexico City’s southern medical network as a pilot program for its eight second-level hospitals and one PCI-capable hospital. After encouraging observations from the pilot network, by Summer 2018 the program had expanded to all 23 networks. A PCI-capable hospital (reperfusion center (RC)) in each network oversees general hospitals (GH) and receives transfers. The program is now running in 191 hospitals across the country. Table 1 lists the implementation dates for each network and how many hospitals it has. The table highlights that there is substantial variation in starting dates across networks. I exploit the staggered roll out in the main empirical strategy to be able to evaluate the effect of the program.

4 Data

To analyze the effect of the CI program, I use medical case-level data sets from IMSS. Overall, by combining different sources from the Institute, I am able to track the full case of every heart attack patient who presented at an IMSS urgent wing between January 2013 and December 2019, the study’s target population. A key advantage of IMSS’ systems is that they all rely on a social security number combined with an intra-family ID to identify each individual, which allows them to identify and match patients across datasets. This allows me to obtain all the medical information from patients who were diagnosed with a heart attack in the emergency room, including their hospitalization history and their survival out-
come, even after leaving the hospital. The data contain each patient’s hospital admission date, diagnosis, whether or not they were transferred, and their survival outcome. I label each case by the initial urgent wing they visited (either RC or GH). A patient who was transferred from a GH to an RC will still be labelled GH since she went there first.

The first source of information is the emergency room administrative data for 95,447 heart attack patients who went to an IMSS urgent wing.10 This dataset contains information on hospital of entry, date and time of entry, date and time of exit, the patient’s age and sex, and whether the patient died within 30 days of their admission. I define a case length as 30 days from the patient’s first appearance in the urgent wing. Since patients are usually recorded at the urgent wing of the receiving hospital after transfers, some cases appear more than once. After cleaning for double entries I have 80,539 cases.

The second source of information is hospital admission records for heart attack patients. This data is similarly filtered and contains 94,327 entries with information on the hospital of admission, date of entry and exit (but not time), as well as whether the patient died at the hospital. To match this information to the case-level urgent wing data, I reshape it into a wide table that captures every date of entry and exit as well as whether the patient died in a hospital due to each heart attack they were admitted for. I end up with 87,152 different cases.

To combine both datasets I conduct a many-to-one match from the urgent wing data into the hospital data based on patient’s ids and define an appearance as relevant if the date of entry is less than 30 days from the individual’s first appearance in the urgent wing. I then define an individual as transferred if they appear at an RC (hospital or urgent wing) after starting in a GH, and consider a patient as surviving if they did not die within 30 days of the case starting. I identify 5,313 cases who were transferred, 70\% of whom appeared in the urgent wing data in the receiving hospitals.11 There were 21,769 deaths (27\%), 91\% of which appear in the urgent wing data. The last step to complement the death dummy variable is to incorporate the death census data from IMSS, which captures 3,640 additional out-of-hospital deaths (17\% of the total).12

These three data sets allow me to observe the entire history of each heart attack patient who arrived at an IMSS urgent wing and estimate the program’s effect. Table 2 presents descriptive statistics of the data and Figure 6 highlights the story. We can see that The average survival rate is 68\% (82\% for those who came directly to RCs and 60\% for those who first came to GHS). An average of 11\% of patients were transferred, which takes 12 hours to execute and conditional on transfer, there is a 89\% chance of survival. The fact that the mean survival conditional on transfer is higher then the average after arriving

10Based on an ICD-10 diagnosis that starts with I21.
11Some cases were not registered because the patient was directly admitted after their transfer.
12Results are robust to not including these deaths and defining different case lengths.
to a RC directly underlines that doctors are only able to transfer relatively healthy individuals. The average patient is 66 years old, and 66% are male.

5 Reduced Form

In this section I describe the empirical strategy employed to analyze the effects of the program and the results obtained. Since the CI was implemented in a staggered fashion, utilizing a simple two-way fixed effects model could lead to bias due to potential negative weighting. This is because if there are dynamic effects on our treatment units (networks), we would be comparing a treatment unit to a control that is still being affected by its own treatment. Before explaining the stacking procedure used to evaluate the program as a whole, I first describe a simple DID design using Mexico City’s networks as a motivating example.

5.1 Case Study: Mexico City

Mexico City, because of its size, has two full networks: South and North. As mentioned above, the CI program was first implemented in the city’s South network in February 2015 and then gradually expanded to the remaining 22. The two RCs in Mexico (Siglo XXI and La Raza) are the largest medical centers in the IMSS network and compete to be the best hospital in the country; they have 87% and 85% heart attack survival rates, respectively. The program was first launched in the South because it was designed by the cardiology chair in that network at the time. The North network started the program in early October 2015 but preparations were underway since September. Hence, I use data from the 3,654 heart attack cases between July 2014 and August 2015 in these two networks to evaluate the program within Mexico City, using the following specification to estimate the effects:

\[y_{i,h,t} = \alpha_h + \gamma_t + \beta(T_h \ast Post_t) + \epsilon_{i,h,t} \]

where:

- \(y_{i,h,t} \) is the outcome for case \(i \) in hospital \(h \) at time \(t \).
- \(\alpha_h \) are hospital fixed effects.
- \(\gamma_t \) are month fixed effects.
- \(T_h \) is a dummy indicating whether the hospital is in the South network.
- \(Post_t \) is a dummy that denotes if the case started on or after February 2015.
Table 3 reports the results with robust standard errors.13 The first column demonstrates that the program generated a 10 pp (19\%) increase in survival rate for patients who first presented at a GH. This is a huge effect when compared to the average OECD increase in heart attack survival of 2.6pp between 2007 and 2017 \textit{O.E.C.D} (2019). Column 2 shows that there was also a 6.5 pp (60\%) increase in the transfer rate, which is an impressive effect for a nearly cost-less intervention that relies on doctor’s cellphones. Moreover, on column 3 we see no evidence of a reduction in transfer times (hours), although the analysis is underpowered for this exercise. Lastly, column 4 shows that the program had no negative effect on patients who came directly to the RC. This was a big concern of the program’s designers, as increased demand could have induced a negative externality. For example, if the emergency room at the RC was already at capacity with heart attack patients, treating transferred patients could negatively affect the ones that arrive there directly.

Figure 7 illustrates the event studies for survival rates and transfers. We can clearly see that there is no evidence of pre-trends in terms of survival or transfers as the coefficients before the CI started are all close to 0 and change signs often. Moreover, we can see that the estimates for each month are quite noisy and that the estimations presented in table 3 rely on pooling the data to find a significant effect. The stacking procedure presented in the next section provides me more statistical power to observe effects for shorter time periods.

To further ensure that the results are not driven by spurious correlations, I re-do the analysis but shifting the date of the intervention to February 2014, a full year before treatment started. This is a standard exercise in the literature that enables me to see if the units I am comparing were on different trends. Table 4 presents the same columns as table 3 under this change. The results report insignificant and much smaller coefficients effects across all 4 columns. For example, the survival rate coefficient is -0.27, which is one fourth of the effect reported above, but also a different sign. I now move on to present the analysis of the overall rollout of the program.

5.2 National Program Effects

Analyzing the complete program roll-out has several advantages. First, it enables us to assess whether the program’s effects are the same across hospitals and networks, and provides enough power to look for heterogeneous patterns and understand the potential mechanisms behind them. To do this, I employ a stacking procedure that eliminates the potential risk of negative weighting under two way fixed effect estimation, following Deshpande and Li (2019). The goal is to create a dataset that encompasses all treatments on the same timeline and thus eliminates the possibility of incorporating dynamic effects into

13 clustering by hospitals yields similar results but since the intervention is at the network level, I prefer robust errors for this exercise.
the treatment/control comparisons.

The process for a stacked regression analysis has three steps. The first step is to create a unique dataset for each treatment starting time and normalize the treatment time for both the control and treatment groups around the start of the intervention. Each dataset includes only viable control groups (i.e., they are not affected by treatment dynamics since they have not been treated yet). The standard in the literature is to include eventual adopters as viable controls. The second step is to stack these datasets together in order to create one large dataset on which the analysis will be done. Note that some observations could be repeated in this final dataset, with a different relative time. The last step is to run DID specifications that control for expansion/unit fixed effects and relative time to program start within each expansion, while clustering at the expansion/unit level.

To evaluate the CI program full rollout, I create 23 separate datasets since there are 23 networks. I include as viable controls heart attack patients at networks who will receive the CI program in at least 8 months so that I can focus on the period 7 months before the intervention and 6 months after, following the Mexico City DID analysis presented above.\footnote{Varying this time selection does not affect the results.} There are 8 networks for which I have no viable controls since they were the last ones to get the program. I therefore consider 15 datasets to form my final analysis data. I append these into a final dataset that enables me to evaluate the full program rollout.

The final stacked dataset contains data on 68,007 heart attack patients and 15 networks as treated groups.\footnote{The last networks to adopt have no viable control group} Table 5 reports the descriptive statistics of the new dataset. Overall, the results demonstrate that heart attack cases are similar to those described in Table 2: 7% of patients are transferred, and the overall survival rate is 66% (62% for GHs and 75% for RCs). Lastly, individuals are 65 years old on average and 65% are male.

I use the following specification to analyze the intervention:

$$y_{i,h,e,t} = \alpha_{h,e} + \gamma_t + \sum_{\tau} D_{e,t}^\tau + \beta(T_{h,e} \ast Post_{e,t}) + \epsilon_{i,h,e,t}$$ \hspace{1cm} (1)$$

where:

- $y_{i,h,e,t}$ is the outcome for case i in hospital h at expansion e on time t.
- $\alpha_{h,e}$ are hospital expansion fixed effects.
- γ_t are month fixed effects.
- $D_{e,t}^\tau$ are dummies equal to one if the case is τ months away from CI in the specific expansion.
• $T_{h,e}$ are the treatment units in each expansion.

• $Post_{e,t}$ is a dummy indicating when $D_{e,t}^T \geq 0$

• Standard errors are clustered at the network/expansion level because that is the level at which I get variation.\(^{16}\)

And the event study equivalent:

$$y_{i,h,e,t} = \alpha_{h,e} + \gamma_t + \sum_{\tau} D_{e,t}^T + \sum_{\tau} \beta_{\tau}(T_{h,e} \ast D_{e,t}) + \epsilon_{i,h,e,t}$$

Table 6 reports the results. The first column shows that the program had a substantial effect on survival rates (3.7pp or 7\%, on average). While this is significantly smaller than the effect found for the Mexico City case study, it is still 50\% larger than the average OECD improvement reported above. The second column shows a 2.5pp (24\%) increase in transfers which is large in magnitude, albeit smaller than the one found for Mexico City. Moreover, with the added power provided by the stacked procedure, column 3 now reports a reduction in transfer time of 4 hours out of a mean of 12. That is, the program reduces the transfer time by 33\%. Lastly, as above, we see that there is no negative externality of the program on RC arrivals; in fact, the estimate is positive.

Figure 8 displays the event study estimates for this exercise. We can see that there are no pre-trends in terms of survival rate or transfer rate. Moreover, we can now see the effect in survival rates much clearer. While I do not have enough power to statistically distinguish monthly estimates, the dynamic patterns suggest that the program took a couple of months to fully take effect. Conversely, we can see an immediate increase in the transfer rate after the program’s implementation.

In order to replicate the placebo test from above, I re-do the stacked procedure completely but around implementation dates that are shifted by 12 months for each network. That is, for each network I first shift the intervention time to 12 months before and then create a dataset with its viable controls. After creating a dataset for each network, I append them into a placebo analysis set and run the same specifications as described above. Table 7 presents the results. As above, finding null effects reassures us that there pre-trends are not driving the results.\(^{17}\)

Understanding whether the program’s effect is constant across hospitals or whether it works better under certain conditions is relevant from a policy perspective, especially when considering the implementation of a similar policy. Likewise, policy makers would need to understand whether the program’s impressive effects are driven by the simple communication component or by the more involved

\(^{16}\)Note that Clustering at the expansion level accounts for the repeated appearance of observations across expansions.

\(^{17}\)Restricting to the same networks as viable controls leads to the same conclusion.
improvement in capabilities. Therefore in the next section I analyze heterogeneity, and then estimate each component’s contribution in an attempt to disentangle the mechanisms.

5.3 Heterogeneity

There are two sources of heterogeneity that may be driving hospitals’ varying responses to the program. The first is whether there is much to gain from transferring a patient. If a GH is almost as good at treating patients as its RC, or if its RC will not provide a timely PCI, then there may be little to gain from improving communication and coordination. The second possible source of heterogeneity is the distance from a GH to an RC, which could matter quite a lot since a transfer from farther away would take longer.

To assess whether the difference in capabilities between the types of hospitals plays a role, I define productivity as the pre-CI mean survival rate for patients who arrive at each hospital, and define a productivity gap as the difference between the the survival rate at a GH vs. that of its RC before the treatment.18 In addition, to assess the role of distance I use the geographic coordinates for each IMSS clinic to calculate the distance from every GH to its RC.19 Figure 9 reports the histograms for both measures, which reveals substantial variation. The median GH faces a 24% productivity gap while the 25th and 75th percentiles are at 14 and 39 percent respectively. The median RC is 47 km away with the 25th and 75th percentiles at 10 and 135 km respectively.

To empirically test whether each of these components matters, I run a DID specification similar to equation 1 but include an interaction term between Tpost and the mechanism being explored. Table 8 reports the results.20 Column 1 shows that the program is more effective where the productivity gap is higher. That is, the program had a bigger effect on survival for patients that had more to gain from being transferred, since the RC provides a much better chance of living than the GH they got to first. At face value, the highly significant estimate suggests that every additional 10% in the gap leads to a 3.75pp higher effect in probability of survival. A similar story can be seen for transfers in column 2. Hospitals that have a larger productivity gap transfer more patients as a consequence of the CI program.

Moreover, the results presented in columns 3 and 4 of table 8 suggest that there is no correlation between distance from a GH to a RC and the effectiveness of the CI program. This can be explained by the fact that many times it will be impossible for a patient to get to PCI in under 120 minutes and will hence have to be treated with FT, stabilized and transferred within 24 hours. In fact, 90% of patients take

18While this measure is endogenous and also depends on transfers, the fact that transfer rates are so low in this context limits the bias that this can have as the median hospital transfers 8 percent of its patients. Moreover, while socioeconomic factors may affect health and elad to heart attacks (extensive margin), they are unlikely to affect outcomes conditional on a heart attack.

19Time of transportation yields similar results

20The results in this exercise are robust to winsorizing for 1 percent, 5 percent or 10 percent of the sample.
over 2 hours to be transferred.

Figure 10 reports the event studies for both interaction terms. On the left image we can see that there was no effect for the interaction with productivity gap in the periods leading up to the intervention as coefficients are small in magnitude and centered around 0. However, immediately after the intervention starts, we can see highly significant coefficients throughout, highlighting that the CI program was very effective among hospitals with a larger productivity gap. On the right side we can see the relationship for the interaction with distance. We can see that there is no discernible relationship neither before or after the intervention.

To further understand which hospitals are driving the effect, I classify treated hospitals into three categories based on productivity gap terciles (low, medium, and high) and replicate the analysis including interactions between Tpost and each of the categories. Table 9 reports the findings. Column 1 highlights that the effect on survival rates is only present among hospitals classified with a large productivity gap while others show no effect. A similar story can be seen in column 2 for transfer rates. In fact, hospitals with a large skill gap exhibit a 12pp (29%) increase in survival rates and a 5pp (86%) rise in transfers.

5.4 Is Better Communication Playing a Role?

The results presented above highlight that the program led to a significant improvement in survival rates and a large increase in transfers. However, understanding the contribution of each component of the program is harder since the CI intervention affects who is selected for transfers. On the one hand, when a GH becomes more capable, it does not need to transfer as many patients, which will lead to fewer transfers. On the other hand, transfers become easier when communication costs are lowered. One would expect that in this scenario there would be more transfers, and that the transferred patients would be more severe than before.

While disentangling the contribution of each component will be the focus of the structural model presented below, the results so far indicate that the communication component is playing a role in the results we observe. First, column 2 in table 6 shows that transfers increased substantially. The fact that the capabilities component would probably lead to a decrease in transfers and we observe an increase signals that the across component is playing a large enough role to overpower the transfer reducing effect of improved capabilities. Moreover, we see direct evidence of improved communication in column 4 of table 6 as transfer times are reduced by 33%. Lastly, table 9 reports that hospitals that have a bigger productivity rate gap compared to their RC experience a larger effect, both in transfer rate and survival rate, suggesting that the program’s effect is larger where there is more to gain from transfers.
While the higher survival effect among these hospitals could be explained in part by a larger increase in capabilities due to a lower baseline, the bigger transfer effect among them could not.

The results above are suggestive. However, to disentangle these components and quantitatively estimate the contribution of each component, below I develop a structural model in which doctors need to choose whether to transfer a patient for treatment that accounts for the cost of transfers in terms of health. Such a model is necessary because conditioning on transfer status does not attempt to correct for selection bias: GH survival rates might be artificially improving by sending away more complicated patients. In fact, as shown in Table 10, when analyzing the effect of the program conditioning by whether the patient was transferred or not, we see a large increase in survival rate among patients who were not transferred. Additionally, we see no effect on survival for transferred patients, which could be hiding the fact that more complicated patients are now being transferred.

6 Mechanisms

Understanding the role that each program component plays in the positive survival rate and how they interact is important when seeking to draw lessons from the large effects. For example, if the ICT channel is responsible for most of the improvement, extending and replicating it in other contexts should be relatively easy. If both components complement each other, then the best results going forward could be achieved by implementing them together. If they substitute for each other, similar returns could be obtained by choosing one or the other. In this section I first discuss the potential mechanisms of the program and then present a model that allows me to disentangle each component’s contribution.

Cheaper communication leads to more transfers, and there are two ways in which a rise in transfers can increase the survival rate for heart attack patients who first come to GHs: (1) by reducing overcrowded urgent wings and thus allowing doctors to be more focused on each patient and (2) by allowing patients to receive more specialized treatment in the RC faster. The latter affects patients selected for transfers, as lower costs mean that more severe cases can make the trip. I can empirically discard the former, as out of the 65,000 cases in GHs in the final sample, 54% were the only heart attack case at the low-specialty urgent wing had that day. Further, only 9% arrived within less than 4 hours since the previous patient, and 5% within less than 2 hours. This is not to say that resources are not limited for such patients; it simply shows that the increase in transfers is unlikely to have played a role in the overall results through increased resource availability. Similarly, a potential negative externality of the transfer effect is that such a large increase in transfers may have affected the performance of high-specialty hospitals as the rise in incoming patients could divert resources previously devoted to patients with complex needs. However, as shown above, the program has no negative effects on patients who arrive directly to
When a room is assigned with priority to treat heart attacks, the equipment is available and operational and all staff members are trained to react, this is bound to translate into patients receiving better treatment. Increasing the capabilities of GHs, however, also impacts transfer selection. Cases that required transfers in the past may not anymore; patients who were on the line between transfer or not because of the associated risks will probably now stay for treatment in the GH. Thus, this component should squeeze transfers in the middle. In the following section I develop a model that allows me to identify and disentangle the role and contributions of each component.

6.1 Model: In-hospital Logistics and ICT Improvements

In this section I introduce a model that enables a deeper understanding of the effects presented in the previous section. It analyzes physicians’ decisions at GHs about how to treat heart attack patients. In sum, the model allows a physician to transfer patients to a more advanced hospital (RC) but at a cost in terms of health severity. Doctors choose to do so if the expected return in terms of survival probability is high enough to make the investment worthwhile. The model is consistent with the mechanisms discussed above. The least severe patients will not require transfers, and the most severe will not be able to get them. Moreover, reducing the transfer cost (by improving coordination) would increase the number of transfers and improve the survival of more complicated patients, while improving capabilities would lead to fewer transfers and improved outcomes for every patient. I first describe the assumptions and then explain the forces behind the model.

6.1.1 Assumptions and Solution

In this section I explain the set of assumptions of the model and how it is solved. First, I assume that each heart attack patient \(i \) has severity level \(\delta_i \), and \(\delta_i \in [0, 1] \). Second, I assume that each hospital has capabilities \(\lambda_j \), with \(\lambda_j > 0 \) and that there are two kinds of hospitals, GH and RC, with \(\lambda_{GH} < \lambda_{RC} \). That is, I assume that reperfusion centers have higher skills than general hospitals. Third, I assume that there is a survival probability function that depends on both the severity of the patient \(\delta_i \) and the capabilities of the hospital, \(\lambda_j \). Naturally, this survival function will be decreasing in the severity of the patient and increasing in the capabilities of the hospital. That is, \(\frac{\partial}{\partial \delta_i} s(\delta_i, \lambda_j) < 0 \) and \(\frac{\partial}{\partial \lambda_j} s(\delta_i, \lambda_j) > 0 \).

In order to incorporate coordination between both kinds of hospitals I further assume that transfers are possible. Allowing free transfers would lead to every patient being transferred, since \(\lambda_{RC} > \lambda_{GH} \). Since that does not reflect reality, we need to incorporate a cost into the model. Heart attack specialists confirmed that the implied health cost of moving a patient becomes bigger the more severe
Hence, in the model I assume that transfers are possible but have a cost in terms of health. I model this cost as an increase in the severity of the heart attack that a patient has, and assume the cost is proportional to the initial severity she came with, to reflect what the specialists conveyed. Specifically, a patient that arrives with severity \(\delta_i \) to a GH will arrive, after transfer, to a RC with severity \(\delta_i (1 + c) \). The potential gain of such transfers will be determined by comparing the probability of survival without transfer \(S(\delta_i, \lambda_{GH}) \) to the conditional on transfer probability of survival \(S(\delta_i (1 + c), \lambda_{RC}) \).

Lastly, I assume that doctors have a threshold \(\kappa \) that determines whether a transfer is justified or not. The \(\kappa \) captures an abstract cost of transferring a patient in terms of probability of survival that the RC, as supervisor of the network, pays for each transfer. Including \(\kappa \) is important because doctors will not want to transfer a patient that has a very small improvement in the likelihood of survival after transfer. For example, a patient that has a 99.99% chance of survival with an extremely mild heart attack would have an even higher probability of survival if the GH transferred him, but such transfer will probably not be worth it. Conversely, if a patient has a similar chance of surviving by staying in the GH because the cost of transfer offsets almost all the benefits, such a patient would likely not be transferred.

Under these conditions, a doctor will solve the following problem:

\[
\max_{t_{ri}} \quad t_{ri} \cdot S(\delta_i(1 + c), \lambda_{RC}) + (1-t_{ri}) \cdot S(\delta_i, \lambda_{GH}) - t_{ri} \cdot \kappa \\
\text{s.t.} \quad t_{ri} \in [0, 1]
\]

\(t_{ri} \)

Hence, a patient is transferred from a GH to a RC if

\[
S(\delta_i(1 + c), \lambda_{RC}) - S(\delta_i, \lambda_{GH}) > \kappa
\]

6.1.2 Understanding the Model

To get a better sense of why the model can help explain the CI program contributions, it is important to understand the driving forces behind it. In this subsection I explain the mechanisms operating in the model in more depth by exploring decisions about whether to transfer a patient. A patient could benefit from being transferred from a GH to a RC if their probability of survival is higher, even after accounting for the cost of a transfer in terms of severity. Since the transfer cost increases with severity, the most complicated patients will not be transferred. Moreover, the least complicated patients would have a slight benefit of transfer, but their chances of survival are pretty high anywhere. The benefit of a transfer
is greater for patients in the middle, since they could truly benefit from more advanced technology and can withstand the ride to a different hospital.

Doctors must assess whether each patient’s transfer is worth it. In the model, a patient will be transferred to an RC if his survival probability after a transfer is at least κ higher than if he stays. Figure 11 highlights how the survival after a transfer looks for patients with different severity δ. The x-axis captures the severity of a heart attack and the y axis captures the survival probability conditional on getting treatment at a certain place. The blue line with long dashes captures the survival function for GH. We can see that the survival probability is pretty high for lower severities but decreases as we move towards the right. The red line represents the survival function for RC. It dominates the blue line since $\frac{\partial}{\partial \lambda_j} s(\delta_i, \lambda_j) > 0$ but for both mildly severe and very severe cases we can see that there is not much difference. This reflects that there are some patients that would almost always survive and others that would most likely die, regardless of the hospital’s capabilities. The purple lines signal whether there are gains or losses from transfers. For easier patients there are some gains because the proportional cost in terms of severity is not too serious. However, for more complicated patients, the cost dominates and patients would actually be hurt by transfers.

Figure 12 displays these patterns for all severities as well as the transfer decision in four lines. The blue line with long dashes still captures the survival function for GH while the red line represents the survival function for RC. In terms of transfers, The purple dotted line in figure 12 reflects a patient’s survival probability after a transfer: $S(\delta_i (1 + c), \lambda_{RC})$. As shown above, This line is lower than the RC because of the cost that has to be paid for the transfer. We can see the proportional to severity health cost of transfer playing a key role since The difference increases as severity δ_i increases. The purple line with long dashes highlights the transfer decision curve; it represents the survival probability after transfer but displaced by κ downwards. Comparing this line to the GH curve in blue is what defines whether a doctor chooses to transfer a patient or not. Whenever the transfer decision line is above the blue line, a transfer will be worth it. The purple rectangle highlights such patients.

Figure 13 highlights the gains from transfer and which patients get transferred. The model demonstrates that it is reasonable for doctors to transfer individuals who would receive a substantial benefit from being moved to a different hospital. We can see that for the lowest severities there are no transfers because the gains are too small, even though positive. Moreover the patients who are transferred are not the sickest because those would be hurt more by the severity increase from a transfer than by the benefit of having access to a better hospital. If every patient with a small benefit were transferred, then physicians would request an ambulance to transfer many people with headaches on the off chance it could be something else. The model shows that transfers always happen in the middle if $\kappa > 0$. The
higher \(\kappa \) is, the more that transfers shrink towards the center. We now move forward to shifting the model according to the components of the program.

6.2 Comparative Statistics

The first component of the program focuses on enhancing coordination by using more efficient communication. Creating the group chats should reduce the time it takes for a patient to get transferred, and thus reduce the \(c \) within the model. Figure 14 highlights the role of this channel. It displays the same four lines from figure 12 shaded in gray along with how the survival if transfer and transfer decision lines would look under a lower \(c \). These shifted lines are presented in blue. We can see that patients (especially severe patients) are now more likely to survive after a transfer. This happens because the cost is increasing in terms of severity, and thus a reduction yields greater benefits for them. Thus there would be additional transfers, and those transfers would be focused on more severe cases as a consequence of this mechanism.

The figure also highlights the benefit in terms of survival for a patient who was not transferred before the program’s implementation and would be transferred now. The mechanism driving this effect is that if the cost of transfer is relatively high, as it is for this patient, a transfer becomes too expensive in terms of health and the patient cannot access the benefits of better treatment, but when the cost decreases the patient can now be transferred and get better treatment. Conversely, the mechanism is not important for the least severe patients, as the transfer cost in terms of health poses a minimal risk to their survival, regardless of \(c \). The same is true for the most severe cases as they would probably perish anyway.

To make this pattern clearer, figure 15 displays how the transfer gains shift after this intervention. We can see that after a severity cost reduction, transfer benefits increase and now a) the benefit of transfer is higher for patients who were already transferred and b) more complicated patients are now transferred. These mechanisms help illuminate why the productivity gap is such an important driver of the program’s success. If there is a very small productivity gap between GHs and RCs, there will be little to gain from transfers, even when costs are 0. Moreover, if costs are high but there is a significant gap, the communication channel could still induce a positive change. That is, even if the GH is far away and thus has a large \(c \), reducing it could still help quite a lot. Hence, the pattern we observe in the data is to be expected.

The program’s second component involves improving the capabilities of the GHs (reflected in the model by a higher \(\lambda_{GH} \)). The shift induces a slight improvement for patients across severities and reduces transfers towards the middle. This pattern reflects that the patients who were just below and just above the threshold of being considered worth transferring no longer represent a worthwhile transfer.
case. Figure 16 displays how the transfer gains shift after this intervention. We can see that transfers shrink towards the center of the transferred severity. The next section estimates the model based on the data and interprets the reduced form through its lens.

6.3 Taking the Model to the Data

The model described above allows us to disentangle both mechanisms of the program. However, in order to be able to run counterfactual policy analysis we first need to be able to identify the structural parameters based on the data. To keep the functional form flexible, I assume that \(S(\delta_i, \lambda_j) = 1 - I_{\delta_i}(\lambda_j, \alpha) \), where \(I_{\delta_i}(\lambda_j, \alpha) \) is the cumulative distribution function of a beta distribution. This assumption enables the survival probability function to take several shapes that satisfy the above requirements, and does not force me to make any concavity/convexity assumptions. Figure 17 displays some of these potential shapes. Critically, given \(\alpha \), the higher the value of capabilities, the better the patient does and the higher the \(\delta \), the worse the patient’s outcome. Figure 18 presents how the survival function appears for several potential values of \(\lambda_j \) once \(\alpha \) is fixed. When \(\lambda_j \) is very small, the likelihood of survival is very low and rises as \(\lambda_j \) increases; a higher \(\lambda_j \) always dominates a smaller one. Moreover, the whole space is covered by different functions since \(\lambda_j \) is continuous.

In order to take the data to the model I must calculate the severity distribution. I do so by adapting different machine-learning prediction models of mortality. I use 2014 as the baseline training year for every heart attack since the CI was launched until February 2015. Exploiting the fact that I have data for every IMSS hospitalization from 2013 to 2019, I create a model that incorporates every hospitalization of each heart attack patient in the 12 months prior to the event, including how many nights he spent in the hospital over the last year, which ICD-10 code matches his diagnosis, and demographic variables such as age, sex and hour of entry, day of the week of entry, and month of entry. Importantly, to prevent skill information from polluting the estimation, I refrain from utilizing any location variables. After training the model with data from 2014, I use it to predict mortality in subsequent years. Figure 19 shows the ROC curves I obtain from this exercise; it demonstrates that the model has good predictive power and that all methods behave almost equally well. Figure 20 displays the histogram for the Lasso prediction, which is what I use to indicate severity from now on.\(^{23}\)

Note that the model has five parameters \((\lambda_{GH}, \lambda_{RC}, c, \kappa, \alpha)\). Since the intervention potentially affects the capabilities at both GH and RC hospitals as well as the cost of transfers in terms of health, we end up with a total of eight parameters to estimate: \((\lambda_{GH0}, \lambda_{GH1}, \lambda_{RC0}, \lambda_{RC1}, c_0, c_1, \kappa, \alpha)\). Therefore we need eight data moments along with an estimation of the severity distribution to estimate our results.

\(^{23}\)The results are very similar with any other estimation reported.
We use the following moments in the data to estimate the model’s structural parameters:

1. $Y_{RC,0}$ - the survival rate for RC arrivals before CI.
2. $Y_{RC,1}$ - the survival rate for RC arrivals after CI.
3. $Y_{GH,\text{stay},0}$ - the survival rate for non-transferred GH arrivals before CI.
4. $Y_{GH,\text{stay},1}$ - the survival rate for non-transferred GH arrivals after CI.
5. $Y_{GH,\text{tr},0}$ - the survival rate for transferred GH arrivals before CI.
6. $Y_{GH,\text{tr},1}$ - the survival rate for transferred GH arrivals after CI.
7. TR_0 - the transfer rate before CI.
8. TR_1 - the transfer rate after CI.

These give us eight structural parameters and eight moments in the data. To avoid introducing bias and capturing shifts that are not caused by the intervention, I define the moments before the intervention based on the pre-CI mean for the treatment group and the post-intervention moments as the same moments but shifted by the reduced-form estimates from Section 5. Table 11 shows the moments we use. I estimate the model through the general method of moments (GMM) with the following vector of moment conditions $Eg = 0$:

1. $E[S(\delta_i, \lambda_{RC0}, \alpha) - y_i | RC] = 0$. Survival rate before CI for RC arrivals.
2. $E[1\{S(\delta_i + \delta_i \cdot c_0, \lambda_{RC0}, \alpha) - S(\delta_i(1 + c_0), \lambda_{GH0}, \alpha) > \kappa\} - tr_i | GH] = 0$. Transfer rate before CI for GH arrivals.
3. $E[S(\delta_i(1 + c_0), \lambda_{RC0}, \alpha) - y_i | \text{Transfer}] = 0$. Survival rate before CI conditional on transfer.
4. $E[S(\delta_i, \lambda_{GH0}, \alpha) - y_i | \text{GH, no transfer}] = 0$. Survival rate before CI conditional on not being transferred.
5. $E[S(\delta_i, \lambda_{RC1}, \alpha) - y_i - \hat{\beta}_1 | RC] = 0$. Survival rate after CI for RC arrivals, where $\hat{\beta}_1$ captures the shift on survival for RC arrivals.
6. $E[1\{S(\delta_i(1 + c_1), \lambda_{RC1}, \alpha) - S(\delta_i, \lambda_{GH1}, \alpha) > \kappa\} - tr_i - \hat{\beta}_2 | GH] = 0$. Transfer rate after CI for GH arrivals, where $\hat{\beta}_2$ captures the shift on transfer rate.
7. $E[S(\delta_i(1 + c), \lambda_{RC1}, \alpha) - y_i - \hat{\beta}_3 | \text{Transfer}] = 0$. Survival rate after CI conditional on transfers, where $\hat{\beta}_3$ captures the shift on survival.
8. $E[S(\delta_i, \lambda_{GH1}, \alpha) - y_i - \hat{\beta}_4 | \text{GH, no transfer}] = 0$. Survival rate after CI conditional on not being transferred, where $\hat{\beta}_4$ captures the shift on survival.

Where y_i denotes survival, tr_i indicates transfer and $\hat{\beta}_i$ the reduced-form estimate of the CI effect on the data moment, reported in table 11.

Based on the above equations I estimate the structural parameters. Table 12 reports our estimations. As expected, there is a slight improvement in GHS’ capabilities from 1.8 to 2.2 and a considerable improvement in transfer costs: the parameter decreases from 1.6 to 1, which corresponds to nearly a 40% reduction in the cost of transferring a patient. Moreover, the threshold for transferring a patient is estimated to be 0.15, which indicates that a doctor considers a transfer to be worthwhile if it is expected to improve the patient’s chance of survival by at least 15%.

To better understand what is happening, and whether the model adjusts well to the data, we compare whether the transfer pattern and its movement predicted by the adjusted structural parameters replicates what we see in the data based on the Lasso prediction. Figure 21 presents how the adjusted model looks before and after the CI program’s implementation. The pre-period adjusted model is on the top image and shaded in the bottom one. Overall, the graph shows that there was virtually no change in RC capabilities, there was a slight improvement in GH skills, and transfer costs decreased significantly. Moreover, the figure shows that as a consequence of these changes, more complicated patients are now being transferred than before, and some less severe patients now do not require a transfer.

In terms of transfer gains, figure 22 summarizes the gains from transfer by severity of the patient after the CI program. We can see that after CI, the transfer benefits shift to the right. On the one hand, higher capabilities by the GH make less severe patients avoid transfer. On the other hand, lower severity costs enable hospitals to send more complicated patients to better care. This combination leads to more complicated patients being transferred.

To assess the model’s explanatory power, we can compare its predictions to the transfer patterns we observe with the estimated severity, which we can observe without imposing any restrictions. Figure 23 illustrates the transfer pattern before and after. This pattern is concentrated in the middle, as the model predicted. Moreover, we can see a shift to the right in the transfer distribution, which is consistent with the model’s prediction of the program’s effect. On the one hand, there are additional transfers of more complicated patients; on the other hand, there are fewer transfers of less severe patients. These comparisons suggest that the model is well equipped to explain the intervention’s mechanisms. In the next section we use the model to assess each component’s contribution.
6.3.1 Counterfactual Policy Simulation

We next employ the estimated structural parameters to undertake a counterfactual policy estimation. We ask how much of the contribution would have happened if the capabilities component of the program were not included. I calculate the survival probability before the intervention using the parameters we obtain from the model, and then repeat the exercise but changing c_0 for c_1. The probability of survival increases by 8pp, which is 68% of the effect. Moreover, we calculate that transfers would have been at 39% without the capabilities component—substantially more than what we observe in the data. Figure 24 shows how patients who were already transferred benefit from lower communication costs and that patients who are now candidates for transfers benefit substantially.

I also perform the same exercise to determine the contribution that the capabilities component would have had on its own. I find a comparable increase of 7.5pp (64% of the total) without the communication channel. This highlights that the capabilities improvement was effective as well. In this scenario, we find that no transfers would take place because the increase in capabilities makes every transfer prohibitively expensive. This would be a consequence of keeping costs high but reducing the skill gap between the sender and receiver.

The fact that the sum of each component’s contribution equals 132% of the total effect highlights that the communication and capabilities channels substitute for each other. Since the main benefit of the communication channel stems from the fact that some patients are now transferred to a more advanced center, they would not be able to take advantage of the improved services at the GH that they will not use. Similarly, patients who will not require a transfer given the simultaneous increase in capabilities will not enjoy the benefit of improved coordination.

The lessons drawn from this analysis highlight four important takeaways for policy makers. First, the communication channel is extremely easy to implement, and whenever there is a large enough productivity gap, it would probably be effective. Second, when reducing communication barriers, one should be aware of the induced increase in transfers and make sure there is enough supply to handle the increased demand. Third, increased capabilities can also be effective and lead to a reduction in transfers. Fourth, given that both components are substitutes, policy makers should consider which is the best fit for their context before deciding which one to implement. Generally, when there is considerable fragmentation and a substantial productivity gap, the communication channel probably generates higher returns. However, when there is a small productivity gap or the additional demand for transfers cannot be met, an investment in capabilities might be worthwhile.
6.3.2 Cost-Benefit Analysis

In this section I explore the cost-benefit implications of both components of the CI program. On the one hand, the ICT component has no fixed cost and the only cost it incurs is in paying additional transfers. On the other hand, the capabilities component carries a significant fixed cost but no variable cost. In fact, it will induce some money savings as transfers are reduced. I first estimate the cost per life saved for each component of the program as well as for the full CI program (which combines capabilities and ICT improvements) and then present a net present value estimation over a longer time span.

All of the GHs combined have on average 10,000 heart attack cases per year, and this number along with 168 hospitals is what I use as a basis for this calculation.\(^24\) The ICT component alone would have had an average effect of 0.08 on survival and induced an increase of 33 pp in the transfer rate. A transfer to a RC would most likely lead to a PCI and the costs of transfer by ambulance and PCI, which are reported by IMSS, amount to roughly $2,600 USD.\(^25\) The numbers imply that the program saves 800 lives (10,000*0.08) per year at a cost of $8.5 million dollars (3,300 more transfers at $2,600 each). Thus, the cost per life saved would be $10,625. In terms of capabilities, an investment of $84 million dollars would be needed and the program would induce savings of $1.5 million due to a reduction of 6pp in the transfer rate.\(^26\) While the capabilities component alone would have given a comparable 750 lives per year saved (0.075*10,000), the cost per life saved would be $110,000 for the first year. Lastly, utilizing both components would have led to a cost of $85.3 million dollars ($84 in capabilities and $1.3 in additional transfers) but a substantially higher return of 1,170 lives (0.117*10,000). Hence, the cost of life saved for this option would be $73,000. Table 13 summarizes this exercise.

Investments in capabilities or infrastructure provide returns over long time periods which allows them to become profitable: the capabilities investment has a substantial fixed cost but no variable cost after implementation. In this sense, analyzing a longer time period might provide a different conclusion. In order to do so, I assume that the effect of the program does not vary per year and estimate the cost per life saved over different time-spans, in net-present-value.\(^27\) Figure 25 shows this exercise for the first 7 years, which is the average lifespan of medical equipment. We can see that the ICT program alone offers a better deal since the cost per life is smaller. However, since both components together tend

\(^{24}\)Results are proportional to the base and the conclusion would be the same for analyzing only one hospital.

\(^{25}\)Information [here](#).

\(^{26}\)The capabilities component requires each GH to get a fully-equipped room where heart attack treatment can be provided. Moreover, the program asks that the red car, which contains most of the tools needed for treatment, stays in such a room and not be used for anything else. Lastly, the program requires every staff member to be trained on the basics of heart attack symptoms and how to help patients. I estimate that doing all of this would cost around $500,000 dollars per hospital. Costs are based on the equipment description from the program guidelines and public purchasing prices reported by IMSS. See [here](#). Costs also include an the lost wages (cost of replacement) for 500 staff members, which is the average in a hospital, over 5 days so that they can get training.

\(^{27}\)A 5% interest rate is assumed for both lives and money because it is the official interest rate from Mexico’s central bank.
catch up by year 7, a policy maker might choose both over ICT alone because you can save more lives at a similar price. After 7 years, ICT’s cost per life saved is still $10,625 USD. The capabilities component’s cost per life saved is $16,354 and both components combined would offer a cost per life saved of $12,927.

These seven year costs are low relative to typical values of a life used in the Mexican context which are at around $200,000. But these estimates come from a different context, such as the wage increment required by workers to accept a risky job; the value of the marginal life saved through heart surgery might be quite different. One way to pin down the relevant comparison would be to assess hospital’s own revealed valuation of lives saved. In particular, in the structural model, κ captures the return on expected survival probability that makes the system indifferent between transferring a patient or not. Thus, since a transfer and PCI procedure costs $2,600, doctors would be willing to pay $\frac{2600}{\kappa}$ to avert 1 death. Since $\kappa = 0.15$, the value of one averted death implied is $17,300.

Interestingly, this figure is comparable to the cost per life saved through improved capabilities, but well above the cost per life saved of ICT improvements. This is consistent with the fact that hospitals are not investing in improved capabilities: the value of the averted death through capabilities is roughly equal to the cost of expanding them. Moreover, the cost is much lower through improving ICT, something that secondary hospitals could not do on their own. The average cost of the full program lies in the middle, but provides the advantage of being able to save more lives.

In order to compare further the returns of each option we can calculate the net monetary benefit of each. First, since the average cost per life saved is $10,625 for the ICT component alone and the program saves 800 lives per year, the yearly return is $800 \times (17,300 − 10,625) = 5.3$ million dollars. For the capabilities component alone, which saves 750 lives per year at a cost of $16,354 per life, the return would be $750 \times (17,300 − 16,354) = 700$ thousand dollars. Lastly, the yearly return for the full CI program, which saves 1,170 lives at an average cost of $12,927, is $1,170 \times (17,300 − 12,927) = 5.1$ million dollars. We can clearly see that the ICT component offers a better return than the capabilities because of its lower costs. Moreover, because of the increased number of lives saved, the full program offers a similar return than the ICT component alone, even after paying a higher average cost.

7 Concluding Remarks

Over the past few decades, several nations have stressed the use of ICT in healthcare as a mechanism to improve efficiency and clinical outcomes. However, after spending several billions of dollars to create a centralized EHR with health information exchange capabilities, the literature suggests there have been only small effects with vast heterogeneity. One of the main explanations for this finding is that the

28(De Lima, 2020)
systems do not communicate well with each other. This project addresses a simple yet powerful idea of how to improve coordination: leveraging widespread technologies.

The paper evaluates the CI program implemented by Mexico’s largest healthcare provider. CI aims to reduce the time to treatment for heart attack patients in IMSS hospitals by enhancing (1) communication (through chat groups) and (2) capabilities (by improving organization within the hospital). I find that the program had a large effect on survival and transfers, but only among GHs that exhibit a significant survival rate gap relative to the more advanced RCs to which they send transfers. Such hospitals improve their survival rate by 29% (11.7 pp), increase transfers by 85% (5pp), and reduce the transfer time by 30% (4 hours).

The paper employs a structural model to interpret the reduced-form results and explain that the pattern of increased effectiveness arises in hospitals with a larger skill gap because they have more to gain from transfers. By estimating the structural parameters, the model presents a counterfactual policy analysis and isolates each component’s contribution to the program. The results suggest that the communication channel alone would have generated 68% of the total effect (8pp), highlighting the potential of leveraging widespread technologies. The estimates suggest that the capabilities component alone would have gotten a comparable return of 64% of the effect (7.5pp). The fact that the effects of both components add up to over 130% suggests that they are substitutes, mainly because patients who are transferred cannot enjoy better service at the GH, and patients who stay do not receive the benefits of transfers.

Fragmentation is one of the most important challenges facing health networks today, as the lack of coordination and efficient communication across physicians hinders their ability to provide high-quality and timely care. In this paper, I provide evidence of ICT’s significant potential to reduce fragmentation and improve health outcomes. Moreover, through the lens of a structural model, I find that ICT interventions have a higher potential when there is a large productivity gap between participants. Lastly, this paper highlights a more accessible way in which developing countries could start utilizing and benefiting from the potential of health-related ICT.
Tables and Figures

Tables

Table 1: Implementation dates

<table>
<thead>
<tr>
<th>Network</th>
<th>CI date</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.F. Sur / Morelos / Querétaro</td>
<td>Feb-15</td>
</tr>
<tr>
<td>Yucatán / Campeche</td>
<td>Oct-15</td>
</tr>
<tr>
<td>D.F. Norte, Estado de México Ote y Pte.</td>
<td>Nov-15</td>
</tr>
<tr>
<td>Jalisco / Nayarit</td>
<td>Feb-16</td>
</tr>
<tr>
<td>Sonora / Sinaloa</td>
<td>Apr-16</td>
</tr>
<tr>
<td>Nuevo León</td>
<td>Aug-16</td>
</tr>
<tr>
<td>Puebla / Tlaxcala</td>
<td>Sep-16</td>
</tr>
<tr>
<td>Baja California</td>
<td>Oct-16</td>
</tr>
<tr>
<td>Coahuila / Durango/Zacatecas</td>
<td>Oct-16</td>
</tr>
<tr>
<td>Tabasco, Veracruz Sur</td>
<td>Oct-16</td>
</tr>
<tr>
<td>Guanajuato/Aguascalientes</td>
<td>Oct-16</td>
</tr>
<tr>
<td>Veracruz</td>
<td>Nov-16</td>
</tr>
<tr>
<td>Colima, Jalisco</td>
<td>Jul-17</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>Oct-17</td>
</tr>
<tr>
<td>San Luis Potosí</td>
<td>Oct-17</td>
</tr>
<tr>
<td>Michoacán</td>
<td>Feb-18</td>
</tr>
<tr>
<td>Chiapas</td>
<td>Feb-18</td>
</tr>
<tr>
<td>Baja California Sur</td>
<td>Mar-18</td>
</tr>
<tr>
<td>Chihuahua</td>
<td>Mar-18</td>
</tr>
<tr>
<td>Quintana Roo</td>
<td>Mar-18</td>
</tr>
<tr>
<td>Oaxaca</td>
<td>Apr-18</td>
</tr>
<tr>
<td>Tamaulipas/Veracruz</td>
<td>Apr-18</td>
</tr>
<tr>
<td>Guerrero</td>
<td>May-18</td>
</tr>
</tbody>
</table>

Notes: This table presents the months and years at which each network started the CI program. We can see that there are 23 networks who received it overall.
Table 2: Cases Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Reperfusion Center</th>
<th>General Hospital</th>
<th>Non-Transferred</th>
<th>Transferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival Rate</td>
<td>0.686 (0.002)</td>
<td>0.817 (0.002)</td>
<td>0.599 (0.002)</td>
<td>0.564 (0.002)</td>
<td>0.889 (0.004)</td>
</tr>
<tr>
<td>Transfer Rate</td>
<td>0.0660 (0.001)</td>
<td>0.110 (0.001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GH Arrival</td>
<td>0.602 (0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.665 (0.002)</td>
<td>0.708 (0.003)</td>
<td>0.637 (0.002)</td>
<td>0.620 (0.002)</td>
<td>0.782 (0.006)</td>
</tr>
<tr>
<td>Age</td>
<td>65.58 (0.059)</td>
<td>64.10 (0.094)</td>
<td>66.55 (0.076)</td>
<td>66.96 (0.083)</td>
<td>63.22 (0.157)</td>
</tr>
<tr>
<td>Transfer Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.24* (0.194)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

Notes: This table presents descriptive statistics for the heart attack cases. Summary statistics are presented for every case and restricting to patients who first arrived at a reperfusion center, a general hospital. Moreover, the latter is further split into patients who were transferred or not. *The transfer time mean is based on transfers that took under 48 hours.
Table 3: DID Results for D.F South

<table>
<thead>
<tr>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
<th>Transfer Time GH transfers</th>
<th>Survival Rate (RC Arrival)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tpost</td>
<td>0.103**</td>
<td>-0.278</td>
<td>-0.017</td>
</tr>
<tr>
<td>(0.041)</td>
<td>(0.028)</td>
<td>(4.119)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,412</td>
<td>136</td>
<td>1,223</td>
</tr>
<tr>
<td>R2</td>
<td>0.101</td>
<td>0.395</td>
<td>0.018</td>
</tr>
<tr>
<td>Pre-mean</td>
<td>0.538</td>
<td>10.24</td>
<td>0.870</td>
</tr>
</tbody>
</table>

Robust Standard errors in parenthesis
*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing, the effect on transfers, the effect on hours it takes to execute a transfer whenever the transfer was under 48 hours and the survival rate effect when arriving first to a reperfusion center urgent wing, I control for expansion/hospital fixed effects, month fixed effects. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 4: DID Placebo Results for D.F South

<table>
<thead>
<tr>
<th></th>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
<th>Transfer time GH transfers</th>
<th>Survival Rate (RC Arrival)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(2)</td>
</tr>
<tr>
<td>Tpost</td>
<td>-0.027</td>
<td>0.012</td>
<td>3.893</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.024)</td>
<td>(3.772)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,484</td>
<td>2,484</td>
<td>97</td>
<td>1,051</td>
</tr>
<tr>
<td>R2</td>
<td>0.101</td>
<td>0.049</td>
<td>0.395</td>
<td>0.018</td>
</tr>
<tr>
<td>Pre-mean</td>
<td>0.571</td>
<td>0.0879</td>
<td>9.079</td>
<td>0.805</td>
</tr>
</tbody>
</table>

Robust Standard errors in parenthesis

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the placebo test when shifting the implementation date by 12 months. This table presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing, the effect on transfers, the effect on hours it takes to execute a transfer whenever the transfer was under 48 hours and the survival rate effect when arriving first to a reperfusion center urgent wing, I control for expansion/hospital fixed effects, month fixed effects. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01.
<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Reperfusion Center</th>
<th>General Hospital</th>
<th>Non-Transferred</th>
<th>Transferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival Rate</td>
<td>0.664</td>
<td>0.748</td>
<td>0.612</td>
<td>0.592</td>
<td>0.880</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Transfer Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0689</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>GH Arrival</td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.650</td>
<td>0.676</td>
<td>0.633</td>
<td>0.623</td>
<td>0.778</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Age</td>
<td>65.46</td>
<td>64.31</td>
<td>66.17</td>
<td>66.46</td>
<td>62.31</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.114)</td>
<td>(0.071)</td>
<td>(0.074)</td>
<td>(0.220)</td>
</tr>
<tr>
<td>Transfer Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.287)</td>
</tr>
</tbody>
</table>

Observations | 65786 | 25210 | 40576 | 37779 | 2797 |

Standard errors in parentheses

Notes: This table presents descriptive statistics for the heart attack cases. Summary statistics are presented for every case and restricting to patients who first arrived at a reperfusion center, a general hospital. Moreover, the latter is further split into patients who were transferred or not. *The transfer time mean is based on transfers that took under 48 hours.*
Table 6: Program Effects

<table>
<thead>
<tr>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
<th>Transfer time GH transfers</th>
<th>Survival Rate (RC Arrival)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tpost</td>
<td>0.037*</td>
<td>-4.135*</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(1.559)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Obs.</td>
<td>40,561</td>
<td>1,382</td>
<td>25,210</td>
</tr>
<tr>
<td>R2</td>
<td>0.073</td>
<td>0.459</td>
<td>0.128</td>
</tr>
<tr>
<td>Pre-mean</td>
<td>0.577</td>
<td>12.54</td>
<td>0.874</td>
</tr>
</tbody>
</table>

Clustered at network/expansion standard errors in parenthesis

Notes: This table presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing, the effect on transfers, the effect on hours it takes to execute a transfer whenever the transfer was under 48 hours and the survival rate effect when arriving first to a reperfusion center urgent wing. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. *p < 0.10, **p < 0.05, ***p < 0.01.
Table 7: Placebo Program Effects

<table>
<thead>
<tr>
<th></th>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
<th>Transfer Time GH transfers</th>
<th>Survival Rate (RC Arrival)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(2)</td>
</tr>
<tr>
<td>Tpost</td>
<td>-0.016</td>
<td>-0.000</td>
<td>1.327</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.006)</td>
<td>(1.114)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Obs.</td>
<td>84,167</td>
<td>84,167</td>
<td>2,556</td>
<td>47,378</td>
</tr>
<tr>
<td>R2</td>
<td>0.071</td>
<td>0.094</td>
<td>0.453</td>
<td>0.126</td>
</tr>
<tr>
<td>Pre-mean</td>
<td>0.599</td>
<td>0.0732</td>
<td>13.17</td>
<td>0.795</td>
</tr>
</tbody>
</table>

Clustered at network/expansion standard errors in parenthesis

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents results when shifting start date of program by 12 months. The table presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing, the effect on transfers, the effect on hours it takes to execute a transfer whenever the transfer was under 48 hours and the survival rate effect when arriving first to a reperfusion center urgent wing. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 8: Productivity-Gap and Distance Interactions

<table>
<thead>
<tr>
<th></th>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Tpost*Productivity gap</td>
<td>0.374***</td>
<td>0.058**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.027)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tpost*Distance</td>
<td></td>
<td></td>
<td>0.00001</td>
<td>-0.00010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.00009)</td>
<td>(0.00009)</td>
</tr>
<tr>
<td>Observations</td>
<td>40,534</td>
<td>40,534</td>
<td>40,561</td>
<td>40,561</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.074</td>
<td>0.087</td>
<td>0.07327</td>
<td>0.08722</td>
</tr>
<tr>
<td>Pre-CI mean dep var</td>
<td>0.577</td>
<td>0.106</td>
<td>0.577</td>
<td>0.106</td>
</tr>
</tbody>
</table>

Clustered at network/expansion standard errors in parenthesis

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the interaction coefficients when interacting Tpost with the skill-gap or distance following 1. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. * p < 0.10, ** p < 0.05, *** p < 0.01.
<table>
<thead>
<tr>
<th></th>
<th>Survival Rate (GH Arrivals)</th>
<th>Transfer Rate (GH Arrivals)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Tpost(Low gap)*</td>
<td>-0.019</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Tpost(Medium gap)*</td>
<td>0.015</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Tpost(High gap)*</td>
<td>0.117***</td>
<td>0.048***</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Observations</td>
<td>40,561</td>
<td>40,561</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.074</td>
<td>0.087</td>
</tr>
<tr>
<td>Low mean</td>
<td>0.709</td>
<td>0.114</td>
</tr>
<tr>
<td>Medium mean</td>
<td>0.613</td>
<td>0.147</td>
</tr>
<tr>
<td>High mean</td>
<td>0.405</td>
<td>0.0569</td>
</tr>
<tr>
<td>Clustered at network/expansion standard errors in parenthesis</td>
<td>*** p<0.01, ** p<0.05, * p<0.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table presents the interaction coefficients when interacting Tpost with the skill-gap group. Classification is based on distribution terciles among the treated units. Specification is based on 1. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 10: Conditional Analysis

<table>
<thead>
<tr>
<th></th>
<th>Survival Rate (Stayers)</th>
<th>Survival Rate (Transferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Tpost*(Low gap)</td>
<td>-0.026</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Tpost*(Medium gap)</td>
<td>0.019</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Tpost*(Large gap)</td>
<td>0.100***</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Observations</td>
<td>37,764</td>
<td>2,581</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.082</td>
<td>0.216</td>
</tr>
<tr>
<td>Low mean</td>
<td>0.686</td>
<td>0.899</td>
</tr>
<tr>
<td>Medium mean</td>
<td>0.562</td>
<td>0.907</td>
</tr>
<tr>
<td>High mean</td>
<td>0.376</td>
<td>0.893</td>
</tr>
</tbody>
</table>

Clustered at network/expansion standard errors in parenthesis

*** p<0.01, ** p<0.05, * p<0.1

Notes: This table presents the interaction coefficients when interacting Tpost with the skill-gap group. Classification is based on distribution terciles among the treated units. Specification is based on 1. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. * p < 0.10, ** p < 0.05, *** p < 0.01.
Table 11: Data Moments

Based on Reduced-Form Estimates

<table>
<thead>
<tr>
<th>Moments</th>
<th>Pre-CI</th>
<th>Effect</th>
<th>Post-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survival GH-stay</td>
<td>0.4</td>
<td>0.09</td>
<td>0.49</td>
</tr>
<tr>
<td>Survival GH-transfer</td>
<td>0.89</td>
<td>0</td>
<td>0.89</td>
</tr>
<tr>
<td>Survival RC</td>
<td>0.87</td>
<td>0</td>
<td>0.87</td>
</tr>
<tr>
<td>Transfer-rate</td>
<td>0.06</td>
<td>0.05</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Notes: This table presents the data moments that I utilize in the model estimation. I define the pre-CI moments as the mean from the data before the intervention for the treated units and shift those moments based on the reduced form estimates to define the post-intervention values.
Table 12: Structural Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH Capabilities λ_{GH}</td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>Transfer cost c</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>RC Capabilities λ_{RC}</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Threshold κ</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table presents the structural parameters we obtain from adjusting the model and how they change after the CI implementation. Bootstrapped standard deviation reported in parenthesis from randomly taking 80% of the sample and re-estimating the data moments.
<table>
<thead>
<tr>
<th></th>
<th>Effect on Survival</th>
<th>Effect on Transfer</th>
<th>Lives</th>
<th>Cost</th>
<th>Cost per Life Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICT</td>
<td>0.08</td>
<td>0.33</td>
<td>800</td>
<td>$8,580,000</td>
<td>$10,725</td>
</tr>
<tr>
<td>Capabilities</td>
<td>0.075</td>
<td>-0.06</td>
<td>750</td>
<td>$82,440,000</td>
<td>$109,920</td>
</tr>
<tr>
<td>Both</td>
<td>0.117</td>
<td>0.05</td>
<td>1170</td>
<td>$85,300,000</td>
<td>$72,906</td>
</tr>
</tbody>
</table>
Notes: This figure presents estimates of the fraction of hospitals who were using “Basic EHR without clinician notes” in the year indicated. The points official estimates from the Office of the National Coordinator (ONC) of Health Information Technology (re-weighted to correct for nonrandom sample response). The vertical axis is set so that 1 = 100% (complete adoption).
Figure 2: IMSS’ heart attack networks

All Networks

Mexico City Networks

Notes: This figure presents the overall map of IMSS heart attack networks and a close up on the 2 networks that are in Mexico City. The Mexico City map contains mean survival rates during 2014 by hospital of arrival. These number highlight the stark difference in survival probability between arriving to a RC and a GH.
Figure 3: Heart Attack Mortality in OECD Countries

Notes: This figure presents estimates of the average heart attack survival rate among selected OECD countries as presented in (O.E.C.D, 2019).
Figure 4: AHA guidelines

Notes: This figure summarizes the healthcare algorithm recommended by the American Heart Association.
Figure 5: Código Infarto

Notes: This figure represents the main changes that the CI program induced on the hospital networks’ productivity. We can see that the program induced higher capabilities by the general hospitals, improved communication across GH and RC and could have potentially affected the Re performance because of increased demand.
Figure 6: Survival by Arrival

Notes: This figure summarizes the likelihood of survival by place of arrival and whether or not the patient was transferred from the GH to the RC.

80,000 cases
60% in GH
11% Transferred
66% male
65 years old
Figure 7: Event Studies for Mexico City

Survival Rate

Transfer Rate

Notes: This figure presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing and the effect on transfers. I control for expansion/hospital fixed effects, month fixed effects and relative time to starting the program. Standard errors are robust. 95% confidence intervals are reported.
Figure 8: Event Studies for Stacked Data

Survival Rate

Transfer Rate

Notes: This figure presents the results from the CI program on survival rate when arriving first to a general hospital urgent wing and the effect on transfers. I control for expansion/hospital fixed effects, month fixed effects and relative time to starting the program. Moreover I cluster standard errors at the hospital/expansion level. 95% confidence intervals are reported.
Figure 9: Productivity-Gap and Distance Histograms

Notes: This figure presents the histograms from the distance in km between general hospitals and reperfusion centers and the skill gap defined as survival rate upon arrival between general hospitals and reperfusion centers.
Figure 10: Event Studies for Interaction

Productivity gap interaction

Distance interaction

Notes: This figure presents the interaction coefficients when interacting Tpost with the skill-gap or distance following 1. I control for expansion/hospital fixed effects, month fixed effects and cluster standard errors at the network/expansion level. 95% confidence intervals are reported.
Figure 11: Survival by Arrival in Model

Notes: This figure summarizes the likelihood of survival by place of arrival and how the gains from transfers vary according to severity. The upper image highlights how a patient with a relatively small severity will have much to gain in terms of survival from being transferred. The bottom figure shows that for more severe patients the cost can become too high and overcome the potential gains from transfers. This shows that transferring a relatively severe patient can hurt him.
Figure 12: Transfer Decision

Notes: There are 4 lines in the image. The Blue line with long dashes captures the survival function for GH. The red line represents the survival function that RC face. It dominates the blue line since $\frac{\partial}{\partial \lambda} s(\delta_i, \lambda_j) > 0$. The purple dotted line reflects the survival probability that a patient would face after transfer: $S(\delta_i + c \cdot \delta_i, \lambda_{RC})$. We can see that this line is lower than the RC because of the cost that has to be paid for transfer. Moreover, the difference increases as severity δ_i increases, since more complicated patients experience a higher cost. The purple line with long dashes highlights the transfer decision curve. This line represents the survival probability after transfer but displaced by κ downwards. That means that whenever the transfer decision line is above the blue line, a transfer will be worth it. The purple rectangle highlights such patients.
Figure 13: Transfer Decisions

Notes: This figure summarizes the gains from transfer by severity of the patient. We can see that there are small returns for the least severe patients, that benefits increase with severity at first and then quickly decline as the severity cost from movement overtakes the benefits.
Notes: On the figure we can see the same 4 lines from 12 shaded in gray along with how the survival if transfer and transfer decision lines would look under a lower c. We can see that patients would now face a bigger survival probability after transfer, especially among more severe patients. This happens because the cost is increasing in terms of severity. The highlighted point shows the benefits that one patient would get from the program.
Figure 15: Transfer Decisions: Lower c

Notes: This figure summarizes the gains from transfer by severity of the patient. We can see that after a severity cost reduction, transfer benefits increase and now a) the benefit of transfer is higher for patients who were already transferred and b) more complicated patients are now transferred.
Figure 16: Transfer Decisions: Higher λ_{GH}

Notes: This figure summarizes the gains from transfer by severity of the patient. We can see that after an increase in capabilities for GH, transfer benefits decrease and now less patients are transferred, with transfers shrinking towards the center of the transferred population.
Figure 17: Survival Function

Notes: This figure represents the different functional shapes that the defined survival function can take.
Figure 18: Survival Function

Notes: This figure presents how once α is fixed, a higher λ provides a better opportunity to live for every heart attack patient.
Figure 19: ROC Curves for Different Estimations

Notes: This figure presents ROC curves for Lasso, Ridge and Elastic Net Estimations done with a model trained in 2014 (before the intervention) and used to predict outcomes on the rest of the data.
Notes: This figure presents the histogram of the estimated severity distribution that we have. This estimation was based on utilizing the year 2014 as the training data since no network had undergone the CI program and predicting for probability of death values for the rest. The data incorporates demographic factors from the patients along with hospitalization data from the 12 months before they had the heart attack.
Figure 21: Model with Data Before and After CI

Notes: This figure presents how the estimated model looks before and after the CI program. The before estimations are shaded in the lower image. We can see that there is a big reduction in communication costs and a slight improvement in GH capabilities.
Figure 22: Transfer Decisions: Before and After CI

Notes: This figure summarizes the gains from transfer by severity of the patient. We can see that after CI and the reported increase in capabilities for GH as well as reduction in severity costs, transfer benefits shift to the right, and thus more complicated patients are transferred.
Figure 23: Transfers vs Estimated Severity

Notes: This figure represents the mean transfer rate observed in the data by estimated severity. Estimates were created using fractional polynomials.
Figure 24: Effect of Lower c

Notes: On the figure we can see how the gains from transfer shift when the communication cost decreases. We can see that patients who would have been transferred anyway have a larger chance of survival and patients who are transferred after the reduction in costs benefit substantially from it.
Figure 25: Net Present Value Cost Per Life Saved

Notes: This figure presents the net present value of the cost per life saved over the first 7 years. I assume that the interest rate r is 5% and that the benefit in terms of lives saved from each potential intervention is constant across years. We can see that the ICT component offers a cheap price immediately while both the capabilities and full program take a while to reduce their price. After 7 years, the full program reaches a similar return to the ICT alone at $13,000 and the capabilities component is still significantly behind at $16,500.
References

