New Evidence on the Effect of Technology on Employment and Skill Demand*

Johannes Hirvonen Aapo Stenhammar Joonas Tuhkuri

Aalto University, Etla Aalto University, PT MIT

Job Market Paper

October 30, 2021
(Updated frequently. Current version here.)

Abstract

We present new evidence on the effects of advanced technologies on employment, skill composition, and firm performance in manufacturing firms. Our primary research design focuses on a technology subsidy program in Finland that induced sharp increases in technology supply to specific firms. Our data track firms and workers over time and directly measure multiple technologies and skills. We demonstrate novel text analysis and machine learning methods to perform matching and to measure specific technological changes. The main finding is that advanced technologies led to increases in employment and no change in skill composition. To explain our finding, we outline a theoretical framework that contrasts two types of technological change: process versus product. We document that firms used new technologies to produce new types of output rather than replace workers with technologies within the same type of production. The results are in contrast with the ideas that technologies necessarily replace workers or are skill biased.

*Contact: Tuhkuri, tuhkuri@mit.edu; Stenhammar, aapo.stenhammar@aalto.fi; Hirvonen, johannes.hirvonen@aalto.fi. Tuhkuri thanks his advisors Daron Acemoglu, David Autor, and Simon Jäger for their advice and support. We thank Antti Kauhanen and Etla Economic Research for making this project possible. Funding: We thank The George and Obie Shultz Fund, The Center for European Studies at Harvard University, Emil Aaltonen Foundation, MIT-Japan International Studies Fund, The Foundation for Economic Education, Yrjö Jahnsson Foundation, and the Ministry of Economic Affairs and Employment. Research team: We thank Ahmed Hewidy, Vertti Neuvonen, and Veeti Vallin at Etla Economic Research for expert research assistance. Data: We thank Statistics Finland, the Ministry of Economic Affairs and Employment, particularly Valtteri Raudaskoski, Samuli Neuvonen, and Satu Nurmi. Feedback: We thank Joshua Angrist, David Atkin, Aleksi Avela, Riku Buri, Jonathan Cohen, Mert Demirer, Ciprian Domnisoru, Dave Donaldson, Robert French, Flavio Hafner, Bengt Holmström, John Horton, Tuomas Kosonen, Felix König, Teemu Pekkarinen, Charlie Rafkin, Daniel Rock, Tobias Salz, Matti Sarvimäki, Karthik Sastry, Mikko Silliman, Kosti Takala, Marko Terviö, Otto Toivanen, John Van Reenen, Sean Wang, and Samuel Young for their feedback. Workshops: We thank organizers and participants at MIT, Harvard, Etla, Helsinki GSE, and PT. Fieldwork: We thank ELY Center officials, firm representatives, and workers for generously sharing their expert knowledge on the context. All errors are our own.
1 Introduction

A central question in the debate over the future of work is: what are the effects of advanced technologies on employment and skill demand? Two ideas often dominate the conversation. The first idea is that technologies substitute for labor and could make some workers redundant (e.g., the Luddites documented in Mokyr 1992; Keynes 1931; Brynjolfsson and McAfee 2014). The second idea is that technologies complement skilled labor and could increase inequality—this is called the skill-biased technological change hypothesis (e.g., Griliches 1969; Welch 1970; Tinbergen 1975). Current research suggests that advanced technologies such as ICT and robots have been skill-biased (e.g., Katz and Murphy 1992; Krusell et al. 2000; Autor et al. 2003; Acemoglu and Autor 2011; Lewis 2011; Michaels et al. 2014; Akerman et al. 2015; Acemoglu and Restrepo 2020). But there is a challenge: both measuring and identifying technologies’ effects are difficult.

This paper presents new evidence on advanced technologies’ effects on work and firm performance in manufacturing firms using new large-scale data and quasi-experimental research designs. Our context is manufacturing in Finland, 1994–2018. We focus on new production technologies, such as computer numerical control (CNC) machines and robots. Our data track firms and workers over time and directly measure technologies, employment, and skills—e.g., education, occupation, and cognitive test scores. The main research design uses a technology subsidy program as a natural experiment that induced sharp increases in technology supply to manufacturing firms. The program is part of EU structural funds, one of the world’s largest industrial policy programs, and it provides direct funding for technology investment. Our design compares close winners and losers of technology subsidies using a difference-in-differences approach (e.g., Angrist 1998; Kline et al. 2019). We use the evaluation texts of applications to compare similar firms using machine learning (e.g., Romer and Romer 2004; Roberts et al. 2020) and measure specific technological changes using text data. To address internal validity, we use a separate regression discontinuity (RD) design based on changes in the criteria defining a priority for a small firm. To address external validity, we evaluate technology adoption events without the program based on detailed register data (e.g., Bessen et al. 2020). Finally, we complement our quantitative analysis with fieldwork, observing factories and interviewing CEOs, managers, workers, and subsidy administrators.

The first part of the paper finds results in sharp contrast with the ideas that technologies necessarily reduce employment or are skill biased. Technology investments induced by the subsidy program led to a 23% increase in employment on average. There was no differential change in typical measures of skill bias: share of highly educated workers, average years of education, or production workers’ share of employment. Several observations support our findings. The subsidy
program induced a strong first stage: the firms invested sharply more in technologies after winning technology subsidies. The firms had similar trends before applying. The results are robust to controlling for evaluation texts of the subsidy applications using machine learning and other controls, including industry, firm size, and region trends. The results hold when using alternative designs: a matched non-applicant control group, the RD design, and the event-study design without the subsidy program. Our fieldwork supports these findings at the factory floor level.

The second part of the paper explains the puzzle that technologies did not replace workers or increase skill demand. We outline a theoretical framework that contrasts two types of technological change: process versus product. Process refers to productivity improvements within a variety, product to the expansion of new varieties. The framework builds on Dixit and Stiglitz (1977) and Melitz (2003). The idea is whether firms use technologies to do the same thing more efficiently or to do new things.\(^1\) For example, automation is a process type change, innovation of new goods is a product type change (e.g., Acemoglu and Restrepo 2018; Klette and Kortum 2004). These two views imply different effects. Empirically, we find that firms used technologies to create new products and services, not replacing workers. Direct evidence shows that technology adoption led to more revenue, new products, and new exports. Text data from the subsidy program show that 91% of the firms described new products, responding to changing demand, or other similar reasons for technology investment. For example, the piston manufacturer we visited invested in a new CNC machine and a robot to manufacture larger pistons. Survey data from the EU’s Community Innovation Survey (CIS) corroborate our observations: typical reasons for firms’ process and product innovations are access to new markets, expanding product selection, and better quality, not primarily reducing labor costs. We show the results hold without the subsidy program, indicating our results are more general.

When and why do we expect process vs. product advances? The core idea is the contrast between mass production (Taylor, 1911; Ford, 1922) and flexible specialization (Piore and Sabel 1984; Milgrom and Roberts 1990). Mass production combines standardized products, large volumes, and process improvements. Flexible specialization combines specialized products, small volumes, and product improvements. We obtain our findings in a context where small and large manufacturing firms produce specialized products in small batches and in an unstable environment.\(^2\) The low production volumes, the scope for specialization, and the need for adaptation make it less profitable to commit to the long-production runs of mass production. But the findings may not apply

\(^1\) These concepts refer to *uses* of technologies as opposed to physical *types* of technologies (e.g., a CNC machine). Technologies’ role in creating new varieties is present in standard growth models (e.g., Romer 1990; Grossman and Helpman 1991; Aghion and Howitt 1992) and in the management literature (e.g., Porter 1985; Utterback and Abernathy 1975). Our model relates to, e.g., Hopenhayn (1992), and Klette and Kortum (2004).

\(^2\) Measured by the Rauch (1999) index, the firms produce specialized goods, not commodities.
in non-specialized commodities like cement or steel or in high-volume assembly, where prices and costs are essential. At the same time, a large literature documents that manufacturing has moved from mass production to flexible and specialized production and that currently, a significant share is specialized (e.g., Dertouzos et al. 1989; Berger 2013).

The backdrop of our study is that the trends in Finnish manufacturing are like those in manufacturing elsewhere (e.g., Acemoglu and Autor 2011). The overall direction of manufacturing, and our treatment and control groups, is toward greater skill demand, seen in a rising share of educated labor, rising college premium, and falling production worker share. Because these trends are consistent with the rest of the world, we might expect to find that new technologies were skill-biased—but we do not. That presents a new puzzle: What then explains the broad skill trends? Our findings point to other explanations than direct effects from technology adoption. Another critical aspect is that technology adopters are different than non-adopters. Growing firms typically invest in technologies, both with and without subsidies. Our main design contrasts growing firms that plan to adopt new technologies. One firm gets the subsidy, the other does not, and this induces differences in technology adoption. This aspect has two implications. 1) Our estimates capture the local average treatment effect (LATE) for firms close to investing in technologies. 2) Pre-screened but non-winning applicants provide a better control group than generic non-applicant firms because they have expressed an interest in technology adoption.

The central concern about our results is external validity. Our evidence is from Finland because we can quantify the effects with high-quality data and research design. The input we received from managers working in different contexts is that our observations apply more broadly in industrial manufacturing. But there are limitations. Our results do not directly apply to non-physical technological advances like digitization or the Internet, management practices like lean manufacturing, R&D, technological advances in offices, historical eras, or the future. Our results and explanation focus on a firm-level mechanism; we do not exclude the possibility that micro-level technology could lead to macro-level skill bias or labor replacement (e.g., Oberfield and Raval 2021). We do not claim that work does not change: our qualitative evidence suggests it does, but that change does not imply labor replacement or skill bias by education, occupation, or cognitive performance.

Because our results challenge the two ideas emphasized in the literature—that technologies replace labor or increase skill demand—it is critical to compare them to earlier research. A substantial literature investigates the empirical linkages between technologies and labor-market outcomes but

3Early researchers noted these changes first in Northern Italy, Germany, and Japan (Piore and Sabel, 1984). Currently, the majority of Northern European manufacturing could be characterized as flexible specialization. For example, 90% of manufacturing employment in Finland is in non-commodity production under the Rauch (1999) classification. Bils and Klenow (2001) document that US consumers have shifted away from standardized goods.
does not reach a solid conclusion (Acemoglu 2002a; Acemoglu and Autor 2011). This paper is the first to evaluate manufacturing technologies’ effects using policy variation. Our measurement is an advance compared to earlier work because we directly measure the critical objects: technology, employment, and skills. Our results differ from the two basic ideas emphasized in the literature because the literature has focused more on process advances in mass production (e.g., Acemoglu and Restrepo 2018), while the flexible manufacturing system is more common among the firms we study. Consistent with our research, empirical work focusing on similar technologies in manufacturing firms finds broadly similar effects on employment and skill demand—but have not pointed out this interpretation contrasting process vs. product advances (e.g., Doms et al. 1997; Aghion et al. 2020; Dixon et al. 2021; Koch et al. 2021). Empirical studies also find different effects for other reasons: they focus on different types of technologies (e.g., the Internet in Akerman et al. 2015; ICT in Gaggl and Wright 2017), isolate replacement effects (e.g., Bessen et al. 2020), or conduct macro-level comparisons (e.g., Lewis 2011; Acemoglu and Restrepo 2020). Earlier qualitative evidence corroborates our observations (e.g., Berger 2020).

Our analysis also contributes to the literature on industrial policy. We provide new estimates for one specific policy: a lump-sum transfer to increase technology adoption in manufacturing firms. The estimates help understand the broader question in growth and trade policy: What types of policies help firms grow? (e.g., Rodrik 2007) We find that the firms in our context use subsidies and technologies to achieve growth. To do so, they often scale up from idea to production. Our quantitative estimates suggest that 1 euro in technology subsidies led to 1.3 euros of technology investment. A typical EUR 100K subsidy led to 2.3 new jobs over the following 5 years. The cost per job was EUR 43K, close to the literature’s average. The closest paper in this literature is Criscuolo et al. (2019), which focuses on investment subsidies in the UK and finds similar effects. Recent related research includes Becker et al. (2010); Cerqua and Pellegrini (2014); Giorcelli (2019); Howell (2017); Howell et al. (2021), and Lane (2021). Technology subsidies and taxes are also actively debated (e.g., Acemoglu et al. 2020a; Costinot and Werning 2020; Guerreiro et al. 2021).

The paper proceeds in two parts. The first part presents the context, data, empirical strategies, and key results on employment, skill composition, and firm performance. The second part offers a theoretical interpretation based on process vs. product advances and then provides theory-motivated tests of that interpretation, including evidence on exports, products, prices, and on how firms planned to use technologies. Finally, we present robustness checks and conclude.

4 We review related research in Appendix H.
2 Context

We analyze advanced technologies’ effects in manufacturing firms in Finland, 1994–2018. Since we study technology investment both with and without the subsidy program, we present here the context common to all our analyses.

The technologies in our context are standard new production technologies in manufacturing: new CNC machines, robots, laser cutters, surface-treatment technologies, measurement devices, enterprise resource planning (ERP), and computer-aided design (CAD) software. The workers are primarily production workers (median 70%), e.g., machinists, welders, and machine operators, typically with vocational training. The firms are generally medium and small-sized (SMEs), but we also analyze large firms. The most represented industries are fabricated metal products and machinery. Most firms are contract manufacturers producing specialized intermediate goods in small batches, e.g., pistons for engines, for large multinational firms. Figure 1 provides photographs of the typical technologies, workers, and firms in our sample.

Figure 2 documents that the overall direction of Finnish manufacturing is towards greater skill demands, seen in a rising share of educated labor and college income premium and a falling production worker share. Finland’s trends are consistent with the rest of the world (e.g., Acemoglu and Autor 2011), and hence the firm-level mechanisms we document may not be limited to Finland.

3 Data

The first challenge in estimating the effect of technology on employment and skill demand is measurement. We directly measure the critical objects—technologies, work and skills, and firm performance—using high-quality data that track workers and firms over time.5

3.1 Technologies

We measure technologies using the financial, text, customs, and survey data.

Financial Data6 The primary source for measuring firms’ technology investment is the Finnish Financial Statement Register. We measure firms’ total investment and separately machinery and equipment and software. Statistics Finland collects the data directly, and the data cover all Finnish enterprises in almost all industries and our analysis years 1994–2018.

5We provide details on data in Appendix E. For consistent measurement, we harmonize the Finnish occupation, industry, and geography classifications. The novel crosswalks are available at economics.mit.edu/grad/tuhkuri/data.

6We deflate all monetary values in this paper to 2017 euros using the Statistics Finland CPI.
Text Data We demonstrate a method to measure technologies using text data.7 We measure overall technology investment, types of technologies, and uses of technologies. The information on technologies’ uses allows us to measure process vs. product advances.

The source for our text data is the ELY Center subsidy program, described in Section 4. The text data are unstructured and produced as a side product of the program. A technology subsidy application typically specifies technology’s type (e.g., a welding robot) and its use (e.g., to produce longer seam welds). We focus on summary texts written by the program officers. The texts provide information on firms’ actual plans because the technology plan is binding; firms receive subsidies against verifiable costs. The full data contain 42,209 subsidy applications in different categories: technologies, exports, R&D, start-up, etc. Our method works in two steps:

\textbf{Step 1:} We coded 20,000 randomly selected texts into categories based on pre-determined criteria, summarized in Table 1. We distinguish technologies’ type and use, because a firm can use the same type of technology for multiple purposes. Within technologies’ uses, we code texts into applications intended to improve productivity within the same output variety (process) or produce new varieties (product). Within technologies’ types, we code texts into automated technologies vs. non-automated technologies (no active vs. an active user) and hardware vs. software (or both).

\textbf{Step 2:} We use machine learning to code the remaining 22,209 texts. We convert texts into clean format, use the bag-of-words representation with TF-IDF weights, and support-vector machines (SVMs) for prediction. Figure E1 presents features that best predict the technology category. Table E1 provides summary information: our method achieves 95% accuracy in finding the technology applications from the pool of all applications. For the subcategories of technology, we manually code all applications in the analysis sample to maximize precision.

Customs Data To measure the types of technologies, we also use customs data.8 The data track technologies that firms import. Customs data record 621 different types of technologies in the 6-digit CN-classification system. We classify these technologies based on the physical type of machinery. The main distinction is between automated technologies vs. non-automated technologies. Automated technologies include, e.g., robots and CNC machines. Non-automated technologies include, e.g., non-automatic and hand-operated tools, hydraulic presses, and lifting equipment.

7Many policy programs and firm decisions leave a trail of text records. Using this method, researchers can use text records to produce quantitative data retrospectively without new data collection and in cases where data would not otherwise be available. Recent research uses text data to measure technologies in other ways (e.g., Alexopoulos 2011; Atalay et al. 2020; Autor et al. 2021; Dechezlepretre et al. 2019; Howell et al. 2021; Kogan et al. 2020; Mann and Puttmann 2021; Webb 2020).

8Recent research uses customs data to measure technology adoption because it is one of the few register-based sources that track the types of technologies firms adopt (e.g., Acemoglu and Restrepo 2020; Acemoglu et al. 2020b; Acemoglu and Restrepo 2021).
Survey Data To measure the uses of technologies we also use survey data. Closely tracking the same idea as the text data, the EU’s Community Innovation Survey (CIS) asks firms about the importance of different objectives for product and process innovations.

3.2 Work and Skills

We measure employment and wages from the registers maintained by Statistics Finland. The data allow us to track all individuals in Finland over time independent of their labor-market status. We link these data to multiple data sources on skills: education (level and type), school grades (9th grade GPA and high school exit exam), and cognitive performance and personality (test scores from universal male conscription). We measure occupations from employment registers at the 3-digit level in the ISCO classification system. To measure the task content of occupations, we use the European Working Conditions Survey (EWCS) that provides information on the tasks workers perform in their jobs, collected through face-to-face interviews every five years. We construct occupation-level measures of task intensity for routine, manual, cognitive, and social tasks.

3.3 Firms

We use a large set of data on firms, including the revenue, productivity, profits, exports, products, prices, marketing, and patents. The data track all firms over time.

The firm-performance measures, revenue and profits, are obtained from Finnish Financial Statement Register. We use two variables to measure productivity: revenue per worker and total factor productivity (TFP) estimated using the Cobb-Douglas production function. We measure profits by the profit margin, defined as profits divided by the revenue. We define the labor share as the wage bill divided by the revenue. We winsorize firms’ monetary values at the 5% level.

Exports are measured from Finnish Customs’ Foreign Trade Statistics. We measure firms’ products also from the Customs Register at the 6-digit CN classification. We focus on the number of products per firm and product turnover: introduced and discontinued products. We compute prices from the Customs Register and the Industrial Production Statistics, defining product-level prices as the product-level revenue divided by the number of units sold. Marketing expenditure data comes from the Financial Statement Register and patent data from Finnish Patent Database.

We measure firm subsidies from multiple registers. Two centralized systems (Yrtti 1 and 2) record the ELY center subsidies. We gained access to these previously unstudied data that record the application process from submission to decision. We measure all other firm subsidies using the Statistics on Business Subsidies.
4 Research Design

The second challenge in estimating the effect of technology on employment and skill demand is identification. Our main research design is based on a technology subsidy program for manufacturing firms. Technology subsidies offer a valuable source of variation because they provide firms with a well-defined shock to the supply of technologies. We implement and validate a difference-in-differences design that compares winning and losing firms of technology subsidies. The basis of the design is similar to Angrist (1998), Greenstone et al. (2010), and Kline et al. (2019).

A novel aspect is using text data to create comparisons of close winners and losers. To do so, we use evaluation reports written by the program officers. We map these reports into propensity scores that reflect the likelihood of receiving a subsidy and control for the scores to compare close winners and losers. Roberts et al. (2020) discuss text matching.

We present two alternative designs in the Appendix: a regression discontinuity (RD) design based on changes in the program’s firm size threshold that determines priority for a small firm to address internal validity, and a spikes design based on the precise timing of technology adoption events without the program to address external validity. These designs are important for our overall argument, and we refer to them in the analysis.

4.1 The Subsidy Program

The Program The technology subsidy program is administrated in Finland by the Centers for Economic Development, Transport and the Environment (the ELY Centers). These centers promote regional business policy through various activities, including advisory, financing, and development services. Technology subsidies are part of a service called the Business Development Aid. The service provides funding for technology adoption, export promotion, R&D, and several smaller categories, such as starting a new company. It also supported firms during COVID-19. The service granted EUR 2 billion over our sample period 1994–2018 and directed EUR 758 million toward technology subsidies. Technology subsidies were, on average, 0.7% of machinery and equipment investment in Finland. This paper is the first quantitative evaluation of the program.

EU Context The program is part of the European Structural and Investment Funds (ESIFs), one of the world’s largest industrial policy programs. ESIFs aim to support economic development across all EU countries, especially in remote regions. The 2014–2020 program budget was EUR

9There are 15 ELY Centers in our data. Until 2009 these centers were called TE Centers. Since 2014, four RR-ELY Centers have administrated all technology subsidies. ELY Centers are separate from Business Finland (previously TEKES) that provides funding for R&D.
670 billion.\[^{10}\] Technology subsidies are funded together by the national government and the EU, typically 50/50. Decisions are made locally by the ELY centers. The EU regulates the budget and rules for giving subsidies. The study speaks to the firm-level effects of the broader EU program.

The Program’s Objectives The technology subsidies aim to promote new technology adoption. The agenda behind this objective is to improve firms’ competitiveness. Technology subsidies in Finland have a long tradition based on the idea that the government can foster growth and structural change through industrial and regional policy (Rodrik 2007; Kekkonen 1952; Mitrunen 2021). The program follows the EU’s technology neutrality principle—firms can choose their technology as long as it is new—and is not primarily about the direction of technology, e.g., automation vs. non-automation (Acemoglu 2002a).\[^{11}\]

The Typical Case The typical technology subsidy is a EUR 100K cash grant paid toward technology costs. The technology is typically a new CNC machine, often combined with a robot, software, or measurement device. The firms are typically SMEs that manufacture fabricated metal products, e.g., parts to large industrial machinery. The subsidies provide funding up to 35% of the investment, typically 15%. ELY Center pays the grant against verifiable technology costs. Subsidies of this size are audited, and approximately 30% of all ELY subsidies are audited.

The Selection Process The selection process works in three stages, as illustrated in Figure 3.

1. **Application.** Starting from all firms, some firms apply for technology subsidies. For our research design, it means that we compare firms that all plan a technology investment. Firms do not apply because a) they do not plan to invest, b) they do not know about the program, c) anticipate they are not eligible, or d) consider the opportunity cost higher than benefits.

2. **Pre-screening.** In the pre-screening stage, firms contact ELY Centers that pre-screen applicants before they submit formal applications. The pre-screening stage is helpful for our research design: after pre-screening, the centers’ goal is that all firms have a realistic chance of winning the subsidy. The coarse evaluation criteria are size, industry, and general economic position. The program requires that the firms are primarily in manufacturing and SMEs, not owned by large firms, not in severe economic difficulties, and can carry out the technology plan. Firms may decide to skip this stage, but that does not improve their chances of winning.

\[^{10}\]Source: ESI Funds Open Data Platform.

\[^{11}\]The standard economics rationales for the subsidies could be coordination problems, credit and information frictions, and pure transfers to lower-income regions. However, typically in political discourse, the program is not assessed in contrast to the free-market benchmark but seen in the context of economic planning.
the subsidy (but it creates rejected applications from otherwise high-performing firms that are not, e.g., SMEs).

3. Decision. In the decision stage, firms submit a formal application explaining the investment and timeline. Funding is discretionary. Subsidy winners are selected based on the program rules and local and temporal budget priorities and constraints; an identical firm could receive a subsidy on a given year, but not the other. ELY Centers do not score the applications on a formal scale, but we use evaluation reports to match applicants. In the decision stage, ELY Centers re-evaluate the coarse criteria: size, ownership structure, industry, and economic position. ELY Centers make an impact assessment, where they evaluate the effectiveness of the potential subsidy. Cases where the subsidy is more likely to have an impact, are more likely to receive it. Other priorities also exist: firms satisfying the criteria for a small firm and firms in remote regions are prioritized.12 ELY Centers evaluate potential market distortions and sometimes reject applications if the subsidy negatively interferes with local competition. About 15\% of applications are rejected.13

What Separates Subsidy Winners from Losers? Text data allows us to read the evaluations of winning and losing applications. Winning applications’ evaluations are typically brief: they state the project satisfies the criteria, and the officer recommends a subsidy. Losing applications’ evaluations specify why the officer does not recommend a subsidy. Typical rejection reasons are 1) effectiveness: the subsidy is not expected to have an impact on the project, the project is small and unlikely to have a meaningful effect, the firm had already started the project or received a subsidy for a similar project, 2) industry, size, and investment-type restrictions: the firm is not an SME, e.g., owned by a large firm, or that no aid is granted to a particular industry or investment at that time or region, or that the firm has proposed to buy used machinery, which is generally not allowed, 3) budget constraints: subsidy funds are limited so that aid is granted only under strict conditions, 4) technical issues: the firm did not provide the required information by the deadline, 5) firm’s economic position and the owners’ history: ongoing corporate restructuring, debts from a previous business, a previous foreclosure or tax liability, and 6) interference with local competition. Employment-related reasons do not appear as typical reasons for rejection; we address this concern in Section 7.

12Our regression discontinuity (RD) design builds on changes in the criteria defining a small firm.

13Corruption is unlikely to play a significant role in the process. The Corruption Perceptions Index (CPI), which ranks countries “by their perceived levels of public sector corruption, as determined by expert assessments and opinion surveys,” ranked Finland as having the one of lowest of corruption in 2012–2020.
How do Subsidy Applicants Compare to Average Manufacturers? Table A1 compares the subsidy applicant sample to all Finnish manufacturing firms. Technology adopters are different than non-adopters. The subsidy sample firms are larger (despite being SMEs), more productive and profitable, and more educated. Most importantly, technology adopters grow faster than average manufacturers. These observations highlight that non-winning applicants provide a better control group than average manufacturers because all applicants have indicated a strong interest in technology adoption. Our estimates capture the local average treatment effect (LATE) for firms close to investing in technologies.

Expected Effects on Technology Investment We conceptualize the technology subsidy as a temporary price reduction for technology. If a firm is close to the margin on whether or not to invest, a temporary price reduction might push it to invest. Firms reported in our interviews that subsidies affect investment because they lower the price of technology, including the future risk of carrying a loan. Firms’ managers and subsidy officers often mention the non-monetary costs of adopting new technology: mental investment and courage. They see the subsidy also as a tool to change the mindset.

We clarify the source of variation using a model adapted from Cooper et al. (1999) in Appendix G. The model maps the price changes induced by the program into the firm’s technology adoption decision and factor demand. Under the framework, the firm’s technology adoption reflects four forces: 1) the replacement cycle, 2) shocks to technologies’ prices, 3) shocks to technological progress, and 4) shocks to productivity. The subsidies design isolates the role of technology price shocks on technology investment.

4.2 Difference-in-Differences Design

Our main empirical strategy is a difference-in-differences design that contrasts similar firms, one of which was approved for technology subsidies while the other was not. The identification strategy is based on the idea that subsidy decisions are quasi-randomly assigned with respect to the counterfactual changes in firm outcomes after conditioning on the information used in the screening process. We assess the comparability of winners and losers and provide several alternative estimation strategies, including a matched non-applicant control group, and matching with text data in the next section.

We estimate two types of equations. Our main specification is the stacked event study:

\[Y_{jt} = \alpha_j + \kappa_t \sum_{\tau \in \mathcal{T}} \left[I_{j\tau} \cdot (\gamma_\tau + \beta_\tau \cdot D_j) \right] + X_{jt}^\tau + \varepsilon_{jt} \] (1)
where \(Y_{jt} \) is an outcome for firm \(j \) in year \(t \), \(D_j \) is the treatment indicator, \(I_{jt}^{\tau} \) is the event-time indicator for firm \(j \)'s decision having occurred \(\tau \) years ago, and the set \(T = \{-5, -4, \ldots, 4, 5\} \) defines the five-year horizon over which we study dynamics. Our parameters of interest are the coefficients \(\beta_\tau \). They summarize the differential trajectory of mean outcomes for winning and losing firms by the time relative to their application. Note that event-time is also explicitly defined for the control group by application year, and firms are only in the treatment or control group for the entire panel.\(^{14}\) Estimates before the event serve as a test of differential pre-trends between the treatment and the control group. The coefficients \(\gamma_\tau \) capture the common event-time \(\tau \) effects. The term \(\alpha_j \) is the set of firm indicators, \(\kappa_t \) set of calendar-time \(t \) indicators, i.e., cohorts of applicant firms, and \(X_{jt}^{\tau} \) contains our pre-period controls interacted with both time indicators. We designate \(\tau = -3 \) as our base event period and omit it. We set the base clearly before the event to avoid contrasting the post-period to any anticipation effects (e.g., Ashenfelter's dip).\(^ {15}\)

For clarity, we present all main estimates in reduced form (i.e., intention to treat, ITT).

To summarize the dynamic estimates into a single number, we estimate the stacked first-differences specifications:

\[
\Delta Y_j = \beta \cdot D_j + X_j + \varepsilon_j
\]

where \(\Delta Y_j \) is the change in the outcome from the base year \(\tau = -3 \) to the post period that we define in each context. The main regressor is \(D_j \), an indicator for whether the firm won the subsidy. We also estimate continuous versions where \(D_j \) refers to the amount of subsidies. The control term \(X_j \) controls for potential differential trends across firm and application characteristics. We report standard errors that are robust to heteroskedasticity and cluster by firm.

We control for the firm size in base year \(\tau = -3 \) interacted with event-time \(\tau \) indicators (to control for differential trends in the event window by firm size) and for the 2-digit industry interacted with calendar-time \(t \) indicators (to control differential trends by industry related to macroeconomic trends) in the event studies. In the first-differences specifications, we likewise control for the baseline firm characteristics potentially correlated with subsequent changes in our variables of interest: the 2-digit industry and firm size, and calendar-time \(t \) fixed effects.

We construct the analysis sample in the following way. We first restrict to technology applications based on the text data. We restrict to manufacturing and construction industries for three reasons: the program targets these industries, they produce physical outputs, and we have a con-

\(^{14}\)By focusing on a control group that never receives treatment, we avoid the problems arising in the estimation of dynamic treatment effects when the comparison group consists of individuals who are treated at a different point in time (Sun and Abraham 2020; Goodman-Bacon 2021).

\(^{15}\)Our results are robust to the choice of base year.
crete understanding of what their new technologies are based on our fieldwork.16 We exclude the largest 5% of applications because they tend to have poor control units. We restrict to a balanced sample over the eleven-year horizon.17 The treatment group is defined by selecting the largest approved subsidy application for each firm. Event-time indicator $\tau = 0$ refers to the year the subsidy application was submitted. The control group is defined by the largest rejected application. Repeated applications for the same project are generally not allowed and untypical.

The ideal experiment that could capture the causal effect of technology on employment, skill demand, and firm performance would randomly assign technology to firms. While a perfect technology experiment is hard to engineer, our identification strategy is based on the quasi-random assignment of technology subsidies, D_j. The identifying assumption is that treatment assignment is conditionally independent of the outcomes:

Assumption 1 (Rosenbaum and Rubin 1983, CIA): $(Y_{1j}, Y_{0j}) \perp \perp D_j | X_j$,

where Y_{1j} and Y_{0j} tell what happens if the firm wins or loses a subsidy.

Our identification strategy in this difference-in-differences design exploits the fact that the subsidy program induces quasi-exogenous variation in selection into technology adoption. We compare subsidy-receiving firms to firms that applied for the subsidy but did not receive it. Because the sample used here includes only pre-screened applicants to the subsidy program, these comparisons control for differences between technology adopters and nonadopters that originate in the decision to apply for technology subsidies. Pre-screened non-winning applicants probably provide a better control group for technology adopters than conventional samples because, like subsidy winners, all applicants have indicated a strong interest in technology adoption. But such comparisons do not control for all criteria used by the program to decide which applicants to accept. The data analyzed here contain information on most characteristics used by the program to accept applicants, including the evaluation report itself (next section). Therefore, the remaining selection bias induced by the decision stage can be eliminated using regression techniques or matching using the information used in the decision process.

Table 2 reports summary statistics for the treatment and the control groups. The groups are reasonably similar in terms of revenue, employment, and worker composition. The main differences are that the losing firms are smaller and applied for smaller subsidies. The pre-period differences between the treatment and control motivate our matching strategy in the next section.

16This leaves out some technology subsidies. For example, ELY Centers could grant a technology subsidy for a hotel’s online reservation system.

17Our results are robust to a non-balanced sample.
An alternative counterfactual is similar firms that did not apply for subsidies. We use coarsened exact matching (CEM; Iacus et al. 2012) to define these similar firms. This matching strategy addresses the concern that the losing firms are not a reasonable counterfactual for what would have happened if the approved firms had not received the subsidy. We match by revenue, employment, wages at $\tau = -3$ plus revenue and employment changes in percentages from $\tau = -3$ to $\tau = -1$ and industries’ main sectors (letter classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The match is 1:1 with replacement. We define matched control samples for both winning and losing firms, the latter being a placebo test. Tables B1 and B2 show the covariate balance for the matched samples. The matched control group also serves to assess whether the patterns in the losing firms are typical or specific to the losing applicants.

4.3 Text Matching

We demonstrate a novel method of crafting a research design by controlling for program participants’ underlying differences using text data. The subsidy records contain a report written by the officer evaluating the application. Given similar reports, treatment assignment is more likely to reflect quasi-random variation than systematic differences. The reports record qualitative characteristics potentially related to the firm’s future trajectory. Text matching methods allow us to control for these characteristics (see, e.g., Romer and Romer 2004; Roberts et al. 2020).

As our main text matching method, we control for propensity scores computed from evaluation reports of applications. The propensity score is a predicted probability that conditional on a text (W_j), the firm will win a subsidy:

$$p(W_j) \equiv E[D_j = 1|W_j].$$

The propensity score theorem (Rosenbaum and Rubin, 1983) states that controlling for the probability of treatment is sufficient for satisfying Assumption 1. Propensity scores are valuable in this context because they reduce dimensionality as directly controlling for texts is not feasible.18

The subsidy records contain three types of texts that track the decision process: 1) application summary, 2) evaluation, and 3) decision texts. The application summary and evaluation texts are written by a middle-rank officer responsible for administrating the subsidy and presenting it to a manager for a decision. We use the evaluation texts to compute the propensity scores. These texts capture clearest the potential differences between the firms. Based on our interviews, the subsidy officers’ goal is to present an unbiased evaluation.

\footnote{Note that there is only one report for applicant firm j, both for the treatment and control, and hence the propensity score $p(W_j)$ contains only subscript j.}
The text propensity score method works in three steps.

Step 1: We represent the text as data. We use a vector representation based on word embedding. In particular, we employ the FastText (Bojanowski et al. 2016) library for the Finnish language. The advantage of the vector representation is that it captures the semantic meanings of the text instead of a word collection. This is critical in our context since our goal is to extract information from the evaluations beyond clear markers of success or failure.

Step 2: We estimate the propensity scores using the data. We use a machine learning method, support-vector machines (SVMs), to calibrate word vectors into probabilities. We train the model on all subsidy applications. The probabilities are calibrated using Platt scaling: a logistic regression on the SVM’s scores, fit by five-fold cross-validation on the training data (Zhang, Damerau and Johnson 2002). Figure 4 provides the calibration plot for our analysis sample: the predicted probabilities based on text data are on the x-axis and the probability of subsidy receipt on the y-axis. The predicted probabilities closely match the empirical probabilities.

Step 3: We control for confounders using the propensity score. Regression adjustment is our preferred approach. We compare the estimates to coarsened exact matching (CEM) and inverse probability weighting (IPW; Hirano et al. 2003).

As an alternative text-matching method, we use cosine similarity. It measures similarity between two non-zero vectors of an inner product space:

\[
\text{cosine similarity} = \frac{\bar{A} \cdot \bar{B}}{\|\bar{A}\|\|\bar{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},
\]

where \(A_i\) and \(B_i\) are components of vector \(\bar{A}\) and \(\bar{B}\). Cosine similarity allows us to compute a similarity score directly between the texts’ vector representations without projecting them first to a single-dimensional score. We construct a matched sample for the winners by selecting the nearest-neighbor with replacement from the losing firms. Table A2 reports the summary statistics for the cosine-similarity matched sample.

19 Our analysis sample covers the majority of technology subsidies and out-of-sample calibration with the remaining applications does not work. As an intermediate solution to avoid overfitting, we calibrate the model with all possible applications, including exports and R&D.

20 There are multiple ways to implement the three steps: represent the text as data, model and estimate \(p(W_j)\), and use \(p(W_j)\); see, e.g., Angrist and Pischke (2009); Gentzkow et al. (2019).

21 A conceptual difference is that the propensity score measures the text’s predictive power on treatment assignment, while cosine similarity measures the overall similarity between evaluation texts.
5 Estimates

This section provides the reduced-form estimates on employment and wages, skill composition, and firm performance using the primary research design. The main result is clear: we find no evidence of employment reduction or skill bias across a comprehensive set of skills and technologies. The estimates show that after winning a technology subsidy, firms invested sharply more in technologies, hired more workers, but did not change their skill composition. Before receiving a technology subsidy, the winning and losing firms had similar trends in technology investment, employment, and skill composition. The results are robust to controlling for the text propensity score and to other controls. The RD and spikes designs in Appendices C and D confirm the results. The results are not limited to the subsidy program or SMEs.

The First Stage Figure 5 shows the first stage event study estimates β_τ from Equation 1. The outcome is technology investment. Winning a subsidy is associated with a sharp increase in technology investment. Before the subsidy application, the groups are on parallel trends. Figure A1 shows alternative first-stage estimates with all possible subsidies granted and received. It shows that winners and losers are granted a different amount of subsidies exactly in the event year, not before or after. The pattern for received subsidies matches technology investment. Table 3 reports the first stage estimates for the main versions of the difference-in-differences design, with and without text matching. The outcomes are technology subsidies, technology investment, and capital. The first stage is robust to controlling for the text propensity score.

Employment and Wages Figure 6 displays the event-study estimates β_τ from Equation 1. The outcome is employment relative to the base period $\tau = -3$. The estimates indicate that technology subsidies lead to approximately 20% higher employment in the five years after receiving it. As the figure shows, the employment pre-trends were similar between treatment and control groups. Figure 8 visualizes and Table 4 reports the first-difference estimates from Equation 2, with and without the text propensity control. These estimates combine the multiple event-study estimates into a single number. Our preferred specification with the propensity control indicates a statistically precise 23% increase in employment. The employment estimates are consistent with the idea that the advanced technologies were a complement to labor in this context.

Another way of measuring the potential replacement effects from advanced technologies is the labor cost share. It measures the share of revenue that a firm pays to workers. We find a precise zero estimate, reported in Table 4. We also generally find a zero effect on wages; in some specifications a small statistically insignificant negative effect.
The employment estimates are similar when estimated using matched non-applicant control group (Figures B1, B3, and Table B3), regression discontinuity design (Figure C4 and Table C4) and the spikes design without technology subsidies (Figures D3, D5). The employment results are also robust to different text matching versions (Table A3), different controls (Table A4), and are clearly present in the mean graphs that compare the treatment and control group means over time (Figure A12).

Skill Composition Figure 7 displays the first-differences estimates for the main firm-level skill measures: average years of education, college-educated worker share, and the production worker share. Table 4 reports the numerical values. We find no change in any of these measures. Our 95% confidence interval excludes over .15 year changes in the average years of education. The results are in contrast with the views that advanced technologies increase the share of more educated workers and decrease the share of production workers in manufacturing firms. The main skill-composition estimates hold in all our research designs and are robust to a variety of controls referenced in the employment results, including text matching.

We also consider more detailed skill outcomes: education groups (Figure A2), occupation groups (Figure A3), cognitive performance (Figure A4), school performance (Figure A5), personality (Figure A6), demographics (Figure A7), and task composition (Figure A8). The big picture is that the effects are primarily skill-neutral in the sense that the skill composition does not change. Another central observation is that the baseline skill levels of workers in the sample firms are well below the median. For example, the average cognitive performance is .3 standard deviation lower than the average population, and the average 9th grade GPA is .56 standard deviation below the population average. The sample firm workers also score lower in tests designed to measure personality traits valued by the Finnish Defence Forces, such as achievement aim and dutifulness. The only personality trait the workers score higher than average is masculinity (+.15 standard deviation). Finally, there are some patterns of changes in the skill composition that are consistent with the observations from our fieldwork, while not statistically significant and subject to multiple testing concerns. The treatment effect on average school GPA is .1 standard deviation (Figure A5), and the treatment effects on activity-energy, achievement aim, and sociability are .05 standard deviation (Figure A6). These are the traits the managers and workers we interviewed consistently mentioned to be complementary to new advanced technologies, as opposed higher education or non-production occupations.22

22Managers and workers emphasized the non-cognitive skills required in work: initiative, cooperation, and adaptability, and that workers perform multiple tasks. One CEO put the view succinctly: “A company does not just pay a welder to weld.”
Firm Performance Figure 8 visualizes and Table 4 reports the first-difference estimates from Equation 2 for measures of firm performance: revenue, labor productivity, total factor productivity, and the profit margin. We measure labor productivity as revenue per worker and total factor productivity from Cobb-Douglas production function estimation.\(^{23}\) The robust finding is that technology subsidies and technology investment lead to approximately 30% higher revenue in the five years after. However, we find no evidence of changes in productivity and the profit margin. This somewhat surprising finding is consistent with Criscuolo et al. (2019), who study an investment subsidy program in UK manufacturing, and Cerqua and Pellegrini (2014), who focus on capital subsidies to businesses in low-performing regions. We provide an explanation in Section 6.

Magnitudes Table 5 reports the first-difference estimates from Equation 2 with a continuous treatment variable, the subsidy granted in EUR. The estimates from our preferred specification indicate that 1 EUR in subsidies stimulates 1.3 EUR in machinery investment. The firms’ revenue increases by 5 EUR per 1 EUR of subsidies.

 The employment increase is 0.23 jobs per EUR 10K subsidies, indicating a cost per job of EUR 43K (USD 49K). This number closely matches the numbers managers reported for machinery per worker in their plant in our interviews. Criscuolo et al. (2019) review the existing cost per job estimates. Our estimate is close to the average among the reported estimates. It is relatively close to the cost per job estimates of USD 43K by Pellegrini and Mucigrosso (2017) and USD 68K by Cerqua and Pellegrini (2014) in the context of capital subsidies to businesses in the least developed regions in Italy, and the estimate of USD 63K by Glaeser and Gottlieb (2008) for the US Empowerment Zones. Criscuolo et al. (2019) report an estimate of 27K USD at the firm level.

6 Mechanism

The results are clear but also a puzzle: technology investment led to increases in employment and no changes in skill composition—in contrast with the ideas that technologies replace labor or are skill biased. In this section, we offer a theoretical interpretation and then provide theory-motivated tests of that interpretation. Finally, we explain when and why we expect to see these results.

\(^{23}\)TFP is not ideally suited to measure firm performance in our context because (as we will show in Section 6) the firms introduce new product varieties. Revenue per worker is robust to different production functions.
6.1 Theoretical Framework: Process vs. Product

We outline a framework that contrasts two types of technological change: process versus product.24 Process refers to productivity improvements within an output variety, product to the expansion of new varieties. The framework is standard (Dixit and Stiglitz 1977; Melitz 2003; Bustos 2011), but we apply it to a new context. The central element is imperfect substitutability between output varieties. The intuitive distinction is whether firms use new technologies to do the same thing more efficiently or to do new things. We show that these two types of technological change imply different effects and can be empirically tested.

The core idea of the model can be simplified as a composite function:25

\[F(T_E; f(T_I; L)). \]

The function highlights two types of technological change:

- **T_I Process** (The Intensive Margin): This affects the production “recipe” f of how factors L are used in production activity. Example: a welding robot replaces human welder’s tasks.

- **T_E Product** (The Extensive Margin): This affects the “lens” F through which production is projected into markets. Example: a welding robot makes longer seams than a human welder.

6.1.1 The Basic Setup

We begin by outlining a framework for modeling firm heterogeneity following Melitz (2003).26 The market structure is monopolistic competition that emphasizes product differentiation and increasing returns to scale at the firm level. The model specifies preference and firm heterogeneity in a differentiated product market. This allows technology to have a role in creating new varieties—as in many standard growth models (e.g., Romer 1990). We show that this view has different implications than one emphasizing technology’s role in allowing productivity improvements within a variety.

24We use the terms process vs. product, but other terms could convey the same idea: e.g., cost vs. differentiation (Porter 1985), secondary vs. primary (Saint-Paul 2002), or defensive vs. enterprise (e.g., Boone 2000). The critical distinction is whether technological change only affects how the output is made or how the customer receives it.

25We use this production function to make the idea as clear as possible. In the next section, we explicitly define what a new type of output means.

26We aim to introduce the simplest model necessary to explain the findings, one that captures the essence of a broad class of models featuring process vs. product type technological changes. The Melitz (2003) framework allows for a simple way of introducing imperfect substitutability between varieties. Melitz and Redding (2014) provide a review of the literature on firm heterogeneity and trade. Related approaches include Hopenhayn (1992), Ericson and Pakes (1995), Klette and Kortum (2004), Acemoglu et al. (2018), and Akcigit and Kerr (2018).
Preferences Preferences are defined over the goods produced in a number of sectors \(j \in \{0, 1, ..., J\} \) and assumed to take the Cobb-Douglas form:

\[
U = \sum_{j=0}^{J} \beta_j \log Q_j, \quad \sum_{j=0}^{J} \beta_j = 1, \beta_j \geq 0
\]

(6)

There is a continuum of differentiated varieties within each of the \(j \geq 1 \) sectors, and preferences are assumed to take the Constant Elasticity of Substitution (CES) Dixit and Stiglitz (1977) form:

\[
Q_j = \left[\int_{\omega \in \Omega_j} q_j(\omega)^{(\sigma_j-1)/\sigma_j} d\omega \right]^{\sigma_j/(\sigma_j-1)}, \quad \sigma_j > 1, j \geq 1
\]

(7)

Sector \(j = 0 \) is a homogeneous numeraire good, produced with a unit input requirement.

The Cobb-Douglas upper tier of utility implies that consumers spend \(X_j = \beta_j Y \) on goods produced by sector \(j \), where \(Y \) denotes aggregate income. The demand for each differentiated variety within sector \(j \) is:

\[
q_j(\omega) = A_j p_j(\omega)^{-\sigma_j}, \quad A_j = X_j P_j^{\sigma_j-1}
\]

(8)

where \(P_j \) is the price index

\[
P_j = \left[\int_{\omega \in \Omega_j} p(\omega)^{1-\sigma_j} d\omega \right]^{1/(1-\sigma_j)}.
\]

(9)

\(A_j \) is a market demand index, determined by sector spending and the price distribution (the CES price index). With a continuum of firms, each firm is of measure zero relative to the market as a whole, and takes \(A_j \) as given.

Production Firms produce varieties using a composite input \(L_j \) with unit cost \(w_j \) in sector \(j \). The firms choose to supply a distinct differentiated variety. Production has a fixed cost of \(f_j \) units of the composite input and a constant marginal cost, inversely proportional to productivity \(\varphi \). The total amount of the composite input required to produce \(q_j \) units of a variety is:

\[
l_j = f_j + \frac{q_j}{\varphi}.
\]

(10)

27This representation has two interpretations: 1) consumers demand differentiated consumption goods with “love-for-variety” preferences (e.g., Grossman and Helpman 1991), or 2) final-good firms demand differentiated intermediate inputs, and a greater variety of inputs increases the “division of labor” (e.g., Romer 1987, 1990). Our context is the technology adoption of intermediate-good producing firms that sell their outputs to final-good producing firms.
Equilibrium We focus on the equilibrium in a given sector (and drop the sector \(j \) subscript for clarity). Each firm chooses its price to maximize its profits subject to a downward-sloping residual demand curve with constant elasticity \(\sigma \). From the first-order condition for profit maximization, the equilibrium price for each variety is a constant mark-up over marginal cost:

\[
p(\varphi) = \frac{\sigma}{\sigma - 1} \frac{w}{\varphi}
\]

which implies an equilibrium firm revenue of:

\[
r(\varphi) = Ap(\varphi)^{1-\sigma} = A \left(\frac{\sigma - 1}{\sigma} \right)^{\sigma - 1} w^{1-\sigma} \varphi^{\sigma - 1},
\]

and an equilibrium firm profit of:

\[
\pi(\varphi) = \frac{r(\varphi)}{\sigma} - wf = B \varphi^{\sigma - 1} - wf, \quad B = \frac{(\sigma - 1)^{\sigma - 1}}{\sigma^{\sigma}} w^{1-\sigma} A.
\]

6.1.2 Two Types of Technological Change

Our model outlines two types of technological change: process vs. product.

Process Process type technological change improves the firm’s productivity within a variety.\(^{28}\) This is the intensive margin: it allows the firm to produce the same thing but more efficiently.\(^{29}\)

We introduce the process type technological change in the model as in Bustos (2011). The firm has a constant marginal cost, \(1/\varphi \), of producing a variety. The firm can upgrade to a new technology \(T_I \) that reduces its production costs. Figure 9 visualizes the idea. This choice is a tradeoff between an additional fixed cost \(f_I \) and a productivity increase to \(\iota \varphi \), where \(\iota > 1 \). The resulting total cost

\(^{28}\)The process efficiency motive is present in the specialization model of Smith (1776), the labor-saving technologies of Marx (1867), the growth model of Solow (1956), the routine-replacement model of Autor, Levy and Murnane (2003), the task model of Acemoglu and Autor (2011), the automation model of Acemoglu and Restrepo (2018), the product-process model of Utterback and Abernathy (1975), and in the quality improvements in the ‘Schumpeterian models’ of Grossman and Helpman (1991) and Aghion and Howitt (1992).

\(^{29}\)The process view nests a broad class of models. In this model, and typical growth models, productivity changes through cost reductions and quality improvements are essentially equivalent within the same variety. This comes from the fact the model implicitly assumes perfect substitution between quality and quantity within the same variety. That is, the productivity term \(\varphi \) can be interpreted in terms of costs or quality; the interpretations are isomorphic to a change in units of account (e.g., Kugler and Verhoogen 2012 provide a proof). We distinguish two different quality improvements: those within the same variety vs. a new, imperfectly substitutable variety.
functions with and without process type change are:

\[
 l = \begin{cases}
 f + \frac{q}{\varphi} & \text{if } T_I = 0, \\
 f + f_I + \frac{q}{\varphi} & \text{if } T_I = 1.
 \end{cases}
\]

(14)

Process technology adoption is characterized by sorting according to firm productivity: there is a productivity cutoff \(\varphi^*_I \) above which the firm adopts the new technology because the adoption choice involves a tradeoff between a fixed cost and a per-unit profit increase.

Product Product type technological change enables the production of new varieties.\(^{30}\) This is the extensive margin: it allows the firm to produce new things and switch between varieties. Critical to this view of technological change is that outputs with different types are imperfect substitutes. In our framework, there is only one dimension to improve productivity or costs, but multiple dimensions to change product attributes. There is only one firm per variety (the most productive), but firms can differentiate through multiple varieties.\(^{31}\)

We introduce the product type technological change in the model by building on Melitz (2003). The firm can introduce a new variety by adopting new technology \(T_E \). The technology requires a sunk entry cost of \(f_E \) units of the composite input. Potential entrants to the new variety, both existing and new firms, face uncertainty about their productivity in the new variety. Once the sunk technology cost is paid, the firm draws its productivity \(\varphi \) in the new variety from a fixed distribution \(g(\varphi) \), with cumulative distribution \(G(\varphi) \). Figure 9 visualizes the idea. After observing its productivity, the firm decides whether to exit the project or to produce. This decision yields a survival cutoff productivity \(\varphi^*_E \) at which a firm makes zero profits:

\[
 \pi(\varphi^*_E) = \frac{r(\varphi^*_E)}{\sigma} - wf = B(\varphi^*_E)^{\sigma-1} - wf = 0.
\]

(15)

Free entry implies that in equilibrium, this expected measure of ex-ante profits (inclusive of the entry cost) must be equal to zero:

\[
\int_0^{\infty} \pi(\varphi)dG(\varphi) = \int_{\varphi^*_E}^{\infty} \left[B\varphi^{\sigma-1} - wf \right] dG(\varphi) = wf_E
\]

(16)

\(^{30}\)The expansion of variety in consumer and intermediate goods has a central role in many theoretical models of growth (e.g., Romer 1990; Grossman and Helpman 1991). The product view is closely related to Porter (1985): gaining competitive advantage through a quality-differentiation strategy instead of a cost-leadership strategy.

\(^{31}\)A new variety has several interpretations: a new product, a quality change not perfectly substitutable with quantity, re-purposing production to respond to changing demand, expansion to new markets, capturing a larger share of the value chain, etc. A new variety may be the same product but with an improved process that provides more reliable scheduling or a faster response time to orders.
The relationship between profits and productivity is shown graphically in Figure F1. Firms drawing a productivity $\varphi < \varphi^*_E$ would incur losses if they produced. These firms exit project immediately, receiving $\pi(\varphi) = 0$ in that variety, and cannot cover their sunk entry cost. Among the active firms, a subset of them with $\pi(\varphi) > wFE$ make positive profits net of the sunk entry cost.

6.1.3 Theory-Based Predictions

Process and product type technological changes generate several distinct empirical predictions, which we summarize in Table 6. We derive these predictions in Appendix F.

Process Process type technological change predicts increases in revenue, productivity, and profit margin. The intuitive idea is that firms with lower marginal costs produce more and earn higher revenues due to the CES demand structure; lower marginal costs imply higher measured productivity and higher profits due to the increasing returns to scale.

A distinct prediction from the process type technological change is zero effect on product composition. There is no similarly precise prediction on exports, which depends on whether the exports are new varieties or not. The price prediction is negative if the process improvement is a cost reduction and positive if it is a quality improvement.

The predictions on employment, labor share, labor composition, and wages depend on the underlying structure of how the process type change affects productivity within the variety. In the model, firms use a composite factor L to produce the varieties. If the composite factor of production contains only labor, the model predicts that lower marginal costs reduce the labor share since the firm takes wages as given and revenue per input increases. The literature specifies different versions of the composite factor and how process technology enters it. The models where technological change simultaneously reduces costs and affects labor composition typically assume that technological change is “skill biased,” in the sense that new technologies are complementary to high-skill workers and increase their share of employment. If the technological change is specifically automation (Acemoglu and Restrepo 2018), it replaces tasks previously performed by labor with capital and reduces the labor share of value-added.

Product Product type technological change predicts an increase in revenue but no changes in productivity and profit margin. The intuitive idea is that the new variety allows the firm to sell more. But its productivity and profit margin are still, on average, the same as before due to the free-entry condition. Some new varieties are more profitable, some less.

32E.g., the canonical model (e.g., Tinbergen 1975; Katz and Murphy 1992), the routine-replacement model (Autor et al. 2003), and the automation model (Acemoglu and Restrepo 2018).
A distinct prediction from the product type technological change is an effect on the product composition. While a new variety does not equal a new product (e.g., it could also be a faster response time), a new product is a signal of a new variety. Another signal of new varieties is exports. If different markets have differentiated preferences, a new variety makes the firm more likely to export, export a larger share of its revenue, or export to a larger variety of destinations. If the new variety is a quality improvement, the predicted price effect is positive.

The predictions on employment, labor share, labor composition, and wages again depend on the underlying structure of how the technological change allows introducing a new variety. But this time, the critical difference is that there is no unambiguous basis for expecting a sustained effect on the labor composition or the labor share. The task or skill composition might be different for the new variety, but this depends on the particular context. However, the basic structure predicts an increase in the use of the composite factor, generally employment. The model predicts zero wage effects in a competitive labor market (for both technological advances) since wages are determined in the sectoral equilibrium and the firm is small relative to the market.

Some research proposes that exports and new products are also skill biased (e.g., Bernard and Jensen 1997; Xiang 2005; Matsuyama 2007). One reason why we do not observe skill bias from exports or new products appears to be that these changes—which we conceptualize as new varieties—are a normal part of how these firms operate. We observe in our fieldwork that manufacturers in our sample constantly identify shifts in demand and redeploy their productive resources to new uses using new technologies. Also the large-scale manufacturers combine economies of scale with flexibility, reflected in short production runs, product introductions, and sensitivity to customer needs. Earlier fieldwork by Dertouzos et al. (1989) and Berger (2013, 2020) corroborates these observations also in the US. We return to this theme at the end of this section.

6.2 Evidence: Testing Process vs. Product

This section empirically tests whether the technological changes we observe are the process vs. product type. We document that they are primarily the product type. This explains the puzzling results of no labor replacement or skill bias. Firms used new technologies to create new types of output, not to replace workers.

We proceed in two steps. First, we consider a new set of outcomes that are critical signals that contrast process vs. product type change. Second, we directly measure the type of technological changes using our text and survey data. We close by describing a case from our fieldwork.
6.2.1 Testing the Predictions with New Outcomes

Process and product type technological change predict different effects, summarized in Table 6. We use these predictions to distinguish them. So far, we’ve shown that the technological advances—either with or without the subsidies—led to increases in employment and revenue, no change in skill composition, the labor share, wages, productivity, or the profit margin. These empirical results are consistent with the product type predictions but not with the process type. Next, we provide evidence for new outcomes: exports, products, marketing, prices, and patents, all signals of product type changes.

Figure 10 shows the event-study estimates, with exporter indicator as the outcome. Subsidy winners are more likely to become exporters. Table 7 reports a treatment effect of 4 percentage points from the baseline of 28%. The effect on the exports’ revenue share is .9 p.p. from the baseline of 5.2%. The winners also start exporting to .2 more regions, from 1.5 baseline.33

Table 7 reports the effects on products, measured from the customs data. The treatment effect is .15 products from the baseline of 1.55. We also observe an increase in the product turnover: the treatment firms both introduce and discontinue more products.

Figure 11 shows that subsidy winners are more likely to increase their marketing expenditure. Marketing increase is signal that the firm intends to change how the customers perceive their output, not only production costs.

Table 8 reports the treatment effects on prices. We measure prices from the Customs Register and the Industrial Production Statistics (a survey of manufacturing firms). We focus on product-level prices’ unweighted average. We find a 29.1% increase in the customs data prices and 30.8% in the manufacturing survey. Price increases signal potential quality improvements.

Figure A11 shows the evolution of the subsidy applicant firms’ patenting status. While suggestive evidence, we observe that patenting is concentrated in the periods before applying for subsidies and technology investment. This patent pattern is an additional signal that firms used the subsidies and technologies to scale up from an idea to production.

6.2.2 Directly Measuring the Type of Technological Change

We measure the type of technological change directly using text and survey data.

Text Data Text data allow us to read the sample firms’ technology adoption plans. Based on our theoretical framework, we classify the technology projects into process vs. product. Process

33The export results are consistent with, e.g., Lileeva and Trefler (2010) and Koch et al. (2021).
refers to using technologies to produce the same type of output more efficiently, and product refers to using technologies to produce a new type of output or expand.

Figure 12 shows that 91% of projects in our sample are of the product type. These applications describe new products, access to new markets, responding to changing demand conditions, growth, or similar use for the technology. Only 8% of the texts do not describe such reasons. The technological changes we document are primarily product advances based on this measure.

While most of the sample is product type, we estimate the treatment effects separately for each category. We use the matched control group for treatment units described in Section 4.2 because our control sample is small in both categories. Table 9 provides the estimates. The estimates provide some evidence that product advances led to larger employment effects and no skill bias, while the process type advances led to smaller employment effects and some skills bias, .14 years, significant at the 10% level.34

Survey Data Survey data provides us an alternative way of measuring the uses of technologies. The European Community Innovation Survey (CIS) asks our sample firms, and other firms, about the importance of different objectives for process and product innovations. The options include, e.g., introducing more extensive product selection, quality improvement, and lower labor costs.

Figure 13a shows that typical reasons for firms’ process and product innovations are access to new markets, introducing a larger product selection, better quality, and larger capacity. Lower labor costs rank as the fifth most important: only 20% of firms report that lowering labor costs is important for process and product innovation. Based on CIS data, we classify the firm’s technology project as the product type if the firm considers one of the product-type reasons (in black) important but does not consider lower labor costs important. Conversely, we classify the firm’s technology project as the process type if lower labor costs (in grey) are important, but none of the product reasons are. Figure 13b shows that 97% of our technology adoption cases are the product type. These numbers are similar when considering our spikes design sample, all manufacturing firms, or all Finnish firms, suggesting that the finding is not limited to the subsidy program. Our interviews with CEOs corroborate this observation.

Table A9 shows the estimates by the technology category measured from the survey data. We again use a matched control group since the original control group’s overlap with the survey is limited. The estimates for the product group are similar to the overall group. The process group is too small to estimate the results (marked by – in Table A9).

34 However, we caveat that 1) when we use a continuous treatment variable (the subsidy amount) to gain more precision in Table A8, the coefficients for the two groups are similar. 2) Almost all projects in our context are the product type, and our sample contains very few purely process type technological advances.
6.2.3 Fieldwork: An Illustrative Case

We conducted fieldwork to document the sample firms’ technology adoption. The case of an industrial piston manufacturer we observed illustrates our explanation.

The firm had invested in a new CNC machine, a robot arm, a measurement device, and new CAM software. When asked why they adopted the new technologies, the firm wanted to illustrate what they considered as the big picture of technological change in piston manufacturing: constant quality improvement. “With the old technologies, we couldn’t make these pistons.” Quality is essential for the piston manufacturer: pistons are only a fraction of an industrial engine’s price, but if they break, it is expensive (see Kremer 1993 and Autor 2015 on the O-ring production function). Figure 14 shows the development of piston quality over the last 100 years. The firm called this the “Moore’s law” for pistons. The main effect of the new technology was that the firm could now produce new larger, and more effective pistons. The firm stayed competitive, and as a result, has increased its revenue and employment.

The technology investment was associated with changes in production and work experience. Mainly those were “small, but important changes.” For example, the new production design included a proprietary method of attaching the piston to the machining platform. The new production required some new skills: production workers needed to learn to use the robot and the CNC machine, and the R&D team had to learn to program with the new CAM software. The educational composition did not change as a result of the investment. However, the skill composition in the firm has been increasing secularly over time.

Consistent with our theoretical framework, the firm described operating in an environment where the market for each specific product is limited. They are de-facto monopolists (or oligopolists) in that market. They could not expand substantially within a product but could potentially expand by introducing a new product. Our observations from other firms suggest that the mechanism applies in other industrial and custom manufacturing firms. All firms we studied explained essentially the same story.35

6.3 Context: Beyond Mass Production36

Our theoretical framework tells a tale of two forms of technology adoption and how they have different effects that can be empirically distinguished. A central question created by our empirical analysis is: when and why is one more likely to occur than another? The technology adoption

35Our interviews suggest that while process type advances exist, they may also be less likely to be physical machinery, but, for example, new management styles such as lean manufacturing.

36Kenney and Florida 1993 “Beyond Mass Production: The Japanese System and Its Transfer to the U.S.”
events in our data are almost entirely product rather than process type changes. But both types may occur in reality, and some studies report examples of the latter when it comes to automation (e.g., Acemoglu and Restrepo 2020). We explain next why our findings are distinctive but logical—and applicable to other settings where similar incentives for process vs. product type technology adoption prevail.

The core idea is the contrast between mass production (Taylor 1911; Ford 1922) and flexible specialization (Piore and Sabel 1984; Milgrom and Roberts 1990). Our results differ from the two basic views emphasized in the literature—that technologies replace labor or are skill biased—because the literature has focused on process advances in mass production (e.g., Acemoglu and Restrepo 2018), while the flexible manufacturing system is more common among the firms we focus on. Mass production combines standardized products, large volumes, and process improvements, while flexible specialization combines specialized products, small volumes, and product improvements. We obtain our findings in a context where small and large manufacturing firms produce specialized products in small batches. Examples include defense contractors manufacturing specialized equipment and industrial manufacturing firms producing new wind power stations. The findings may not apply to the mass production of non-specialized commodities like cement or steel or high-volume assembly, where prices and costs are essential.

A large literature documents that manufacturing has moved from mass production to new, more flexible, and specialized forms of production since the 1980s (e.g., Dertouzos et al. 1989; Berger 2013). These new forms of production emphasize quality and responsiveness to market conditions while utilizing technologically advanced equipment. Piore and Sabel (1984) call this change the second industrial divide, Kenney and Florida (1993) call it moving beyond mass production, and Milgrom and Roberts (1990) call it modern manufacturing. While different studies approach the topic from different angles, the common observation is that “the business environment is no longer conducive to producing standardized products for a stable market” (Piore, 1994). One of the managers in Berger (2020) explained clearly: “American manufacturing has been transformed. It’s become highly engineered, highly specialized, and highly customized. I see this across all manufacturing. This is a different country. It’s no longer the mass production of the past.” Why did this change happen? The research suggests several reasons: consumers shifted away from standardized goods (e.g., Bils and Klenow 2001), globalization reduced the cost of specialization between firms (e.g., Berger and Center 2005), and new technologies reduced setup times and made it less costly to switch production between products (e.g., Bartel et al. 2007).

Next, we help understand when and why process vs. product type technological advances are more likely, and how this trade-off links to the type of manufacturing—mass production vs. flexible
specialization. We point out three central factors: scope for specialization, volume, and the need for adaptation.37

Scope for Specialization The trade-off between process versus product type advances depends on the scope for specialization. Firms in a sector with a higher scope for specialization are more likely to introduce new varieties (e.g., Sutton 1998; Kugler and Verhoogen 2012). We conceptualize the scope for specialization \(S \) as lowering the fixed cost \(f_E \) of product type change:

\[
\frac{\partial f_E}{\partial S} < 0
\]

(17)

Intuitively, in sectors with a higher scope for specialization, firms may gain a competitive advantage by introducing a new good or changing their selection of goods. This contrasts with sectors that produce bulk goods, where the primary source of competitive advantage is cost.

Earlier research has produced several measures to capture the scope for specialization (Gollop and Monahan, 1991; Sutton, 1998; Rauch, 1999). Our primary measure is the Rauch (1999) index based on whether a good is a commodity. The evidence shows that our sample firms are primarily in industries with a high scope for specialization. Figure 15 shows that 91\% of the firms are in an industry with a Rauch index over .5. Our primary industries, fabricated metal products, machinery and equipment, and wood products, are fully specialized industries according to Rauch (1999) and have an index of 1. Our sample does not include firms in non-specialized industries, such as cement, steel, or paper.38 Specialized manufacturing is not limited to the subsidies design: the share of firms (and employees) in specialized vs. non-specialized industries is similar in the spikes design. In Finland, 90\% of all manufacturing employment is in specialized non-commodities under the Rauch (1999) classification.

Table A10 provides treatment-effect estimates for specialized vs. non-specialized industries. However, the estimates are generally similar in both groups. Our interpretation is that because the clear pattern in our data is product type technological change in specialized industries, it is unsurprising that we do not observe different effects in the small subsample of firms in non-specialized industries. Table A11 further reports the number of firms in the combinations of scope for specialization and the technology category. Less than 1\% of our sample are process-type technological advances in non-specialized industries (e.g., efficiency improvements in steel manufacturing or

37These are not the only factors that may influence the choice. Other relevant factors include: automation feasibility (Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020), employment protection (e.g., Saint-Paul 2002; Manera and Uccioli 2021), complementary resources, such as venture capital, trade associations, technical advisory committees, and suppliers (e.g., Berger 2013; Gruber and Johnson 2019), and skill supply (e.g., Dertouzos et al. 1989; Berger 2013).

38Dertouzos et al. (1989) emphasize that even in steel manufacturing, quality improvements are crucial.
purely warehouse automation in the paper industry). Consistent with our hypothesis, product-type projects are relatively more common in specialized industries.

Volume The trade-off between process versus product also depends on the production volume of the variety. In our interviews, most managers explained that they are specialized low-volume producers that invest in advanced technologies that enable them to make the products that they sell to a few customers with special demands. Our theoretical framework rationalizes why technology adoption events are more likely to be the product than process type in a low-volume context. In the framework, the amount of input required to produce volume \(q_j \) of a variety is

\[
I = f + \frac{q_j}{\phi},
\]

where \(f \) is a fixed production cost and \(\phi \) is a constant marginal cost. The process type technology adoption decision is a tradeoff between an additional fixed cost \(f_I \) and a productivity increase to \(\iota \phi \). Due to increasing returns to scale, the high-volume producers benefit more from the productivity increase since the fixed cost is distributed over the higher volume. In contrast, in a low-volume context, the benefits from more efficient production are limited, but the benefits from introducing new products are not. In our model, higher volume firms are also larger firms with lower marginal costs because, given the CES demand structure, firms’ relative outputs and revenues inversely depend on their relative marginal costs.

Firms in our sample are mainly SMEs, as shown in Table 2, consistent with observing mainly product-type technology adoption events. Tables A6 and A7 describe the covariates for the matched product and process samples. The groups are similar because our context is relatively uniform, but there are some relevant differences. The product type firms are smaller by employment and more educated than the process type firms.

Need for Adaptation Over time, the trade-off between process versus product advances depends on the need for adaptation.\(^{39}\) A manufacturer we interviewed described that they could easily automate their assembly—currently done manually—but it would require them to commit to a specific model and set of parts to build it. This commitment was unattractive since they must update their model and parts frequently to stay competitive for their customers. In this context, the firm had more substantial incentives to use technologies to create new varieties than to improve its productivity within a variety. Most firms we interviewed described operating in a changing environment where adaptability was important.

\(^{39}\)Bernard et al. (2010) analyze product switching as a source of reallocation within firms.
We conceptualize the need for adaptation a single additional source of idiosyncratic uncertainty: a death shock that occurs with an increasing probability \(\delta \in (0, 1) \), building on Melitz (2003):

\[
\delta \in (0, 1), \quad \frac{\partial \delta}{\partial t} > 0.
\]

The death shock increases the relative incentives for product-type technology adoption. This is because it generates a discount factor for the value computation and reduces the net present value of future revenue in the given variety and, therefore, reduces the benefits from the process type technological change. In contrast, with a new variety, the firm can start again with a lower death shock risk that starts to increase in each period. The need for adaptation may arise from several factors: changes in the operating environment and consumer preferences, technological obsolescence, and cost competition.\(^{40}\) Firms we interviewed explained: “We cannot compete with the low-cost competitors. We need to offer unique goods and services.”

This view has two central empirical predictions: 1) we will observe a higher product turnover in addition to new products, and 2) we may observe a negative trajectory for those firms that did not adopt the technology and a higher firm survival for those firms that did. Our evidence confirms both predictions, and our text data directly records that multiple firms report investing in technologies to respond to changing demand.

7 Robustness

We conduct several robustness checks to evaluate the internal and external validity of our findings.

7.1 Internal Validity

Selection Bias A natural concern when estimating the impact of technology adoption is the bias due to a potential correlation between the adoption and unobserved characteristics of adopters. These concerns are less likely to be important in our setting because (as described in Section 4) we focus on variation induced by a technology subsidy program, where comparisons by adopter status are restricted to a sample of applicants to the program. Non-adopting applicants probably provide a better control group for adopters than conventional cross-section samples because, like adopters, applicants have indicated a strong interest in technology adoption. Moreover, the data analyzed here contain information on most of the characteristics used by the subsidy program to screen

\(^{40}\)Firms with limited capabilities to respond to cost competition may launch new varieties when faced with low-cost rivals that may reverse or re-engineer their products (Porter, 1985; Aghion et al., 2005). This idea is consistent with Bloom et al. (2016) and Fieler and Harrison (2018), who document that import competition induced innovation and product differentiation.
applications. The selection bias induced by subsidy program screening can therefore be eliminated using regression techniques or by matching on the covariates used in the screening process. Our results are robust to controlling for the pre-application characteristics and the evaluation report texts (Tables 4, 5, A3, A4, and A5).

To directly investigate whether the rejected applications are a reasonable counterfactual for the approved applications, our trained panel read through all approved and rejected applications in our analysis sample. We found only ten rejected applications that did not seem likely to receive subsidies in any situation: either the entrepreneur had a concerning history or the firm’s financial position was unstable. Our results are robust to excluding these applications. We also find similar effects when using a matched non-applicant control group (Appendix B).

We use three different research designs: 1) a difference-in-differences design comparing the winners and losers of technology subsidies, 2) a regression discontinuity design using unanticipated changes in the subsidy program rules (Appendix C), and 3) an event-study design focusing on spiky technology adoption events (Appendix D). These designs generate broadly similar results. This suggests that selection bias specific to any single design is unlikely to drive our results.

The remaining concern is selection bias common to all our research designs. The concern would be that none of the control groups we analyze here represents a reasonable counterfactual for technology adopters. To address this concern, we can analyze trends in adopter firms without any control group. Figure A12 shows the evolution of treatment group means for machinery investment, employment, and years of education. Machinery investment increased sharply after the technology subsidy application; adopters increased their employment but did not change their skill composition disproportionately. Trends in technology adopters do not support the view that advanced technologies reduced employment or significantly changed skill composition.

Statistical Power A concern particularly relevant to presenting a null result is statistical power. Are our results precise and technology-adoption events large enough to justify our conclusion about no significant changes in skill composition measured by education and occupation? The estimates from our preferred specification indicate a -.004 change in the average years of education at the firm level, with a standard error of .075 years, meaning that we can exclude over .15 year increases in the average education. In comparison, the treatment and control firms increase their education on average over the 11-year event window by 0.4 years.

The small effects could be driven by small events. Several aspects suggest that this is not the reason for our findings: 1) The typical technology adoption event in the subsidy sample is 100K EUR. The purchase price of the machinery is only part of the total cost, about 25% in US
manufacturing context documented by Berger (2020). The rest of the cost is the machine bed, installation, and all the work needed to integrate the machinery into the plant. 2) The subsidy program requires that the technology investments represent significant technological advances to the firm. 3) We consider particularly large technology investment events in the spikes design (Appendix D). These estimates also indicate null effects on skill composition measured by education and occupation.

7.2 External Validity

There are several legitimate external validity concerns and alternative explanations for our findings and interpretation. To repeat here: we do not argue that our results apply everywhere. We document typical technological advances in manufacturing firms in Northern Europe. While acknowledging that other technological advances exist, our fieldwork suggests we do not document a marginal phenomenon. Next, we respond to specific external validity concerns.

Concern 1: The subsidy program is biased toward employment and low-skill work. The observation behind this concern is, to some degree, correct. One of the objectives of the ELY Center subsidy program is to stimulate employment by supporting the adoption of advanced technologies in manufacturing firms. But several aspects support the view that the program’s biases are not the primary source of our findings: 1) We find similar results also when evaluating technology adoption events without the subsidy program. Interviews with managers document that the subsidy-supported technology adoption events are not notably different from typical technology adoption events. 2) Interviews with subsidy administrators document that significant technology projects are unlikely to be rejected because they would not stimulate positive employment effects. 3) To address this concern systematically, our trained panel read through all rejected applications and investigated whether they were rejected for employment-related reasons. In none of the applications, the concern about employment was the main reason. Five reports mentioned employment, but the concerns were primarily about the potentially low first stage on technology investment; employment was secondary. Our findings are also robust to excluding these applications. Text records also uncover that ELY Centers often interpret the employment effects compared to the counterfactual where the firm is not competitive in the market without the technology and would need to reduce employment; maintaining employment is seen as an increase. 4) The employment effects are not enforced, i.e., the firms are free to make their employment decisions after receiving

41 Some insignificant technology projects get rejected because they are insignificant and unlikely to stimulate technological advances in production and employment effects.
the subsidy. 5) We have no evidence that the program intends to increase low-skill jobs; in fact, ELY Centers support hiring high-skill workers into manufacturing firms.

Concern 2: Workers are already skilled and learn new skills. This alternative explanation proposes that since workers are already skilled and learn new skills, we do not observe changes in skill composition even if technologies are skill biased. To some degree, this is true. Most workers in our sample have specialized training in production work and regularly participate in continuing vocational training (CVTS Survey 2015). All managers we interviewed reported that they combine technology adoption with worker training. New manufacturing technologies require new skills, but our observations from the field indicate that production workers are best suited to learn to use them. At the same time, the debate on skill bias has focused on the idea that advanced technologies replace production work and induce increases in the relative demand for college-educated workers; we do not find evidence of either at the firm level.

Concern 3: The technologies are not typical advanced manufacturing technologies. A natural concern is that our estimates capture something other than the effects of standard advanced technologies in manufacturing, particularly that we miss the effects of automated technologies. To address this concern, we classify technologies into automated versus non-automated technologies using text and customs data, as described in Section 3. Automated technologies are considered automated in everyday language: e.g., robots, CNC machines, and conveyor belts. Non-automated are manually operated: e.g., non-automatic welding tools, hydraulic presses, and cutting machines. In our text data, non-automated refers to all applications not classified as automated. Figures A9 and A10 show the estimates of firm-level effects for automated vs. non-automated technologies. The effects are similar in both groups, and we still find employment increases and no changes in the skill composition from automated technologies. Finally, the spikes design captures all major technology investment events in the industry and size range. While there may be different types of technology adoption events, our estimates capture the average of these events.

Concern 4: Credit constraints drive the employment and skill effects. One alternative explanation is that the subsidies relax the firms’ credit constraints and that the effects we observe are primarily about access to credit rather than technologies. While credit constraints are likely to play a role in allowing the subsidies to induce firms to invest more, several arguments work against this explanation for the employment increases and skill null result: 1) We observe a solid first stage, i.e., the treatment firms invest in technologies. 2) We observe the same effects without the subsidy
program. 3) We do not observe larger effects for the ex-ante more likely to be credit-constrained firms: small firms in Table A12, firms with higher debt-to-revenue ratios or financial costs.

Concern 5: Fixed costs in production lead to skill-neutrality. One specific concern is that these firms could have non-homothetic production technologies where fixed and variable costs have different factor intensities (e.g., Flam and Helpman 1987). The fixed costs could be educated managers and technical staff, while the variable costs could be production workers. If the firms use technologies to expand, the increase in variable costs could mask the potential skill bias of technologies. This hypothesis has a testable implication: this phenomenon should be less important for large firms. Small firms might primarily increase their variable costs, while we would expect that large firms would also need to scale their fixed costs. Table A12 reports the main estimates by firm size. We find no significant differences, suggesting that non-homothetic production is unlikely to be the cause for our findings.

Concern 6: Firm-level employment gains replace employment elsewhere. Technology adoption events may affect other firms, and the total employment and skill effects may differ from those reported here. Two aspects make estimating these effects challenging: 1) the firms are relatively small, and 2) they trade globally directly or indirectly through their customers; thus, externalities are likely to be minor. Theoretically, whether or not the technology adoption events replace employment elsewhere depends on the type of technology and the kind of externalities it induces. We document that our technological advances are the product type: the firms use technologies to produce new output types. These outputs are typically intermediate goods or machinery for final-good producing firms. In Romer (1990), this type of variety expansion generates growth—that is, some of the externalities may be positive. At the same time, new intermediate goods could replace the previous vintages of the intermediate goods as in the “Schumpeterian models” with quality improvements and creative destruction as in Grossman and Helpman (1991) and Aghion and Howitt (1992). Exploring these channels is a promising avenue for future research.

8 Conclusion

This paper revisits a classic question: What are the effects of advanced technologies in manufacturing firms? (e.g., Smith 1776) Our research is based on a technology subsidy program in Finland, which we use as a natural experiment that induced sharp increases in technology supply to manufacturing firms. Our administrative data allow us to measure firms’ technology investment

42 We provide these results in the Online Appendix available at economics.mit.edu/grad/tuhkuri/research.
and workers’ employment, wages, and skills precisely over time. To address external validity, we evaluate technology adoption events also without the program.

Our main finding is that advanced technologies, such as CNC machines, welding robots, and laser cutters, did not reduce employment, replace production workers, or increase the share of highly educated workers in industrial and custom manufacturing firms. We find that these technologies led to increases in employment and no change in skill composition. The findings are consistent across all estimation methods, with and without the subsidy program.

This paper proposes a simple explanation for the findings. We document that the firms used new technologies to produce new types of output, not replace workers with technologies. Direct evidence shows that technology adoption led to more revenue, new products, and new exports. Text analysis of firms’ technology adoption plans shows that they adopted new technologies to introduce new products, access new markets, respond to changing demand, and grow. To explain our findings, we outline a theoretical framework that contrasts two types of technological change: process versus product (e.g., Utterback and Abernathy 1975; Porter 1985). Process change refers to productivity improvements within an output variety; product expanding to new varieties (e.g., Dixit and Stiglitz 1977; Melitz 2003). Our evidence indicates that firms invested in advanced technologies to gain a competitive advantage by introducing new varieties. For example, the piston manufacturer we observed invested in new technologies to manufacture larger and more effective pistons.

The results contrast with the view that new technologies reduce employment or increase the share of highly educated workers in manufacturing firms. While no single study can be decisive, we review a body of evidence indicating that manufacturing technology investments led to increases in employment and not noticeable changes in the skill composition (e.g., Doms et al. 1997; Koch et al. 2021).

We do not argue that our results apply everywhere. We obtain our findings in a context where small and large manufacturing firms produce specialized products in small lot sizes. But the findings may not apply to non-specialized commodities like cement or steel or high-volume assembly, where prices and costs are essential. Our results differ from the two basic views emphasized in the literature because it has focused more on process advances in mass production (e.g., Acemoglu and Restrepo 2018), while the flexible manufacturing system is more prevalent among the firms we focus on. Qualitative evidence documents that a large part of manufacturing has evolved from mass production (Taylor, 1911; Ford, 1922) to flexible specialization (Piore and Sabel, 1984; Milgrom and Roberts, 1990). Currently, a large part of manufacturing is specialized.

Our results do not directly apply to non-physical technological advances like ICT or the Internet.
management practices, R&D, technological advances in offices, historical eras, or the future. Some technological advances have also replaced workers (e.g., Acemoglu and Restrepo 2020; Bessen et al. 2020), and our results do not challenge the view that skills and technologies are related (e.g., Acemoglu and Autor 2011). Our evidence suggests that work and skill requirements change in subtle ways due to technology investment (as in Bartel et al. 2007).

Our results provide new evidence on the effects of one type of industrial policy: a lump-sum transfer to increase technology adoption in manufacturing firms (see also Criscuolo et al. 2019). Several commentators argue that lack of access to financial support limits the manufacturing sector’s ability to scale up ideas into production (Dertouzos et al., 1989; Berger, 2013; Gruber and Johnson, 2019). We find that it is possible to stimulate technology investments by targeted subsidies and, by doing so, induce increases in employment, revenue, exports, and product variety.

Finally, our study makes some methodological contributions. We demonstrate novel methods to use text data in program evaluation. Many policy programs leave a trail of text records, and these texts allow measuring things that would otherwise be difficult to measure. We show how to use text data to measure variables of interest and perform matching. In the spirit of Roberts et al. (2020) and Mozer et al. (2020), we demonstrate how to craft a research design by controlling for program participants’ underlying differences using text data. As new technologies have proliferated across firms, so, too, has the empirical literature on their effects. Our paper is the first to evaluate advanced manufacturing technologies’ effects using a research design based on policy variation. In light of the results reported here, some more conventional estimates of the effect of technologies in manufacturing firms do not appear to be too far off the mark (e.g., Doms et al. 1997).
References

Main Figures and Tables

(a) CNC Machine and a Robot.

(b) Inside an Industrial Manufacturing Plant.

(c) Machine Operators and a Milling Machine.

Figure 1: Documenting the Context: Photographs from Our Sample Firms.

Back to Section 2.
Figure 2: Manufacturing Skill Trends

Notes: These figures document trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least 3 workers. We compute year-level averages from firm-level observations. The numbers are unweighted to match our research design. The employment-weighted numbers are similar. Back to Section 2.
Figure 3: The Subsidy Application Process.

Notes: Details in the main text. Back to Section 4.
Figure 4: The Text Propensity Score Calibration Plot.

Notes: Upper panel: The predicted probabilities based on text data are on the x-axis, and the probability of subsidy receipt is on the y-axis. The text data are evaluation reports of the applications written by the subsidy program officers. The predicted probabilities are calibrated using a vector representation of the text and SVM. The predicted probabilities closely match the empirical probabilities. Lower panel: Distribution of the predicted values. Most of the applications have high predicted values reflecting the overall acceptance rate. Back to Section 4.3.
Figure 5: The First Stage: The Effect of Technology Subsidies on Machinery Investments.

Notes: Event-study estimates from Equation 1. The outcome is investment in machinery and equipment (in EUR 1000s) measured from the financial statement register. Event time $t = 0$ refers to the application year. For example, the estimate for $\tau = 1$ indicates that the treatment group invested EUR 60K more than the control group. The estimates indicate a cumulative EUR 130K effect on machinery investment. Back to Section 5.
Figure 6: Employment Effects: The Effect of Technology Subsidies on Employment (in %).

Notes: Event-study estimates from Equation 1. The outcome is employment relative to the base year $\tau = -3$. The estimates indicate approx. 20% increase in employment. Event time $\tau = 0$ refers to the application year. Back to Section 5.
Figure 7: Skill Effects. The Effect of Technology Subsidies on Skill Composition.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. Education is measured as a relative change in average years of education in the firm between $\tau = -3$ and the average of $\tau \in [2, 5]$. The shares are measured in percentage-point changes. The estimates indicate no detectable changes in the skill composition. Back to Section 5.
Figure 8: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. Machine Investment, Employment, Revenue, Wages, and Productivity are measured by relative changes to baseline at $\tau = -3$. For Machine Investment, the post-period outcome is the sum of investment between $\tau \in [0, 2]$ and for other outcomes, the average of $\tau \in [2, 5]$. Back to Section 5.
Figure 9: Process vs. Product.

Notes: Details in the main text. Back to Section 6.
Notes: Event-study estimates from Equation 1. The outcome is the firm’s export status indicator (exporter vs. non-exporter). Exports are measured from the Finnish Customs’ Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as an exporter in a given year if its total export value is over 12K EUR during the calendar year spread over at least two different months, or a single export event is over 120K EUR in value. Event time $\tau = 0$ refers to the application year. Back to Section 6.2.

Figure 10: Export Effects: The Export Status.

Figure 11: Marketing Effects: Marketing Expenditure.

Notes: Event-study estimates from Equation 1. The outcome is the firm’s marketing expenditure, measured from the Finnish Financial Statement Register. Event time $\tau = 0$ refers to the application year. Back to Section 6.2.
Figure 12: Technology Categories Measured from Text Data: Observations by Category.

Notes: Product refers to technology projects that aim to produce a new type of output. Process refers to technology projects that aim to produce the same type of output. The text data are text records from the subsidy program’s administration, including each firm’s application and evaluation texts. A trained panel performed the classification. Details in the main text. Back to Section 6.2.
Figure 13: Technology Categories Measured from the Survey Data: Observations by Category.

Notes: The European Community Innovation Survey (CIS) reports firms’ views about the importance of different objectives for process and product innovations, including technology adoption. Panel (a) shows the share of firms in our main sample that report the objective is highly important. N refers to the number of firms for which we have a response. Variables are in thematic order (new varieties, expansion, costs, environment, and regulations). We use survey years 1996–2008. If the firm has responded to multiple rounds on CIS surveys, we consider the closest survey to its technology adoption event. Panel (b): Product refers to firms that reported that one of the first five objectives was important and lower labor costs were not. Process refers to firms that reported that lower labor costs were important but did not report that any of the first five objectives were. Back to Section 6.2.
Figure 14: Moore's Law for Pistons: The Quality Trend of Diesel Engines and Piston Materials.

Back to Section 6.2.
Figure 15: Specialized vs. Non-Specialized Industries: Observations by Category.

Notes: Specialized refers to industries producing non-commodities and non-specialized refers to industries producing commodities measured by the Rauch (1999) index. The distribution is similar when using Gollop and Monahan (1991) and Sutton (1998) indices. Back to Section 6.3.
Table 1: Technology Categories.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologies</td>
<td>All technology investments and projects.</td>
</tr>
<tr>
<td>Uses of Technologies</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Produce the same type of output using technologies.</td>
</tr>
<tr>
<td>Product</td>
<td>Produce a new type of output using technologies.</td>
</tr>
<tr>
<td>Types of Technologies</td>
<td></td>
</tr>
<tr>
<td>Automated vs. non-automated</td>
<td>Technologies with no active user vs. an active user.</td>
</tr>
<tr>
<td>Hardware and/or software</td>
<td>Physical vs. non-physical technologies.</td>
</tr>
</tbody>
</table>

Notes: Technologies are measured from the financial, text, customs, and survey data. Uses of technologies are measured from the text data of the technology subsidy program and from the Community Innovation Survey (CIS). Types of technologies are measured from the text data and the customs data. The technology classes are described in Appendix E. Back to Sections 3 and 6.2.
Table 2: Summary Statistics: The Main Research Design (Winners vs. Losers).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Machinery Inv. (EUR K)</td>
<td>109.93</td>
<td>369.14</td>
<td>82.60</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>3.20</td>
<td>25.39</td>
<td>1.64</td>
</tr>
<tr>
<td>Employment</td>
<td>17.81</td>
<td>47.16</td>
<td>9.67</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>22.23</td>
<td>9.08</td>
<td>18.40</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>112.05</td>
<td>129.25</td>
<td>47.01</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>81.77</td>
<td>103.02</td>
<td>0.00</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.71</td>
<td>0.99</td>
<td>11.45</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>15.51</td>
<td>16.80</td>
<td>11.63</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>70.53</td>
<td>21.53</td>
<td>70.37</td>
</tr>
<tr>
<td>Observations</td>
<td>1885</td>
<td>146</td>
<td>2031</td>
</tr>
</tbody>
</table>

Notes: All variables measured at $\tau = -3$. Revenue, employment, and wages come from the firm- and worker-level registers. Subsidies applied and granted are from subsidy application data. Education years, college, and production worker shares are measured based on the worker composition within the firm. Back to Section 4.2.
<table>
<thead>
<tr>
<th></th>
<th>(1) Granted Subsidy</th>
<th>(2) Machine Inv. (EUR K)</th>
<th>(3) Capital Stock (EUR K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>66.06***</td>
<td>107.9***</td>
<td>49.78**</td>
</tr>
<tr>
<td></td>
<td>(3.119)</td>
<td>(17.53)</td>
<td>(18.26)</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>2031</td>
<td>2031</td>
<td>1560</td>
</tr>
</tbody>
</table>

Notes: Difference-in-differences estimates from Equation 2. To measure capital, we use the official records on firms’ balance sheets. Back to Section 5.

Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001
Table 4: Firm-Level Effects.

<table>
<thead>
<tr>
<th></th>
<th>(1) Machine Inv. (EUR K)</th>
<th>(2) Employment</th>
<th>(3) Revenue</th>
<th>(4) Wages</th>
<th>(5) Profit Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>107.9***</td>
<td>100.3***</td>
<td>0.232***</td>
<td>0.234**</td>
<td>0.314***</td>
</tr>
<tr>
<td>(Observations)</td>
<td>(17.53)</td>
<td>(21.90)</td>
<td>(0.0614)</td>
<td>(0.0746)</td>
<td>(0.0779)</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>2031</td>
<td>1812</td>
<td>2031</td>
<td>1812</td>
<td>2031</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

Panel B: Skill Composition, Labor Share, and Productivity.

<table>
<thead>
<tr>
<th></th>
<th>(1) Productivity</th>
<th>(2) Labor Share</th>
<th>(3) Educ. Years</th>
<th>(4) College Share</th>
<th>(5) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>-0.00516</td>
<td>-0.00622</td>
<td>-0.00202</td>
<td>-0.000700</td>
<td>0.0246</td>
</tr>
<tr>
<td>(Observations)</td>
<td>(0.0350)</td>
<td>(0.0427)</td>
<td>(0.00496)</td>
<td>(0.00601)</td>
<td>(0.0611)</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>2031</td>
<td>1812</td>
<td>2031</td>
<td>1812</td>
<td>1884</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2. **Panel A**: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. **Panel B**: Column 1 is in relative changes. Columns 2, 3, and 4 (shares) are in percentage points. Column 3 (education years) is in years. For Machine Investment, the post-period outcome is the sum of investment between $\tau \in [0, 2]$ and for other outcomes, the average of $\tau \in [2, 5]$. Back to Section 5.
Table 5: Continuous Treatment Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machine Inv.</td>
<td>Employment</td>
<td>Revenue</td>
</tr>
<tr>
<td>Granted Subsidy</td>
<td>1.321***</td>
<td>1.262***</td>
<td>0.249***</td>
</tr>
<tr>
<td></td>
<td>(0.0806)</td>
<td>(0.0809)</td>
<td>(0.0213)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.230***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0220)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.292***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.468)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.973***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.478)</td>
</tr>
</tbody>
</table>

Propensity Score | ✓ | ✓ | ✓ |
Observations | 2031 | 1812 | 2031 | 1812 | 2031 | 1812 |

Standard errors in parentheses.
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Treatment is the subsidy amount in EUR. Treatment is scaled to EUR 10,000 for employment. For Machine Investment, the post-period outcome is the sum of investment between $\tau \in [0, 2]$ and for other outcomes, the average of $\tau \in [2, 5]$. Back to Section 5.
Table 6: Predictions from Process vs. Product Type Technological Changes.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Process</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Productivity</td>
<td>↑</td>
<td>0</td>
</tr>
<tr>
<td>Profit margin</td>
<td>↑</td>
<td>0</td>
</tr>
<tr>
<td>Products</td>
<td>0</td>
<td>↑</td>
</tr>
<tr>
<td>Export status and share</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Employment</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Labor share</td>
<td>↓</td>
<td>–</td>
</tr>
<tr>
<td>Skill composition</td>
<td>↑</td>
<td>–</td>
</tr>
<tr>
<td>Prices</td>
<td>↓ if cost</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>↑ if quality</td>
<td>↑ if quality</td>
</tr>
</tbody>
</table>

Notes: Details in the main text. The symbol – refers to no clear prediction. Back to Section 6.1.
Table 7: Export and Product Effects.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Export Status</td>
<td>Export Share</td>
<td>Export Regions</td>
<td>Products</td>
<td>Products Introduced</td>
<td>Products Discontinued</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.0404**</td>
<td>0.00935*</td>
<td>0.219***</td>
<td>0.155**</td>
<td>0.0880**</td>
<td>0.0664**</td>
</tr>
<tr>
<td></td>
<td>(0.0134)</td>
<td>(0.00451)</td>
<td>(0.0568)</td>
<td>(0.0599)</td>
<td>(0.0282)</td>
<td>(0.0223)</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.284</td>
<td>0.0523</td>
<td>1.498</td>
<td>1.546</td>
<td>0.498</td>
<td>0.539</td>
</tr>
<tr>
<td>N</td>
<td>2031</td>
<td>2031</td>
<td>2031</td>
<td>2031</td>
<td>2031</td>
<td>2031</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Notes: Difference-in-differences estimates from Equation 2 for the main research design (winners vs. losers). Exports and products are measured from the Finnish Customs’ Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as an exporter in a given year if its total export value is over 12K EUR during the calendar year spread over at least two different months, or a single export event is over 120K EUR in value. Back to Section 6.2.
Table 8: Price Effects.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Price (Exports)</td>
<td>Price (Manufacturing)</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.291 (0.328)</td>
<td>0.308** (0.102)</td>
</tr>
<tr>
<td>N</td>
<td>400 217</td>
<td></td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2 for the main research design (winners vs. losers). We winsorize price data at the 10% level within product and year. Prices are measured as product level revenue divided by quantity from the Finnish Customs’ Foreign Trade Statistics and the Industrial Production Statistics (a survey of manufacturing firms). Back to Section 6.2.
Table 9: The Effects by Technology Categories Measured from Text Data.

Panel A: Investment, Employment, Wages, and Firm Performance.

<table>
<thead>
<tr>
<th></th>
<th>(1) Machine Inv. (EUR K)</th>
<th>(2) Employment</th>
<th>(3) Revenue</th>
<th>(4) Wages</th>
<th>(5) Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>142.7***</td>
<td>0.210***</td>
<td>0.262***</td>
<td>-0.00270</td>
<td>0.0222</td>
</tr>
<tr>
<td></td>
<td>(9.964)</td>
<td>(0.0235)</td>
<td>(0.0320)</td>
<td>(0.0122)</td>
<td>(0.0154)</td>
</tr>
<tr>
<td>Process</td>
<td>77.66***</td>
<td>0.0905</td>
<td>0.0783</td>
<td>-0.00154</td>
<td>-0.0515</td>
</tr>
<tr>
<td></td>
<td>(22.95)</td>
<td>(0.0779)</td>
<td>(0.0759)</td>
<td>(0.0324)</td>
<td>(0.0483)</td>
</tr>
<tr>
<td>N, Product</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>1963</td>
<td>2046</td>
</tr>
<tr>
<td>N, Process</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>192</td>
<td>198</td>
</tr>
</tbody>
</table>

Panel B: Skill Composition and The Labor Share.

<table>
<thead>
<tr>
<th></th>
<th>(1) Labor Share</th>
<th>(2) Educ. Years</th>
<th>(3) College Share</th>
<th>(4) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>-0.00474</td>
<td>0.0227</td>
<td>0.00691</td>
<td>-0.0110</td>
</tr>
<tr>
<td></td>
<td>(0.00264)</td>
<td>(0.0269)</td>
<td>(0.00422)</td>
<td>(0.00742)</td>
</tr>
<tr>
<td>Process</td>
<td>0.00583</td>
<td>0.137</td>
<td>0.00497</td>
<td>0.0101</td>
</tr>
<tr>
<td></td>
<td>(0.00765)</td>
<td>(0.0809)</td>
<td>(0.0135)</td>
<td>(0.0211)</td>
</tr>
<tr>
<td>N, Product</td>
<td>2046</td>
<td>1905</td>
<td>1905</td>
<td>1921</td>
</tr>
<tr>
<td>N, Process</td>
<td>198</td>
<td>186</td>
<td>186</td>
<td>186</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Product (the extensive margin) refers to technology projects that aim to produce a new type of output. Process (the intensive margin) refers to technology projects that aim to produce the same type of output with new technologies. **Panel A:** Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. **Panel B:** Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education) is in years. N refers to treatment group observations. For Machine Investment, the post-period outcome is the sum of investment between \(\tau \in [0, 2] \) and for other outcomes, the average of \(\tau \in [2, 5] \). We use coarsened exact matching (CEM). Back to Section 6.2.
Appendix

A The Subsidies Design: Supplementary Figures and Tables

B The Subsidies Design: Matched Control Group

C The Regression Discontinuity Design

D The Spikes Design

E Data and Fieldwork

F Theoretical Framework Details

G Theoretical Framework for the Research Design

H Related Research
A The Subsidies Design: Supplementary Figures and Tables

Figure A1: The First Stage: The Effect of Winning a Subsidy on Granted and Received Subsidies.

Notes: Event-study estimates from Equation 1. Panel (a): The outcomes are any subsidy granted (a) and received (b) measured from the Finnish Statistics on Business Subsidies. Event time $\tau = 0$ refers to the application year. Back to Section 5.
Figure A2: Skill Effects: Education Groups.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at \(\tau = -3 \). The data are from Finnish educational registers. Back to Section 5.

Figure A3: Skill Effects: Occupation Groups.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at \(\tau = -3 \). The data are from Finnish occupation registers. The shares do not sum to 100% because some workers do not have occupational info, i.e., the denominator includes all workers in the firm. Back to Section 5.
Figure A4: Skill Effects: Cognitive Performance.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces. Back to Section 5.

Figure A5: Skill Effects: School Performance.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. The estimates are in percentages of standard deviations. The data are from the Secondary Education Application Register and the Finnish Matriculation Examination Board Register. Back to Section 5.
Figure A6: Skill Effects: Personality.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces. Back to Section 5.

Figure A7: Skill Effects: Demographics.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. The data are from the Finnish worker and population registers. Back to Section 5.
Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at $\tau = -3$. Median refers to the median task intensity in the Finnish labor force. For example, the first row indicates that 74.9% of workers in our sample firms are in an occupation times industry cell that is above the median in routine task content. The treatment group increases their share of these workers by a statistically insignificant 1% compared to the control group. The shares do not sum to 100% because some workers do not have occupational info, i.e., the denominator includes all workers in the firm. The data are from the Finnish occupation registers and the European Working Conditions Survey (EWCS). Back to Section 5.

Figure A8: Skill Effects: Tasks.
Figure A9: Automated (left) vs. Non-Automated (right) Technologies from Text Data.

Figure A10: Automated (left) vs. Non-Automated (right) Technologies from Customs Data.

Notes: Difference-in-differences estimates from Equation 2. Automated vs. non-automated technologies are measured from customs data as described in Section 3 and Appendix E. A project is classified as automated if over 50% of the imported machinery are automated technologies. A project is classified as non-automated if over 50% of the imported machinery are non-automated technologies. The right-hand side reports means at $\tau = -3$. Automated (N): Treatment 220, Control 146. Non-Automated (N): Treatment 319, Control 146. Back to Section 7.
Figure A11: Patents: Share of Patenting Firms.

Notes: The share of patenting firms by year among subsidy applicant firms. Patent information comes from the Finnish Patent Database. Event time $\tau = 0$ refers to the subsidy application year. Back to Section 6.2.
Figure A12: Simple Means: Machinery Investment, Employment, and Education.

Notes: Means over time for the main treatment and control groups (winners vs. losers). Machinery investment in EUR, employment in % relative to $\tau = -3$, and education in years. Back to Section 7.
Figure A13: Firm Survival Effects.

Notes: Group means and event-study estimates from Equation 1. Panels (a, c): Survival is measured from whether the firm ID exists in the firm register. Panels (b, d): Survival is extended to include mergers and acquisitions (and other cases the firm ID changes), where at least 50% of workers continue under the same firm ID. Back to Section 7.
Table A1: Summary Statistics: Benchmarking to All Manufacturing.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subsidy Sample</th>
<th>Finnish Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>p10</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>2.66</td>
<td>1.96</td>
</tr>
<tr>
<td>Labor Productivity (EUR K)</td>
<td>150.30</td>
<td>131.20</td>
</tr>
<tr>
<td>Profit Margin (%)</td>
<td>5.55</td>
<td>3.10</td>
</tr>
<tr>
<td>Employment Change (% Five Year)</td>
<td>57.72</td>
<td>40.70</td>
</tr>
<tr>
<td>Revenue Change (% Five Year)</td>
<td>74.62</td>
<td>44.66</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>110.48</td>
<td>86.74</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>79.53</td>
<td>49.82</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.79</td>
<td>11.57</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>15.36</td>
<td>13.38</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>70.70</td>
<td>66.37</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>2031</td>
<td></td>
</tr>
<tr>
<td>Number of Unique Firms</td>
<td>2031</td>
<td></td>
</tr>
<tr>
<td>Number of Years</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Manufacturing firms include all firms that satisfy the subsidy sample’s balance-sheet-based restrictions and have over two full-time employees. The subsidy sample is measured at event-time $\tau = -1$. Manufacturing means are measured for each firm in a given year and collapsed to a year-level mean for all manufacturing. These year-level means are averaged over 1994–2018. The median and the percentiles are at the year level. Subsidy applied, subsidy granted, college share, and production worker share are not winsorized, but all other outcomes are (at top and bottom 5% level). Back to Section 4.1.
Table A2: Summary Statistics: Text Matching using Cosine Similarity.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>2.26</td>
<td>4.44</td>
<td>1.68</td>
</tr>
<tr>
<td>Employment</td>
<td>15.77</td>
<td>26.04</td>
<td>11.15</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>21.24</td>
<td>8.15</td>
<td>19.28</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>110.02</td>
<td>128.33</td>
<td>64.64</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>78.31</td>
<td>99.14</td>
<td>0.00</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.67</td>
<td>0.98</td>
<td>11.42</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>15.18</td>
<td>16.75</td>
<td>11.05</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>70.62</td>
<td>22.17</td>
<td>72.65</td>
</tr>
<tr>
<td>Observations</td>
<td>1508</td>
<td>1508</td>
<td>3016</td>
</tr>
</tbody>
</table>

Notes: All variables measured at $\tau = -3$. Back to Section 4.3.
Table A3: Firm-Level Effects: Different Text Matching Versions.

Panel A: Coarsened Exact Matching (CEM)

<table>
<thead>
<tr>
<th></th>
<th>Machine Inv. (EUR K)</th>
<th>Employment</th>
<th>Revenue</th>
<th>Educ. Years</th>
<th>College Share</th>
<th>Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>93.10***</td>
<td>0.242***</td>
<td>0.313**</td>
<td>-0.0480</td>
<td>-0.000144</td>
<td>-0.00883</td>
</tr>
<tr>
<td></td>
<td>(19.93)</td>
<td>(0.0712)</td>
<td>(0.0956)</td>
<td>(0.0661)</td>
<td>(0.0105)</td>
<td>(0.0207)</td>
</tr>
<tr>
<td>Observations</td>
<td>1256</td>
<td>1256</td>
<td>1256</td>
<td>1160</td>
<td>1160</td>
<td>1161</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Panel B: Inverse Probability Weighting (IPW)

<table>
<thead>
<tr>
<th></th>
<th>Machine Inv. (EUR K)</th>
<th>Employment</th>
<th>Revenue</th>
<th>Educ. Years</th>
<th>College Share</th>
<th>Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>159.6***</td>
<td>0.359***</td>
<td>0.458***</td>
<td>-0.0441</td>
<td>0.00547</td>
<td>-0.0276</td>
</tr>
<tr>
<td></td>
<td>(22.81)</td>
<td>(0.0911)</td>
<td>(0.117)</td>
<td>(0.0848)</td>
<td>(0.0162)</td>
<td>(0.0300)</td>
</tr>
<tr>
<td>Observations</td>
<td>1812</td>
<td>1812</td>
<td>1812</td>
<td>1676</td>
<td>1676</td>
<td>1692</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Panel C: Cosine Similarity

<table>
<thead>
<tr>
<th></th>
<th>Machine Inv. (EUR K)</th>
<th>Employment</th>
<th>Revenue</th>
<th>Educ. Years</th>
<th>College Share</th>
<th>Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>103.9***</td>
<td>0.169***</td>
<td>0.195***</td>
<td>0.0133</td>
<td>-0.00224</td>
<td>-0.00769</td>
</tr>
<tr>
<td></td>
<td>(14.90)</td>
<td>(0.0249)</td>
<td>(0.0335)</td>
<td>(0.0219)</td>
<td>(0.00542)</td>
<td>(0.00896)</td>
</tr>
<tr>
<td>Observations</td>
<td>3016</td>
<td>3016</td>
<td>3016</td>
<td>2678</td>
<td>2678</td>
<td>2678</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Notes: Difference-in-differences estimates from Equation 2 with different text matching versions. Back to Section 5.
Table A4: Firm-Level Effects: Different Controls.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No Controls</td>
<td>140.9***</td>
<td>0.185**</td>
<td>0.261***</td>
<td>-0.0553</td>
<td>-0.00559</td>
<td>-0.00242</td>
<td>0.0225</td>
<td>0.00480</td>
<td>-0.0235</td>
</tr>
<tr>
<td></td>
<td>(25.76)</td>
<td>(0.0606)</td>
<td>(0.0770)</td>
<td>(0.0353)</td>
<td>(0.0341)</td>
<td>(0.00492)</td>
<td>(0.0599)</td>
<td>(0.00927)</td>
<td>(0.0359)</td>
</tr>
<tr>
<td>Controls 1</td>
<td>132.4***</td>
<td>0.219***</td>
<td>0.302***</td>
<td>-0.0499</td>
<td>-0.00379</td>
<td>-0.00247</td>
<td>0.0252</td>
<td>0.00587</td>
<td>-0.0263</td>
</tr>
<tr>
<td></td>
<td>(26.17)</td>
<td>(0.0615)</td>
<td>(0.0779)</td>
<td>(0.0356)</td>
<td>(0.0351)</td>
<td>(0.00496)</td>
<td>(0.0611)</td>
<td>(0.00936)</td>
<td>(0.0357)</td>
</tr>
<tr>
<td>Controls 2</td>
<td>114.8***</td>
<td>0.232***</td>
<td>0.314***</td>
<td>-0.0481</td>
<td>-0.00516</td>
<td>-0.00202</td>
<td>0.0246</td>
<td>0.00557</td>
<td>-0.0256</td>
</tr>
<tr>
<td></td>
<td>(23.99)</td>
<td>(0.0614)</td>
<td>(0.0779)</td>
<td>(0.0355)</td>
<td>(0.0350)</td>
<td>(0.00496)</td>
<td>(0.0611)</td>
<td>(0.00935)</td>
<td>(0.0357)</td>
</tr>
<tr>
<td>Controls 3</td>
<td>105.0***</td>
<td>0.249***</td>
<td>0.327***</td>
<td>-0.0385</td>
<td>-0.00670</td>
<td>-0.000862</td>
<td>0.0252</td>
<td>0.00572</td>
<td>-0.0255</td>
</tr>
<tr>
<td></td>
<td>(23.96)</td>
<td>(0.0609)</td>
<td>(0.0773)</td>
<td>(0.0350)</td>
<td>(0.0349)</td>
<td>(0.00490)</td>
<td>(0.0612)</td>
<td>(0.00942)</td>
<td>(0.0363)</td>
</tr>
<tr>
<td>Controls 4</td>
<td>110.2***</td>
<td>0.210***</td>
<td>0.284***</td>
<td>-0.0344</td>
<td>-0.00658</td>
<td>-0.000101</td>
<td>0.0247</td>
<td>0.00509</td>
<td>-0.0268</td>
</tr>
<tr>
<td></td>
<td>(22.92)</td>
<td>(0.0607)</td>
<td>(0.0770)</td>
<td>(0.0351)</td>
<td>(0.0350)</td>
<td>(0.00493)</td>
<td>(0.0614)</td>
<td>(0.00946)</td>
<td>(0.0363)</td>
</tr>
<tr>
<td>Controls 5</td>
<td>36.43</td>
<td>0.221***</td>
<td>0.299***</td>
<td>-0.0319</td>
<td>-0.00474</td>
<td>-0.000143</td>
<td>0.0168</td>
<td>0.00482</td>
<td>-0.0275</td>
</tr>
<tr>
<td></td>
<td>(22.65)</td>
<td>(0.0613)</td>
<td>(0.0776)</td>
<td>(0.0352)</td>
<td>(0.0350)</td>
<td>(0.00494)</td>
<td>(0.0619)</td>
<td>(0.00951)</td>
<td>(0.0366)</td>
</tr>
<tr>
<td>Observations</td>
<td>2031</td>
<td>2031</td>
<td>2031</td>
<td>1952</td>
<td>2031</td>
<td>2031</td>
<td>1884</td>
<td>1884</td>
<td>821</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2 with different controls.

Controls 1: industry (2-digit).
Controls 2: industry (2-digit), employment (at the base year).
Controls 3: industry (2-digit), employment (at the base year), ELY Center dummies.
Controls 4: industry (2-digit), employment (at the base year), ELY Center dummies, applied subsidy amount.
Controls 5: industry (2-digit), employment (at the base year), ELY Center dummies, applied subsidy amount, text category dummies.

Back to Section 5.
Table A5: Continuous Treatment Estimates Controlling for the Subsidies Applied.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machine Inv. (EUR K)</td>
<td>Employment</td>
<td>Revenue</td>
</tr>
<tr>
<td>Granted Subsidy</td>
<td>0.589***</td>
<td>0.613***</td>
<td>0.129**</td>
</tr>
<tr>
<td></td>
<td>(0.153)</td>
<td>(0.163)</td>
<td>(0.0464)</td>
</tr>
<tr>
<td>Applied Subsidy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>2031</td>
<td>1812</td>
<td>2031</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1812</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)

Notes: Difference-in-differences estimates from Equation 2. Treatment is the received subsidy amount in EUR. Treatment is scaled to EUR 10,000 for employment. Applied subsidy is the applied subsidy amount in EUR. Machinery investment is the sum over \(\tau \in [0, 2] \). Other outcomes are averages over \(\tau \in [2, 5] \). Back to Section 5.
Table A6: Product: Matched Sample Summary Statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>3.65</td>
<td>33.13</td>
<td>6.42</td>
</tr>
<tr>
<td>Employment</td>
<td>18.65</td>
<td>55.00</td>
<td>30.54</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>22.23</td>
<td>8.27</td>
<td>22.74</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>111.99</td>
<td>128.51</td>
<td>3.13</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>83.63</td>
<td>104.87</td>
<td>1.87</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.71</td>
<td>1.00</td>
<td>11.62</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>15.38</td>
<td>16.94</td>
<td>16.05</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>70.81</td>
<td>21.92</td>
<td>67.97</td>
</tr>
<tr>
<td>Observations</td>
<td>1023</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Notes: All variables measured at $\tau = -3$. The treatment group is subsidy-winning firms that described product type technological advances in their application text. The matched control group is searched from all firms with balance sheet data. In this table, the subsidy applied and granted refer to all recorded subsidies; the matched control group does not apply or receive ELY Center subsidies. Back to Section 6.2.

Table A7: Process: Matched Sample Summary Statistics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>3.06</td>
<td>6.22</td>
<td>3.18</td>
</tr>
<tr>
<td>Employment</td>
<td>21.61</td>
<td>38.00</td>
<td>21.85</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>23.67</td>
<td>8.34</td>
<td>23.95</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>77.50</td>
<td>95.55</td>
<td>13.12</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>52.94</td>
<td>72.32</td>
<td>8.22</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.57</td>
<td>0.95</td>
<td>11.53</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>14.45</td>
<td>15.99</td>
<td>14.50</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>69.48</td>
<td>20.42</td>
<td>70.32</td>
</tr>
<tr>
<td>Observations</td>
<td>99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: All variables measured at $\tau = -3$. The treatment group is subsidy-winning firms that described process type technological advances in their application text. The matched control group is searched from all firms with balance sheet data. In this table, the subsidy applied and granted refer to all recorded subsidies; the matched control group does not apply or receive ELY Center subsidies. Back to Section 6.2.
Table A8: Continuous Treatment Estimates by Text Categories

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machine Inv.</td>
<td>Employment</td>
<td>Revenue</td>
<td>Wages</td>
<td>Productivity</td>
<td>Labor Share</td>
<td>Edu. Years</td>
<td>College Share</td>
<td>Production Share</td>
</tr>
<tr>
<td>Product</td>
<td>1.323***</td>
<td>0.194***</td>
<td>4.585***</td>
<td>-1.663</td>
<td>150.7</td>
<td>-0.000345*</td>
<td>0.000338</td>
<td>0.000296</td>
<td>-0.0000846</td>
</tr>
<tr>
<td></td>
<td>(0.0865)</td>
<td>(0.0239)</td>
<td>(0.613)</td>
<td>(9.767)</td>
<td>(124.2)</td>
<td>(0.000130)</td>
<td>(0.00113)</td>
<td>(0.000192)</td>
<td>(0.000323)</td>
</tr>
<tr>
<td>Process</td>
<td>1.243***</td>
<td>0.194</td>
<td>1.115</td>
<td>26.97</td>
<td>-359.8</td>
<td>0.000615</td>
<td>-0.00567</td>
<td>-0.00138</td>
<td>0.00123</td>
</tr>
<tr>
<td></td>
<td>(0.216)</td>
<td>(0.109)</td>
<td>(2.399)</td>
<td>(40.53)</td>
<td>(603.8)</td>
<td>(0.000534)</td>
<td>(0.00739)</td>
<td>(0.00144)</td>
<td>(0.00135)</td>
</tr>
<tr>
<td>N, Product</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>1905</td>
<td>1905</td>
<td>1921</td>
<td></td>
</tr>
<tr>
<td>N, Process</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>198</td>
<td>186</td>
<td>186</td>
<td>186</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Difference-in-differences estimates from Equation 2. Product type productivity refers to technology projects that aim to produce a new type of output. Process type productivity refers to technology projects that aim to produce the same type of output with the new technologies. Columns 1 and 3 are in EUR. Treatment is scaled to EUR 10,000 for rest of the columns. Columns 6, 8, and 9 (shares) are in percentage points. Column 7 (education years) is in years. Machinery investment is the sum over $\tau \in [0, 2]$. Other outcomes are averages over $\tau \in [2, 5]$. N refers to matched observations. Back to Section 6.2.
Table A9: The Effects by Technology Categories Measured from CIS Survey.

<table>
<thead>
<tr>
<th></th>
<th>(1) Machine Inv. (EUR K)</th>
<th>(2) Employment</th>
<th>(3) Revenue</th>
<th>(4) Wages</th>
<th>(5) Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>311.5***</td>
<td>0.235**</td>
<td>0.364***</td>
<td>-0.00137</td>
<td>0.154*</td>
</tr>
<tr>
<td></td>
<td>(62.75)</td>
<td>(0.0812)</td>
<td>(0.101)</td>
<td>(0.0296)</td>
<td>(0.0620)</td>
</tr>
<tr>
<td>Process</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, Product</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
<td>164</td>
</tr>
<tr>
<td>N, Process</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Panel B: Skill Composition and the Labor Share.

<table>
<thead>
<tr>
<th></th>
<th>(1) Labor Share</th>
<th>(2) Educ. Years</th>
<th>(3) College Share</th>
<th>(4) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>-0.0169*</td>
<td>0.0758</td>
<td>0.00812</td>
<td>-0.00478</td>
</tr>
<tr>
<td></td>
<td>(0.00737)</td>
<td>(0.0679)</td>
<td>(0.0107)</td>
<td>(0.0184)</td>
</tr>
<tr>
<td>Process</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N, Product</td>
<td>164</td>
<td>163</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>N, Process</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.

Notes: Difference-in-differences estimates from Equation 2. Product (the extensive margin) refers to technology projects that aim to produce a new type of output. Process (the intensive margin) refers to technology projects that aim to produce the same type of output with the new technologies. The process sample is too small to perform estimation (denoted by -). Panel A: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education years) is in years. N refers to matched observations. We use coarsened exact matching (CEM) 1:1. Machinery investment is the sum over $\tau \in [0, 2]$. Other outcomes are averages over $\tau \in [2, 5]$. Back to Section 6.2.
Table A10: The Effects by Context Measured from the Rauch Index.

<table>
<thead>
<tr>
<th>(1) Machine Inv. (EUR K)</th>
<th>(2) Employment</th>
<th>(3) Revenue</th>
<th>(4) Wages</th>
<th>(5) Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized</td>
<td>147.9***</td>
<td>0.188***</td>
<td>0.216***</td>
<td>-0.00748</td>
</tr>
<tr>
<td></td>
<td>(8.141)</td>
<td>(0.0213)</td>
<td>(0.0272)</td>
<td>(0.0113)</td>
</tr>
<tr>
<td>Non-Specialized</td>
<td>86.61*</td>
<td>0.132</td>
<td>0.171</td>
<td>0.0334</td>
</tr>
<tr>
<td></td>
<td>(42.06)</td>
<td>(0.0965)</td>
<td>(0.114)</td>
<td>(0.0386)</td>
</tr>
<tr>
<td>N, Specialized</td>
<td>2704</td>
<td>2704</td>
<td>2704</td>
<td>2606</td>
</tr>
<tr>
<td>N, Non-Specialized</td>
<td>248</td>
<td>248</td>
<td>248</td>
<td>242</td>
</tr>
</tbody>
</table>

Panel B: Skill Composition and the Labor Share.

<table>
<thead>
<tr>
<th>(1) Labor Share</th>
<th>(2) Educ. Years</th>
<th>(3) College Share</th>
<th>(4) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized</td>
<td>-0.00184</td>
<td>0.0247</td>
<td>0.00281</td>
</tr>
<tr>
<td></td>
<td>(0.00219)</td>
<td>(0.0218)</td>
<td>(0.00361)</td>
</tr>
<tr>
<td>Non-Specialized</td>
<td>-0.00149</td>
<td>-0.00469</td>
<td>-0.00735</td>
</tr>
<tr>
<td></td>
<td>(0.00988)</td>
<td>(0.107)</td>
<td>(0.0192)</td>
</tr>
<tr>
<td>N, Specialized</td>
<td>2704</td>
<td>2539</td>
<td>2539</td>
</tr>
<tr>
<td>N, Non-Specialized</td>
<td>248</td>
<td>236</td>
<td>236</td>
</tr>
</tbody>
</table>

Notes: Difference-in-differences estimates from Equation 2. **Panel A**: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. **Panel B**: Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education years) is in years. N refers to matched observations. We use coarsened exact matching 1:1 (CEM). Machinery investment is the sum over \(\tau \in [0, 2] \). Other outcomes are averages over \(\tau \in [2, 5] \). Details in the main text. Back to Section 6.3.

Standard errors in parentheses.

* \(p < 0.05 \), ** \(p < 0.01 \), *** \(p < 0.001 \)
Table A11: Technology Categories from Text Data vs. Rauch Index.

<table>
<thead>
<tr>
<th>Class</th>
<th>Product</th>
<th>Process</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rauch Index</td>
<td>1019</td>
<td>89</td>
<td>1108</td>
</tr>
<tr>
<td>Low Rauch Index</td>
<td>98</td>
<td>15</td>
<td>113</td>
</tr>
<tr>
<td>Total</td>
<td>1117</td>
<td>104</td>
<td>1221</td>
</tr>
</tbody>
</table>

Notes: This 2x2 table reports the number of firms in the text categories and Rauch index combinations. Product refers to technology projects that aim to produce a new type of output. Process refers to technology projects that aim to produce the same type of output with the new technologies. High Rauch Index refers to specialized industries, Low Rauch Index refers to non-specialized industries. Back to Section 6.3.
<table>
<thead>
<tr>
<th>Panel A: Large Firms.</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>83.88</td>
<td>68.81</td>
<td>0.305**</td>
<td>0.309**</td>
<td>0.264</td>
<td>0.494**</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>676</td>
<td>609</td>
<td>676</td>
<td>609</td>
<td>676</td>
<td>609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Medium Firms.</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>76.82*</td>
<td>87.38*</td>
<td>0.296***</td>
<td>0.280*</td>
<td>0.467***</td>
<td>0.399**</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Observations</td>
<td>685</td>
<td>603</td>
<td>685</td>
<td>603</td>
<td>685</td>
<td>603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Small Firms.</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>31.99*</td>
<td>28.23</td>
<td>0.330**</td>
<td>0.373**</td>
<td>0.355**</td>
<td>0.370*</td>
</tr>
<tr>
<td>Propensity Score</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>670</td>
<td>600</td>
<td>670</td>
<td>600</td>
<td>670</td>
<td>600</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* p < 0.05, ** p < 0.01, *** p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Large Firms (FTE > 13.3; Median 25.8, Mean 41.7), Medium Firms (FTE >= 4.6 & FTE <= 13.3; Median 7.9, Mean 8.2), Small Firms (FTE < 4.6; Median 2.3, Mean 2.3). Back to Section 6.3.
B The Subsidies Design: Matched Control Group

Figure B1: The Matched Control Groups: The First Stage and Employment Effects.

Notes: Event-study estimates from Equation 1 and group means. Panels (a, b): Treatment group is the subsidy winners (the main treatment group), and control group is constructed via matching. Panels (c, d): Treatment group is the subsidy losers (the main control group), and the control group is constructed via matching, i.e., it compares two different control groups. We use coarsened exact matching (CEM). We match by revenue, employment, wages at $\tau = -3$ plus revenue and employment changes in percentages from $\tau = -3$ to $\tau = -1$ and industries’ main sectors (letter classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The match is 1:1 with replacement. Event time $\tau = 0$ refers to the application year. Back to Section 5.
Figure B2: The Matched Control Group: Skill Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the main treatment group ("winners") and a matched control group. The right-hand side reports outcome means at $\tau = -3$. Back to Section 5.

Figure B3: The Matched Control Group: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the main treatment group ("winners") and a matched control group. The right-hand side reports outcome means at $\tau = -3$. Back to Section 5.
Table B1: The Matched Control Group: Balance Table A (Winners vs. Matched Control).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>3.06</td>
<td>26.57</td>
<td>3.09</td>
</tr>
<tr>
<td>Employment</td>
<td>17.46</td>
<td>46.27</td>
<td>18.03</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>21.60</td>
<td>8.08</td>
<td>22.06</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>108.52</td>
<td>126.79</td>
<td>0.00</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>78.62</td>
<td>100.55</td>
<td>0.00</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.68</td>
<td>0.98</td>
<td>11.56</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>15.24</td>
<td>16.84</td>
<td>15.39</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>70.96</td>
<td>21.53</td>
<td>68.43</td>
</tr>
</tbody>
</table>

Observations: 1600 1600 3200

Notes: All variables measured at $\tau = -3$. Back to Section 4.

Table B2: The Matched Control Group: Balance Table B (Losers vs. Matched Control).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>1.62</td>
<td>5.52</td>
<td>1.27</td>
</tr>
<tr>
<td>Employment</td>
<td>9.02</td>
<td>18.56</td>
<td>8.81</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>17.81</td>
<td>7.95</td>
<td>18.01</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>47.47</td>
<td>76.19</td>
<td>0.00</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.34</td>
<td>1.12</td>
<td>11.42</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>10.50</td>
<td>15.47</td>
<td>15.41</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>74.25</td>
<td>25.39</td>
<td>70.77</td>
</tr>
</tbody>
</table>

Observations: 123 123 246

Notes: All variables measured at $\tau = -3$. Back to Section 4.
Table B3: The Matched Control Group: Regression Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1) Machine Inv. (EUR K)</th>
<th>(2) Employment</th>
<th>(3) Revenue</th>
<th>(4) Wages</th>
<th>(5) Profit Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>127.9***</td>
<td>0.217***</td>
<td>0.261***</td>
<td>0.00306</td>
<td>-0.00685*</td>
</tr>
<tr>
<td></td>
<td>(6.556)</td>
<td>(0.0183)</td>
<td>(0.0232)</td>
<td>(0.0100)</td>
<td>(0.00290)</td>
</tr>
<tr>
<td>Observations</td>
<td>3200</td>
<td>3200</td>
<td>3200</td>
<td>3080</td>
<td>3200</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Panel B: Skill Composition and The Labor Share.

<table>
<thead>
<tr>
<th></th>
<th>(1) Productivity</th>
<th>(2) Labor Share</th>
<th>(3) Educ. Years</th>
<th>(4) College Share</th>
<th>(5) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.0117</td>
<td>-0.00293</td>
<td>0.0303</td>
<td>0.00542</td>
<td>-0.00464</td>
</tr>
<tr>
<td></td>
<td>(0.0120)</td>
<td>(0.00203)</td>
<td>(0.0207)</td>
<td>(0.00330)</td>
<td>(0.00605)</td>
</tr>
<tr>
<td>Observations</td>
<td>3200</td>
<td>3200</td>
<td>2999</td>
<td>2999</td>
<td>3011</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the main treatment group (“winners”) and a matched control group.
Back to Section 5.
C The Regression Discontinuity Design

Design To address internal validity, we use a regression discontinuity (RD) design generated by a change in the rules used to evaluate the applications. Buri (2017) discusses the policy change and the RD strategy. The advantage of the RD design is that the estimates are likely to reflect a causal relationship and satisfy Assumption 1. The disadvantages of the RD design in this context are statistical power, that the treatment is less precisely defined, and that it does not allow a natural way to use the text data to compare different technology types and uses.

The EU expanded the definition of a small firm in 2005. Our RD design uses the fact that firms just below the new threshold were prioritized for subsidies but were otherwise similar to those just above it. Before the policy change, upper thresholds for small firms were 50 for employment, EUR 5 M for the balance sheet, and 7 M for turnover. The EU raised the thresholds for balance sheet and turnover to 10 M. We use the balance sheet as our running variable because it measured most precisely and had the most significant change; this gives us the statistical power to conduct the analysis.

The critical part is that the new rule was applied using retrospective data for firms. Thus firms could not immediately manipulate their size. However, as we show in Figure C1, firms adjusted their size later. This evidence leads us to focus only on the first year of the policy change when manipulation at the threshold was unlikely. Finland implemented the change in 2007 but considered data from 2004–2006. Our estimates use 2004 data as the running variable to avoid selection bias.

The policy change potentially affected firms’ self-selection into the program, the likelihood of winning the subsidy, and the levels of subsidies. While being a small firm is not a strict criterion for receiving subsidies, the ELY centers prioritize small firms (e.g., Takalo et al. 2013). The firms know this and are potentially more likely to apply for subsidies when the expected benefits are more significant. There were no simultaneous changes at the same margin.

To produce the RD estimates, we use the following specification:

\[Y_i = \alpha + \beta E_i + f(z_i, 2004) + \varepsilon_i \]

where \(Y_i \) is outcome, \(f(z_i, 2004) \) is a function of the running variable (balance sheet in 2004) and \(E_i \) is the cut-off indicator (balance sheet under 10 M in 2004), \(\alpha \) is constant, and \(\varepsilon_i \) is the error term. We use the bandwidth of 5 million, triangular kernel, and first-order polynomial (Gelman and Imbens, 2019) in our main specification. We cluster the standard errors at the 3-digit industry

43We exclude agriculture and forestry, the public sector, transportation, and finance since these sectors are generally not eligible for these ELY Center subsidies.
level. To make the RD estimates comparable to our difference-in-differences estimates, we use the threshold indicator \(E_i \) as an instrument for the received subsidies using 2SLS.

Results Table C2 shows the summary statistics for the sample firms. As expected, the RD sample firms are larger than in the main design because, by definition, their revenue is around EUR 10 M. Figure C1 documents firms starting to bunch around the new threshold after the change comes into effect. Figure C2 formally shows by a McCrary test (McCrary 2008; implemented as in Cattaneo et al. 2018) that this is not yet the case in the pre-change year of 2004, which is the relevant year for our identification. Table C2 provides a test whether firms are different on other sides of the cutoff before the treatment.

Next, we describe the first stage. Figure C3 shows a jump in the received subsidies at the new cutoff of EUR 10 M. The running variable (x-axis) is the balance sheet in 2004, the outcome variable (y-axis) is total received subsidies in EUR 10K. The received subsidies are larger on the left side of the cutoff since those firms became small under the new classification. Figure C3 also shows that these subsidies stimulated new investments. The linear graphs show a clear jump at the cutoff. Table C3 quantifies the same jumps using Equation 20 for subsidies received and investments made in 2007. Becoming a small firm increased the subsidies by EUR 38K and investments by EUR 188K. Both estimates are significant at the 5% level.

Table C4 presents the primary outcomes of the RD design. These results broadly confirm our main results of firm growth in employment and revenue but no skill bias. Being re-classified as a small firm increases employment by 9%, and revenue by 25%. We see no changes in average wages, years of education, or the share of college-educated workers or production workers. The estimation is done by setting the average of 2003–2006 as a baseline value and comparing each observation from 2010 to 2015 separately to the baseline to increase statistical power. These differences are the outcomes in the estimation. Figure C4 visualizes a similar estimation for each year separately. We observe an increase of 8–10 employees from 2010 onwards.

We run multiple robustness and placebo tests for our estimates. Figure C5 explores robustness to the choice of bandwidth: our results are not sensitive to it. Figure C6 runs our main specification with different thresholds: we cannot replicate our results with the placebo thresholds. Figure C7 run the estimation with placebo years’ balance sheets: we observe no effect.
Figure C1: RD: Number of Firms at the Balance Sheet Threshold.

Notes: This figure shows the number of firms around the balance-sheet threshold for small firms announced in 2003, which came into effect in 2007. Back to Section C.

Figure C2: RD: Density of Firms at the Balance Sheet Threshold.

Notes: This figure visualizes the McCrary-test for our RD year. The horizontal axis is the firms’ balance sheet in 2004 in millions of euros. The vertical axis denotes the density of observations. Back to Section C.
Figure C3: RD: The First Stage.

Notes: This figure shows the discontinuity at the balance sheet threshold for 2007 investment subsidies (left) and total investment (right). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros. Back to Section C.
Notes: The estimates are from Equation 20. The outcome is the employment difference to base year 2006. The explanatory variable is the balance-sheet RD threshold indicator. In all regressions, we cluster the standard errors by three-digit industry, the kernel function is triangular, and the polynomial order is one. Back to Section C.
Figure C5: RD: Different Bandwidths.

Notes: The estimates are from Equation 20. The horizontal axis indicates the size of the estimation window. In all regressions, we cluster the standard errors by three-digit industry, the kernel function is triangular, and the polynomial order is one. Back to Section C.

Figure C6: RD: Placebo Thresholds.

Notes: The estimates are from Equation 20. The outcome are investment subsidies in the upper panel and investment in the lower panel. The explanatory variable is the balance-sheet threshold indicator. The indicator equals one if the balance sheet is lower than the number indicated on the horizontal axis. In all regressions, we cluster the standard errors by three-digit industry, the kernel function is triangular, and the polynomial order is one. Back to Section C.
(a) Subsidies.

(b) Investment.

Figure C7: RD: Placebo Years.

Notes: This figure shows the discontinuity at the balance sheet threshold for investment subsidies (top) and total investment (bottom). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros. In all versions, we consider the 2004 balance sheet. The discontinuity should be exactly in 2007. Before 2007, there should not be a discontinuity since the new balance sheet criterion was not yet in place. After 2007, there should not be a discontinuity since the balance sheet 2004 value was no longer relevant. Back to Section C.
Table C1: RD: Summary Statistics.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employment</td>
<td>65.75</td>
<td>76.93</td>
<td>1269</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>16.7</td>
<td>16.5</td>
<td>1273</td>
</tr>
<tr>
<td>Wages</td>
<td>34,700</td>
<td>16,900</td>
<td>1269</td>
</tr>
<tr>
<td>Production Worker Share</td>
<td>0.40</td>
<td>0.32</td>
<td>1271</td>
</tr>
<tr>
<td>College Share</td>
<td>0.37</td>
<td>0.26</td>
<td>1273</td>
</tr>
<tr>
<td>Total Investment</td>
<td>377,600</td>
<td>579,000</td>
<td>1273</td>
</tr>
<tr>
<td>Investment Subsidies</td>
<td>16,200</td>
<td>127,600</td>
<td>1273</td>
</tr>
<tr>
<td>Total Subsidies</td>
<td>23,900</td>
<td>124,600</td>
<td>1273</td>
</tr>
<tr>
<td>Subsidized Loans</td>
<td>168,500</td>
<td>1,055,500</td>
<td>1273</td>
</tr>
</tbody>
</table>

Notes: Summary statistics for the RD sample, with balance sheet between 5 to 15 million EUR. Back to Section C.

Table C2: RD: Pre-Treatment Covariate Balance.

<table>
<thead>
<tr>
<th></th>
<th>Investment</th>
<th>Subsidy</th>
<th>Revenue</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(88.22)</td>
<td>(19.03)</td>
<td>(2.849)</td>
<td>(10.37)</td>
</tr>
<tr>
<td>N</td>
<td>1273</td>
<td>1273</td>
<td>1273</td>
<td>1270</td>
</tr>
</tbody>
</table>

Notes: The estimates are from Equation 20. The outcomes are pre-period averages over years 2000–2004. Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.

Table C3: RD: The First Stage.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsidy</td>
<td>38.07*</td>
<td>188.5*</td>
</tr>
<tr>
<td>Investment</td>
<td>(16.44)</td>
<td>(86.53)</td>
</tr>
<tr>
<td>N</td>
<td>1273</td>
<td>1273</td>
</tr>
</tbody>
</table>

Notes: The estimates are from Equation 20. The outcomes are 2007 investment subsidies (left) and 2007 total investment (right). Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.
Table C4: RD: The Reduced Form Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1) Employment</th>
<th>(2) Revenue</th>
<th>(3) Wages</th>
<th>(4) College Share</th>
<th>(5) Educ. Years</th>
<th>(6) Production Worker Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small 2004</td>
<td>0.0899*</td>
<td>0.251***</td>
<td>0.0214</td>
<td>-0.00108</td>
<td>-0.00902</td>
<td>0.00613</td>
</tr>
<tr>
<td></td>
<td>(0.0417)</td>
<td>(0.0435)</td>
<td>(0.0208)</td>
<td>(0.0106)</td>
<td>(0.0625)</td>
<td>(0.0119)</td>
</tr>
<tr>
<td>N</td>
<td>6005</td>
<td>6006</td>
<td>6003</td>
<td>6012</td>
<td>6012</td>
<td>6012</td>
</tr>
</tbody>
</table>

Notes: The estimates are from Equation 20. The outcomes are defined in first differences. Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.
Table C5: RD: The IV Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Investment</td>
<td>Employment Change</td>
</tr>
<tr>
<td>Granted Subsidy (2007)</td>
<td>4.952*</td>
<td>3.224</td>
</tr>
<tr>
<td></td>
<td>(2.446)</td>
<td>(2.643)</td>
</tr>
<tr>
<td>N</td>
<td>1273</td>
<td>6005</td>
</tr>
</tbody>
</table>

Notes: The estimates are from IV version of Equation 20 as described in text. The outcomes are defined first differences. Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.
The Spikes Design

To address external validity, we consider technology adoption without the subsidy program. This design exploits the precise timing of technology investment events, which we call spikes, to analyze technologies’ short-term effects at the firm level. The second design is valuable because the subsidy-based design is subject to two external validity concerns: 1) subsidy program as variation source, 2) program participants’ representativeness. The spikes design complements the subsidy design by using a different variation source and a different sample. The spikes design is similar to a mass-layoff design (Jacobson et al., 1993) as it uses the precise event timing for identification and builds on the work of Hawkins et al. (2015) and Bessen et al. (2020). The design detects distinct events because technology investments tend to be temporally concentrated (e.g., Doms and Dunne 1998; Caballero and Engel 1999; Cooper et al. 1999).

The Treatment Group

We define the technology investment event, the spike, as an indicator that equals 1 when a firm’s technology expenditures are significantly above average for the firm:

\[D_{jt} = 1 \{ \text{Technology Expenditure}_{jt} > \text{Threshold} \cdot \text{Technology Expenditure}_{iT \neq t} \} \]

The average expenditure is computed over timeline \(T \) leaving out the current year \(t \). For our main specification, we use the threshold of 4. We measure technology expenditure as investment in machinery and equipment from the financial statement register.

The sample design is the following. We consider years 1994–2018 and restrict the sample to manufacturing, warehouse and retail, transportation industries, and firms with full-time equivalent employees (FTE) between 10 and 750 at time \(\tau = -1 \) relative to the event. We focus on a balanced sample and require that the firms operate at least starting from time \(\tau = -9 \). With these restrictions, we can exclude new rapidly growing firms that are not relevant to our research questions and event definition and ensure comparability with the subsidies design. Very large firms tend to have several units or plants, which obscures the evaluation of the spike.

The treatment group is the firms that experience a technology investment event and satisfy the sample design criteria. In the case of multiple spikes, we choose the largest spike and require no other spikes in window \(\tau \in [-5, 8] \). Figure D2 shows the treatment group’s average technology expenditure by year. The event time is normalized around the event (\(\tau = 0 \)). There is a clear investment spike: a significant fraction of technology investment at the firm level is associated with significant variations.
The Matched Control Group To construct a control group, we match the spiking firms to non-spiking firms. The matched control group serves as counterfactual for what would have happened had the spiking firms not made the investment. We provide a theoretical basis for this comparison in Appendix G. We use coarsened exact matching (CEM). We match by revenue, employment, wages at \(\tau = -3 \) and industries’ main sectors (letter classes). The CEM percentiles are 10, 25, 50, 75, and 90. The final caliper match is the propensity score based on the same CEM variables. The match is up to 1:5 with replacement. Table D1 shows the covariate balance for the matched samples. We match only in the pre-period cross-section to ensure that the pre-trend comparison between the treatment and control is informative.

Estimation The empirical strategy contrasts the treatment group with a spike to a matched control group that did not have a spike within the same 10-year window using a dynamic difference-in-differences design. To do so, we estimate Equations 1 and 2 from Section 4.2.

Robustness For robustness, we estimate the results also excluding firms that start exporting, change their management, make a significant investment in buildings and property, or open a new plant before the event. We also consider the estimates with different controls.

The First Stage Figure D2 shows the first stage. The outcome is technology investment. Treatment group firms invest 2 million EUR more in technologies than the control firms in the event year. Before and after it, the groups invest similar amounts and are on parallel trends.

Clarifying the Source of Variation We outline a theoretical framework that clarifies the source of variation in Appendix G. The same model provides the basis also for the subsidies design, and we refer to it in Section 4.1. The model builds on Cooper et al. (1999). The main result of the model is that with adjustment costs, firms may experience low technology-investment activity periods followed by bursts of investment activity. The model produces a cutoff rule for the firm’s optimal policy, where the firm adopts the technology if and only if the propensity \(H \geq H^* \) for a cutoff \(H^* \) (Figure G1).

This result clarifies that the treatment and the matched control group could be comparable in the short run because minor initial differences may lead to significant variations in technology investment. For example, in the model one reason a firm invests and the other similar firm does not at that time is that they have a different replacement cycle. Our estimates from the spikes design exploit the precise timing of technology investment events.
Figure D1: The Spikes Design. Machinery and Equipment Investment.

Notes: Machinery investment in EUR 1000s. Event time is normalized to zero in the year of the largest machinery investment. Sample restricted to manufacturing, retail, transportation industries and firms with employment 10–750 for comparability with the subsidies design. Consistent with the theoretical framework in Appendix G, technology investment is typically a spiky activity. Back to Section D.

Figure D2: The Spikes Design. First Stage: Machinery and Equipment Investment.

Notes: Event-study estimates from Equation 1. The outcome is machinery investment in EUR 1000s. Event time is normalized to zero in the year of the largest machinery investment. Back to Section D.
Notes: Event-study estimates from Equation 1. Event time is normalized to zero in the year of the largest machinery investment. Employment is in % relative to the base year $\tau = -3$. Entry rate is defined as the number of entering workers divided by employment in the base year $\tau = -3$. Exit rate is defined as the number of exiting workers divided by employment in the base year. Back to Section D.
Notes: Difference-in-differences estimates from Equation 2. The estimates compare the spikes treatment group and a matched control group. The right-hand side reports outcome means at $\tau = -3$. Back to Section D.

Figure D4: The Spikes Design: Skill Effects.

Figure D5: The Spikes Design: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the spikes treatment group and a matched control group. The right-hand side reports outcome means at $\tau = -3$. Back to Section D.
Table D1: The Spikes Design: Balance Table.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Mean</td>
</tr>
<tr>
<td>Machinery Inv. (EUR K)</td>
<td>271.21</td>
<td>858.93</td>
<td>376.70</td>
</tr>
<tr>
<td>Revenue (EUR M)</td>
<td>14.48</td>
<td>30.10</td>
<td>14.12</td>
</tr>
<tr>
<td>Employment</td>
<td>51.66</td>
<td>68.29</td>
<td>53.67</td>
</tr>
<tr>
<td>Wages (EUR K)</td>
<td>33.68</td>
<td>9.26</td>
<td>33.75</td>
</tr>
<tr>
<td>Subsidy Applied (EUR K)</td>
<td>72.40</td>
<td>339.62</td>
<td>25.23</td>
</tr>
<tr>
<td>Subsidy Granted (EUR K)</td>
<td>41.15</td>
<td>173.02</td>
<td>16.07</td>
</tr>
<tr>
<td>Educ. Years</td>
<td>11.89</td>
<td>0.91</td>
<td>11.86</td>
</tr>
<tr>
<td>College Share (%)</td>
<td>21.24</td>
<td>16.70</td>
<td>20.90</td>
</tr>
<tr>
<td>Production Worker Share (%)</td>
<td>58.90</td>
<td>30.95</td>
<td>63.68</td>
</tr>
<tr>
<td>Observations</td>
<td>450</td>
<td></td>
<td>1593</td>
</tr>
</tbody>
</table>

Notes: All variables measured at $\tau = -3$ relative to the event. We use coarsened exact matching (CEM) with replacement. Back to Section D.
E Data and Fieldwork

E.1 Data on Technologies: Text Data Categories

This Appendix section reports details on the text data categories and the classification process.

E.1.1 Uses of Technologies

Process This category contains cases where the firm intends to use the technology to produce the same output type. The use of technologies to automate processes or increase automation is part of this category. Typical descriptions: an investment that makes operations more efficient, a productivity-enhancing investment, and an investment that increases automation. These descriptions often include details, for example, which part of the production the firm intended to make more efficient. Some applications describe these technological advances as “solving bottlenecks.” This term refers to the idea that the bottleneck’s efficiency is complementary to other elements in production.

Product This category contains cases where the firm intends to use the technology to produce a new output type. Typical descriptions: diversification of production, such as a new product, a new service, or a more comprehensive selection of services; improved production capabilities, such as the ability to work with or to manufacture larger items (very common), development of product features, such as increasing quality or the degree of processing, transitioning to more environmentally sustainable production, and moving production from subcontractors to own facilities.

Product and process are two opposites as to whether the improvement is within or between varieties. If the text does not specify the use of the technology on this margin, we code it as NA. Typical NA cases only specify the technology (e.g., a CNC machine) or describe an expansion motive without further details.

This category also contains cases where the firm intends to use the technologies to expand or grow. We classified both process and product type projects (and NAs) according to this criterion. There were essentially two types of expansion descriptions: 1) the main goal was to expand or increase capacity, 2) expansion was described as an effect of product or process type change in production.

E.1.2 Types of Technologies

Automated vs. non-automated This category classifies cases where the technology requires no active user (automated) vs. an active user (non-automated). The classification is done based on
the specific technology or machinery described in the text. Automated machinery include robots, CNC machines, automated conveyor belts, automated welding tools, and other automated tools and machinery. Non-automated machinery include machinery that are not explicitly automated, such as hand-operated tools, non-automatic welding tools, hydraulic presses, non-automatic machine tools, cutting machines, lifting equipment, pumps, furnaces, and sprayers.

Hardware and/or software This category classifies cases where the technology is physical (hardware) or not physical (software). Typical hardware include CNC machines, welding robots, laser cutters, bending presses, surface-treatment technologies, robot arms, conveyor belts, sensors, measurement devices. Typical software include enterprise resource planning (ERP), computer-aided design (CAD), and production control software.

<table>
<thead>
<tr>
<th>Class</th>
<th>Precision</th>
<th>Recall</th>
<th>F1-score</th>
<th>Test Support</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Technology (0)</td>
<td>0.97</td>
<td>0.96</td>
<td>0.96</td>
<td>1737</td>
<td>31022</td>
</tr>
<tr>
<td>Technology (1)</td>
<td>0.88</td>
<td>0.93</td>
<td>0.90</td>
<td>644</td>
<td>11887</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td>0.95</td>
<td>2381</td>
<td>42909</td>
</tr>
<tr>
<td>Balanced Accuracy</td>
<td></td>
<td></td>
<td>0.94</td>
<td>2381</td>
<td>42909</td>
</tr>
<tr>
<td>Macro Avg.</td>
<td>0.93</td>
<td>0.94</td>
<td>0.93</td>
<td>2381</td>
<td>42909</td>
</tr>
<tr>
<td>Weighted Avg.</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>2381</td>
<td>42909</td>
</tr>
</tbody>
</table>

Notes: Test Support refers to the 10% random out-of-sample from which accuracy measures are computed. Precision is the ratio of correctly predicted positive observations to the total predicted positive observations. Recall (Sensitivity) is the ratio of correctly predicted positive observations to the all observations in the category. F1 Score is the harmonic mean of Precision and Recall. Accuracy is the ratio of correctly predicted observations to the total observations. Back to Section E.
Notes: Top features for predicting technology texts. The y-axis refers to the feature weights from the SVM prediction. Features translated to English from Finnish. Features in <> refer to compound terms combining similar spelling versions of the same term. Back to Section E.
E.2 Data on Work and Skills

We measure individual workers’ employment, wages, education, grades, occupation, tasks, cognitive performance, and personality.

Employment and Wages We obtain employment and wage data from the registers maintained by Statistics Finland. The data contain the employment status, wages, and other income and a link to the firm. The data allow us to track all persons in Finland over time independent of their labor-market status. The data are combined from multiple government sources (including the social security system and the tax authorities) and direct data collection by Statistics Finland. These registers also record the individuals’ age and gender.

Education We measure education and school grades.

Education is measured from The Register of Completed Education and Degrees. It provides exact information on the educational degrees the individual has obtained. We measure the level of education in four categories: 1) very low (no recorded degree), 2) low (high school), (3) medium (BA or equivalent), and 4) high (MA or PhD). We measure the type of education also in four categories: 1) STEM (science, technology, engineering, and mathematics), 2) HASS (humanities, arts, and social sciences), 3) business and law, and 4) other types. We map degrees to years of education based on their official length.

School grades are measured from the Secondary Education Application Register and the Finnish Matriculation Examination Board Register. We focus on the 9th-grade GPA and the standardized scores in the national high-school exit exam (12th grade). We normalize both grade measures to have mean 0 and standard deviation 1 within cohorts.

Occupations and Tasks We measure occupations from the employment registers at the 3-digit level in the ISCO classification system. We harmonize the occupation classifications, resulting in 48 consistently defined occupations.

For most analyses, we focus on three broad occupational categories: production workers (craft workers, operators, assemblers, and elementary occupations), non-production workers in lower-level positions (clerical, service, and sales workers), non-production workers in higher-level positions (technicians and associate professionals, professionals, and managers).

To measure the task content of the occupations, we use the European Working Conditions Survey (EWCS). The survey provides information on the tasks workers perform in their jobs. The

44 We use 9th-grade GPA because only approximately 50% of Finns take the high-school exit exams.
45 For example, Kauhanen and Riihikul (2019) use the EWCS to measure occupational task content.
data are collected through face-to-face interviews every five years. Using these data, we construct occupation-level measures of task intensity for routine, manual, cognitive, and social tasks (see, e.g., Autor et al. 2003). For example, occupation is classified as highly routine if the workers in this occupation describe often performing repetitive and monotonous tasks. The advantage of the EWCS data is that it is based on workers’ descriptions of their work; it is available for the specific country and time and is consistent with the European occupational classification.

Cognitive Performance and Personality Data for cognitive performance and personality are obtained from the Finnish Defence Forces (FDF). The available data cover approximately 80% of Finnish men born 1962–1979, and are measured because of universal conscription. The components of cognitive performance measured are visuospatial, arithmetic, and verbal reasoning. The visuospatial test is similar to Raven’s Progressive Matrices (Raven and Court, 1938). The personality traits measured are sociability, activity-energy, self-confidence, leadership motivation, achievement motivation, dutifulness, deliberation, and masculinity. The personality test is based on the Minnesota Multiphasic Personality Inventory (MMPI). We normalize all measures to have a mean 0 and standard deviation of 1 within cohorts. The FDF data are described in Izadi and Tuhkuri (2021a,b).

E.3 Data on Firms

We use a large set of data on firms, including the revenue, profits, exports, products, prices, and patents. The data track all firms over time.

Firm Performance The firm-performance measures, revenue, value-added, and profits, are obtained from the Finnish Financial Statement Register. We use two variables to measure productivity: revenue per worker and total factor productivity (TFP) estimated using the Cobb-Douglas production function. We measure profits primarily by the profit margin, defined as profits divided by the revenue. We define the labor share as the wage bill divided by the revenue. We winsorize firms’ monetary values at the 5% level.

Exports Exports are measured from the Finnish Customs’ Foreign Trade Statistics. We focus on the firms’ export status (exporter vs. non-exporter), exports’ share of the total revenue, and export destinations.

Products We measure firms’ products from the Customs Register at the 6-digit CN classification. We focus on the number of products per firm and product turnover: the number of products
introduced and discontinued.

Prices We compute firms’ product-level prices from both the Customs Register and the Industrial Production Statistics. We define product-level prices as the product-level revenue divided by the number of units sold. We harmonize the product categories to be consistent over time. We focus on firm-level average prices computed as an unweighted average. We winsorize price data at the 10% level within product and year.

Patents Patent information comes from the Finnish Patent Database. We focus on the number of new patent applications per firm.

Capital We measure capital from the official records on firms’ balance sheets.

Industries We measure industries at a harmonized 2-digit level classification (based on NACE Rev. 2). Our primary industry-level variable is the industry’s scope for quality differentiation, which we measure using Rauch (1999), Gollop and Monahan (1991), and Sutton (1998) indices. We also measure industries’ automation intensity (Acemoglu and Restrepo, 2020), tradability (Mian and Sufi, 2014) and education level (similar to Ciccone and Papaioannou, 2009).

Subsidies We measure firm subsidies from multiple registers. Two centralized systems (Yrtti 1 and 2) record the ELY center subsidies. We gained access to these previously unstudied data, which record the application process from submission to decision. We measure other firm subsidies using the Statistics on Business Subsidies data.

E.4 Fieldwork

We conducted fieldwork to understand the changes we document at the level of specific firms and workers. We visited our sample manufacturing plants and interviewed CEOs, technology managers, production workers, and subsidy administrators.

Firm Visits and Interviews We chose five manufacturing firms for in-depth case studies. The primary purpose of the case studies was to observe the technologies, production, and work firsthand. We spent on average 4 hours at each manufacturing plant observing the production and conducting interviews. We also conducted five separate firm interviews (a total of 10 firms).

Our qualitative research method was open-ended interviews, building on prior qualitative research on technologies in firms (e.g., Piore 1979; Dertouzos et al. 1989; Berger 2013; Piore 2006).
This method is helpful because it allows us to identify the prevalence of mechanisms we had postulated ex-ante and uncover new mechanisms that we had not anticipated. We asked firm representatives about their production, technology adoption, motivations behind adopting technologies, the observed effects, and government subsidies.

We selected the firms to be representative of the sample and different from each other. We visited and interviewed firms with employment from 30 to 18,000 workers; subsidy winners, subsidy losers, and non-applicants; firms in rural and urban areas; privately owned and publicly traded firms, and firms with high levels of own capital and firms in the corporate restructuring. All firms were in the fabricated metal product and machinery industries.

Worker Interviews We separately interviewed five production workers using similar in-depth interviews as in our firm visits. In all interviews, we asked the respondents broadly about their work and skills, technologies they use at work, other technologies at their workplace, and the effects of technologies they had observed. Our qualitative methods draw from a long social sciences tradition to directly ask the respondents how they perceive the cause and effect. We used a semi-structured approach to interviewing that uses open-ended questions to allow a wide range of responses to emerge (see, e.g., Piore 1979; Boyd and DeLuca 2017; Bergman et al. 2019). We recruited the interview respondents in collaboration with the Finnish Industrial Union, the largest Finnish union representing industrial workers.

Subsidy Program Interviews and Text Data To understand the subsidy program, we interviewed 1) officers in all four main ELY Centers, 2) program administrators at the Ministry of Economic Affairs and Employment, 3) an external program auditor at the Ministry of Finance, and 4) a consulting firm that assists firms in subsidy applications (a total of 18 interviewees in 7 groups). We also use text records from the administrative system of the subsidy program to track the applications and qualitatively understand how the subsidy program works.46

46In addition, we studied the relevant legislature, ELY Centers’ relevant strategy documents, and the official reports of the subsidy program (e.g., Ritsilä and Tokila 2005; Pietarinen 2012; Aaltonen 2013; Ramboll 2013; Auri et al. 2018; Heikkinen et al. 2019; Ilmakunnas et al. 2020, and TEM 2020).
F Theoretical Framework Details

In this Appendix, we derive the predictions from process and product type technological change.

F.1 Predictions from the Process Type

Process type technological change has several specific and measurable implications.

Revenue Firms with lower marginal costs produce more and earn higher revenues. A key implication of the CES demand structure is that the relative outputs and revenues of firms depend solely on their relative productivities:

\[
\frac{q(\varphi_1)}{q(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma}, \quad \frac{r(\varphi_1)}{r(\varphi_2)} = \left(\frac{\varphi_1}{\varphi_2}\right)^{\sigma-1}, \quad \varphi_1, \varphi_2 > 0 \tag{21}
\]

where a higher elasticity of substitution implies greater differences in size and profitability between firms for a given difference in relative productivity.

Productivity Lower marginal costs imply higher measured productivity. Measures of the firm or plant revenue-based productivity are monotonically related to the firm productivity draw \(\varphi\). Since prices are inversely related to the firm productivity draw \(\varphi\), revenue per variable input is constant across firms. Revenue-based productivity, however, varies because of the fixed production cost:

\[
\frac{r(\varphi)}{l(\varphi)} = \frac{w\sigma}{\sigma - 1} \left[1 - \frac{f}{l(\varphi)}\right], \tag{22}
\]

where input use \(l(\varphi)\) increases monotonically with \(\varphi\). A higher productivity draw increases variable input use and revenue, with the result that the fixed input requirement is spread over more units of revenue.

Profits Lower marginal-cost firms earn higher profits. As shown earlier:

\[
\pi(\varphi) = \frac{r(\varphi)}{\sigma} - w\varphi = B\varphi^{\sigma-1} - w\varphi, \quad B = \frac{(\sigma - 1)^{\sigma-1}}{\sigma^{\sigma}}w^{1-\sigma}A. \tag{23}
\]

Prices The price effect depends on whether the productivity improvement refers to lower marginal costs or a higher quality within the variety. That comes from the fact that the CES preference representation implicitly imposes a choice of units to measure the quantity of each variety. Within a variety, quantity and quality are perfect substitutes, and a marginal-cost reduction is equivalent to a quality improvement, up to a new price vector. Firms with lower marginal costs charge lower

118
prices because the equilibrium price for each variety is a constant mark-up over marginal cost, and firms with higher quality charge higher prices since the equilibrium price for each variety can equivalently be expressed in terms of quality c:

$$p(\varphi)_{\text{cost}} = \frac{\sigma}{\sigma - 1} \frac{w}{\varphi}, \quad p(\varphi)_{\text{quality}} = \frac{\sigma}{\sigma - 1} cw.$$

(24)

Labor Share If the composite factor of production contains only labor, the structure of the model implies that lower marginal costs reduce the labor share since the firm takes wages w as given and revenue per input increases:

$$\frac{w l(\varphi)}{r(\varphi)} = \frac{\sigma - 1}{\sigma} \left[1 - \frac{f}{l(\varphi)} \right]^{-1}.$$

(25)

If the technological change is specifically automation as, e.g., in Acemoglu et al. (2020b), it substitutes capital for tasks previously performed by labor and reduces the labor share of value-added.

Employment and Labor Composition The firms use a composite factor of production L to produce the varieties. The underlying structure of how technological change improves productivity determines how it affects factor composition, including employment. The literature specifies different versions of the composite factor and how technology enters it (e.g., Tinbergen 1975; Katz and Murphy 1992), the routine-replacement model (Autor et al., 2003), and the automation model (Acemoglu and Restrepo, 2018).47

In the models where technological change simultaneously reduces marginal costs and affects labor composition, technological change is typically assumed to be “skill-biased,” in the sense that new technologies are more complementary to high-skill workers.48 The central prediction from these models is that if the firm adopts the technology ($T_I = 1$), the employment share of low-skill, routine, and production workers decreases:

$$s_{lL} (T_I = 1) < s_{lL} (T_I = 0), \text{ where } s_{lL} = l_I / \sum_i l_i.$$

(26)

47The distinction between cost and quality within the variety—while isomorphic in this framework—becomes relevant when considering the factor content of technologies. While the canonical, routine replacement, and automation models can be re-written so that instead of costs, technological change affects quality, their motivation is based on firms’ cost-reduction intentions.

48In Autor et al. (2003) and Acemoglu and Autor (2011) the effect is mediated through tasks: technologies substitute for a set of tasks (e.g., routine or lower-complexity tasks), in which a set of workers (e.g., lower-skill workers) have a comparative advantage.
F.2 Predictions from the Product Type

Product type technological change produces a set of specific observable implications.

Revenue Firms that introduce a new variety produce more and earn higher revenues:

\[
q = \begin{cases}
q(\varphi) & \text{if } T_E = 0 \\
q(\varphi) + q(E[\varphi]) & \text{if } T_E = 1
\end{cases}
\]

\[
r = \begin{cases}
r(\varphi) & \text{if } T_E = 0 \\
r(\varphi) + r(E[\varphi]) & \text{if } T_E = 1
\end{cases}
\]

(27)

Products Firms that introduce a new variety produce a larger number of products:

\[
|\Omega^i_{T_E=1}| > |\Omega^i_{T_E=0}|, \quad \omega \in \Omega
\]

(28)

where \(|\Omega^i_{T_E}|\) denotes the number of elements in the set of varieties produced by the firm \(i\) (measured as produced or exported products or e.g., patents).

Exports If different markets have differentiated preferences, a new variety makes it more likely that the firm starts exporting, exports a larger share of its revenue, or exports to a larger variety of destinations:

\[
EXP^i_{T_E=1} > EXP^i_{T_E=0},
\]

(29)

where \(EXP^i_{T_E}\) denotes the a measure of exporting activity by the firm \(i\).

Inputs Firms that introduce a new variety use more inputs, such as labor:

\[
l = \begin{cases}
f + \frac{q}{\varphi^1} & \text{if } T_E = 0 \\
2f + f_E + \frac{q}{\varphi} + \frac{q}{E[\varphi]} & \text{if } T_E = 1
\end{cases}
\]

(30)

Productivity, Profits, and Prices The product type technological change predicts, on average, zero effects on productivity, the profit margin, and prices because the expected productivity in the new variety is equal to the productivity in the existing variety. The new variety is not uniformly better than an existing variety, but new and an imperfect substitute to the existing varieties. In monopolistic competition, firms can expand either by improving productivity within a variety or by introducing a new variety, but the firms cannot expand without either action. On average, the introduction of a new variety appears as if the firm only scales proportionally in size. Zero effects on productivity, prices, and the profit margin combined with a positive effect on revenue are consistent with the new varieties view.
Labor Composition, Labor Share, and Wages One critical difference between the productivity and new variety views is whether technological change is likely to have distributional effects. The new varieties view has no unambiguous basis for expecting a sustained effect on the labor composition or the labor share. The task or skill-composition might be different for the new variety, but this is likely to depend on the particular context. The model predicts zero effects on wages in a competitive labor market, since wages are determined in the sectoral equilibrium, and the firm is small relative to the market.

![Figure F1: New Variety Entry Cutoff. From Melitz and Redding (2014).](image)

49In the Nelson and Phelps (1966) view, skills are complementary to the adoption of new technologies; the use of technologies in the creation of new varieties would induce a temporary increase in skill demand.
Theoretical Framework for the Research Design

To clarify the source of variation in our identification strategies, we consider the forces that influence a firm’s technology adoption and its factor demand. We proceed in two steps. In Step 1, we focus on the firm’s technology-adoption decision. In Step 2, we consider the firm’s conditional factor demand, treating the technology as a quasi-fixed factor; the idea is to show that we can trace the implications of the technology adoption problem for factors’ relative demand. The framework is general to allow for the analysis of multiple types of technologies and factor inputs. The adoption model is adapted from Cooper et al. (1999).

G.1 Step 1: Technology Adoption

In Step 1, we model the general technology-adoption problem of an individual firm. In the model, the firm makes the discrete choice between replacing existing technology with a new technology or continuing to use the old technology for another period. Consider a firm i that maximizes:

$$E_0 \sum_{t=0}^\infty B_t Y^i_t$$

subject to

$$Y^i_t = A^i_t \theta^i_t F(T^i_t, L^i_t) - D^i_t \Theta^i_t$$

$$T^i_{t+1} = \begin{cases} (1 - \delta)T^i_t & \text{if } D^i_t = 0 \\ \tau^i_t & \text{if } D^i_t = 1 \end{cases}$$

where $\tau^i_{t+1} = \mu^i_t \tau^i_t$ and $\mu^i_t \geq 1$ is the rate of exogenous technological progress.\(^{50}\) The choice variable in this problem is D^i_t where $D^i_t = 1$ if the new technology T is adopted in period t.

The first equation (31) is the firm’s objective function. The firm maximizes the discounted present value of profits, which are defined as output minus the adjustment costs. The discount rate is $B_t \in (0, 1)$.

The second equation (32) describes the production process and the adjustment costs. The function $F(\cdot)$ is increasing and concave in the level of technology. The output also depends on the state of productivity A^i_t. We assume that A follows a first-order Markov process $\Phi(A^t | A)$. The model has two types of adoption costs. The first is a fixed adjustment cost (Θ^i_t). If the firm adopts the new technology ($D^i_t = 1$), it has to incur a cost Θ^i_t. It reflects the direct cost of the technology,

\(^{50}\)We allow the technological progress to contain an idiosyncratic and a deterministic common component to clarify the potential mechanisms. That is, we assume $\mu^i_t = \mu_t + \epsilon^i_t$.

122
its installation costs, other fixed adjustment costs, and a temporary output loss. We assume that \(\Theta_i^t \) is i.i.d. The second is the opportunity cost that is proportional to the production volume. It is characterized by \(\theta_i^t \) that equals \(\lambda_i^t \leq 1 \) during an adoption period and 1 otherwise.\(^{51}\) The intuition is that investment temporarily diverts resources away from production.

The third equation (33) describes the time path of the given technology. The technology frontier is \(\tau_t \). The firm’s actual technology that is in-use is \(T_i^t \). The in-use technology is typically less productive than the latest version because technology depreciates at an exogenous rate \(\delta \) and because the latest technologies improve at rate \(\mu_i^t \). The firm can decide to adopt the latest version of the technology \((D_i^t = 1) \); in that case its technology will be equal to \(\tau_{t+1}^i \) in the next period. The gains to adoption reflect both technological progress \((\mu_i^t) \) and the rate of depreciation \((\delta) \).

Under this framework, the firm’s technology adoption reflects several forces:

1. Replacement cycle: The underlying deterministic replacement cycle—driven by depreciation of capital \(\delta \) and the common exogenous technological progress \(\mu_i^t \)—will imply that the older vintage of the capital, the more likely is replacement.

2. Shocks to technologies’ costs: Idiosyncratic shocks to costs \(\Theta_i^t \) affect the investment in a straightforward way: lowering the costs and increasing the likelihood of the investment.

3. Shocks to technological progress: Idiosyncratic shocks to technological progress, that is shocks to \(\mu_i^t \), increase the benefits from the technology investment and increase the likelihood of the investment.\(^{52}\)

4. Shocks to productivity: The response of investment to \(A_i^t \) depends on both the nature of the adjustment costs \((\lambda_i^t \) and \(\Theta_i^t \)) and the persistence of the shock \((\Phi(A'|A)) \). The firm would prefer to replace machines during a period where inputs are not very productive (reflecting \(\lambda_i^t < 1 \)) and would also prefer to have a new machine available when productivity is high. To build intuition, suppose that adjustment costs are fixed. If \(A \) is i.i.d., investment is independent of \(A \). But if a shock to \(A \) is informative of similar shocks in the future, then the investment is more likely when \(A \) is high—the firm invests now to benefit from the high productivity in the future.

We provide proofs and more detailed exposition in Section G.3. In the detailed version, we characterize the solution by a hazard function \(H(t, A) \), the probability of adoption if the current technology stock is \(t \) and the state of productivity is \(A \).

\(^{51}\)This implies that adjustment costs are heterogeneous across firms even if \(\lambda_i^t = \lambda < 1 \), i.e., equal for all firms \(i \) and periods \(t \).

\(^{52}\)Within the framework, this mechanism works analogously to the aging of technology.
In words, two forces determine a technology’s productivity: the technology’s ‘age’ and a shock to total factor productivity. Given the state of productivity, the producer compares the discounted expected benefits of more productive technology relative to the current adoption costs. The gain to adoption is that a new version of the technology is more productive as it reflects some aspects of technological progress. There are two types of costs for replacement. First is the direct loss of output associated with the acquisition and installation of new capital goods. Second is that the process of installing the new machines and retraining workers reduces productivity in the firm. The nature of the adjustment costs and the structure of the stochastic process governing the shocks jointly determine adoption timing.

The model assumes that small adjustments of technologies are either infeasible or undesirable. In particular, many technology-investment projects (e.g., the purchase of large machines) are not possible in small quantities. In addition, the model assumes that the costs of adjusting the technologies stock may be nonconvex. Consequently, at the firm or plant level, we may see periods of low technology investment activity followed by bursts of investment activity, i.e., investment spikes. Empirical observations support this view of technology adoption: we find that a significant fraction of technology investment activity at the firm level is associated with large variations in the technology stock: i.e., technology investment is typically a lumpy activity.

G.2 Step 2: Conditional Factor Demand

In Step 2, we consider the firm’s conditional factor demand, treating the technology as a quasi-fixed factor. This approach is closely related to the work by Berman et al. (1994) who treat machine investments as quasi-fixed and invoke Shephard’s lemma to justify their empirical specification. Cost-function estimates with quasi-fixed capital trace back to Caves et al. (1981). Our aim is to trace the implications of the technology adoption problem for factors’ relative demand. The intuition is that technology is relatively more costly to adjust than labor.53

The firm’s production function is written as:

\[Y = F(T; L) \]

(34)

where \(T \) is the technology of our focus and \(L \) is a vector of multiple other factors. An element \(L_i \) is the quantity of factor \(i \) used in the production of a quantity \(Y \) of output. We assume \(F \) is strictly increasing with each of its arguments and strictly concave. We denote the relative price of factor \(i \) by \(W_i > 0 \). For the purposes of this analysis, these relative prices reflect potential

53 Hamermesh 1989 analyzes the costs firms face in adjusting labor demand to exogenous shocks. The study argues that adjustment costs could be viewed as fixed and documents that labor adjustment tends to be lumpy.
relative productivity effects from technology T. The conditional factor demands are characterized as solutions to the cost-minimization function:

$$\min_{(L_1...L_n)} \sum_{i=1}^{n} W_i L_i \quad \text{subject to} \quad F(T; L_1...L_n) > Y$$

(35)

The minimum value of the total cost is the cost function $C(W_1...W_n, Y)$. Under this framework, it satisfies the standard properties of a cost function. It is increasing, homogeneous of degree 1, and concave in $(W_1...W_n)$, and it satisfies the Shephard’s lemma.

The Shephard’s lemma gives us an analytical tool to interpret the relationship between factor demands and their prices. It states that:

$$\bar{L}_i = C_{W_i} (W_1...W_n, Y)$$

(36)

where \bar{L}_i denotes the factor demand for the factor L_i and C_{W_i} denotes the partial derivative of the cost function C with respect to price W_i. In other words, the cost function says that the conditional factor demands can be characterized through a shock to the price vector $(W_1...W_n)$.

The expression (36) allows us to provide a theoretical basis for analyzing the effects of technology adoption on the demand for different types of labor. In this framework, technology’s effect on labor demand is translated through its effect of the (potentially unobserved) prices of labor, which reflect the productivity of labor combined with the technology. For example, complementarity between technology and skills would mean that technology T would change the price vector $(W_1...W_n)$ in a way that the factor demands \bar{L}_i would shift toward high-skill labor $L_H \in L$.

G.3 Details on Step 1: Technology Adoption

We consider the technology adoption (or replacement) problem of an individual firm with a given stock of technologies. This treatment is closely based on Cooper et al. (1999). The underlying technological progress in this economy makes the problem nonstationary. To analyze the problem, we normalize it to a stationary version. Define $x_t = X_t/\tau^i_t$ so that lowercase roman letters represent values which are normalized by the current value of the technology frontier. For simplicity, assume that the fixed adjustment cost is proportional to the technology frontier, i.e., $\Theta^i_t = \Theta^i \tau^i_t$ and that $F(\cdot)$ exhibits constant returns to scale. The problem is normalized as:

$$E_0 \sum_{t=0}^{\infty} \beta^t y_t$$

(37)
subject to:

\[y^i_t = A^i \theta^i t^i - D^i_t \Theta^i \]

(38)

\[t^i_t = \begin{cases}
\rho^i t^i & \text{if } D^i_{t-1} = 0 \\
1 & \text{if } D^i_{t-1} = 1
\end{cases} \]

(39)

In this normalized version, the discount rate \((\beta^i_t)\) equals \(B_t \mu^i_t\). We assume that the technological progress \((\mu^i_t)\) is not too fast so that \(\beta^i_t < 1\). We define \(\rho^i_t = (1 - \delta) / \mu^i_t \in [0, 1]\) that reflects both depreciation and obsolescence. With this normalization, technology adoption \((D^i_t = 1)\) implies that the state of the technology is 1 in the next period and a fraction \(\rho^i_t\) of its size in the previous period otherwise.

To analyze this problem, we use a dynamic programming approach. The states are the age of the technology stock \((t)\) and the productivity shock \((A)\). The value function \(V(t, A)\) satisfies the functional equation:

\[V(t, A) = \max \left[V^Y(t, A), V^N(t, A) \right] \]

(40)

where

\[V^N(t, A) = AF(t) + \beta E_{A'|A} V(\rho t, A') \]

\[V^Y(t, A) = AF(t) \lambda - \Theta + \beta E_{A'|A} V(1, A') \]

(41)

The superscript \(Y\) refers technology adoption \((D^i_t = 1)\) and \(N\) to no technology adoption \((D^i_t = 0)\). The expectation over \(A'\) is taken using the conditional distributions \(\Phi(A'|A)\). We assume shock follows a first-order Markov process. The productivity shock has two effects: a direct effect on current productivity and an indirect effect through information about future productivity shocks through \(\Phi(A'|A)\). We assume shocks to \(\Theta^i\) are i.i.d.

The solution to the functional equation leads to adoption if and only if \(V^Y > V^N\) given the state vector, \(h = (t, A)\). We characterize the solution by a hazard function \(H(t, A) \in [0, 1]\), the probability of adoption if the current technology stock is \(t\) and the state of productivity is \(A\). The cutoff is visualized in Figure G1.\(^{55}\)

Proposition 1. There exists a solution to the functional equation.

Proof. The solution’s existence is guaranteed by Theorem 9.6 in Stokey et al. (1989) if \(\beta < 1\). \(\square\)

\(^{54}\)For expositional clarity, we drop the subscript \(t\) and the superscript \(i\).

\(^{55}\)While given the state vector, the probability of an investment spike is deterministically either zero or one, this hazard is a useful object because the idiosyncratic shocks are generally not measured in the data.
Proposition 2. \(H(t, A)\) is decreasing in \(t\).

Proof. For a given value of productivity \(A\) let \(t^*(A)\) satisfy \(V^N(t, A) = V^Y(t, A)\) where

\[
V^N(t, A) \equiv At + \beta V(\rho t, A')
\]

(42)

\[
V^Y(t, A) \equiv At\lambda - \Theta + \beta EV(1, A')
\]

(43)

Define \(\Delta (t, A) = V^Y(t, A) - V^N(t, A)\). Using this object, it is sufficient to show that \(\Delta (t, A)\) is decreasing in \(t\). From (42) and (43):

\[
\Delta (t, A) = At(\lambda - 1) - \Theta + \beta E_A' [V(1, A') - V(\rho t, A')]
\]

(44)

where \(V(t, A) \equiv \max \{V^Y(t, A), V^N(t, A)\}\). The first term is decreasing in \(t\). The last part of this expression is also decreasing as \(t\) increases since \(V(t, A)\) is an increasing function of \(t\). Thus \(\Delta(t, A)\) is decreasing in \(t\). This proves that given the state of productivity \(A\), the hazard \(H(t, A)\) is decreasing in \(t\).

Proposition 3. \(H(t, A)\) is decreasing in \(\Theta\).

Proof. Using the definition of \(\Delta (t, A; \Theta)\), we have

\[
\Delta (t, A; \Theta) = At(\lambda - 1) - \Theta + \beta E_A' [V(1, A'; \Theta) - V(\rho t, A'; \Theta)]
\]

(45)

The term \(\Delta (t, A; \Theta)\) is decreasing in \(\Theta\) and thus the result is immediate.

Proposition 4. \(H(t, A)\) is independent of \(A\) if \(\Theta > 0, \lambda = 1, \) and \(A\) is i.i.d.

Proof. Using the definition of \(\Delta (t, A)\), for the case of \(\Theta > 0\) and \(\lambda = 1\), we have

\[
\Delta (t, A) = \Theta + \beta E_A' [V(1, A') - V(\rho t, A')]
\]

(46)

Since \(A\) is i.i.d., the right side is independent of the current realization of the shock. Thus the gains to replacement are independent of \(A\).

Proposition 5. \(H(t, A)\) is increasing in \(A\) if \(\Theta > 0, \lambda = 1, \) and \(\Phi(A'|A)\) is decreasing in \(A\).

Proof. Using the definition of \(\Delta (t, A)\), for the case of \(\Theta > 0\) and \(\lambda = 1\), we have

\[
\Delta (t, A) = -\Theta + \beta E_{A'|A} [V(1, A') - V(\rho t, A')]
\]

(47)
The expectation over A' is conditional on A so that the current state of productivity does influence the replacement choice even though $\lambda = 1$. Since high values of A put, by assumption, more weight on high values of A', it is sufficient to show that $V(1, A) - V(t, A)$ is increasing in A for any t. This is, in turn, equivalent to the condition that

$$\int_t^1 V_t A(z, A) dz > 0 \quad (48)$$

for all t. This condition is satisfied if $V_t A(t, A) > 0$ for all (t, A). From (42) and (43) this positive cross-partial condition holds when $\Theta > 0$ and $\lambda = 1$. To see this, note that by assumption, replacement will eventually occur so that (42) is a sequence of current period returns with positive cross partials between t and A. From (43), $V^Y(t, A)$ has a positive cross partial since the second term is independent of t.

Figure G1: The Cutoff.

Notes: Threshold model. The technology adoption model rationalizes firms’ spiky investment behavior. In the model, the firm makes a technology investment $D = 1$ if adoption likelihood H crosses a threshold. Back to Section G, 4, and D.
H Related Research

Technologies’ Effects on Employment and Skill Demand This paper contributes to the active literature on technologies’ effects on employment and skill demand, surveyed by Acemoglu (2002b) and Acemoglu and Autor (2011), and specifically to the evidence on advanced technologies’ effects in manufacturing firms.

The closest papers to our research report similar findings. Doms et al. (1997) report little correlation between technology adoption and skill upgrading in US manufacturing, focusing on similar technologies (e.g., CNC machines and robots) and industries (e.g., fabricated metal products) as we do. Pavcnik (2003) documents that plants’ adoption of foreign technology is not associated with skill upgrading. Bartel et al. (2007) show that valve plants that adopted new IT-enhanced equipment shifted their business strategies toward producing more customized products, consistent with our interpretation and evidence. They report changes in machine operators’ skill requirements, not in the traditional sense of replacing production workers or increasing the demand for formal education, but, for example, increased focus on setting up, monitoring, and correcting the new machinery, consistent with what we find in our fieldwork. Weaver and Osterman (2017) emphasize that most manufacturing work does not require high levels of formal education. Criscuolo et al. (2019) analyze the effects of an investment support program in UK manufacturing using an instrumental variables (IV) strategy, and find evidence for a positive treatment effect on employment. In recent work, Genz et al. (2021) report that the adoption of CNC machines and industrial robots led to increases in employment, including production workers, and did not coincide with a higher demand for more educated workers. Koren et al. (2020) report positive wage effects on machine operators exposed to imported machines. Extensive qualitative evidence corroborates these observations (e.g., Sohal 1996; Small 1999; Berger 2013, 2020).

Contemporary evidence on effects of robots and automation in firms supports our findings (Acemoglu et al., 2020b; Aghion et al., 2020; Bonfiglioli et al., 2020; Dixon et al., 2021; Karen Eggleston et al., 2021; Humlum, 2019; Koch et al., 2021; Stapleton and Webb, 2020). Most of it finds positive effects on employment, no negative effects on low-skill workers, and no major changes in skill composition. Dixon et al. (2021) document that robot adoption is motivated by improving product and service quality, not reducing labor costs. Koch et al. (2021) report that the employment increases applied to all types of workers and provide evidence supporting the idea that exports facilitate the expansion effects from technologies. Aghion et al. (2020) report no different effects across skill groups. In contrast, Acemoglu et al. (2020b) estimate 0–1.6% declines in the production employment share while focusing on unskilled industrial jobs. The most significant
difference between these studies is the results for the labor-cost share: e.g., Acemoglu et al. (2020b) and Koch et al. (2021) find labor share declines (3–5% and 5–7%), but Aghion et al. (2020) find no change. One way to reconcile these estimates is that the former two focus exclusively on robots, while the latter uses a broader measure of technologies. Robots specifically appear to reduce the labor share, while other advanced technologies appear to have neutral effects. Similar to Koch et al. (2021), we find zero effects on the labor share from CNC machines and other advanced technologies.

Our results are different from some firm-level studies that focus on different technologies. These papers document that some technological advances, especially ICT, may have been skill biased. For example, Akerman et al. (2015) study the regional rollout of broadband Internet in Norway using a difference-in-differences design. More effective Internet is a critical technological advance, but different from new manufacturing technologies, and we would expect potentially different effects. The estimates indicate that college-educated workers’ wages and employment increased modestly in places that received faster Internet. There were, on average, no negative effects on non-college and manual workers, but a small negative effect on high-school dropout and routine (cognitive) workers’ wages. In another example, Gaggl and Wright (2017) estimate the effects of a temporary tax allowance on ICT investments, primarily software, in the UK using an RD design. They find that ICT subsidies induced increases in employment and wages. Workers performing non-routine cognitive tasks experienced the increases, routine cognitive workers experienced modest declines, and manual workers experienced no change. Bresnahan et al. (2002) also report complementarities between skill and IT equipment, such as computers. The contrast to these papers highlights that distinct technologies may induce distinct effects. Specifying the technologies in focus, as these papers do, is valuable for building cumulative evidence.

Our results are also different from studies that focus on technologies’ replacement effects. These papers’ results highlight that some technological changes may also replace workers. Bessen et al. (2020) study the effects of automation events on incumbent workers, measuring automation from firms’ expenditures on third-party automation services. Our event-study design builds on their approach. The main difference is that their approach is designed to capture the replacement effects; they isolate what happens to the incumbent workers when firms automate. They find that a large increase in automation expenditure makes workers more likely to separate from the firm. The effects are meaningful but modest in size: the average earnings loss is 2%. They detect no differences by wage groups, often used as a proxy for skill. Feigenbaum and Gross (2021) study the replacement of telephone operators for mechanical switching by AT&T in 1920–1940. This eliminated most of these jobs, did not reduce future cohorts’ overall employment, but caused adverse effects on incumbent operators.
Our results are different from several macro-level studies. We organize the macro evidence into indirect and direct approaches. The indirect approaches include Katz and Murphy (1992); Beaudry et al. (2010); Lewis (2011); Acemoglu and Restrepo (2020); Dauth et al. (2021). These papers report skill bias from technological advances, partly for different reasons. The main argument in Katz and Murphy (1992) is that to reconcile the increased college wage premium with the increased supply of college-educated workers, substantial growth in the demand for more-educated workers is necessary. This demand growth is sometimes interpreted as skill-biased technological change. Beaudry et al. (2010) and Lewis (2011) evaluate technology-skill complementarity using variations in skill supply. They find that the local skill supply predicts increases in technology adoption. This observation is consistent with our results, despite the seeming contradiction. Technology adoption may be easier in places with more high-skill workers, even if technologies do not directly affect skill composition within firms. Acemoglu and Restrepo (2020) and Dauth et al. (2021) also analyze technology-skill complementarity at the local level in the US and Germany. They focus on the places’ exposure to robots based on their pre-existing industry structure. The exposure approach has many clear advantages, including the possibility to analyze equilibrium effects, but the focus on variations stemming from pre-existing industries may leave out technologies’ other effects than replacement, such as using technologies to launch new products.

The direct approaches include Berman et al. (1994); Autor et al. (1998); Krusell et al. (2000); Autor et al. (2003); Michaels et al. (2014), and Graetz and Michaels (2018). These papers also report skill bias from technological advances. Part of the direct macro evidence considers different technologies. Berman et al. (1994); Autor et al. (1998, 2003), and Michaels et al. (2014) focus on the effects of ICT, especially computers. Another part, e.g., Krusell et al. (2000) and Graetz and Michaels (2018), considers similar technologies to our study and still finds skill bias. While we do not have a complete explanation for the difference, micro and macro estimates may be different and still consistent with each other for several reasons, for example, due to externalities (see, e.g., Oberfield and Raval 2021) or if technologies induce broad economy-wide changes. Exploring these channels is a promising avenue for future research.

56 This interpretation is consistent with the technology view emphasized by Nelson and Phelps (1966); Welch (1970); Schultz (1975), where education fosters the process of technology adoption and with models of directed technological change (Acemoglu, 1998, 2002a). The interpretation is also consistent with Doms et al. (1997), who find that plants that adopted more technologies employed more educated workers before adoption.

57 These reasons include: 1) externalities, e.g., in the product market, the intermediate input market, the factor market, or due to technological externalities, 2) compositional effects, e.g., through expansion and contraction of firms and industries, 3) technologies creating new areas in the economy, e.g., video games, the Apollo program, or Google, and 4) technologies directly inducing macro-level changes, e.g., self-booking platforms displacing travel agents, the Internet changing job search, or technologies inducing broad organizational and cultural changes. The papers addressing externalities include Acemoglu et al. (2020b); Aghion et al. (2020); Humlum (2019); Koch et al. (2021), and Oberfield and Raval (2021).
To summarize the evidence from the prior literature, we make six observations: 1) Advanced manufacturing technologies, such as CNC machines, appear to cause increases in employment and no changes in the skill composition at the firm level, 2) Technological advances in manufacturing do not appear to cause negative effects specifically to manual workers, 3) Robots, in particular, also appear to cause increases in employment and no significant skill bias at the firm level, but may reduce the labor-cost share, 4) ICT, specifically computers, software, and the Internet, appear to have been skill-biased for cognitive work at the micro and macro levels, 5) Some technological advances, such as automation consulting services, appear to have caused some worker displacement, and 6) Local skill supply appears to foster technology adoption. Due to the still limited evidence, these conclusions are tentative. Our results corroborate 1–2 and are consistent with 3–6.

Industrial Policies’ Effects Our analysis contributes to the literature on industrial policy. By industrial policy, we refer to policies that stimulate specific economic activities and promote economic development. These policies are common. For example, EU countries spent EUR 134.6 billion on government subsidies to the private sector (designated as state aid) in 2019, about 0.81% of the EU’s GDP (The EU State Aid Scoreboard, 2020). The objectives and effects of industrial policy are debated (Lane, 2020).

This paper focuses on a particular type of firm subsidy: a lump-sum transfer to increase technology adoption in manufacturing. Manufacturing subsidies are widespread (see, e.g., Gruber and Johnson 2019) but understudied. Berger (2013) argues that these types of programs have contributed to the productivity and growth opportunities in German SME manufacturing, and lack of them may contribute to the relatively low productivity growth of US manufacturing. Our evidence from Finland shows that it is possible to increase technology adoption by targeted subsidies and, by doing so, induce increases in employment, revenue, and exports.

Empirical challenges in the industrial policy literature are similar to those in the literature on technology and work. There are different types of industrial policies in different contexts, and evaluating them is challenging. This paper provides new quasi-experimental estimates of firm subsidies’ effects in a specific context. In addition to the research we mentioned earlier, Takalo et al. (2013) and Einio (2014) analyze Finnish R&D subsidies.

Products and Exports, Intermediate Inputs, and Innovation Our analysis relates to the research on firms’ product and export choices, intermediate inputs, and innovation. Recent research has found that becoming an exporter stimulates firms’ technology adoption and product quality upgrading (Verhoogen, 2008; Lileeva and Trefler, 2010; Bustos, 2011; Kugler and Verhoogen, 2012).
Our research documents that technology adoption also induces firms to become exporters and to introduce new product varieties. The complementarity between technology and exporting appears to operate in both directions.

Access to new machinery is conceptually related to access to new intermediate inputs. Research finds that access to new imported inputs fosters introducing new product varieties and productivity (Goldberg et al., 2010; Koren et al., 2020). Our research corroborates the result on product varieties. In related work, Bernard et al. (2010, 2011) analyze the role of product switching as a source of reallocation within firms, and Hausmann et al. (2007) product specialization patterns’ implications for growth.

Our theoretical framework builds on the literature on heterogeneous firms and trade reviewed by Melitz and Redding (2014). We use modeling techniques from Bustos (2011) to capture the technology adoption decisions by heterogeneous firms. We find that the monopolistic competition view of the industrial manufacturing market is consistent with our quantitative and qualitative evidence. Finally, our research provides empirical evidence to enrich the models of firm-level technological change and innovation (e.g., Hopenhayn 1992; Ericson and Pakes 1995; Klette and Kortum 2004; Acemoglu et al. 2018).58

58Back to Section 1.