A Taste of Their Own Medicine:
Guideline Adherence and Access to Expertise*

Amy Finkelstein† Petra Persson‡ Maria Polyakova§ Jesse M. Shapiro¶

January 28, 2022

Abstract

We use administrative data from Sweden to study adherence to 63 medication-related guidelines. We compare the adherence of patients without personal access to medical expertise to that of patients with access, namely doctors and their close relatives. We estimate that observably similar patients with access to expertise have 3.8 percentage points lower adherence, relative to a baseline adherence rate of 54.4 percent among those without access. Our findings suggest an important role in non-adherence for factors other than those, such as ignorance, poor communication, and complexity, that would be expected to diminish with access to expertise.

Keywords: information, medical decision-making, experts

JEL Codes: I12, I18, D83

*E-mail: afink@mit.edu, perssonp@stanford.edu, maria.polyakova@stanford.edu, jesse.shapiro@fas.harvard.edu.

We acknowledge funding from the Population Studies and Training Center and the Eastman Professorship at Brown University (Shapiro), and the National Institute on Aging under grant K01AG05984301 (Polyakova). We appreciate comments from the Editor (Hilary Hoynes), three anonymous referees, Jon Gruber, Eric Patashnik, and seminar participants at the Research Institute of Industrial Economics and the Wharton School. We are grateful to Aron Malatinszky, Gabriel Swagel, and Yuci Zhou, as well as to Sarah Bögl, Katja Hofmann, and Iliriana Shala at the Research Institute of Industrial Economics, for excellent research assistance.

†MIT and NBER

‡Stanford University and Research Institute of Industrial Economics and NBER

§Stanford University and NBER

¶Harvard University and NBER
1 Introduction

Widespread non-adherence to medical guidelines is believed to contribute to a large amount of hospitalizations, deaths, and health care spending each year (Fonarow et al. 2011; Neiman 2017).1 The causes of non-adherence are the subject of significant academic and policy interest (Lopez-Vazquez et al. 2012; Neiman 2017; Hyun 2017). Some of the prominent explanations include patient or provider ignorance, guideline complexity, and lack of trust or communication in the patient-provider relationship (Alpert 2010; Bosworth 2012; Neiman 2017; Aslani et al. 2019).2

Such explanations motivate specific policy interventions, such as attempts to simplify treatment regimes or disseminate information to patients or practitioners (McDonald et al. 2002; Krueger et al. 2005; Brown and Bussell 2011; Irwin et al. 2014; Nieuwlaat et al. 2014; Fischer et al. 2016; van Driel et al. 2016). They also suggest the testable implication that patients with greater access to medical expertise will tend to be more adherent, since they are likely to be better informed, better able to make decisions, and better able to communicate with their medical providers.

We find that the opposite holds. Specifically, we study the relationship between a patient’s adherence to medication guidelines and whether the patient has personal access to medical expertise, defined as being a doctor or having one in the close family. To do so, we assemble administrative data on the entire population of Sweden from 2005 through 2016 and use it to measure adherence to 63 government-issued prescription drug guidelines. These include 6 guidelines related to antibiotics (e.g., children should start with a narrower- rather than a broader-spectrum antibiotic to combat a respiratory tract infection), 20 guidelines specific to the elderly (e.g., avoid certain sleep medications), 20 guidelines related to specific diagnoses (e.g., take statins after a heart attack), and 17 guidelines on medication use during pregnancy (e.g., avoid certain antidepressants).

We use information on a person’s completed education to determine if they are a doctor, and we link doctors to their relatives using a population register. In our baseline analysis, we classify

1For example, only a minority of patients adhere to the recommendation to take high-intensity statins following a heart attack (Colantonio et al. 2017; Neiman 2017), and many physicians depart from expert guidance on antibiotic prescribing (Lopez-Vazquez et al. 2012; Fleming-Dutra et al. 2016).

2Other explanations include financial barriers (Gellad et al. 2009; Choudhry et al. 2011; Bosworth 2012) and behavioral biases (Baicker et al. 2015), both of which may be more important for disadvantaged populations (Mullainathan and Shafir 2013 pp. 157, 231; Aslani et al. 2019).
a patient as having access to medical expertise if the patient, the patient’s partner, or any of the patient’s parents or children is a doctor. For each of the 63 guidelines, we narrow in on the set of patients who, based on their health conditions, prior prescription claiming, and demographics, are covered by the guideline; within this risk set, we examine differences in adherence between those with and without access to expertise.

Adherence to the guidelines we study requires the compliance of both the provider (to prescribe or not prescribe some medication) and the patient (to take or not take some medication). Because of Sweden’s universal health insurance, financial barriers to adherence are likely minimal; patients face limited cost-sharing for medical treatments or prescription drugs (Swedish Dental and Pharmaceutical Benefits Agency 2020).

We find that access to expertise is generally associated with less adherence to guidelines. Among the 63 guidelines that we study, and controlling for demographics, income, and education, the association between access to expertise and adherence is negative in 41 cases and statistically significant in 20 of those. Since the share of the population covered by any given guideline can vary by up to three orders of magnitude, we summarize these findings by averaging them across guidelines, weighting each guideline by the prevalence of its risk set in the population. We estimate that while the average patient without access to expertise adheres to guidelines 54.4 percent of the time, one with access to expertise adheres only 50.6 percent, a 3.8 percentage point lower adherence rate. The 95 percent confidence interval includes a 4.1 to 3.5 percentage point lower adherence rate for those with access to expertise. The education and income controls in our baseline specification strengthen the negative association between adherence and access to expertise. Relative to our baseline, the association also becomes more negative if we narrow the definition of access to include only being a doctor oneself. It becomes less negative—but remains negative and statistically significant—if we broaden the definition of access to expertise to include having a doctor in the extended rather than just close family, or to include having nurses and pharmacists in the close family.

We consider several explanations for the negative association between guideline adherence and access to expertise. We first consider a potential role for unobserved socioeconomic or health
differences between those with and without access to expertise, but find little evidence to suggest these differences explain the association. We next consider the possibility that access to expertise is associated with greater comfort with pharmaceutical solutions to medical problems, or, relatedly, greater access to pharmaceuticals. We find some evidence consistent with this hypothesis: access to expertise is associated with greater use of prescription medications. However, we find that the negative association between adherence and access to expertise is similar for guidelines to take a particular medication and guidelines to avoid one, which is not consistent with an explanation based solely on relative comfort with, or access to, pharmaceuticals.

The last possibility we consider is that access to expertise gives patients information or confidence that prompts them to disregard guidelines that they do not perceive to be in their clinical interest. Several pieces of evidence suggest that this mechanism is at play. One is that the adherence gap between those with and without access to expertise is greater for guidelines with weaker clinical support, although it remains negative and statistically significant even for those with stronger support. Among pregnant women, access to expertise is less negatively associated with adherence for guidelines recommending against drugs classified in category D (which are contraindicated in pregnancy), than guidelines recommending against drugs in category C (which are to be used only when clearly needed). Likewise, the association between adherence and access to expertise is marginally more negative for guidelines rated by the evidence-based clinical resource UpToDate as based on weaker evidence compared to those rated as having stronger evidence, although here the difference is not statistically distinguishable. Another piece of evidence is that, while the association between access to expertise and adherence is negative for each of the major categories of guidelines we consider, it is most negative for guidelines regarding the appropriate use of antibiotics, which are designed to promote public health rather than the narrow interest of the patient.

Our findings contribute to a large literature comparing the medical decisions of practitioners and their families to those of the general population. Comparisons have included preventive health behavior (Glanz et al. 1982), treatment decisions and outcomes (Bunker and Brown 1974; Ubel et al. 2011; Chen et al. 2020), end-of-life care (Gramelspacher et al. 1997; Weissman et al. 2016; Wunsch et al. 2019), and use of Cesarean sections (Chou et al. 2006; Grytten et al. 2011; Johnson
and Rehavi 2016). A related literature compares the health outcomes of doctors and their families to those of the general population (Leuven et al. 2013; Artmann et al. forthcoming; Chen et al. forthcoming).

Most closely related to our paper, Frakes et al. (2021) compare the propensity to use several types of low-value and high-value medical care (as defined by the health policy community) between military physicians and other U.S. military personnel. They find that physicians are only slightly more likely to avoid low-value care or engage in high-value care than non-physicians, and conclude that policies aimed at improving patients’ information and medical knowledge would therefore do little to affect adherence. Our findings reinforce this conclusion in a different setting (and focusing on different types of guidelines) by showing that doctors and their families tend to be less adherent to guidelines, even those backed by strong evidence.

More broadly, our paper contributes to a literature comparing expert and non-expert behavior in contexts such as consumer purchases (Bronnenberg et al. 2015), real estate (Rutherford et al. 2005; Levitt and Syverson 2008), household finance (Bodnaruk and Simonov 2015), and health insurance (Handel and Kolstad 2015). Some of this literature treats the behavior of informed individuals as a normative benchmark of optimal behavior. It is unclear whether this perspective is appropriate in our context. Medication guidelines represent broad “rules of thumb” that may not apply in all circumstances. It is possible that the care of more informed patients is guided by clinically relevant knowledge that is not used in the care of less informed patients, and that the more informed may benefit from their greater departures from guidelines. However, consistent with recent evidence that practitioners’ departures from prescribing guidelines lead to worse patient outcomes (Currie and MacLeod 2020; Abaluck et al. 2020; Cuddy and Currie 2020), it is also possible that more informed patients are overconfident or otherwise mistaken in deviating from guidelines.4

3Relatedly, Abaluck et al. (2020) use data from clinical notes to argue that most departures from clinical guidelines do not stem from practitioners’ lack of awareness of these guidelines.

4Alpert (2010), for example, argues that evidence-based “guideline-directed therapy for a particular condition has been shown to lead to better clinical outcomes compared with ‘eminence-based,’ personally derived, therapeutic strategies.”
2 Data

2.1 Population and Characteristics

The backbone of our data is an extract from the Swedish Population Register of all individuals residing in Sweden from 2000 through 2016 (Skatteverket n.d.). For each individual, we observe information about their biological parents, which allows us to link any given individual to their grandparents, parents, siblings, children, cousins, aunts, uncles, nieces, nephews, and grandchildren. We are also able to link individuals to their spouses using marital records and to cohabiting partners using information about addresses and shared biological children. Hereafter, we refer to a person’s spouse or cohabiting partner as the person’s partner.

We merge these data to Statistics Sweden’s longitudinal database of individuals (LISA) from 1990 through 2016, which contains information drawn from various administrative records (Statistics Sweden n.d.). From the education records we obtain information on each individual’s highest completed degree in each calendar year. We define an individual as a doctor if their highest degree is a medical degree, taking the most recent degree in cases of multiple higher-level degrees. We define other specialized occupations analogously.

We define an individual as having access to medical expertise in a given year if the individual, the individual’s partner, or any of the individual’s parents or children is a doctor. We sometimes use a broader definition of access which also includes having a doctor in the extended family (i.e., among the individual’s grandparents, siblings, cousins, aunts, uncles, nieces, nephews, grandchildren, or partner’s parents). We define the presence of other occupations (e.g., nurses, pharmacists) in the family analogously.

We also use LISA to define control variables. From the location records, we construct a categorical variable indicating the individual’s municipality (kommun) of residence as of the preceding year, using the mother’s municipality for those age 17 and under. From the education records, we construct a categorical variable indicating the individual’s highest level of completed schooling (i.e., no college, some college, completed college) as of the preceding year, using the mother’s schooling for those age 26 and under. Finally, from the tax records, we define a measure of pre-transfer in-
come for each individual and year, using the average of parents’ nonmissing income for individuals age 26 and under and using income as of age 60 for those over 60. We compute the percentile rank of each individual’s income in the preceding year, among those of the same gender and birth cohort who had strictly positive income.

2.2 Medical Records

We link the data from Statistics Sweden to health records from the National Board of Health and Welfare (Socialstyrelsen 2019), which we hereafter call the Board. For each individual, we observe the universe of prescription drug purchases made in outpatient pharmacies from July 2005 through 2017. For each purchase, we observe the name of the drug and the drug’s seven-digit Anatomical Therapeutic Chemical (ATC) classification code. We do not observe unfilled prescriptions, and we do not observe identifying information for the provider who wrote the prescription.

We observe the universe of inpatient hospital visits, outpatient visits (excluding those for primary care and pre-natal care), and births from 2005 through 2016. For each visit, we observe the date of the visit and the diagnosis codes (ICD-10) attached to the visit. For each birth, we infer the date of conception (by subtracting 280 days from the due date), and the date the pregnancy ended (by adding the gestational age at birth to the date of conception). To form control variables for sensitivity analysis, we follow Chen et al. (forthcoming) and define separate indicators for whether an individual had a heart attack, heart failure, lung cancer, Type II diabetes, or asthma diagnosis in any preceding year.

2.3 Prescription Drug Guidelines

Multiple government agencies promulgate medical guidelines in Sweden. We focus on the subset of guidelines that are for prescription drugs because we are best able to measure adherence for these guidelines. We consider two types of guidelines.

The first type are guidelines issued by the Board, a government organization that issues national guidelines for treatment of various diseases. These guidelines are written by panels of physicians appointed by the Board. The government tracks adherence to the guidelines as a mechanism for
improving quality of care, but does not insist that practitioners follow the guidelines. In October of 2019, we identified 93 active guidelines pertaining to prescription drugs that had been issued by the Board.\(^5\) We analyze the 46 of these for which we can measure adherence in our data.\(^6\)

The second type are guidelines covering the use of prescription drugs in pregnancy. The potential for a drug to harm fetal development is reflected in a letter grade classification (A, B, C, or D) \(^7\) (Danielsson and Dencker 2019). These classifications are in turn based on text selected by the drug manufacturer from a standardized set of options provided by the EU (Electronic Medicines Compendium 2017). Sweden’s pharmaceutical database (FASS) classifies a drug as D-class if the selected text says that the drug is “contraindicated during pregnancy” and as C-class if the text says the drug “has harmful pharmacological effects on pregnancy and/or the fetus/newborn” and “should be used during pregnancy only when clearly needed.” We obtained information on which drugs had C and D classifications in Sweden in March 2019. We define one guideline for each of the 10 categories of C-class drugs (e.g., C-class opioids) and one for each of the 5 categories of D-class drugs (e.g., D-class tetracyclines, a type of antibiotic) most frequently purchased by women in our data during the six months before conception. We also define one guideline for all other C-class drugs, and one for all other D-class drugs, yielding a total of 17 pregnancy-related guidelines.

We group guidelines into one of four mutually exclusive and exhaustive categories: 6 guidelines covering the use of antibiotics, 20 covering medication use specifically by the elderly (defined as those age 75 and older), 20 covering medication use following specific diagnoses, and 17 covering medication use in pregnancy. Appendix Tables 1–4 provide additional details on the guidelines in each of these four groups, as well as their classification along two additional dimensions.

First, we classify a subset of guidelines according to whether they recommend against taking a particular drug or class of drugs (“don’t take” guidelines) or in favor of taking a particular drug or

\(^5\) We obtained this information from Sveriges Kommuner och Regioner (2019, sections on Indikatorer / indicators and Lakemedelsbehandling / drug treatment) and Socialstyrelsen (2010).

\(^6\) We exclude those that rely on special drug registries unavailable to us (38 guidelines), do not have a clear direction or target value (5 guidelines), or track dosage rather than type of medication (4 guidelines).

\(^7\) B-class drugs include those whose text indicates that prescribing during pregnancy should be done “only when clearly needed.” A-class drugs include those whose text indicates that prescribing during pregnancy should be done “with caution” or that the drug “can be used during pregnancy.” See Danielsson and Dencker (2019). Translations via GoogleTranslate.
class of drugs ("do take" guidelines). Adherence to "do take" guidelines requires the compliance of both the provider (to prescribe the medication) and the patient (to fill the prescription). Adherence to "don’t take" guidelines requires the compliance of either the provider (not to prescribe the medication) or the patient (not to fill the prescription).

Second, we classify a subset of guidelines according to the strength of the evidence underlying them. For guidelines covering medication use in pregnancy, we do this by distinguishing between C-class and D-class drugs. For other guidelines, we do this by determining whether UpToDate gives the guideline a 1A rating—its strongest recommendation based on the highest possible quality of evidence—or not.9

2.4 Measuring Adherence

To measure adherence to each prescription drug guideline, we first define the circumstance under which the guideline applies. We consider each patient-year that meets this circumstance to be in the risk set for the corresponding guideline. We then use the prescription drug purchase data to define a binary indicator for adherence for each case in the risk set. Appendix Tables 1–4 provide additional information on the definition of the risk set and of adherence for each guideline.

For 39 of our 46 guidelines issued by the Board, we follow the Board’s definition as closely as possible in defining the risk set and adherence. For example, one guideline recommends that individuals should use statins 12-18 months after a myocardial infarction (i.e., heart attack) diagnosis. We define the risk set to include each individual’s first observed inpatient diagnosis for myocardial infarction, and we define adherence by whether the individual purchases a statin within 12-18 months after discharge from that inpatient episode. The remaining 7 guidelines recommend against certain prescriptions or combinations of prescriptions for those 75 and older. For these guidelines, we define the risk set to be person-years who are 75 years and older and where the person purchased the given prescription or combination of prescriptions when she was 74.

For the 17 guidelines recommending against the use of certain drugs during pregnancy, we define

8We do not include antibiotics guidelines in this classification, as they advocate taking one drug over another.
9UpToDate is a US-based publisher of clinical decision support tools for practitioners. It uses the system of ratings developed by the Grading of Recommendations Assessment, Development and Evaluation working group; see The GRADE Working Group (n.d.). For 13 guidelines we are unable to obtain a rating from UpToDate.
the risk set to be the set of pregnancies in which the mother purchased the drug(s) during the 24 months prior to conception, and we define adherence as not purchasing the drug(s) during the pregnancy.

2.5 Averaging across Guidelines

We analyze results separately for each guideline, but also average results across guidelines. When we average, we weight each guideline by its prevalence in the population. Specifically, for each gender and for each age from 0 through 85, we weight each guideline by the fraction of people in our sample, of the given gender and age, who are in the risk set in a reference year.\(^\text{10}\) We then take an unweighted average across ages for each gender and across both males and females as our measure of prevalence. The resulting summary statistics on guideline prevalence and adherence should be interpreted as reflecting the average experience of a (hypothetical) person who lives each age of life, from 0 through 85, during our sample period.

2.6 Descriptive Statistics

Our analysis sample consists of 5,887,471 individuals aged 85 or younger for whom we have valid information on completed education and who fall into the risk set for at least one guideline over the 2005-2017 period during which we measure prescription drug purchases.\(^\text{11}\) Of these individuals, 149,399 have access to expertise at some point during the sample period, of whom over 95 percent have access to expertise throughout.

The share of the population in the risk set ranges from 7.6 percent for the guideline that adults should use penicillin V for their first antibiotic treatment (as opposed to starting with a broader-spectrum antibiotic), to 0.003 percent for the recommendation against using anti-epileptics during pregnancy (Appendix Figure 1, Panel A).

On average, over their life cycle, an individual is exposed to 36.32 guidelines. The average

\(^{10}\)For guidelines recommending against certain prescriptions for those 75 and older, the reference year is 2017, the most recent year in which we measure prescription drug purchases. Otherwise, the reference year is 2016, the most recent year in which we measure inpatient and outpatient hospital visits.

\(^{11}\)Of those who fall into the risk set for at least one guideline, 2.4 percent are excluded from the analysis sample because of missing or invalid information on completed education.
woman is subject to 43.23 guidelines and the average man to 28.85 guidelines, with the difference driven primarily by the pregnancy guidelines. Guidelines are substantially more prevalent for the elderly. Appendix Figure 2 shows patterns of guideline prevalence in more detail.

Rates of adherence vary considerably across guidelines (Appendix Figure 1, Panel B). Among those without access to expertise, adherence ranges from 20.4 percent for the recommendation that individuals age 50 and older take osteoporosis medications in the 12 months after a fracture diagnosis, to 98.8 percent for the guidelines against taking D-class tetracyclines (antibiotics) and progestogens (hormones) during pregnancy. On average, over their life cycle, an individual without access to expertise adheres to guidelines 54.4 percent of the time.12

Appendix Tables 1–4 report the share of the population covered by each guideline, as well as the average adherence rate for each guideline among those without access to expertise.

3 Results

3.1 Individual Guidelines

Figure 1 presents differences in adherence between otherwise similar individuals with and without access to expertise for each of the 63 guidelines. Specifically each row reports the coefficient and the 95 percent pointwise confidence interval from a linear regression of an indicator for adherence on an indicator for access to expertise and a set of baseline controls; the sample is the set of patient-years in the risk set for the given guideline. The baseline controls are indicators for: income percentile, calendar year, month, age in years, gender, highest level of education, municipality of residence, and the number of children previously born to the person (zero for males). The confidence intervals are based on standard errors which are clustered at the patient level for any guidelines for which a patient can appear in the risk set more than once, and which are heteroskedasticity-robust otherwise.

Figure 1 orders guidelines by the size of the coefficient on access to expertise. Darker colors indicate guidelines that affect a larger share of the population, which is also reflected in generally

12For comparison, Sabaté, ed (2003) reports that adherence to recommended regimes for patients with chronic illnesses averages about 50 percent in developed countries.
smaller confidence intervals.

Out of 63 guidelines, we find a negative point estimate for 41 of them, indicating that access to expertise is associated with lower adherence; 20 of these 41 estimates are statistically significantly different from zero. For example, for the guideline that individuals aged 75 and older should avoid a particular set of potentially risky drugs including some tranquilizers and opioids, we find that access to expertise is associated with a statistically significant 4.1 percentage point lower adherence (95 percent confidence interval 5.7 to 2.6), relative to a 49.4 percent adherence rate among those without access to expertise. Likewise, for the guideline advising that pregnant women not take C-class opioids, access to expertise is associated with a statistically significant 1.9 percentage point lower adherence (95 percent confidence interval 3.4 to 0.3), relative to an 85.1 percent adherence rate among those without access to expertise.

For the remaining 22 guidelines, the point estimate is positive, with 3 of these estimates statistically significantly different from zero. For example, for the guideline recommending the use of statins 12-18 months after a myocardial infarction diagnosis, access to expertise is associated with a statistically insignificant 0.5 percentage point greater adherence (95 percent confidence interval -2.1 to 3.0) relative to a 53.2 percent adherence rate among those without access to expertise.

3.2 Aggregate Patterns

On average across all of these guidelines, individuals with access to expertise are 3.8 percentage points less likely to adhere to guidelines (Figure 2, top row); the 95 percent confidence interval spans 4.1 to 3.5. The point estimate represents a 7.0 percent lower adherence rate among those with access to expertise. In other words, while the average patient without access to expertise adheres to guidelines 54.4 percent of the time, a demographically similar patient with access to expertise adheres only 50.6 percent of the time.

Figure 2 Panel A shows that adherence is statistically significantly lower for those with access to expertise in each of the four, mutually exclusive and exhaustive categories of guidelines we created. The adherence gap is most pronounced for antibiotic guidelines, where those with access

13 The 95 percent confidence intervals reported in Figure 2 are based on a patient-level bootstrap with 50 replicates.
to expertise are on average 5.2 percentage points (about 9.8 percent) less likely to adhere (95 percent confidence interval 5.6 to 4.9 percentage points). The adherence gap for antibiotics is statistically different from the adherence gap for each of the other three guideline categories (p-values are 0.0009, < 0.0001, and < 0.0001 for tests of equality with elderly, diagnosis-specific, and pregnancy guidelines, respectively). The adherence gap is least pronounced (but still statistically significantly different from zero) for the pregnancy guidelines, where those with access to expertise are on average 2.1 percentage points (about 2.4 percent) less likely to adhere (95 percent confidence interval 2.6 to 1.6 percentage points). We also find that guidelines that have a higher adherence rate among those without access to expertise tend to have a more pronounced adherence gap, although this relationship is not statistically significant (Appendix Figure 4).

Panel B shows how the relationship between access to expertise and adherence changes as we narrow or broaden the definition of either “access” or “expertise.” Our baseline definition of access to expertise defines doctors as experts and access based on being a doctor, partnering with one, or having one in the close family. When we narrow the definition of access to expertise to include only being a doctor oneself, access to expertise is now associated with a more negative, 8.4 percentage point lower adherence rate (95 percent confidence interval: 9.0 to 7.8), compared to our baseline estimate of 3.8. When we broaden the definition of access to include having a physician in one’s extended family, access to expertise is associated with only a 1.6 percentage point lower adherence rate (95 percent confidence interval: 1.9 to 1.3). Likewise, if we leave the definition of access unchanged but broaden the definition of experts to include nurses and pharmacists, access to expertise is associated with only a 0.9 percentage point lower adherence rate (95 percent confidence interval 1.0 to 0.7).

14We also find that the adherence gap is slightly larger for men than women, consistent with a smaller gap for pregnancy guidelines, and larger for children than for non-elderly adults or elderly adults, consistent with a larger gap for antibiotic guidelines (Appendix Figure 3).

15Our baseline analysis defines access to expertise at the patient-year level. When we instead define access to expertise at the patient level, based on whether the patient ever has access to expertise during the sample period, we estimate an adherence gap of -3.5 (95 percent confidence interval -3.8 to -3.2 percentage points).

16When we exclude those who are doctors from the sample entirely (not shown), access to expertise is associated with a less negative 1.8 percentage point lower adherence rate (95 percent confidence interval: 2.2 to 1.4).
3.3 Interpretation

3.3.1 Socioeconomic Status

One explanation for the lower adherence to medication guidelines among those with access to expertise is that the negative relationship between access to expertise and adherence is driven by unobserved differences in socioeconomic status (SES) between those with and without access to expertise. Recall that we control for income percentile and education in our main analysis. Since doctors are a relatively high-SES occupation, and prior evidence indicates that adherence is positively associated with SES in both the US (Kennedy and Erb 2002; Mojtabai and Olfson 2003; Madden et al. 2008) and Sweden (Wamala et al. 2007), we expect any unmeasured differences in SES to bias against our findings, toward a more positive association between adherence and access to expertise. Consistent with this expectation, Panel C of Figure 2 shows that removing income percentile and education from our set of controls produces a slightly less negative association between adherence and access to expertise.

The scatterplot in Figure 3 evaluates the role of income more directly. The y-axis variable is a measure of the association between adherence and access to each of a broad set of specialized occupations, obtained by augmenting the models underlying Figure 1 to include indicators for access to each occupation. The x-axis variable is the average income percentile of those with access to the given occupation. Not surprisingly, we find a positive association between the average income of people with access to a given occupation and their adherence rate. However, doctors are a major outlier; although those with access to doctors have very high incomes, access to doctors is associated with markedly lower adherence.17 Figure 3 thus suggests that access to doctors is associated with lower adherence despite, rather than because of, the high socioeconomic status of those with access to doctors.

17Consistent with Panel B of Figure 2, those with access to nurses and pharmacists are close to the line of best fit in Figure 3.
3.3.2 Health

Our finding could also be driven by health differences between those with and without access to expertise. Existing evidence, including prior work in our setting, indicates that doctors and their families tend to have better health and health behaviors (Leuven et al. 2013; Artmann et al. forthcoming; Chen et al. forthcoming).18

Each of our analyses of the adherence gap is restricted to those who fall within the risk set for the given guideline. We expect that this reduces the scope for differences in health between those with and without access to expertise. But it is likely that some unmeasured variation in health remains among those in the risk set, both because the construction of the risk set considers only a limited number of health factors, and because selection into the risk set may depend on non-health factors such as willingness to seek out diagnosis or treatment.

Whether people who are in better health are more or less likely to follow guidelines is a priori unclear. In cases where adherence to the guideline trades off the health of the patient against other considerations—such as antibiotic guidelines which recommend starting with a less aggressive treatment for public health reasons, or recommendations against medication in pregnancy which trade off the health of the mother against potential risks to the fetus—we might expect patients in poorer health to be less likely to follow the guideline. If those in the risk set with access to expertise are in better health, this would bias the estimates against our findings, toward a positive association between adherence and access to expertise. In practice, adding controls for the five health conditions described in Section 2.2 makes little difference to the estimated relationship between adherence and access to expertise (Figure 2, Panel C).

3.3.3 Comfort with or Access to Pharmaceuticals

Another possible explanation for the adherence gap is that access to expertise is associated with greater familiarity and comfort with pharmaceutical solutions to medical problems, or greater ease of filling prescriptions, and thus a greater propensity to take medications even in contradiction of guidelines. Consistent with this explanation, for guidelines whose risk set is based on taking a

18Consistent with this evidence, Panel A of Appendix Figure 5 shows that those with access to expertise are less likely to be in the risk set for some guidelines where the risk set is based on a diagnosis.
particular medication, those with access to expertise are on average more likely to be in the risk set (Appendix Figure 5, Panel B). As noted above, differential selection into the risk set could also affect the association between access to expertise and unmeasured factors, such as health, among those in the risk set.\footnote{The adherence gap persists in the subset of guidelines for which the strength of the association between being in the risk set and access to expertise is below the median, as measured by the absolute value of the coefficient from Appendix Figure 5 divided by the share in the risk set from Appendix Tables 1–4. For this subset, we estimate an adherence gap of -3.8 (95 percent confidence interval -4.2 to -3.4).}

However, Panel D of Figure 2 shows that the relationship between adherence and access to expertise is similar between guidelines that recommend against taking a specific drug or class of drugs (“don’t take” guidelines) and those that recommend in favor of doing so (“do take” guidelines). For the 30 “don’t take” guidelines, we estimate that access to expertise is associated with a 3.4 percentage point (95 percent confidence interval 4.2 to 2.6) lower probability of adherence. This is similar to the 2.9 percentage point lower adherence (95 percent confidence interval 3.3 to 2.6) for the 27 “do take” recommendations. The adherence gaps are not statistically distinguishable between these two groups (p-value = 0.1950). This suggests that comfort with or access to pharmaceuticals does not account for the negative association between adherence and access to expertise.

3.3.4 Superior Information about Guidelines

The final explanation we consider is that access to expertise brings with it access to information that contradicts the guidelines in some situations, the confidence (or ability) to act on this information, and/or access to providers who have such information. One testable implication of this hypothesis is that access to expertise will be more negatively associated with adherence to guidelines that are based on weaker clinical evidence. Consistent with this implication, Panel E of Figure 2 shows a larger adherence gap where the evidence is weaker. For guidelines related to medication use in pregnancy, the recommendation against C-class drugs is weaker than that against D-class drugs (see Section 2.3); correspondingly, the adherence gap is -2.3 on average for C-class drugs and -1.2 on average for D-class drugs, and these two values are statistically distinguishable (p-value = 0.0044). For guidelines related to specific diagnoses and to medication use among the elderly, among those for which we are able to find a rating on UpToDate (again see Section 2.3 for details), we find
an adherence gap of -3.7 among those with weaker evidence and a gap of -3.4 among those with stronger evidence, though the difference between the two groups is not statistically distinguishable (p-value = 0.1960).

Another testable implication is that access to expertise will be most negatively associated with adherence to guidelines whose recommendations are intended to serve goals other than the narrow interest of the patient. The antibiotic guidelines to use narrower-rather than broader-spectrum antibiotics are an example of recommendations motivated by public (rather than private) health considerations (Pichichero 2002; Sirola et al. 2017; Hyun 2017). As reported in section 3.2, the adherence gap is largest—by a considerable and statistically significant margin—for the antibiotic guidelines, among the four groups of guidelines that we consider.

4 Conclusion

As of mid-2018, the US National Guidelines Clearinghouse described over 1,400 currently active medical guidelines (Timmermans and Berg 2003; Agency for Healthcare Research and Quality 2018a,b). Guidelines can help move average practice towards evidence-based standards, but can also discourage customizing care to relevant medical circumstances (Basu 2011; Lugtenberg et al. 2011; Boudoulas et al. 2015).

We find that patients with access to medical expertise are, on average, less adherent to medication guidelines. This suggests an important role in non-adherence for factors other than those emphasized in much of the literature—such as ignorance, complexity, or failures of patient-provider communication—which would be expected to diminish with access to expertise.

The normative implications of our findings are not clear. It is possible that lower guideline adherence among those with access to expertise may partly reflect these patients’ superior understanding of guidelines. Our finding that the negative relationship between access to expertise and guideline adherence is more pronounced for guidelines based on weaker clinical evidence, and for

\[\text{For the 13 guidelines in these categories for which we were not able to find a rating on UpToDate, we find an adherence gap of -4.3 percentage points (95 percent confidence interval -5.0 to -3.6).}\]

\[\text{Gerber et al. (2010) report that more than 80 percent of the US public is somewhat or very convinced by the argument that treatment guidelines prevent customizing care; see also Patashnik et al. (2017).}\]
guidelines intended to serve interests beyond those of the patient, is consistent with this interpretation, as is other evidence from our setting that those with a health professional in their family are healthier overall (Chen et al. forthcoming). However, there is also evidence that practitioners’ departures from prescribing guidelines lead to worse patient outcomes (Currie and MacLeod 2020; Abaluck et al. 2020; Cuddy and Currie 2020). An important avenue for further research is to identify whether and when non-adherence is in the patient’s best interest.
References

Ubel, Peter A., Andrea M. Angott, and Brian J. Zikmund-Fisher, “Physicians Recommend Different Treatments for Patients Than They Would Choose for Themselves,” *Archives of Internal Medicine*, April 2011, 171 (7), 630–634.

Note: For each guideline, we run an OLS regression of an indicator variable for adherence on an indicator for access to expertise, controlling for indicators for the calendar year and seasonal month at which we start measuring adherence, indicators for age in years, gender, highest level of education (or of mother’s education for those age 26 and under), municipality of residence (or of mother’s residence for those age 17 and under), income percentiles, and number of children previously born to the person (zero for males), all measured in the previous year. We include separate indicators for whether income is missing, zero, or negative (these represent, respectively, 4.2, 4.0, and 4.3 percent of the analysis sample) and for whether municipality of residence is missing (2.7 percent of the analysis sample). The sample for each regression is the set of patient-years in the corresponding risk set. Depicted 95% pointwise confidence intervals are based on standard errors which are clustered at the patient level for any guidelines for which a patient can appear in the risk set more than once, and which are heteroskedasticity-robust otherwise. The color code represents eight equally-sized bins of guideline prevalence, with darker colors representing higher prevalence.
Figure 2: Adherence and Access to Expertise, Averages

Note: The plot shows the prevalence-weighted average coefficient on access to expertise from the regressions described in Figure 1. Spikes indicate upper and lower bounds of the 95% confidence interval. Row labels describe the analysis, with the number of included guidelines in parentheses if different from baseline. We bootstrap the estimation with 50 replicates drawn at the patient level, and construct confidence intervals based on the bootstrap standard errors. The prevalence weights are the guideline- and age-specific empirical probabilities of being in the risk set in the reference year. Baseline includes all patients and guidelines. In Panels A, D and E, we average the coefficients for each set of guidelines. In Panel B, we re-estimate the regressions described in Figure 1 modifying the definition of access to expertise in three ways, first by excluding patients who are not themselves doctors (and thus excluding two guidelines that apply only to children), second by including patients with a doctor in their extended family, and third by including patients with access to a nurse or pharmacist. In the first row of Panel C, we re-estimate the regressions described in Figure 1 excluding the education and income controls. In the second row of Panel C, we re-estimate the regressions described in Figure 1 including as controls separate indicators for whether an individual had a heart attack, heart failure, lung cancer, type II diabetes, or asthma diagnosis in any preceding year. Panel D excludes the 6 antibiotic recommendations while Panel E excludes 13 guidelines for which there was no UptoDate grade available.
Figure 3: Adherence By Access to Different Occupations

Note: The plot shows the prevalence-weighted average relationship between adherence and access to a given occupation, plotted against the average income percentile of those with access to the occupation. To construct the y-axis variable, we augment the models underlying Figure 1 to include indicators for access to each occupation; the regressions include all of our baseline controls (including own income percentile), and a given case in the risk set may have access to multiple occupations. We then average the coefficient on the access indicator using the method underlying Figure 2. We exclude occupations with fewer than 150 individuals. We normalize the average coefficient for each occupation by subtracting the average coefficient for access to a doctor. To construct the x-axis variable, we calculate the average income percentile of those with access to the given occupation in 2016. We plot the line of best fit excluding doctors, nurses, and pharmacists, weighted by the number of individuals in the occupation, which is proportional to circle areas.
Appendices

Appendix Table 1: Guidelines Covering the Use of Antibiotics

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Definition</th>
<th>Share</th>
<th>Definition</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t initiate UTI treatment with quinolones, elderly</td>
<td>Elderly with first prescription for antibiotics against UTI in/after July 2007; age 75+</td>
<td>.0038</td>
<td>Individual’s first antibiotics prescription is not for quinolones</td>
<td>.63</td>
</tr>
<tr>
<td>Initiate UTI treatment with recommended antibiotics, elderly</td>
<td>Elderly with first prescription for antibiotics against UTI in/after July 2007; age 75+</td>
<td>.0038</td>
<td>Individual’s first antibiotics prescription is for nitrofurantoin or pivmecillinam</td>
<td>.55</td>
</tr>
<tr>
<td>Initiate RTI treatment with penicillin V, children</td>
<td>Individuals with first prescription for antibiotic against RTI in/after July 2007; age 0–6</td>
<td>.01</td>
<td>Individual’s first antibiotics prescription is for penicillin V</td>
<td>.79</td>
</tr>
<tr>
<td>Don’t initiate UTI treatment with quinolones, women</td>
<td>Women with first prescription for antibiotics against UTI in/after July 2007; age 18–79</td>
<td>.018</td>
<td>Individual’s first antibiotics prescription is not for quinolones</td>
<td>.84</td>
</tr>
<tr>
<td>Initiate antibiotics treatment with penicillin V, children</td>
<td>Individuals with first prescription for antibiotics in/after July 2007; age 0–17</td>
<td>.021</td>
<td>Individual’s first antibiotics prescription is for penicillin V</td>
<td>.64</td>
</tr>
<tr>
<td>Initiate antibiotics treatment with penicillin V, adults</td>
<td>Individuals with first prescription for antibiotics in/after July 2007; age 18+</td>
<td>.076</td>
<td>Individual’s first antibiotics prescription is for penicillin V</td>
<td>.4</td>
</tr>
<tr>
<td>Average</td>
<td>.00076</td>
<td></td>
<td>.53</td>
<td></td>
</tr>
</tbody>
</table>

Note: All guidelines but the first are recommendations that patients start with narrower- as opposed to broader-spectrum antibiotics. UTI: urinary tract infection; RTI: respiratory tract infection. We define that an individual initiates antibiotic treatment if she did not have an antibiotic prescription within 2 years before the first prescription we observe in the drug claims data. As we start observing drug claims made in July 2005, we consider individuals with first prescription in/after July 2007. Column “share” under “risk set” lists the share of the Swedish population in each guideline’s risk set in the reference year; column “share” under “adherence” lists the adherence rate for those without access to expertise. We do not classify these guidelines as “do take” or “don’t take” because they recommend in favor of some drugs over others conditional on taking an antibiotic. In other words, the recommendations worded “don’t initiate with” (a broader-targeted antibiotic) are implicitly recommending initiating with a narrower-targeted antibiotic. The last row shows the average of age-specific guideline prevalence in the reference year across all ages and guidelines and lifecycle-prevalence weighted average of adherence among those without access to expertise. For regressions involving the guidelines listed in this table, the unit of analysis is the patient.
Appendix Table 2: Guidelines Covering Medication Use by the Elderly (Ages 75+)

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Risk set</th>
<th>Adherence</th>
<th>Do vs. don’t take</th>
<th>Strength of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t take hazardous drugs after ischemic heart disease & heart failure diagnoses, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for ischemic heart disease, with heart failure diagnosis; discharge in/after July 2005</td>
<td>No prescription for diltiazem or verapamil after discharge</td>
<td>.98</td>
<td>Don’t take</td>
</tr>
<tr>
<td>Don’t take hazardous drugs after ischemic heart disease & Afib diagnoses, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for ischemic heart disease, with Afib diagnosis; discharge in/after July 2005</td>
<td>No prescription for diltiazem or verapamil in combination with beta blockers after discharge</td>
<td>.96</td>
<td>Don’t take</td>
</tr>
<tr>
<td>Take digoxin after heart failure & Afib diagnoses, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for heart failure, with Afib diagnosis; discharge in/after July 2005</td>
<td>Prescription after discharge</td>
<td>.35</td>
<td>Do take</td>
</tr>
<tr>
<td>Take recommended drugs after dementia diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for dementia; discharge in/after July 2005</td>
<td>Prescription for a recommended drug (one of tacrine, donepezil, rivastigmine, or memantine) after discharge</td>
<td>.62</td>
<td>Do take</td>
</tr>
<tr>
<td>Don’t take hazardous drugs after dementia diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for dementia; discharge in/after July 2005</td>
<td>No prescription for drugs with anticholinergic effects, sleeping agents, or antipsychotic drugs not for severe psychotic symptoms</td>
<td>.32</td>
<td>Don’t take</td>
</tr>
<tr>
<td>Don’t take hazardous drugs after heart failure diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for heart failure; discharge in/after July 2005</td>
<td>No prescription for NSAIDs, heart rate lowering calcium antagonists, disopyramide, propafenone, flecaïnide, dromedarone or sotalol after discharge</td>
<td>.78</td>
<td>Don’t take</td>
</tr>
<tr>
<td>Guideline (continued)</td>
<td>Risk set</td>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition</td>
<td>Share</td>
<td>Definition</td>
<td>Share</td>
<td>Do vs. don’t take</td>
</tr>
<tr>
<td>Take beta blockers & ACE inhibitors or ARBs after heart failure diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for heart failure; discharge in/after July 2005</td>
<td>.00078</td>
<td>Prescription for beta blockers and one of ACE inhibitors or ARBs after discharge</td>
<td>.77</td>
</tr>
<tr>
<td>Take ACE inhibitors or ARBs after heart failure diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for heart failure; discharge in/after July 2005</td>
<td>.00078</td>
<td>Prescription for either drug after discharge</td>
<td>.86</td>
</tr>
<tr>
<td>Don’t take antipsychotic drugs, elderly</td>
<td>Elderly (age above 75) with prescription for antipsychotic drug at age 74</td>
<td>.00079</td>
<td>No prescription for antipsychotic drug in a given year</td>
<td>.32</td>
</tr>
<tr>
<td>Take anticoagulants after Afib diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for Afib; discharge in/after July 2005</td>
<td>.001</td>
<td>Prescription after discharge</td>
<td>.86</td>
</tr>
<tr>
<td>Don’t take antiplatelet drugs after Afib diagnosis, elderly</td>
<td>Elderly with first inpatient or outpatient diagnosis for Afib; discharge in/after July 2005</td>
<td>.001</td>
<td>No prescription after discharge</td>
<td>.66</td>
</tr>
<tr>
<td>Avoid drugs with certain interactions, elderly</td>
<td>Elderly with claims for drugs of certain interactions (see the next column) in a quarter of the year they turn 74</td>
<td>.0011</td>
<td>Defined at patient-year level; individual has no claims for these interaction of drugs in the same quarter of a given year: warfarine and aspirin; warfarine and NSAIDs; potassium and potassium-sparing diuretics; beta blockers and verapamil; diltiazem and verapamil; ditalopram and donepezil</td>
<td>.66</td>
</tr>
<tr>
<td>Guideline (continued)</td>
<td>Risk set</td>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No polypharmacy w.r.t. psychotropic drugs, elderly</td>
<td>Elderly with claims for three or more different psychotropic drugs in a quarter of the year they turn 74</td>
<td>1.0022 Defined at patient-year level; individual has claims for no more than two psychotropic drugs in the same quarter of a given year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take oxazepam conditional on anxiolytics, elderly</td>
<td>Elderly-years with prescription for anxiolytics, 2006-2017</td>
<td>.0065 Defined at patient-year level; all anxiolytics prescriptions in a given year are for oxazepam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No polypharmacy w.r.t. drugs in the same therapeutic group, elderly</td>
<td>Elderly with claims for two or more drugs from the same therapeutic ATC group in a quarter of the year they turn 74</td>
<td>.0075 Defined at patient-year level; individual has claims for no more than one drug from the same therapeutic ATC group in the same quarter of a given year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No polypharmacy w.r.t. all drugs, elderly</td>
<td>Elderly with claims for 10 or more different drugs in a quarter of the year they turn 74</td>
<td>.0088 Defined at patient-year level; individual has claims for no more than nine different drugs in the same quarter of a given year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don’t take NSAIDs, elderly</td>
<td>Elderly with prescription for NSAID at age 74</td>
<td>.011 Defined at patient-year level; no prescription for NSAID in a given year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don’t take specific drugs, elderly</td>
<td>Elderly with prescription for drug that should be avoided at age 74</td>
<td>.013 Defined at patient-year level; no prescription for diazepam, nitraepam, flunitrazepam, tramadol, propiomazine, codeine and paracetamol or other non-opioid analgesics, glibenclamide, or drugs with anticholinergic effects in a given year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guideline (continued)</td>
<td>Risk set</td>
<td>Adherence</td>
<td>Do vs. don’t take</td>
<td>Strength of evidence</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Definition</td>
<td>Share</td>
<td>Definition</td>
<td>Share</td>
</tr>
<tr>
<td>Take zopiclone conditional on taking hypnotics and sedatives, elderly</td>
<td>Elderly-years with prescription for hypnotics and sedatives, 2006-2017</td>
<td>.013</td>
<td>Defined at patient-year level; all hypnotics and sedatives prescriptions in a given year are for zopiclone</td>
<td>.37</td>
</tr>
<tr>
<td>Don’t take hazardous sleep medication, elderly</td>
<td>Elderly-years with prescription for sleep medication, 2006-2017</td>
<td>.016</td>
<td>Defined at patient-year level; no sleep medication prescriptions in a given year for long-acting benzodiazepines (diazepam, nitrazepam, flunitrazepam), propiomazine, hydroxyzine, alimemazine or promethazine</td>
<td>.72</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>.00078</td>
<td></td>
<td>.53</td>
</tr>
</tbody>
</table>

Note: UTI: urinary tract infection; RTI: respiratory tract infection; Afib: atrial fibrillation; TIA: transient ischemic attack; NSAID: nonsteroidal anti-inflammatory drugs. Column “share” under “risk set” lists the share of Swedish population in each guideline’s risk set in the reference year; column “share” under “adherence” lists the adherence rate for all those without access to expertise. We classify a guideline as “do take” if it recommends taking certain drug, and as “don’t take” if it recommends against taking certain drug. As rated by UpToDate, grade 1A guidelines (indicated in column “strength of evidence”) are supported by high quality scientific evidence, and the benefits of compliance clearly outweighs risks and burdens, if there are any; a guideline is ungraded if it is not rated by UpToDate. The last row shows the average of age-specific guideline prevalence in the reference year across all ages and guidelines and lifecycle-prevalence weighted average of adherence among those without access to expertise. Prevalence is measured in 2017 for guidelines whose risk sets are not defined by the Board. For regressions involving the guidelines listed in this table, the unit of analysis is the patient unless specified as the patient-year in the “adherence” column.
<table>
<thead>
<tr>
<th>Guideline</th>
<th>Risk set</th>
<th>Adherence</th>
<th>Do vs. don't take</th>
<th>Strength of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take anticoagulants 0–1m after TIA & Afib diagnoses</td>
<td>Individuals with first inpatient diagnosis for TIA, with Afib diagnosis; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>Do take</td>
<td>1A</td>
</tr>
<tr>
<td>Take anticoagulants 12–18m after ischemic stroke & Afib diagnoses</td>
<td>Individuals with first inpatient main diagnosis for ischemic stroke, with Afib diagnosis; discharge in/after July 2005, in/before June 2016; age 18–79</td>
<td>Prescription within 12–18 months after discharge</td>
<td>Do take</td>
<td>1A</td>
</tr>
<tr>
<td>Take anticoagulants 0–1m after ischemic stroke & Afib diagnoses</td>
<td>Individuals with first inpatient diagnosis for ischemic stroke, with Afib diagnosis; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>Do take</td>
<td>1A</td>
</tr>
<tr>
<td>Take antipsychotics 12–18m after schizophrenia diagnosis</td>
<td>Individuals with first inpatient or outpatient diagnosis for schizophrenia; discharge in/after July 2005, in/before June 2016; age 18+</td>
<td>Prescription within 12–18 months after discharge</td>
<td>Do take</td>
<td>Below 1A</td>
</tr>
<tr>
<td>Take antipsychotics 0–6m after schizophrenia diagnosis</td>
<td>Individuals with first inpatient or outpatient diagnosis for schizophrenia; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–6 months after discharge</td>
<td>Do take</td>
<td>1A</td>
</tr>
<tr>
<td>Take antiplatelet drugs 0–1m after TIA w/o Afib diagnoses</td>
<td>Individuals with first inpatient diagnosis for TIA, without Afib diagnosis; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>Do take</td>
<td>1A</td>
</tr>
<tr>
<td>Take RAAS inhibitors or beta blockers 12–18m after heart failure diagnosis</td>
<td>Individuals with first inpatient main diagnosis for heart failure; discharge in/after July 2005 and in/before June 2016; age 20+</td>
<td>Prescription for either drug within 12–18 months after discharge</td>
<td>Do take</td>
<td>Below 1A</td>
</tr>
<tr>
<td>Guideline (continued)</td>
<td>Risk set</td>
<td>Adherence</td>
<td>Do vs. don’t take</td>
<td>Strength of evidence</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Take antihypertensives 0–1m after TIA diagnosis</td>
<td>Individuals with first inpatient diagnosis for TIA; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.00078</td>
<td>.32</td>
</tr>
<tr>
<td>Take statins 0–1m after TIA diagnosis</td>
<td>Individuals with first inpatient diagnosis for TIA; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.00078</td>
<td>.5</td>
</tr>
<tr>
<td>Take antiplatelet drugs 0–1m after ischemic stroke w/o Afib diagnoses & no claim for anticoagulants within 30 days after discharge</td>
<td>Individuals with first inpatient diagnosis for ischemic stroke, without Afib diagnosis and with no claim for anticoagulants within 30 days after discharge; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.00086</td>
<td>.74</td>
</tr>
<tr>
<td>Take RAAS inhibitors & beta blockers 0–6m after heart failure diagnosis</td>
<td>Individuals with first inpatient main diagnosis for heart failure; discharge in/after July 2005; age 20+</td>
<td>Prescription for both drugs within 0–6 months after discharge</td>
<td>.00088</td>
<td>.6</td>
</tr>
<tr>
<td>Take ADP receptor blocker 0–1m after myocardial infarction diagnosis</td>
<td>Individuals with first inpatient diagnosis for myocardial infarction; discharge in/after July 2005 and at age 18–79</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.0011</td>
<td>.78</td>
</tr>
<tr>
<td>Take statins 0–1m after ischemic stroke diagnosis</td>
<td>Individuals with first inpatient diagnosis for ischemic stroke; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.0011</td>
<td>.56</td>
</tr>
<tr>
<td>Take antihypertensives 0–1m after acute stroke diagnosis</td>
<td>Individuals with first inpatient diagnosis for TIA; discharge in/after July 2005; age 18+</td>
<td>Prescription within 0–1 month after discharge</td>
<td>.0013</td>
<td>.44</td>
</tr>
<tr>
<td>Guideline (continued)</td>
<td>Risk set</td>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take statins 12–18m after myocardial infarction diagnosis</td>
<td>Individuals with first inpatient main diagnosis for myocardial infarction; discharge in(after July 2005, in/before June 2016; age 40–79</td>
<td>Prescription within 12–18 months after discharge 0.53 Do take 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take statins 12–18m after cerebral infarction diagnosis</td>
<td>Individuals with first inpatient main diagnosis for cerebral infarction; discharge in(after July 2005, in/before June 2016; age 40–79</td>
<td>Prescription within 12–18 months after discharge 0.44 Do take 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take osteoporosis drugs 0–12m after fracture diagnosis</td>
<td>Individuals with first inpatient diagnosis for fracture; discharge in(after July 2005; age 50+</td>
<td>Prescription within 0–12 months after discharge 0.2 Do take Below 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take anticoagulants 0–6m after Afib diagnosis with high stroke risk</td>
<td>Individuals with first inpatient diagnosis for Afib and stroke risk score above 2; discharge in(after July 2005; age 18+</td>
<td>Prescription within 0–6 months after discharge 0.62 Do take 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take RAAS inhibitors & beta blockers 0–24m after heart failure diagnosis</td>
<td>Individuals with first inpatient or outpatient diagnosis for heart failure; discharge in(after July 2005, in/before December 2015; age 18+</td>
<td>Prescription for both drugs within 0–24 months after discharge 0.78 Do take Below 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continue with antidepressant treatment</td>
<td>Individuals with first prescription for antidepressant in(after January 2006; age 18+</td>
<td>Patient has another claim within 60–150 days after the first claim 0.54 Do take Below 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.00084</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Afib: atrial fibrillation; TIA: transient ischemic attack. We restrict the risk set to first inpatient cases which we observe all drug prescriptions over the time period that we measure adherence—for example, for the guideline Statins after myocardial infarction diagnosis, 12-18m we restrict the sample to first inpatient cases with discharge more than 18 months before December 2017, i.e., with discharge in/before June 2016. Column “share” under “risk set” lists the share of the Swedish population in each guideline’s risk set in the reference year; column “share” under “adherence” lists the adherence rate for those without access to expertise. We classify a guideline as “do take” if it recommends taking certain drug(s), and as “don’t take” if it recommends against taking certain drug(s). The last row shows the average of age-specific guideline prevalence in the reference year across all ages and guidelines and lifecycle-prevalence weighted average of adherence among those without access to expertise. For regressions involving the guidelines listed in this table, the unit of analysis is the patient.
Appendix Table 4: Guidelines Covering Medication Use in Pregnancy

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Share in risk set</th>
<th>Share adhering</th>
<th>Do vs. don’t take</th>
<th>Strength of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Don’t take D-class antiepileptics, pregnancy</td>
<td>.000032</td>
<td>.66</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take D-class immunosuppressants, pregnancy</td>
<td>.000044</td>
<td>.7</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take D-class macrolides, lincosamides or streptogramins, pregnancy</td>
<td>.000092</td>
<td>.98</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take D-class psychostimulants, pregnancy</td>
<td>.000095</td>
<td>.76</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take other D-drugs, pregnancy</td>
<td>.00018</td>
<td>.93</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take C-class hypothalamic hormones, pregnancy</td>
<td>.00033</td>
<td>.85</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class hypnotics and sedatives, pregnancy</td>
<td>.0004</td>
<td>.87</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take D-class progestogens, pregnancy</td>
<td>.00052</td>
<td>.99</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take C-class corticosteroids (systemic use), pregnancy</td>
<td>.00056</td>
<td>.89</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take D-class tetracyclines, pregnancy</td>
<td>.00062</td>
<td>.99</td>
<td>Don’t take</td>
<td>D-drug</td>
</tr>
<tr>
<td>Don’t take C-class antibiotics (other), pregnancy</td>
<td>.00067</td>
<td>.86</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class anxiolytics, pregnancy</td>
<td>.00071</td>
<td>.93</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class corticosteroids, pregnancy</td>
<td>.00075</td>
<td>.88</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class opioids, pregnancy</td>
<td>.00099</td>
<td>.85</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class antidepressants, pregnancy</td>
<td>.011</td>
<td>.68</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take other C-drugs, pregnancy</td>
<td>.013</td>
<td>.72</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Don’t take C-class NSAIDs, pregnancy</td>
<td>.017</td>
<td>.97</td>
<td>Don’t take</td>
<td>C-drug</td>
</tr>
<tr>
<td>Average</td>
<td>.00000593</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: NSAID: nonsteroidal anti-inflammatory drugs. For each guideline, the risk set contains all pregnancies for which the mother has a prescription of the drug within 24 months before conception. The outcome variable is an indicator for not having the specified drug during the pregnancy. We classify a guideline as “do take” if it recommends taking certain drug, and as “don’t take” if it recommends against taking certain drug. The letter grade classification of a drug (as indicated in the “strength of evidence” column) is determined based on the strength of evidence about its harms to the fetus, with D capturing drugs that are likely the most harmful. Column “share in risk set” lists the share of the Swedish population in each guideline’s risk set in the reference year; column “share adhering” lists the adherence rate for those without access to expertise. The last row shows the average of age-specific guideline prevalence in the reference year across all ages and guidelines and lifecycle-prevalence weighted average of adherence among those without access to expertise. For regressions involving the guidelines listed in this table, the unit of analysis is the pregnancy.
Appendix Figure 1: Distribution of Adherence and Prevalence Rates Across Guidelines

(A) Prevalence Rate

(B) Adherence Rate among Individuals Without Access to Expertise

Note: Panel (A) shows the distribution of the prevalence rate (share of population in the risk set) across guidelines. Panel (B) shows the distribution of the adherence rate (share of those in the risk set adhering to the guideline) among those without access to expertise, across guidelines.
Appendix Figure 2: Average Number of Guidelines by Age and Gender

Note: The graph illustrates the number of guidelines applicable to the average female and male at each age from 0 through 85. To construct this number, we compute the prevalence of each guideline (share of individuals in the risk set) in a reference year (2016 or 2017) by age and gender. The plot shows the sum of prevalence across guidelines for each age and gender.

Appendix Figure 3: Adherence and Access to Expertise, Averages by Demographic Group

Note: The plot shows the prevalence-weighted average coefficient on access to expertise from the regressions described in Figure 1. Spikes indicate upper and lower bounds of the 95% confidence interval. We bootstrap the estimation with 50 replicates drawn at the patient level, and construct confidence intervals based on the bootstrap standard errors. The prevalence weights are the guideline- and age-specific empirical probabilities of being in the risk set in the reference year. Baseline includes all patients and guidelines. In Panel A, we estimate the regression described in Figure 1 separately by guideline and gender of patient and use gender-specific prevalence weights. In Panel B, we estimate the regression described in Figure 1 separately by guideline and age category of patient. We average the coefficients for each age category (0-17 for children, 18-74 for non-elderly adults, and 75-85 for elderly individuals) across the guidelines applicable to them using age-specific prevalence weights.
Appendix Figure 4: Adherence Gap and Adherence Rate Across Guidelines

Note: This graph plots, for all 63 guidelines, the estimated difference in adherence between those with and without access to expertise against the share of those without access to expertise adhering to the respective guideline. The estimated difference in adherence is computed as in Figure 1. Spikes indicate 95% confidence intervals of the estimates, computed as in Figure 1. The rate of adherence among those without access to expertise is computed as in Appendix Tables 1-4. The red dashed line, the slope (and standard error) of which is noted in the top-right corner of the figure, is the line of best fit based on a bivariate regression that weights each guideline equally. The color code represents eight equally-sized bins of guideline prevalence, with darker colors representing higher prevalence.
Appendix Figure 5: Prevalence and Access to Expertise, by Guideline

(A) Risk Sets Based on Diagnoses

- Had schizophrenia diagnosis, observe all prescriptions 12-18m post discharge
- Had heart failure diagnosis, observe all prescriptions 0-6m post discharge
- Had myocardial infarction diagnosis, observe all prescriptions 12-18m post discharge
- Had heart failure diagnosis, observe all prescriptions 12-18m post discharge
- Had heart failure diagnosis, elderly
- Had fracture diagnosis, observe all prescriptions 0-12m post discharge
- Had cerebral infarction diagnosis, observe all prescriptions 12-18m post discharge
- Had heart failure & Afib diagnoses, elderly
- Average
- Had myocardial infarction diagnosis, observe all prescriptions 0-1m post discharge
- Had ischemic stroke & Afib diagnoses, observe all prescriptions 0-1m post discharge
- Had acute stroke diagnosis, observe all prescriptions 0-1m post discharge
- Had ischemic stroke diagnosis, observe all prescriptions 0-1m post discharge
- Had ischemic heart disease & Afib diagnoses, elderly
- Had dementia diagnosis, elderly
- Had TIA & Afib diagnoses, observe all prescriptions 0-1m post discharge
- Had ischemic heart disease & heart failure diagnoses, elderly
- Had Afib diagnosis, observe all prescriptions 0-6m post discharge
- Had ischemic stroke diagnosis, observe all prescriptions 0-6m post discharge
- Had ischemic stroke & Afib diagnoses, observe all prescriptions 12-18m post discharge
- Had ischemic stroke & no Afib diagnoses, observe all prescriptions 0-1m post discharge
- Had TIA diagnosis, observe all prescriptions 0-1m post discharge
- Had Afib diagnosis, elderly
- Had TIA & no Afib diagnoses, observe all prescriptions 0-1m post discharge
- Had schizophrenia diagnosis, observe all prescriptions 12-18m post discharge

Difference in prevalence
(B) Risk Sets Based on Use of Medications

Note: For each risk set, we run an OLS regression of an indicator variable for being in the risk set on an indicator for access to expertise and our baseline controls as in Figure 1. The sample is the Swedish population in the reference year. We plot the estimated coefficient on access to expertise together with the 95% confidence interval, computed as in Figure 1. The average difference in prevalence is the simple average of all the coefficients in each panel; we bootstrap the estimation with 50 replicates drawn at the patient level, and construct confidence intervals for the averages based on the bootstrap standard errors. The color code represents the mean prevalence among those without access to expertise, with a darker color representing higher prevalence. Unless otherwise noted, each risk set is associated with one guideline. *a*: the risk set is associated with two guidelines; *b*: the risk set is associated with three guidelines.