Approximate common knowledge revisited*

Stephen Morris
Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia, PA 19104-6297, USA (e-mail: smorris@econ.sas.upenn.edu)

Abstract

Suppose we replace "knowledge" by "belief with probability p " in standard definitions of common knowledge. Very different notions arise depending on the exact definition of common knowledge used in the substitution. This paper demonstrates those differences and identifies which notion is relevant in each of three contexts: equilibrium analysis in incomplete information games, best response dynamics in incomplete information games, and agreeing to disagree/no trade results.

Key words: Common knowledge, agreeing to disagree

1. Introduction

This paper analyzes alternative notions of approximate common knowledge. In particular, I consider what happens to standard definitions of common knowledge if we replace "knowledge" by belief with high probability. The nature of the resulting approximate common knowledge is surprisingly sensitive to the exact definition of common knowledge in that construction.

Consider (as I shall throughout this paper) the case where there are two individuals, 1 and 2. Say that one individual p-believes event E if he assigns it probability at least p. Event E is common p-belief if both p-believe E, both p-believe that both p-believe E, both p-believe that both p-believe that both

[^0]p-believe E, and so on. ${ }^{1}$ Event E is iterated p-belief for 1 if $1 p$-believes E, $1 p$-believes that $2 p$-believes $E, 1 p$-believes that $2 p$-believes that $1 p$-believes E, and so on. Event E is iterated p-belief if it is iterated p-belief for both individuals. ${ }^{2}$

Common 1-belief and iterated 1-belief are equivalent to each other and to standard definitions of common knowledge. ${ }^{3}$ When p is not equal to 1 , common p-belief is not equivalent to iterated p-belief. If an event is common p belief, it is necessarily iterated p-belief, but the converse is not true. It might nonetheless be conjectured that for any $p<1$, there should exist some q (sufficiently close to 1) such that if an event is iterated q-belief, it must be common p-belief. This is false: in particular, I show that for any $1 / 2<r \leq p<1$ and $\varepsilon>0$, it is possible to find events which are iterated p-belief with ex ante probability at least $1-\varepsilon$, but which are never common r-belief.

Monderer and Samet (1989) established that common p-belief is the natural notion of approximate common knowledge when studying the robustness to equilibria to a lack of common knowledge of payoffs. I show that iterated p-belief is the relevant notion of approximate common knowledge for the study of best response dynamics in incomplete information games.

Another important application of common knowledge, starting with Aumann (1976), has been to agreeing to disagree and no trade results. The relevant notion of approximate common knowledge for both kinds of results is weak common p-belief. An event is said to be weak common p-belief if it is common p-belief either given individuals' actual information or if individuals ignore some of their information. ${ }^{4}$ This notion is much weaker than common p-belief and is necessary and sufficient for both approximate agreement results and approximate no trade results.

The paper is organized as follows. Alternative notions of approximate common knowledge are introduced, characterized and related in section 2. Iterated p-belief, common p-belief and weak common p-belief are introduced in sections 2.1 through 2.4 ; in section 2.5 , it is shown that in the special case when p equals 1 , all three notions are equivalent; but in section 2.6 , it is shown that if $p<1$, there is no necessary connection between common p-belief and the two weaker notions. Section 3 considers applications and shows which notion is relevant for which application. Section 4 concludes.

2. Approximate common knowledge

There are two individuals, 1 and 2 ; let Ω be a countable state space, with typical element ω. For each $i \in\{1,2\}$, let \mathscr{Q}_{i} be a partition of Ω. Write \mathscr{F}_{i} for the σ-field generated by \mathscr{D}_{i}. Let P be a probability on the countable state space.

[^1]Event $E \subseteq \Omega$ is simple if $E=E_{1} \cap E_{2}$ and each $E_{i} \in \mathscr{F}_{i}$. Whenever event $E_{1} \cap E_{2}$ is said to be simple, it should be understood that $E_{i} \in \mathscr{F} i$, for both i. Write $Q_{i}(\omega)$ for the (unique) element of \mathscr{Q}_{i} containing ω. The partition \mathscr{Q}_{i} is interpreted as individual i 's information, so that if the true state is ω, individual i knows only that the true state is an element of $Q_{i}(\omega)$. Write $P(\omega)$ for the probability of the singleton event $\{\omega\}$, and $P[E \mid F]$ for the conditional probability of event E, given event F, if $P[F]>0$. Throughout the paper, I will assume that all information sets occur with positive probability, i.e., $P\left[Q_{i}(\omega)\right]>0$ for all $\omega \in \Omega$ and $i \in\{1,2\}$. When i represents a typical individual, j will be understood to be the other individual.

An individual p-believes an event E at state ω if the conditional probability of E, given $Q_{i}(\omega)$, is at least p. Writing $B_{i}^{p} E$ for the set of states where i p-believes E, we have $B_{i}^{p} E \equiv\left\{\omega: P\left[E \mid Q_{i}(\omega)\right] \geq p\right\}$. The following straightforward properties of belief operators will be used extensively:

B1: If $E \in \mathscr{F}_{i}$, then $B_{i}^{p} E=E$.
B2: If $E_{1} \cap E_{2}$ is simple, then $B_{i}^{p}\left(E_{1} \cap E_{2}\right)=E_{i} \cap B_{i}^{p} E_{j}$.
B3: If $q \geq p$, then $B_{i}^{q} E \subseteq B_{i}^{p} E$.
B4: If $E \subseteq F$, then $B_{i}^{p} E \subseteq B_{i}^{p} F$.

2.1. Iterated p-belief

Event E is iterated p-belief for 1 if $1 p$-believes it, $1 p$-believes that $2 p$-believes it, $1 p$-believes that $2 p$-believes that $1 p$-believes it, and so on. Writing $I_{i}^{p} E$ for the set of states where E is iterated p-belief for i, we have:

$$
\begin{aligned}
& I_{1}^{p} E \equiv B_{1}^{p} E \cap B_{1}^{p} B_{2}^{p} E \cap B_{1}^{p} B_{2}^{p} B_{1}^{p} E \cap \cdots \\
& I_{2}^{p} E \equiv B_{2}^{p} E \cap B_{2}^{p} B_{1}^{p} E \cap B_{2}^{p} B_{1}^{p} B_{2}^{p} E \cap \cdots
\end{aligned}
$$

Definition 1. (Hierarchical). Event E is iterated p-belief if it is iterated p-belief for both players. Thus E is iterated p-belief at state ω if $\omega \in I^{p} E \equiv I_{1}^{p} E \cap I_{2}^{p} E$.

This definition corresponds to $(1-p, \infty)$-approximate common knowledge, in the language of Stinchcombe (1988). It is possible to give a rather weak "fixed point" characterization of iterated p-belief. Say that collection of events \mathscr{E} is mutually p-evident if $B_{i}^{p} E \in \mathscr{E}$, for all events $E \in \mathscr{E}$ and both i.

Proposition 2. (Fixed Point Characterization). Event E is iterated p-belief at ω if and only if there exists a mutually p-evident collection of events \mathscr{E} with [1] $B_{i}^{p} E \in \mathscr{E}$ for both i; and $[2] \omega \in F$, for all $F \in \mathscr{E}$.

Proof: (if) Suppose \mathscr{E} is mutually p-evident and [1] and [2] hold. By [1], $B_{1}^{p} E \in$ \mathscr{E} and $B_{2}^{p} E \in \mathscr{E}$. Now, by \mathscr{E} mutually p-evident, $B_{1}^{p} B_{2}^{p} E \in \mathscr{E}$ and $B_{2}^{p} B_{1}^{p} E \in \mathscr{E}$ and so $B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n} E \in \mathscr{E}, B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E \in \mathscr{E},\left[B_{2}^{p} B_{1}^{p}\right]^{n+1} E \in \mathscr{E},\left[B_{1}^{p} B_{2}^{p}\right]^{n+1} E \in \mathscr{E}$, for all $n \geq 0$. Since $I^{p} E$ is exactly the intersection of these expressions, $\omega \in$ $I^{p} E$ by [2].
(only if) Suppose E is iterated p-belief at ω. Let

$$
\mathscr{E}=\left\{F \subseteq \Omega: \begin{array}{c}
F \in\left\{B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n} E, B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E,\left[B_{2}^{p} B_{1}^{p}\right]^{n+1} E,\left[B_{1}^{p} B_{2}^{p}\right]^{n+1} E\right\} \\
\text { for some } n \geq 0
\end{array}\right\} .
$$

By definition of iterated p-belief, [2] holds. By construction of \mathscr{E}, [1] holds and \mathscr{E} is mutually p-evident.

Example 3. $\Omega=\{1,2,3,4,5,6\} ; \mathscr{Q}_{1}=(\{1,2\},\{3\},\{4\},\{5,6\}) ; \mathscr{Q}_{2}=(\{1,3$, $4\},\{2,5,6\}) ; P(\omega)=1 / 6$ for all $\omega \in \Omega$.

If $E^{*}=\{1,2,3\}$, then $I^{0.6} E^{*}=\{3\}$. Let us verify this, first using the hierarchical definition, and then using the fixed point characterization: $B_{1}^{0.6} E^{*}=$ $\{1,2,3\} ; B_{2}^{0.6} E^{*}=\{1,3,4\} ; B_{2}^{0.6} B_{1}^{0.6} E^{*}=\{1,3,4\} ;$ and $B_{1}^{0.6} B_{2}^{0.6} E^{*}=\{3,4\}$. But now since $B_{1}^{0.6}\{1,3,4\}=\{3,4\}$ and $B_{2}^{0.6}\{3,4\}=\{1,3,4\}, I_{1}^{0.6} E^{*}=\{3\}$, $I_{2}^{0.6} E^{*}=\{1,3,4\}$ and $I^{0.6} E^{*}=\{3\}$. On the other hand, consider the collection of events $\mathscr{E}=(\{1,2,3\},\{1,3,4\},\{3,4\})$. Observe that [1] $B_{i}^{0.6} E^{*} \in \mathscr{E}$ for both i; [2] $3 \in E$ for all $E \in \mathscr{E}$; and [3] $B_{i}^{0.6} E \in \mathscr{E}$ for all $E \in \mathscr{E}$ and both i.

2.2. Common p-belief

An event E is common p-belief if both p-believe it, both p-believe that both p believe it, and so on. Formally, define a "both p-believe" operator as follows: $B_{*}^{p} E \equiv B_{1}^{p} E \cap B_{2}^{p} E$.

Definition 4. (Hierarchical). Event E is common p-belief at ω if

$$
\omega \in C^{p} E \equiv \bigcap_{n \geq 1}\left[B_{*}^{p}\right]^{n} E \equiv B_{*}^{p} E \cap B_{*}^{p} B_{*}^{p} E \cap B_{*}^{p} B_{*}^{p} B_{*}^{p} E \cap \cdots
$$

This notion can be given a tight fixed point characterization. Event F is p evident if $F \subseteq B_{*}^{p} F$. Thus event F is p-evident exactly if $\mathscr{E}=\{E: F \subseteq E\}$ is mutually p-evident. By B2, a simple event $F_{1} \cap F_{2}$ is p-evident if $F_{1} \subseteq B_{1}^{p} F_{2}$ and $F_{2} \subseteq B_{2}^{p} F_{1}$.

Proposition 5. (Fixed Point Characterization). The following statements are equivalent; [1] event E is common p-belief at ω; [2] there exists a p-evident event F such that $\omega \in F$ and $F \subseteq B_{*}^{p} E$; [3] there exists a simple p-evident event $F_{1} \cap F_{2}$ such that $\omega \in F_{1} \cap F_{2}$ and ${ }_{F} \subseteq B_{i}^{p} E$ for both i.

The equivalence of [1] and [2] is due to Monderer and Samet (1989), who defined common p-belief using the fixed point characterization.

Common p-belief may differ from iterated p-belief. In Example 3, $B_{1}^{0.6} E^{*}$ $=\{1,2,3\} ; B_{2}^{0.6} E^{*}=\{1,3,4\}$, so $B_{*}^{0.6} E^{*}=\{1,3\}$. Now $B_{1}^{0.6} B_{*}^{0.6} E^{*}=\{3\}$ and $B_{2}^{0.6} B_{*}^{0.6} E^{*}=\{1,3,4\}$, giving $\left[B_{*}^{0.6}\right]^{2} E^{*}=\{3\}$. Now $B_{1}^{0.6}\left(\left[B_{*}^{0.6}\right]^{2} E^{*}\right)=$ $\{3\}$ and $B_{2}^{0.6}\left[B_{*}^{0.6}\right]^{2} E^{*}=\varnothing$, giving $\left[B_{*}^{0.6}\right]^{3} E^{*}=\varnothing$, and thus $C^{0.6} E^{*}=\varnothing$.

2.3. Repeated common p-belief

A number of variants of common p-belief were introduced and studied around the same time as Monderer and Samet's work. In particular, both Börgers (1994) and Fagin and Halpern (1994) considered the following notion of approximate common knowledge. An event is repeated common p-belief ${ }^{5}$ if both p-believe it, both p-believe it and that both p-believe it, and so on. Thus event E is repeated common p-belief at ω if

$$
\omega \in R^{p} E \equiv B_{*}^{p} E \cap B_{*}^{p}\left(E \cap B_{*}^{p} E\right) \cap B_{*}^{p}\left(E \cap B_{*}^{p}\left(E \cap B_{*}^{p} E\right)\right) \cap \cdots
$$

More formally, define an operator $B_{*}^{p}(\cdot ; E): 2^{\Omega} \rightarrow 2^{\Omega}$ by $B_{*}^{p}(F ; E)=$ $B_{1}^{p}(F \cap E) \cap B_{2}^{p}(F \cap E)$, and let $R^{p} E=\bigcap_{n \geq 1}\left[B_{*}^{p}(\cdot ; E)\right]^{n} E$. This notion also has an equivalent fixed point characterization: $\omega \in R^{p} E$ if and only if there exists F such that $\omega \in F \subseteq B_{*}^{p}(E \cap F)$.

But common p-belief and repeated common p-belief deliver very similar results for p close to 1 . By definition, for all events $E, R^{p} E \subseteq C^{p} E$. As noted by Monderer and Samet (1996), we have $C^{p} E \subseteq R^{2 p-1} E$ for all events $E .^{6}$ Because of this almost equivalence, I will focus on common p-belief in the ensuing analysis.

2.4. Weak common p-belief

More information can reduce the degree of common p-belief of an event. Consider the following example.

Example 6. $\Omega=\{0,1,2, \ldots\} ; \mathscr{Q}_{1}=(\Omega) ; \mathscr{Q}_{2}=(\Omega) ; P(\omega)=\delta(1-\delta)^{\omega}$ for all $\omega \in \Omega$, where $\delta \in(0,1)$.

Thus individuals 1 and 2 have no information. Consider the event $E^{*}=\{1,2,3 \ldots\} ; P\left[E^{*}\right]=1-\delta$, so for any $p \leq 1-\delta, B_{1}^{p} E^{*}=\Omega, B_{2}^{p} E^{*}=\Omega$, so $B_{*}^{p} E^{*}=\Omega$ and $C^{p} E^{*}=\Omega$. Thus for sufficiently small δ, E^{*} is always common p-belief (for any given $p<1$).

Now suppose that individuals 1 and 2 received some information about the state of the world. In particular, the example becomes:

Example 7. $\Omega=\{0,1,2, \ldots\} ; \mathscr{Q}_{1}=(\{0\},\{1,2\},\{3,4\}, \ldots) ; \mathscr{Q}_{2}=(\{0,1\}$, $\{2,3\}, \ldots\}) ; P(\omega)=\delta(1-\delta)^{\omega}$ for all $\omega \in \Omega$, where $\delta \in(0,1)$.

Now for any $p \geq 1 / 2$ and $\omega \geq 1, B_{*}^{p}(\{\omega, \omega+1, \ldots\})=\{\omega+1, \omega+2, \ldots\}$. Thus $B_{*}^{p} E^{*}=\{2,3, \ldots\},\left[B_{*}^{p}\right]^{n} E^{*}=\{n+1, n+2, \ldots\}$ for all $n \geq 0$ and so $C^{p} E^{*}=\varnothing$.

[^2]This suggests the following alternative notion of approximate common knowledge. Suppose that each individual i had access to information partition $\mathscr{2}_{i}$, but need not acquire that information. What is the maximum attainable degree of common p-belief of a given event? Thus say that event E is weak common p-belief if event E is common p-belief given the individuals' information or any worse information. Formally, write $\mathscr{Q} \equiv\left(\mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$ and index belief and common p-belief operators as follows (in this section only): $B_{\mathscr{Q}_{i}}^{p} E \equiv\left\{\omega: P\left[E \mid Q_{i}(\omega)\right] \geq p\right\}, B_{\mathscr{2}}^{p} E \equiv B_{\mathscr{Q}_{1}}^{p} E \cap B_{\mathscr{Q}_{2}}^{p} E$ and $C_{2}^{p} E \equiv \bigcap_{n \geq 1}\left[B_{\mathscr{2}}^{p}\right]^{n} E$. Say that \mathscr{Q}^{\prime} is a coarsening of $\mathscr{2}$ if $Q_{i}(\omega) \subseteq Q_{i}^{\prime}(\omega)$ for both i and all $\omega \in \Omega$. Write $\mathscr{C}(\mathscr{Q})$ for the set of all coarsenings of $\mathscr{2}$.

Definition 8. (Hierarchical). Event E is weak common p-belief at ω (under 2) if event E is common p-belief at ω under some coarsening of \mathbb{Q}, i.e., if $\omega \in$ $W^{p} E \equiv \bigcup_{2^{\prime} \in \mathscr{G}(2)} C_{2^{\prime}}^{p} E$.

Simple event $F_{1} \cap F_{2}$ is weakly p-evident if it is empty or $P\left[F_{1} \mid F_{2}\right] \geq p$ and $P\left[F_{2} \mid F_{1}\right] \geq p$.

Proposition 9. (Fixed Point Characterization). Event E is weak common p-belief at ω if and only if there exists a weakly p-evident event $F_{1} \cap F_{2}$ with $\omega \in F_{1} \cap F_{2}$ and $P\left[E \mid F_{i}\right] \geq p$ for both i.

This notion is due to Geanakoplos (1994, p. 1482) who called it weakly p-common knowledge.

Proof: Suppose $\omega \in W^{p} E$. Then $\omega \in C_{\mathscr{2}^{\prime}}^{p} E$ for some $\mathscr{Q}^{\prime} \in \mathscr{C}(\mathscr{2})$. By Proposition 5, there exists simple event $F_{1} \cap F_{2}$ with [1] $F_{i} \subseteq B_{\mathfrak{Q}_{i}^{\prime}}^{p} E$ for both i and [2] $F_{i} \subseteq B_{\mathscr{Q}_{i}^{\prime}}^{p} F_{j}$ for both i. But [1] implies $P\left[E \mid F_{i}\right] \geq p$ for both i, and [2] implies $P\left[F_{j} \mid F_{i}\right]^{i} \geq p$ for both i. On the other hand, suppose there exists a weakly p-evident event $F_{1} \cap F_{2}$ with $\omega \in F_{1} \cap F_{2}$ and $P\left[E \mid F_{i}\right] \geq p$ for both i. Let

$$
Q_{i}^{\prime}(\omega)= \begin{cases}F_{i}, & \text { if } \omega \in F_{i} \\ \Omega \backslash F_{i}, & \text { if } \omega \notin F_{i}\end{cases}
$$

By construction $F_{i} \subseteq B_{\mathscr{Q}_{i}^{\prime}}^{p} E$ for both i, so $F_{1} \cap F_{2} \subseteq B_{\mathfrak{Q}^{\prime}}^{p} E$. But $F_{1} \cap$ $F_{2} \subseteq F_{i} \cap B_{\mathscr{Q}_{i}^{\prime}}^{p} F_{j}=B_{\mathscr{Q}_{i}^{\prime}}^{p}\left(F_{1} \cap F_{2}\right)$ for both i (by B2). Thus $\omega \in C_{\mathscr{2}^{\prime}}^{p} E$, by Proposition 5.

Corollary 10. If $P[E] \geq p$, then $W^{p} E=\Omega$.
Proof. Since $\Omega \in \mathscr{F}_{i}$ for both i, Ω is weakly p-evident.
2.5. The relation between alternative notions for $p=1$

Iterated 1-belief, common 1-belief and weak common 1-belief are all equivalent

Proposition 11. For all events $E: I^{1} E=C^{1} E=W^{1} E$.
Proof: Observe first that for both i and all collections of events $\left\{E^{k}\right\}_{k=1}^{\infty}$, $B_{i}^{1}\left(\bigcap_{k \geq 1} E^{k}\right)=\bigcap_{k \geq 1} B_{i}^{1} E^{k}$. Thus $I^{1} E \subseteq B_{i}^{1} I^{1} E$ for both i, i.e., $I^{1} E$ is 1evident. Now since $I^{1} E \subseteq B_{*}^{1} E$ (by definition), $I^{1} E \subseteq C^{1} E$ by Proposition 5 . But Lemma 14 below shows $C^{p} E \subseteq I^{p} E$ for all p, so $I^{1} E=C^{1} E$.

Now suppose $\mathscr{Q}^{\prime} \in C(\mathscr{Q})$. For all events $E, B_{\mathscr{Q}_{i}^{\prime}}^{1} E \subseteq B_{\mathscr{Q}_{i}}^{1} E$ for both i, so $B_{2^{\prime}}^{1} E \subseteq B_{\mathscr{Q}}^{1} E$, so $C_{2^{\prime}}^{1} E \subseteq C_{2}^{1} E$; thus $W^{1} E \subseteq C^{1} E$. But Lemma 15 below shows that $C^{p} E \subseteq W^{p} E$ for all p, so $C^{1} E=W^{1} E$.

The "truth axiom" requires that 1-beliefs are always correct, i.e., $B_{i}^{1} E \subseteq E$ for all events E and each i. In our setting, the truth axiom is equivalent to requiring that P has full support, i.e., $P(\omega)>0$ for all $\omega \in \Omega$. Under the truth axiom with $p=1$, all three notions outlined above are equivalent to the following definition of common knowledge.

Let $\mathscr{F}^{*}=\mathscr{F}_{1} \cap \mathscr{F}_{2}$. Now \mathscr{F}^{*} is the σ-field generated by the meet of the individuals' partitions.

Definition 12 (Aumann (1976)). Event E is common knowledge at ω if

$$
\omega \in \mathscr{C} \mathscr{K} E \equiv\left\{\omega: \omega \in F \subseteq E, \text { for some } F \in \mathscr{F}^{*}\right\}
$$

Lemma 13. For all events E : (a) $\mathscr{C} \mathscr{K} E \subseteq I^{1} E=C^{1} E=W^{1} E$; (b) under the truth axiom, $\mathscr{C} \mathscr{K} E=I^{1} E=C^{1} E=W^{1} E$.

Proof: (a) If $F \in \mathscr{F}^{*}$, then F is 1 -evident. If F is 1 -evident and $F \subseteq E$, then $F \subseteq B_{*}^{1} F \subseteq B_{*}^{1} E$. Thus $\omega \in \mathscr{C} \mathscr{K} E \Rightarrow \omega \in F \subseteq E$, for some $F \in \mathscr{F}^{*} \Rightarrow \omega \in$ $F \subseteq B_{*}^{1} E$, for some 1 -evident $F \Rightarrow \omega \in C^{1} E$, by Proposition 5 .
(b) Under the truth axiom, if F is 1 -evident then $F \in \mathscr{F}^{*}$. Under the truth axiom, if F is 1 -evident and $F \subseteq B_{*}^{1} E$, then $F \subseteq E$. Thus $\omega \in C^{1} E \Rightarrow \omega \in$ $F \subseteq B_{*}^{1} E$, for some 1 -evident $F \Rightarrow \omega \in F \subseteq E$, for some $F \in \mathscr{F}^{*} \Rightarrow \omega \in$ $\mathscr{C} \mathscr{K} E$.

2.6. The relation between alternative notions for $p<1$

The equivalence of the alternative notions of approximate common knowledge does not, in general, hold if $p<1$. This is because the belief operator typically fails to satisfy the distributive property that if event E is believed with probability at least p, and event F is believed with probability at least p, then event $E \cap F$ is believed with probability at least p, so it is possible that $B_{i}^{p}(E \cap F)$ is a strict subset of $B_{i}^{p} E \cap B_{i}^{p} F$.

The following two Lemmas show that common p-belief is in general a stronger notion than either iterated p-belief or weak common p-belief.

Lemma 14. For all events E and $p \in(0,1]: C^{p} E \subseteq I^{p} E$.
Proof: For any event E and individual $i, B_{*}^{p} E \subseteq B_{i}^{p} E$. Thus $B_{*}^{p} B_{*}^{p} E \subseteq$ $B_{2}^{p} B_{1}^{p} E \cap B_{1}^{p} B_{2}^{p} E$; by induction, we have $\left[B_{*}^{p}\right]^{2 n-1}(E) \subseteq B_{1}^{p}\left[B_{2}^{p} B_{1}^{p}\right]^{n-1} E \cap$
$B_{2}^{p}\left[B_{1}^{p} B_{2}^{p}\right]^{n} E$ and $\left[B_{*}^{p}\right]^{2 n}(E) \subseteq\left[B_{2}^{p} B_{1}^{p}\right]^{n} E \cap\left[B_{1}^{p} B_{2}^{p}\right]^{n} E$, for all $n \geq 1$. So

$$
C^{p} E \equiv \bigcap_{n \geq 1}\left[B_{*}^{p}\right]^{n} E \subseteq I_{1}^{p} E \cap I_{2}^{p} E \equiv I^{p} E
$$

Lemma 15. For all events E and $p \in(0,1]: C^{p} E \subseteq W^{p} E$.
Proof: $C^{p} E \equiv C_{2}^{p} E \subseteq \bigcup_{\mathscr{Q}^{\prime} \in \mathscr{C}(\mathscr{2})} C_{\mathscr{2}^{\prime}}^{p} E \equiv W^{p} E$.

2.6.1. The unbounded state space case

With no restrictions on the size of the state space Ω, there need be no connection between common p-belief and the two weaker variants. In particular, we have:

Remark 16: For all $1 / 2<r \leq p<1$ and $0<\varepsilon<1$, it is possible to construct an information system containing an event E with $P\left[I^{p} E\right] \geq 1-\varepsilon, P\left[W^{p} E\right] \geq$ $1-\varepsilon$ and $C^{r} E=\varnothing$.

This is shown by the following example:
Example 17. This example is parameterized by $1 / 2<r \leq p<1$ and $0<\varepsilon<$ 1. Write N for the smallest integer satisfying $N \geq \operatorname{Max}\left\{\frac{1}{2 r-1}, \frac{2}{1-p}\right\}$ and M for the smallest integer satisfying $M \geq \operatorname{Max}\left\{\frac{N^{2(N+1)}}{\varepsilon}, \frac{N^{2(N+1)}}{1-p}\right\}$. Each individual i observes a signal $s_{i} \in S=\{1, \ldots, N+M\}$. A state consists of the pair of signals observed by the two individuals, so $\omega \equiv\left(s_{1}, s_{2}\right)$ and $\Omega \equiv S^{2}$. Individuals' partitions reflect the fact that they observe only their own signals.
Thus $Q_{i}\left(\left(s_{1}, s_{2}\right)\right)=\left\{\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \Omega: s_{i}=s_{i}^{\prime}\right\}$. Let $P(\omega)=\pi(\omega) /\left(\sum_{\omega^{\prime} \in \Omega} \pi\left(\omega^{\prime}\right)\right)$, for all $\omega \in \Omega$, where π is defined according to table $1:^{7}$

The following notation will be useful. Let X be some collection of possible signals, i.e., $X \subseteq\{1,2, \ldots, N+M\}$. Write $E_{i}^{+}(X)$ for the set of states where individual i 's signal is in X, i.e., $E_{i}^{+}(X)=\left\{\left(s_{1}, s_{2}\right): s_{i} \in X\right\}$; and write $E_{i}^{-}(X)$ for the set of states where individual i 's signal is not in X, i.e., $E_{i}^{-}(X)=$ $\left\{\left(s_{1}, s_{2}\right): s_{i} \notin X\right\}$. Abusing notation, we write $E_{i}^{-}(n)$ for $E_{i}^{-}(\{n\})$, etc... Let $E^{*}=E_{1}^{-}(1)$.

I first characterize $I^{p} E^{*}$. Some calculations for this example are summarized in the Appendix; in particular, the following properties of the operator B_{i}^{p}

[^3]Table 1.

$\begin{aligned} & z \\ & + \\ & z \end{aligned}$	$\stackrel{Z}{Z}$	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	.	\bigcirc	\bigcirc	$\underset{\sim}{\square}$
$\begin{aligned} & - \\ & 1 \\ & z \\ & + \\ & z \end{aligned}$	-	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	.	\bigcirc	z	-
$\begin{aligned} & \text { I } \\ & 1 \\ & z \\ & + \\ & z \end{aligned}$	-	-	\bigcirc		-	\bigcirc	\bigcirc	\bigcirc	.	z	z	-
.
$\begin{aligned} & \text { N } \\ & + \\ & Z \end{aligned}$	-	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	z		\bigcirc	0	-
$\begin{aligned} & I \\ & + \\ & z \end{aligned}$	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	z	z	.	\bigcirc	\bigcirc	-
z	-	-	\bigcirc		\bigcirc	z	-	\bigcirc	.	\bigcirc	-	\bigcirc
$\begin{aligned} & 7 \\ & 1 \\ & z \end{aligned}$	\bigcirc	\bigcirc	\bigcirc		z	Z	-	\bigcirc	.	-	\bigcirc	0
.								.	.	.		
m	-	\bigcirc	$\begin{aligned} & n \\ & \sum_{z}^{n} \\ & \end{aligned}$		\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	0
\sim	\bigcirc	$\begin{aligned} & \begin{array}{r} n \\ \lambda \\ 2 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm \\ & { }_{\lambda}^{2} \\ & Z \end{aligned}$		\bigcirc	\bigcirc	-	\bigcirc	.	\bigcirc	-	\bigcirc
-	$\begin{array}{\|l\|} \hline \frac{1}{1} \\ 2 y \\ z \end{array}$	$\begin{aligned} & 2 \\ & \frac{1}{2} \\ & z \end{aligned}$	\bigcirc		\bigcirc	\bigcirc	-	\bigcirc	.	\bigcirc	\bigcirc	0
	-	\sim	m		T z	z	$\begin{aligned} & \overline{+} \\ & z \end{aligned}$	$\begin{aligned} & \text { N } \\ & + \\ & Z \end{aligned}$		$\begin{aligned} & \text { N } \\ & 1 \\ & \text { Z } \\ & + \\ & Z \end{aligned}$	- z z + z	z + z z

are verified:

$$
\begin{align*}
& B_{2}^{p}\left(E_{1}^{-}(n)\right)=E_{2}^{-}(n), \quad \text { for all } n=1, \ldots, N, \tag{1}\\
& B_{1}^{p}\left(E_{2}^{-}(n)\right)=E_{1}^{-}(n+1), \quad \text { for all } n=1, \ldots, N-1, \tag{2}\\
& B_{1}^{p}\left(E_{2}^{-}(N)\right)=\Omega . \tag{3}
\end{align*}
$$

Since $E^{*} \in \mathscr{F}_{1}, B_{1}^{p} E^{*}=E^{*}$ (by B1); by (1), $B_{2}^{p} B_{1}^{p} E^{*}=B_{2}^{p} E^{*}=E_{2}^{-}(1)$; by (2), $B_{1}^{p} B_{2}^{p} B_{1}^{p} E^{*}=B_{1}^{p} B_{2}^{p} E^{*}=E_{1}^{-}(2) ;$ by (1), $\left[B_{2}^{p} B_{1}^{p}\right]^{2} E^{*}=B_{2}^{p} B_{1}^{p} B_{2}^{p} E^{*}=E_{2}^{-}(2)$. Iteratively applying (1) and (2) gives

$$
\begin{align*}
{\left[B_{1}^{p} B_{2}^{p}\right]^{n-1} B_{1}^{p} E^{*} } & =\left[B_{1}^{p} B_{2}^{p}\right]^{n-1} E^{*}=E_{1}^{-}(n) \quad \text { and } \\
{\left[B_{2}^{p} B_{1}^{p}\right]^{n} E^{*} } & =\left[B_{2}^{p} B_{1}^{p}\right]^{n-1} B_{2}^{p} E^{*}=E_{2}^{-}(n) \tag{4}
\end{align*}
$$

for all $n=1, \ldots, N$. By (4) and (3),

$$
\left[B_{1}^{p} B_{2}^{p}\right]^{N} E^{*}=B_{1}^{p}\left[\left[B_{2}^{p} B_{1}^{p}\right]^{N-1} B_{2}^{p} E^{*}\right]=B_{1}^{p}\left[E_{2}^{-}(N)\right]=\Omega .
$$

Thus $I_{1}^{p} E^{*}=E_{1}^{-}(1, \ldots, N), I_{2}^{p} E^{*}=E_{2}^{-}(1, \ldots, N)$ and $I^{p} E^{*}=E_{1}^{-}(1, \ldots, N) \cap$ $E_{2}^{-}(1, \ldots, N)$. So $\quad P\left[I^{p} E\right]=P\left[E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)\right] \geq 1-\varepsilon \quad$ (see Appendix).

Now we characterize $C^{r} E^{*}$. The following properties of the operator B_{i}^{r} are verified in the Appendix:

$$
\begin{align*}
& B_{2}^{r}\left(E_{1}^{-}(1, \ldots, n)\right) \subseteq E_{2}^{-}(n), \text { for all } n=1, \ldots, N+M \tag{5}\\
& B_{1}^{r}\left(E_{2}^{-}(1, \ldots, n)\right) \subseteq E_{1}^{-}(n+1), \text { for all } n=1, \ldots, N+M-1 . \tag{6}
\end{align*}
$$

Now by B1 and (5),

$$
\begin{equation*}
B_{*}^{r} E^{*}=B_{1}^{r} E^{*} \cap B_{2}^{r} E^{*} \subseteq E_{1}^{-}(1) \cap E_{2}^{-}(1) \tag{7}
\end{equation*}
$$

So

$$
\begin{aligned}
{\left[B_{*}^{r}\right]^{2} E } & =B_{1}^{r} B_{*}^{r} E \cap B_{2}^{r} B_{*}^{r} E \\
& \subseteq B_{1}^{r}\left[E_{1}^{-}(1) \cap E_{2}^{-}(1)\right] \cap B_{2}^{r}\left[E_{1}^{-}(1) \cap E_{2}^{-}(1)\right], \text { by }(7) \text { and } \mathrm{B} 4 \\
& =E_{1}^{-}(1) \cap B_{1}^{r} E_{2}^{-}(1) \cap B_{2}^{r} E_{1}^{-}(1) \cap E_{2}^{-}(1), \text { by B2 } \\
& \subseteq E_{1}^{-}(1,2) \cap E_{2}^{-}(1), \text { by }(6) .
\end{aligned}
$$

Iteratively applying (5) and (6), we have

$$
\begin{aligned}
& {\left[B_{*}^{r}\right]^{2 n-2} E^{*} \subseteq E_{1}^{-}(1, \ldots, n) \cap E_{2}^{-}(1, \ldots, n-1) \quad \text { and }} \\
& {\left[B_{*}^{r}\right]^{2 n-1} E^{*} \subseteq E_{1}^{-}(1, \ldots, n) \cap E_{2}^{-}(1, \ldots, n)}
\end{aligned}
$$

for all $n=2, \ldots, N+M$. Thus $C^{r} E^{*}=\left[B_{*}^{r}\right]^{2 N+2 M-1} E^{*}=\varnothing$.

Finally observe that $P\left[E^{*}\right] \geq p$ (see Appendix), so, by Corollary 10, $W^{p} E^{*}=\Omega$ and $P\left[W^{p} E^{*}\right]=1$.

The assumption in Remark 16 that $r>1 / 2$ is important: if $r<1 / 2$, then event E is common r-belief with high probability whenever it is iterated p-belief with high probability.

Remark 18: If $r<1 / 2$ and $r \leq p<1$, then for all events $E: P\left[C^{r} E\right] \geq 1-$ $\left(1-P\left[I^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right)$.

Proof: Kajii and Morris (1997) have shown that if $r<1 / 2$, then for every simple event F :

$$
\begin{equation*}
P\left[C^{r} F\right] \geq 1-(1-P[F])\left(\frac{1-r}{1-2 r}\right) \tag{8}
\end{equation*}
$$

But $B_{*}^{p} E$ is simple and $I^{p} E \subseteq B_{*}^{p} E$. So

$$
\begin{aligned}
P\left[C^{r} E\right] & =P\left[C^{r} B_{*}^{r} E\right] \\
& \geq P\left[C^{r} B_{*}^{p} E\right] \\
& \geq 1-\left(1-P\left[B_{*}^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right), \text { by }(8) \\
& \geq 1-\left(1-P\left[I^{p} E\right]\right)\left(\frac{1-r}{1-2 r}\right),
\end{aligned}
$$

On the other hand, for any $0<r \leq p<1$, it is possible to construct an information system with $\omega \in I^{p} E$ but $\omega \notin C^{r} E$, for some state ω and event E.

Remark 19: For all $1 / 2<r \leq p<1$ and $\varepsilon>0$, it is possible to construct an information system containing an event E with $P\left[W^{p} E\right]=1$ and $I^{r} E=$ $C^{r} E=\varnothing$.

Consider Example 7, with $\delta<\min \{\varepsilon, 1-p\}$. For any $r \geq 1 / 2, B_{1}^{r} E^{*}=E^{*}$, $B_{2}^{r} B_{1}^{r} E^{*}=B_{2}^{r} E^{*}=\{2,3, \ldots\}, B_{1}^{r} B_{2}^{r} B_{1}^{r} E^{*}=B_{1}^{r} B_{2}^{r} E^{*}=\{3,4, \ldots\}$, etc.. Thus $I^{r} E^{*}=C^{r} E^{*}=\varnothing$. But $P\left[E^{*}\right]=1-\delta>p$, so E^{*} is weakly p-evident, $W^{p} E^{*}=E^{*}$ and $P\left[W^{p} E^{*}\right]=P\left[E^{*}\right]=1-\delta \geq 1-\varepsilon$.

2.6.2. The bounded state space case

If the state space is bounded, Proposition 2 can be used to give a bound on the difference between iterated p-belief and common p-belief.

Proposition 20. Suppose Ω has n elements. Then for all events E and $p \in(0,1]$: $I^{p} E \subseteq C^{1-2^{n}(1-p)} E$ and $I^{1-2^{-n}(1-p)} E \subseteq C^{p} E$.

Proposition 20 implies in particular that for any $p<1$, there exists some $q<1$ (which depends on p and n) such that whenever an event is iterated q-belief, it is also common p-belief.

Proof: Suppose E^{1}, \ldots, E^{K} is an arbitrary collection of events and $\omega \in$ $B_{i}^{p} E^{1} \cap B_{i}^{p} E^{2} \cap \cdots \cap B_{i}^{p} E^{K}$. Then $P\left[E^{k} \mid Q_{i}(\omega)\right] \geq p$ for each $k \Rightarrow P\left[\left(\Omega \backslash E^{k}\right) \mid\right.$ $\left.Q_{i}(\omega)\right] \leq 1-p$ for each $k \Rightarrow P\left[\bigcup_{k=1}^{K}\left(\Omega \backslash E^{k}\right) \mid Q_{i}(\omega)\right] \leq K(1-p) \Rightarrow P\left[\bigcap_{k=1}^{K} E^{k} \mid\right.$ $\left.Q_{i}(\omega)\right]=\left[\Omega \backslash\left(\bigcup_{k=1}^{K}\left(\Omega \backslash E^{k}\right)\right) \mid Q_{i}(\omega)\right] \geq 1-K(1-p)$. Thus $\omega \in B_{i}^{1-K(1-p)}$.
$\left(E^{1} \cap E^{2} \cap \cdots \cap E^{K}\right) ;$ so

$$
\begin{equation*}
B_{i}^{p} E^{1} \cap B_{i}^{p} E^{2} \cap \cdots \cap B_{i}^{p} E^{K} \subseteq B_{i}^{1-K(1-p)}\left(E^{1} \cap E^{2} \cap \cdots \cap E^{K}\right) \tag{9}
\end{equation*}
$$

By Proposition 2, $\omega \in I^{p} E$ implies there exists a mutually p-evident collection of events \mathscr{E} with $\omega \in A=\bigcap_{F \in \mathscr{E}} F, B_{1}^{p} E \in \mathscr{E}$ and $B_{2}^{p} E \in \mathscr{E}$; thus $A \subseteq B_{i}^{p} E \subseteq$ $B_{i}^{1-K(1-p)} E$ for each i; \mathscr{E} has at most 2^{n} elements, so, by (9), $A=\bigcap_{F \in \mathscr{E}} F \subseteq$ $\bigcap_{F \in \mathscr{E}} B_{i}^{p} F \subseteq B_{i}^{1-2^{n}(1-p)}\left(\bigcap_{F \in \mathscr{E}} F\right)=B_{i}^{1-2^{n}(1-p)} A$ for both i. Thus A is $\left(1-2^{n}(1-p)\right)$-evident and $\omega \in C^{1-2^{n}(1-p)} E$ by Proposition 5.

This result gives a (very loose) lower bound on the number of states required to allow a given divergence between iterated and common p-belief. If there are n states and there exists a state ω with $\omega \in I^{p}(E)$ and $\omega \notin C^{r}(E)$, then Corollary 20 implies that $r \geq 1-2^{n}(1-p)$, so that $n \geq \log _{2}(1-r)-$ $\log _{2}(1-p)$. For example, if $p=0.999$ and $r=0.501$, then we must have $n \geq$ 9. On the other hand, Example 17 gives a (very loose) upper bound on the number of states required to allow a given divergence. If $p=0.999$ and $r=0.501$ (and $\varepsilon \geq 0.001$), then the construction of Example 17 has approximately 5×10^{13213} states!

3. Applications

Common knowledge assumptions are important in showing a number of game theory and economics results. The purpose of this section is show how different notions of approximate common knowledge are required for different results.

3.1. Game theory

To illustrate the significance of approximate common knowledge in game theory, I will focus on simple examples. In particular, I will be interested in symmetric two player, two action, games with two strict Nash equilibria:

\mathscr{G}	0	1
0	a, a	b, c
1	c, b	d, d

where $a>c$ and $d>b$. The best response dynamics are completely characterized by the probability q such that each player is indifferent between his two
actions if the other plays action 1 with probability q, i.e.,

$$
q=\frac{a-c}{(a-c)+(d-b)} .
$$

The analysis will depend only on the parameter q. Thus the analysis of the general game \mathscr{G} would be the same if we restricted attention to

\mathscr{G}^{\prime}	0	1
0	q, q	0,0
1	0,0	$1-q, 1-q$

3.1.1. Best response dynamics and iterated p-belief

Two individuals are endowed with the information structure discussed earlier in the paper. They are playing the (degenerate) incomplete information game where each has the two actions 0 and 1 available and payoffs are always given by the matrix \mathscr{G}. A pure strategy for individual i would usually be written as a $\mathscr{2}_{i}$-measurable function $\sigma_{i}: \Omega \rightarrow\{0,1\}$. I will find it useful, however, to identify an individual's strategy with the set of states where he plays action 1, i.e., $E_{i}=\left\{\omega: \sigma_{i}(\omega)=1\right\}$. Player i 's pure strategy set is thus \mathscr{F}_{i}.

I want to study the incomplete information game best response dynamics. Assume that q is generic so that there is a unique best response. Suppose individual 1 is choosing strategy E_{1}, i.e., playing 1 at all states in E_{1} and 0 at all states not in E_{1}. We can characterize best response functions in terms of belief operators. If 2 assigns probability more than q to the event E_{1}, his best response is to play 1 ; if he assigns probability less than q, his best response would be to play 1 . Thus $B_{2}^{q} E_{1}$ is 2 's best response to E_{1} and $B_{1}^{q} E_{2}$ is 1's best response to E_{2}. Thus we have a best response function, $\rho: \mathscr{F}_{1} \times \mathscr{F}_{2} \rightarrow$ $\mathscr{F}_{1} \times \mathscr{F}_{2}$, with $\rho\left(E_{1}, E_{2}\right)=\left(B_{1}^{q} E_{2}, B_{2}^{q} E_{1}\right)$.

One interpretation of this dynamic is the following. The incomplete information game is played repeatedly, with a new, independent, draw of players' types in each period. Each player starts out with an initial incomplete information game strategy that he is unable to revise for a large number of periods. Over time, each player learns how his strategy performed against opponents' strategies. Then each player revises his incomplete information strategy and the process continues. Formally, we would need an infinite number of plays in between strategy revisions in order for players to learn the true payoffs; but dynamic behavior will be similar as long as revision opportunities are much rarer than plays of the game. ${ }^{8}$

Now we have:
Proposition 21. If players initially chose strategies $\left(E_{1}, E_{2}\right)$ and revise their strategies by best response dynamics, then action profile $(1,1)$ is always played

[^4]if and only if the events E_{1} and E_{2} are iterated q-belief, i.e.,
$$
\bigcap_{n \geq 0}\left[\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right]=I^{q} E_{1} \cap I^{q} E_{2} .
$$

Proof: First observe that (by B2) $I_{1}^{q} E_{1}=E_{1} \cap B_{1}^{q} B_{2}^{q} E_{1} \cap \cdots$; while $I_{1}^{q} E_{2}=$ $B_{1}^{q} E_{2} \cap B_{1}^{q} B_{2}^{q} B_{1}^{q} E_{2} \cap \cdots$, so

$$
\begin{aligned}
& \bigcap_{n \geq 0}\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \\
& \quad=E_{1} \cap B_{1}^{q} E_{2} \cap B_{1}^{q} B_{2}^{q} E_{1} \cap B_{1}^{q} B_{2}^{q} B_{1}^{q} E_{2} \cap \cdots=I_{1}^{q} E_{1} \cap I_{1}^{q} E_{2} \quad \text { and } \\
& \bigcap_{n \geq 0}\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right) \\
& \quad=E_{2} \cap B_{2}^{q} E_{1} \cap B_{2}^{q} B_{1}^{q} E_{2} \cap B_{2}^{q} B_{1}^{q} B_{2}^{q} E_{1} \cap \cdots=I_{2}^{q} E_{1} \cap I_{2}^{q} E_{2} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \bigcap_{n \geq 0}\left[\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right] \\
& \quad=I_{1}^{q} E_{1} \cap I_{1}^{q} E_{2} \cap I_{2}^{q} E_{1} \cap I_{2}^{q} E_{2}=I^{q} E_{1} \cap I^{q} E_{2} .
\end{aligned}
$$

The following example is in the spirit of Rubinstein (1989).
Example 22. Let the information structure be that of Example 7. Suppose that initially player 2 played action 1 everywhere except at states 0 and 1 , and player 1 played action 1 everywhere except at state 0 . Thus $E_{1}=\{1,2, \ldots\}$ and $E_{2}=\{2,3, \ldots\}$. Now suppose that $q>1 / 2$, so that $(0,0)$ is the risk dominant equilibrium of the game. Then best response dynamics gives us:

$$
\rho^{n}\left(E_{1}, E_{2}\right)=\left\{\begin{array}{ll}
(\{n+1, n+2, \ldots\},\{n+2, n+3, \ldots\}), & \text { if } n \text { is even } \\
(\{n+2, n+3, \ldots\},\{n+1, n+2, \ldots\}), & \text { if } n \text { is odd }
\end{array} .\right.
$$

Thus

$$
\bigcap_{n \geq 0}\left(\left[\rho^{n}\right]_{1}\left(E_{1}, E_{2}\right) \cap\left[\rho^{n}\right]_{2}\left(E_{1}, E_{2}\right)\right)=I^{q} E_{1} \cap I^{q} E_{2}=\varnothing .
$$

3.1.2. Equilibrium, iterated deletion of dominated strategies and common p-belief

Consider the following related problem. Individuals are endowed again with the information system discussed earlier. Now they are playing an incomplete information game where payoffs are given by the matrix \mathscr{G} at all states, except that each individual i has a dominant strategy to play 0 at all states not in event $E_{i} \in \mathscr{F}_{i}$. As before, identify individual i 's strategy with the set of states where he plays 1 .

Proposition 23. $\left(B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right), B_{2}^{q} C^{q}\left(E_{1} \cap E_{2}\right)\right)$ is a pure strategy equilibrium of this game. On the other hand, if pure strategy F_{i} survives iterated deletion of strictly dominated strategies, then $F_{i} \subseteq B_{i}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$.

This is a version of results in Morris, Rob and Shin (1995). Monderer and Samet (1989) first proved general results relating common p-belief to equilibria of incomplete information games.

Proof: [1] I will show that strategy $B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$ is a best response to $B_{2}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$. If $\omega \in B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right) \subseteq E_{1}$, player i attaches probability at least q to player 2 choosing action 1 . Since payoffs are given by matrix \mathscr{G}, action 1 is a best response. If $\omega \in E_{1} \backslash B_{1}^{q} C^{q}\left(E_{1} \cap E_{2}\right)$, player i attaches probability less than q to player 2 choosing action 1 . Since payoffs are given by matrix \mathscr{G}, action 0 is the best response. Finally, if $\omega \notin E_{1}$, action 0 is a dominant action.
[2] Let $\mathscr{U}_{i}^{n} \subseteq \mathscr{F}_{i}$ be the set of player i strategies which survive n rounds iterated deletion of strictly interim dominated strategies. Clearly, $F_{i} \in \mathscr{U}_{i}^{1} \Rightarrow$ $F_{i} \subseteq E_{i}$. I will show by induction on $n \geq 2$ that $F_{i} \in \mathscr{U}_{i}^{n} \Rightarrow F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}$. $\left(E_{1} \cap E_{2}\right)$. Suppose $F_{i} \in \mathscr{U}_{i}^{2}$: since $\mathscr{U}_{i}^{2} \subseteq \mathscr{U}_{i}^{1}, F_{i} \subseteq E_{i}$; since player i attaches positive probability only to strategies $F_{j} \subseteq E_{j}$, we must have $F_{i} \subseteq B_{i}^{q} E_{j}$. So $F_{i} \subseteq E_{i} \cap B_{i}^{q} E_{j}=B_{i}^{p}\left(E_{1} \cap E_{2}\right)$ (by B2). Now suppose that the inductive hypothesis is true for n. Suppose $F_{i} \in \mathscr{U}_{i}^{n+1}$: since $\mathscr{U}_{i}^{n+1} \subseteq \mathscr{U}_{i}^{n}, F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}$. $\left(E_{1} \cap E_{2}\right)$; since player i attaches positive probability only to strategies $F_{j} \subseteq B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$, we must have $F_{i} \subseteq B_{i}^{q} B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)$. So $F_{i} \subseteq B_{i}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right) \cap B_{i}^{q} B_{j}^{q}\left[B_{*}^{q}\right]^{n-2}\left(E_{1} \cap E_{2}\right)=B_{i}^{q}\left(\left[B_{*}^{q}\right]^{n-1}\left(E_{1} \cap E_{2}\right)\right) \quad$ (by B2).

Example 24. Define game $\mathscr{G}^{\prime \prime}$ by

$\mathscr{G}^{\prime \prime}$	0	1
0	0,0	$0,-10$
1	$-10,0$	9,9

Note that $q=10 / 19$, so equilibrium $(0,0)$ is (just) risk dominant; but equilibrium $(1,1)$ is Pareto-dominant. Now suppose the information structure is given by Example 17, where $1 / 2<r<10 / 19$. Let player 2's payoffs always be given by matrix $\mathscr{G}^{\prime \prime}$; player 1's payoffs are given by matrix $\mathscr{G}^{\prime \prime}$, except that player has a dominant strategy to play action 0 if he observes signal 1 . Thus $E_{1}=E^{*}=E_{1}^{-}(1)$ and $E_{2}=\Omega$.

Since $C^{q}\left(E_{1} \cap E_{2}\right) \subseteq C^{r}\left(E_{1} \cap E_{2}\right)=C^{r}\left(E_{1}^{-}(1)\right)=\varnothing$, the unique strategy surviving iterated deletion of dominated strategies for each player is \varnothing. Thus action 0 is never played despite the fact that it is iterated p-belief that payoffs are given by $\mathscr{G}^{\prime \prime}$, with high probability and for any p.
3.2. Agreeing to disagree, no trade and weak common p-belief

Write \mathscr{X} for the set of functions, $x: \Omega \rightarrow[0,1]$. Let $\mathbf{E}(x \mid F)$ be the expected value of $x \in \mathscr{X}$ given event F with $P[F]>0$:

$$
\mathbf{E}(x \mid F)=\frac{\left(\sum_{\omega \in F} x(\omega) P(\omega)\right)}{\left(\sum_{\omega \in F} P(\omega)\right)}
$$

Let \mathbf{E}_{i} be the expectation operator for individual i, so that $\mathbf{E}_{i}(x \mid \omega)=$ $\mathbf{E}\left(x \mid Q_{i}(\omega)\right)$. Let $\Pi_{i}^{+}(x, q)$ be the set of states where individual i 's expected value of x is at least q, let $\Pi_{i}^{-}(x, q)$ be the set of states where individual i 's expected value of x is at most q, and let $\Pi_{i}(x, q)$ be the set of states where individual i 's expected value of x is exactly q :

$$
\begin{aligned}
\Pi_{i}^{+}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega) \geq q\right\} \\
\Pi_{i}^{-}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega) \leq q\right\} \\
\text { and } \Pi_{i}(x, q) & =\left\{\omega: \mathbf{E}_{i}(x \mid \omega)=q\right\}=\Pi_{i}^{+}(x, q) \cap \Pi_{i}^{-}(x, q)
\end{aligned}
$$

Let $\mathscr{T}\left(x, q_{1}, q_{2}\right)$ be the set of states where individual 1's expected value of x is at least q_{1}, while individual 2 's expected value is no more than q_{2} :

$$
\begin{aligned}
\mathscr{T}\left(x, q_{1}, q_{2}\right) & =\Pi_{1}^{+}\left(x, q_{1}\right) \cap \Pi_{2}^{-}\left(x, q_{2}\right) \\
& =\left\{\omega: \mathbf{E}_{1}(x \mid \omega) \geq q_{1} \text { and } \mathbf{E}_{2}(x \mid \omega) \leq q_{2}\right\} .
\end{aligned}
$$

If $\mathscr{T}\left(x, q_{1}, q_{2}\right)$ is empty for all $x \in \mathscr{X}$ and all q_{1} and q_{2} with q_{1} significantly bigger than q_{2}, then we say there is approximate no trade.

Let $\mathscr{D}\left(x, q_{1}, q_{2}\right)$ be the set of states where individual l's expected value of x is exactly q_{1}, while individual 2 's expected value is exactly q_{2}.

$$
\begin{aligned}
\mathscr{D}\left(x, q_{1}, q_{2}\right) & =\Pi_{1}\left(x, q_{1}\right) \cap \Pi_{2}\left(x, q_{2}\right) \\
& =\left\{\omega: \mathbf{E}_{1}(x \mid \omega)=q_{1} \text { and } \mathbf{E}_{2}(x \mid \omega)=q_{2}\right\}
\end{aligned}
$$

Thus 1 and 2 disagree by $\left|q_{1}-q_{2}\right|$ about the expected value of x. If $\mathscr{D}\left(x, q_{1}, q_{2}\right)$ is empty for all $x \in \mathscr{X}$ and all q_{1} and q_{2} with $\left|q_{1}-q_{2}\right|$ large, then we say there is approximate agreement.

Proposition 25. If there is weak common p-belief that individuals are prepared to trade, then the gains from trade must be small for large p. Specifically, if $W^{p}\left(\mathscr{T}\left(x, q_{1}, q_{2}\right)\right) \neq \varnothing$, then $q_{1}-q_{2} \leq 2(1-p)$.

Since $\mathscr{D}\left(x, q_{1}, q_{2}\right) \subseteq \mathscr{T}\left(x, q_{1}, q_{2}\right)$, the trade result extends to agreeing to disagree.

Corollary 26. If there is weak common p-belief that individuals disagree, then the disagreement must be small for large p. Specifically, if $W^{p}\left(\mathscr{D}\left(x, q_{1}, q_{2}\right)\right) \neq$ \varnothing, then $\left|q_{1}-q_{2}\right| \leq 2(1-p)$.

Monderer and Samet (1989) first proved a version of Corollary 26, for common p-belief. Neeman (1996a) improved the bound to $1-p$. Geanako-
plos (1994) observed that essentially the same proof works for weak common p-belief. Sonsino (1995) showed a version of Proposition 25 for common p-belief. ${ }^{9}$

Proof: (of Proposition 25). First observe that $\mathscr{T}\left(x, q_{1}, q_{2}\right)$ is a simple event, by construction. Thus $W^{p}\left(\mathscr{T}\left(x, q_{1}, q_{2}\right)\right)$ is non-empty if and only if there exists $F_{1} \in \mathscr{F}_{1} \backslash \varnothing$ and $F_{2} \in \mathscr{F}_{2} \backslash \varnothing$ with $F_{1} \subseteq \Pi_{1}^{+}\left(x, q_{1}\right), F_{2} \subseteq \Pi_{2}^{-}\left(x, q_{2}\right), P\left[F_{1} \mid F_{2}\right] \geq$ p and $P\left[F_{2} \mid F_{1}\right]>p$. Observe that

$$
\begin{aligned}
q_{1} & \leq \mathbf{E}\left(x \mid F_{1}\right) \\
& =\mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{2} \mid F_{1}\right]+\mathbf{E}\left(x \mid\left(F_{1} \backslash F_{2}\right)\right) \cdot\left(1-P\left[F_{2} \mid F_{1}\right]\right) \\
& \leq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{2} \mid F_{1}\right]+1-P\left[F_{2} \mid F_{1}\right] \\
& \leq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right)+(1-p),
\end{aligned}
$$

while

$$
\begin{aligned}
q_{2} & \geq \mathbf{E}\left(x \mid F_{2}\right) \\
& =\mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{1} \mid F_{2}\right]+\mathbf{E}\left(x \mid\left(F_{2} \backslash F_{1}\right)\right) \cdot\left(1-P\left[F_{1} \mid F_{2}\right]\right) \\
& \geq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right) \cdot P\left[F_{1} \mid F_{2}\right] \\
& \geq \mathbf{E}\left(x \mid F_{1} \cap F_{2}\right)-(1-p) .
\end{aligned}
$$

Thus $q_{1}-q_{2} \leq 2(1-p)$.
Thus approximate common knowledge of trade implies small gains from trade (Proposition 25) and approximate common knowledge of posteriors implies small disagreement (Corollary 26). Each of these results has a partial converse.

Proposition 27. Suppose E is a finite simple event, $P[E]>0$ and $W^{p} E=\varnothing$. Then there exists $x \in \mathscr{X}$ such that $E \subseteq \mathscr{D}(x, 1 / 2+(1 / 4)(1-p), 1 / 2-$ $(1 / 4)(1-p))$.

Since $\mathscr{D}\left(x, q_{1}, q_{2}\right) \subseteq \mathscr{T}\left(x, q_{1}, q_{2}\right)$, the agreeing to disagree result extends to trade.

Corollary 28. Suppose E is a finite simple event, $P[E]>0$ and $W^{p} E=\varnothing$. Then there exists $x \in \mathscr{X}$ such that $E \subseteq \mathscr{T}(x, 1 / 2+(1 / 4)(1-p), 1 / 2-(1 / 4)(1-p))$.

Proposition 27 is a converse to Corollary 26, since it shows that if an event is not weak common p-belief, then there exists a random variable for which

[^5]there is large disagreement. Corollary 28 is a converse to Proposition 25, since it shows that if an event is not weak common p-belief, then there exists a trade, which is accepted with large gains from trade, when everyone is rational on that event (and perhaps irrational outside it).

Proof: Write $E=E_{1} \cap E_{2}$, each $E_{i} \in \mathscr{F}_{i}$. Write $\mathscr{Q}_{i}^{*}=\left\{F \in \mathscr{Q}_{i}: F \subseteq E_{i}\right\}$ and $T_{i}=\mathscr{Q}_{i}^{*} \cup\left\{\Omega \backslash E_{i}\right\}$. Note that T_{i} is a finite partition of Ω which coarsens $\mathscr{2}_{i}$. For any $\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}$, let $\pi\left(F_{1}, F_{2}\right)=\sum_{\omega \in F_{1} \cap F_{2}} P(\omega)$. Consider the following linear programming problem. Choose $y: T_{1} \times T_{2} \rightarrow[0,1]$ and $\delta \in[0,1 / 2]$ to maximize δ subject to
[i] $\sum_{F_{2} \in T_{2}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)$

$$
=\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{1} \in \mathscr{Q}_{1}^{*} ;
$$

[ii] $\sum_{F_{1} \in T_{1}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)$
[iii] $y\left(F_{1}, F_{2}\right) \geq 0$, for all $\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2} ; \quad$ and
[iv] $y\left(F_{1}, F_{2}\right) \leq 1$, for all $\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}$.

Observe first that the maximand δ is less than $1 / 2$. If $\delta=1 / 2$, then we would have $\mathbf{E}\left(x \mid E_{1}\right)=1$ and $\mathbf{E}\left(x \mid E_{2}\right)=0$, which implies $P\left[E_{1} \cap E_{2}\right]=0$, a contradiction.

By standard linear programming arguments, we have that if (y, δ) is a solution to this problem, we must have $\lambda_{1}: T_{1} \rightarrow \mathfrak{R}, \lambda_{2}: T_{2} \rightarrow \mathfrak{R}, \zeta: T_{1} \times$ $T_{2} \rightarrow \mathfrak{R}_{+}$and $\xi: T_{1} \times T_{2} \rightarrow \mathfrak{R}_{+}$, such that:
[i] $\quad \lambda_{1}\left(F_{1}\right) \pi\left(F_{1}, F_{2}\right)-\lambda_{2}\left(F_{2}\right) \pi\left(F_{1}, F_{2}\right)$
$+\zeta\left(F_{1}, F_{2}\right)-\xi\left(F_{1}, F_{2}\right)=0$, for all $\left(F_{1}, F_{2}\right) \in \mathscr{Q}_{1}^{*} \times \mathscr{Q}_{2}^{*} ;$
[ii] $\quad \lambda_{1}\left(F_{1}\right) \pi\left(F_{1}, \Omega \backslash E_{2}\right)+\zeta\left(F_{1}, \Omega \backslash E_{2}\right)$
$-\xi\left(F_{1}, \Omega \backslash E_{2}\right)=0$, for all $F_{1} \in \mathscr{Q}_{1}^{*} ;$
$[$ iii $] \quad-\lambda_{2}\left(F_{2}\right) \pi\left(\Omega \backslash E_{1}, F_{2}\right)+\zeta\left(\Omega \backslash E_{1}, F_{2}\right)$
$-\xi\left(\Omega \backslash E_{1}, F_{2}\right)=0$, for all $F_{2} \in \mathscr{Q}_{2}^{*} ;$
[iv] $\quad \zeta\left(F_{1}, F_{2}\right)>0 \Rightarrow y\left(F_{1}, F_{2}\right)=0 ; \quad$ and
[v] $\quad \xi\left(F_{1}, F_{2}\right)>0 \Rightarrow y\left(F_{1}, F_{2}\right)=1$.

First suppose that $\lambda_{i}\left(F_{i}\right) \leq 0$ for all $F_{i} \in \mathscr{Q}_{i}^{*}$ and both i. Then δ would remain a solution if we replace [i] and [ii] in (10) with:
$\left[\mathrm{i}^{*}\right] \sum_{F_{2} \in T_{2}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)$

$$
\begin{equation*}
\leq\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{1} \in \mathscr{Q}_{1}^{*}, \quad \text { and } \tag{12}
\end{equation*}
$$

$\left[\right.$ ii* ${ }^{*} \sum_{F_{1} \in T_{1}} y\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)$

$$
\geq\left(\frac{1}{2}-\delta\right) \sum_{F_{1} \in T_{1}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{2} \in \mathscr{Q}_{2}^{*}
$$

But this revised problem has solution $1 / 2$ (e.g., set $y\left(F_{1}, F_{2}\right)=1 / 2$, for all $\left.\left(F_{1}, F_{2}\right) \in T_{1} \times T_{2}\right)$. This contradicts our earlier result that $\delta<1 / 2$.

Now suppose that there exists F_{i}^{*} with $\lambda_{i}\left(F_{i}^{*}\right)>0$ and $\lambda_{i}\left(F_{i}^{*}\right)>\lambda_{j}\left(F_{j}\right)$ for all $F_{j} \in \mathscr{Q}_{j}^{*}$. Without loss of generality, take $i=1$. But now parts [i] and [ii] of (11) imply that $\xi\left(F_{1}^{*}, F_{2}\right)>0$ for all $F_{2} \in T_{2}$; so by part [v] of $(11), y\left(F_{1}^{*}, F_{2}\right)=$ 1 for all $F_{2} \in T_{2}$; so by part [i] of (10), $\delta=1 / 2$, again a contradiction.

So if we let λ^{*} be the largest value in the range of λ_{1} and λ_{2}, and let $\mathscr{Q}_{i}^{* *}=$ $\left\{F_{i} \in \mathscr{Q}_{i}^{*}: \lambda_{i}\left(F_{i}\right)=\lambda^{*}\right\}$, we know that each $\mathscr{Q}_{i}^{* *}$ is non-empty. By (11), we must have $y\left(F_{1}, F_{2}\right)=1$ if $F_{1} \in \mathscr{Q}_{1}^{* *}$ and $F_{2} \notin \mathscr{Q}_{2}^{* *}$; and $y\left(F_{1}, F_{2}\right)=0$ if $F_{2} \in \mathscr{Q}_{2}^{* *}$ and $F_{1} \notin \mathscr{Q}_{1}^{* *}$. So parts [i] and [ii] of (10) become:

$$
\begin{gathered}
{\left[\mathrm{i}^{* *}\right] \sum_{F_{2} \in \mathscr{Q}_{2}^{* *}} y^{*}\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)+\sum_{F_{2} \in T_{2} \backslash 2_{2}^{* *}} \pi\left(F_{1}, F_{2}\right)} \\
=\left(\frac{1}{2}+\delta\right) \sum_{F_{2} \in T_{2}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{1} \in \mathscr{Q}_{1}^{* *}, \quad \text { and } \\
{\left[\mathrm{ii}^{* *}\right] \sum_{F_{1} \in \mathscr{Q}_{1}^{* *}} y^{*}\left(F_{1}, F_{2}\right) \pi\left(F_{1}, F_{2}\right)} \\
=\left(\frac{1}{2}-\delta\right) \sum_{F_{1} \in T_{1}} \pi\left(F_{1}, F_{2}\right), \text { for all } F_{2} \in \mathscr{P}_{2}^{* *}
\end{gathered}
$$

Now let $F_{i}^{*}=\bigcup_{F_{i} \in \mathscr{2}_{i}^{* *}} F_{i} ; x(\omega)=y^{*}\left(T_{1}(\omega), T_{2}(\omega)\right)$, where $T_{i}(\omega)$ is the element of T_{i} containing state $\omega ; \alpha=\mathbf{E}\left(x \mid F_{1}^{*} \cap F_{2}^{*}\right)$ and $p_{i}=P\left[F_{j}^{*} \mid F_{i}^{*}\right]$ for each $j \neq i$. We have $1 / 2-\delta=\mathbf{E}_{2}\left(x \mid F_{2}^{*}\right) \leq \alpha$, so

$$
\begin{aligned}
1 / 2+\delta & =\mathbf{E}_{1}\left(x \mid F_{1}^{*}\right) \\
& =p_{1} \alpha+\left(1-p_{1}\right) \\
& \geq p_{1}(1 / 2-\delta)+\left(1-p_{1}\right) .
\end{aligned}
$$

Re-arranging gives $\delta \geq(1 / 2)\left(1-p_{1}\right) /\left(1+p_{1}\right) \geq(1 / 4)\left(1-p_{1}\right)$. Analogously, we have $1 / 2+\delta=\mathbf{E}_{1}\left(x \mid F_{1}^{*}\right) \geq \alpha$, so

$$
\begin{aligned}
1 / 2-\delta & =\mathbf{E}_{2}\left(x \mid F_{2}^{*}\right) \\
& =p_{2} \alpha \\
& \leq p_{2}(1 / 2+\delta)
\end{aligned}
$$

Re-arranging gives $\delta \geq(1 / 2)\left(1-p_{2}\right) /\left(1+p_{2}\right) \geq(1 / 4)\left(1-p_{2}\right)$. But since $E_{1} \cap E_{2}$ is not weakly p-evident, we must have either p_{1} or p_{2} less than p. Thus $\delta \geq(1 / 4)(1-p)$.

4. Conclusion

This paper documented some major differences between alternative definitions of approximate common knowledge. To sum up the results, it was shown that common p-belief implies iterated p-belief and weak common p-belief (see Lemmas 14 and 15$)$. Iterated p-belief may be much weaker than common p belief (see Remark 16). Weak common p-belief may be much weaker than both iterated p-belief and common p-belief (see Remark 19). ${ }^{10}$

This paper also provided results relating each of the natural alternative definitions of approximate common knowledge to a class of applications. The relation between common p-belief and the equilibria of incomplete information games is well known and robust. It was also shown that iterated p-belief was relevant for the analysis of dynamics in incomplete information games. The particular dynamic studied was not especially compelling (it was chosen to give a precise connection with iterated p-belief). The important point to learn from this example is that dynamic processes will typically depend on players' higher order beliefs and a hierarchical definition of approximate common knowledge will be relevant. Generalized dynamic processes would be related to other hierarchical notions of approximate common knowledge. But such variations on iterated p-belief will remain very different from the notions of approximate common knowledge with tight fixed point characterizations.

A striking feature of common p-belief (illustrated by Examples 6 and 7) is that improved information may reduce the degree of common p-belief. More information is not necessarily better for achieving co-ordination in strategic environments because common p-belief is what matters in achieving co-ordination in strategic environments. Weak common p-belief can be thought of as common p-belief with the constraint built in that more information must be better. There is thus a significant and intuitive gap between the two concepts. This paper showed that that gap corresponds to the differences between general strategic interaction and important economic problems concerning no disagreement and no trade.

[^6]In conclusion, I will discuss the role of two maintained assumptions in this paper. I focussed on the case of two individuals for simplicity. Many of the results generalize to many individuals. For example, iterated p-belief is naturally defined (hierarchically) as follows. Let \mathscr{I} be a collection of individuals, each with a partition \mathscr{Q}_{i} giving belief operator B_{i}^{p}. Let $F(n)$ be the collection of functions $f:\{1, \ldots, n\} \rightarrow \mathscr{I}$. Define

$$
I^{p} E \equiv \bigcap_{n \geq 1, f \in F(n)} B_{f(1)}^{p} B_{f(2)}^{p} \cdots B_{f(n)}^{p} E .
$$

Say that collection of events $\mathscr{E} \subseteq 2^{\Omega}$ is mutually p-evident if $B_{i}^{p} F \in \mathscr{E}$ for all $F \in \mathscr{E}$. Then Proposition 2 remains true essentially as stated: Event E is iterated p-belief at ω if and only if there exists a mutually p-evident collection of events \mathscr{E} with [1] $B_{i}^{p} E \in \mathscr{E}$ for all $i \in \mathscr{I}$; and [2] $\omega \in F$, for all $F \in \mathscr{E}$.

The common prior assumption was another maintained assumption. For the characterizations of common p-belief, iterated p-belief and the game theoretic results, the assumption played no role. On the other hand, the characterization of weak common p-belief and the no trade/agreement results depend on the common prior. Assuming a common prior made it harder to show the large divergence between common p-belief and iterated p-belief.

Appendix: Properties for example 17

First note that the definitions of N and M imply:

$$
\begin{aligned}
& {[1] \frac{1}{N+1} \leq \frac{2}{N+2} \leq \frac{1}{2} ; \quad[2] \frac{N+1}{2 N+1} \leq r ;} \\
& {[3] \frac{N^{2 N+1}}{N^{2 N+1}+M} \leq \frac{1}{2} ; \quad[4] \frac{N}{N+1} \geq p ; \quad \text { and } \quad[5] \frac{2 N-1}{2 N} \geq p}
\end{aligned}
$$

These inequalities will be used extensively in the following calculations.

Ex ante probabilities

- $P\left[E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)\right] \geq \max (1-\varepsilon, p)$.

Write $F=E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)$.

$$
\begin{aligned}
\pi[F] & =M-1+(2 M-3) N+N^{2 N+1} \\
& \geq M \\
& \geq \frac{N^{2(N+1)}}{\varepsilon} .
\end{aligned}
$$

$$
\begin{aligned}
\pi[\Omega \backslash F] & =N-1+\left(1+N+\cdots+N^{2 N}\right) \\
& =N-1+\frac{N^{2 N+1}-1}{N-1} \\
& \leq N+N^{2 N+1} \\
& \leq N^{2(N+1)} .
\end{aligned}
$$

Thus $\quad P[F]=\frac{\pi[F]}{\pi[F]+\pi[\Omega \backslash F]} \geq \frac{N^{2(N+1)} / \varepsilon}{N^{2(N+1)} / \varepsilon+N^{2(N+1)}}=\frac{1}{1+\varepsilon} \geq 1-\varepsilon . \quad$ A symmetric argument shows $P[F] \geq p$.

- $P\left[E^{*}\right] \geq p$.

$$
\begin{aligned}
& E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N) \subseteq E^{*} \text {, so } \\
& P\left[E^{*}\right] \geq P\left[E_{1}^{-}(1, \ldots, N) \cap E_{2}^{-}(1, \ldots, N)\right] \geq p .
\end{aligned}
$$

Properties of B_{i}^{p}

- $B_{2}^{p}\left(E_{1}^{-}(n)\right)=E_{2}^{-}(n)$, for all $n=1, \ldots, N$.

For $n=1$,

$$
P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{ll}
\frac{N^{2 N-2}+1}{N^{2 N-1}+N^{2 N-2}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<p, & \text { if } m=1 \\
\frac{N^{2 N+1}}{N^{2 N}+N^{2 N+1}}=\frac{N}{N+1} \geq p, & \text { if } m=M+N \\
1, & \text { for all other } m
\end{array} .\right.
$$

For $n=2, \ldots, N-1$,
$P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{ll}\frac{N^{2(N-n)}+1}{N^{2(N-n)+1}+N^{2(N-n)}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<p, & \text { if } m=n \\ \frac{N^{2(N-n)+1}+1}{N^{2(N-n)+1}+N^{2(N-n)}+1} \geq \frac{N}{N+1} \geq p, & \text { if } m=n-1 \\ 1, & \text { for all other } m\end{array}\right.$.
For $n=N$,

$$
P\left[E_{1}^{-}(n) \mid E_{2}^{+}(m)\right]=\left\{\begin{array}{ll}
\frac{1}{N+1} \leq \frac{1}{2}<p, & \text { if } m=N \\
\frac{N^{3}+1}{N^{3}+N^{2}+1} \geq \frac{N}{N+1} \geq p, & \text { if } m=N-1 \\
1, & \text { for all other } m
\end{array} .\right.
$$

- $B_{1}^{p}\left(E_{2}^{-}(n)\right)=E_{1}^{-}(n+1)$, for all $n=1, \ldots, N-1$.

For $n=1, \ldots, N-1$,

$$
P\left[E_{2}^{-}(n) \mid E_{1}^{+}(m)\right]= \begin{cases}\frac{1}{N+1} \leq \frac{1}{2}<p, & \text { if } m=n+1 \\ \frac{N}{N+1} \geq p, & \text { if } m=n \\ \frac{2 N-1}{2 N} \geq p, & \text { if } m=N+1 \\ 1, & \text { for all other } m\end{cases}
$$

- $B_{1}^{p}\left(E_{2}^{-}(N)\right)=\Omega$.

$$
P\left[E_{2}^{-}(N) \mid E_{1}^{+}(m)\right]= \begin{cases}\frac{N}{N+1} \geq p, & \text { if } m=N \\ \frac{2 N-1}{2 N} \geq p, & \text { if } m=N+1 \\ 1, & \text { for all other } m\end{cases}
$$

Properties of \mathbf{B}_{i}^{r}

- $B_{2}^{r}\left(E_{1}^{-}(1, \ldots, n)\right) \subseteq E_{2}^{-}(n)$, for all $n=1, \ldots, N+M$.

For $n=1, \ldots, N-1$,

$$
P\left[E_{1}^{-}(1, \ldots, n) \mid E_{2}^{+}(n)\right]=\frac{N^{2(N-n)}+1}{N^{2(N-n)+1}+N^{2(N-n)}+1} \leq \frac{2}{N+2} \leq \frac{1}{2}<r .
$$

For $n=N$,

$$
P\left[E_{1}^{-}(1, \ldots, n) \mid E_{2}^{+}(n)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r .
$$

For $n=N+1, \ldots, N+M-2$,

$$
P\left[E_{1}^{-}(1, \ldots, n) \mid E_{2}^{+}(n)\right]=\frac{N+1}{2 N+1}<r .
$$

For $n=N+M-1$,

$$
P\left[E_{1}^{-}(1, \ldots, n) \mid E_{2}^{+}(n)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r .
$$

For $n=N+M$,

$$
P\left[E_{1}^{-}(1, \ldots, n) \mid E_{2}^{+}(n)\right]=0<r .
$$

$$
\text { - } B_{1}^{r}\left(E_{2}^{-}(1, \ldots, n)\right) \subseteq E_{1}^{-}(n+1), \text { for all } n=1, \ldots, N+M-1
$$

For $n=1, \ldots, N-1$,

$$
P\left[E_{2}^{-}(1, \ldots, n) \mid E_{1}^{+}(n+1)\right]=\frac{1}{N+1} \leq \frac{1}{2}<r .
$$

For $n=N, \ldots, N+M-2$,

$$
P\left[E_{2}^{-}(1, \ldots, n) \mid E_{1}^{+}(n+1)\right]=\frac{1}{2}<r .
$$

For $n=N+M-1$,

$$
P\left[E_{2}^{-}(1, \ldots, n) \mid E_{1}^{+}(n+1)\right]=\frac{N^{2 N+1}}{N^{2 N+1}+M} \leq \frac{1}{2}<r
$$

References

[1] Aumann R (1976) Agreeing to disagree. The Annals of Statistics 4:1236-1239
[2] Börgers T (1994) Weak dominance and approximate common knowledge. Journal of Economic Theory 64:265-276
[3] Brandenburger A, Dekel E (1987) Common knowledge with probability one. Journal of Mathematical Economics 16:237-245
[4] Fagin R, Halpern J (1994) Reasoning about knowledge and probability. Journal of the Association of Computing Machinery 41:340-367
[5] Geanakoplos J (1994) Common knowledge. In: Aumann R, Hart S (eds.) Handbook of game theory, Volume 2, Elsevier Science, Amsterdam, Chapter 40
[6] Kajii A, Morris S (1997) The robustness of equilibria to incomplete information. Econometrica 65:1283-1309
[7] Lewis D (1969) Conventions. Harvard University Press, Cambridge, MA
[8] Monderer D, Samet D (1989) Approximating common knowledge with common beliefs. Games and Economic Behavior 1:170-190
[9] Monderer D, Samet D (1996) Proximity of information in games with incomplete information. Mathematics of Operations Research 21:707-725
[10] Morris S (1997) Interaction games: A unified analysis of incomplete information, local interaction and random matching. CARESS Working Paper \#97-02, University of Pennsylvania
[11] Morris S, Rob R, Shin H (1995) p-dominance and belief potential. Econometrica 63:145-147
[12] Neeman Z (1996a) Approximating agreeing to disagree results with common p-beliefs. Games and Economic Behavior 12:162-164
[13] Neeman Z (1996b) Common beliefs and the existence of speculative trade. Games and Economic Behavior 16:77-96
[14] Rubinstein A (1989) The electronic mail game: Strategic behavior under almost common knowledge. American Economic Review 79:385-391
[15] Sonsino D (1995) 'Impossibility of speculation' theorems with noisy information. Games and Economic Behavior 8:406-423
[16] Stinchcombe M (1988) Approximate common knowledge

[^0]: * This paper incorporates material from "Trade and Almost Common Knowledge," University of Cambridge Economic Theory Discussion Paper \#194. In particular, it corrects Lemma 4 of that paper, which was false. I am grateful for financial support to visit Cambridge from an ESRC research grant (R000232865) and EEC contract (SPESCT910057). This version was prepared for the 1996 SITE Summer Workshop on Epistemic and other Foundational Issues in Game Theory.

[^1]: ${ }^{1}$ Monderer and Samet (1989); the closely related notions of Börgers (1994) and Fagin and Halpern (1994) are discussed below.
 ${ }^{2}$ This is equivalent to $(1-p, \infty)$-approximate common knowledge, in the language of Stinchcombe (1988).
 ${ }^{3}$ Verbal hierarchical descriptions of common knowledge between two individuals in the literature are typically in the form of iterated 1-belief (see Lewis (1969), Aumann (1976) and Brandenburger and Dekel (1987)).
 ${ }^{4}$ This is equivalent to weakly p-common knowledge in Geanakoplos (1994).

[^2]: ${ }^{5}$ The terminology is due to Monderer and Samet (1996). Börgers (1994) and Fagin and Halpern (1994) describe the equivalent concept as "common p-belief" and "probabilistic common knowledge" respectively.
 ${ }^{6}$ If $\omega \in C^{p} E$, then there exists F with $\omega \in F$ and, for both $i, F \subseteq B_{i}^{p} F$ and $F \subseteq B_{i}^{p} E$; the latter implies $F \subseteq B_{i}^{2 p-1}(E \cap F)$ for both i (see equation 9). By the fixed point characterization of repeated p-belief, this implies $\omega \in R^{2 p-1} E$.

[^3]: ${ }^{7}$ Formally, we have $\pi\left(s_{1}, s_{2}\right)=N^{2(N-n)+1}$, if $s_{1}=s_{2}=n$ and $n=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=N^{2(N-n)}$, if $s_{1}=n+1, s_{2}=n$ and $n=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=N$, if $s_{1}=s_{2}=n$ and $n=N, \ldots, N+M-1$; $\pi\left(s_{1}, s_{2}\right)=N$, if $s_{1}=n+1, s_{2}=n$ and $n=N+1, \ldots, N+M-2 ; \pi\left(s_{1}, s_{2}\right)=1$, if $s_{1}=N+1$ and $s_{2}=1, \ldots, N ; \pi\left(s_{1}, s_{2}\right)=1$, if $s_{1}=N+M$ and $s_{2}=N+1, \ldots, N+M-1 ; \pi(1, N+M)=$ $N^{2 N} ; \pi(N+M, N+M)=N^{2 N+1} ; \pi\left(s_{1}, s_{2}\right)=0$, otherwise.

[^4]: ${ }^{8}$ Morris (1997) shows the equivalence between incomplete information games and a class of local interaction games. The dynamic described here has a natural interpretation with local interaction.

[^5]: ${ }^{9}$ One must be careful interpreting Proposition 25. Consider the game where each player must either accept or reject the trade. Neeman (1996b) has noted that equilibrium trade (with risk neutral traders and the common prior assumption) always requires some ex ante probability that traders are irrational. But Proposition 25 shows that even with some ex ante probability that traders are irrational, there is no trade if there is weak common p-belief of rationality (if there is even a small transaction cost associated with accepting trade).

[^6]: ${ }^{10}$ However, it was not possible to provide a complete characterization of the relation. In particular, it was not shown whether iterated p-belief is necessarily a stronger requirement than weak common p-belief. Specifically, for arbitrary $1 / 2<r \leq p<1$, is it possible to have $\omega \in I^{p} E$ but $\omega \notin W^{r} E$? This remains an open question.

