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Abstract. Suppose we replace ``knowledge'' by ``belief with probability p''
in standard de®nitions of common knowledge. Very di¨erent notions arise
depending on the exact de®nition of common knowledge used in the substi-
tution. This paper demonstrates those di¨erences and identi®es which notion
is relevant in each of three contexts: equilibrium analysis in incomplete infor-
mation games, best response dynamics in incomplete information games, and
agreeing to disagree/no trade results.
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1. Introduction

This paper analyzes alternative notions of approximate common knowledge.
In particular, I consider what happens to standard de®nitions of common
knowledge if we replace ``knowledge'' by belief with high probability. The
nature of the resulting approximate common knowledge is surprisingly sensi-
tive to the exact de®nition of common knowledge in that construction.

Consider (as I shall throughout this paper) the case where there are two
individuals, 1 and 2. Say that one individual p-believes event E if he assigns
it probability at least p. Event E is common p-belief if both p-believe E, both
p-believe that both p-believe E, both p-believe that both p-believe that both

* This paper incorporates material from ``Trade and Almost Common Knowledge,'' University
of Cambridge Economic Theory Discussion Paper a194. In particular, it corrects Lemma 4 of
that paper, which was false. I am grateful for ®nancial support to visit Cambridge from an ESRC
research grant (R000232865) and EEC contract (SPESCT910057). This version was prepared for
the 1996 SITE Summer Workshop on Epistemic and other Foundational Issues in Game Theory.



p-believe E, and so on.1 Event E is iterated p-belief for 1 if 1 p-believes E,
1 p-believes that 2 p-believes E, 1 p-believes that 2 p-believes that 1 p-believes
E, and so on. Event E is iterated p-belief if it is iterated p-belief for both
individuals.2

Common 1-belief and iterated 1-belief are equivalent to each other and to
standard de®nitions of common knowledge.3 When p is not equal to 1, com-
mon p-belief is not equivalent to iterated p-belief. If an event is common p-
belief, it is necessarily iterated p-belief, but the converse is not true. It might
nonetheless be conjectured that for any p < 1, there should exist some q (suf-
®ciently close to 1) such that if an event is iterated q-belief, it must be common
p-belief. This is false: in particular, I show that for any 1=2 < rU p < 1 and
e > 0, it is possible to ®nd events which are iterated p-belief with ex ante
probability at least 1ÿ e, but which are never common r-belief.

Monderer and Samet (1989) established that common p-belief is the natu-
ral notion of approximate common knowledge when studying the robustness
to equilibria to a lack of common knowledge of payo¨s. I show that iterated
p-belief is the relevant notion of approximate common knowledge for the
study of best response dynamics in incomplete information games.

Another important application of common knowledge, starting with Au-
mann (1976), has been to agreeing to disagree and no trade results. The rele-
vant notion of approximate common knowledge for both kinds of results is
weak common p-belief. An event is said to be weak common p-belief if it is
common p-belief either given individuals' actual information or if individuals
ignore some of their information.4 This notion is much weaker than common
p-belief and is necessary and su½cient for both approximate agreement results
and approximate no trade results.

The paper is organized as follows. Alternative notions of approximate
common knowledge are introduced, characterized and related in section 2.
Iterated p-belief, common p-belief and weak common p-belief are introduced
in sections 2.1 through 2.4; in section 2.5, it is shown that in the special case
when p equals 1, all three notions are equivalent; but in section 2.6, it is shown
that if p < 1, there is no necessary connection between common p-belief and
the two weaker notions. Section 3 considers applications and shows which
notion is relevant for which application. Section 4 concludes.

2. Approximate common knowledge

There are two individuals, 1 and 2; let W be a countable state space, with
typical element o. For each i A f1; 2g, let Qi be a partition of W. Write Fi for
the s-®eld generated by Qi. Let P be a probability on the countable state
space.

1 Monderer and Samet (1989); the closely related notions of BoÈrgers (1994) and Fagin and Hal-
pern (1994) are discussed below.
2 This is equivalent to �1ÿ p;y�-approximate common knowledge, in the language of Stinch-
combe (1988).
3 Verbal hierarchical descriptions of common knowledge between two individuals in the literature
are typically in the form of iterated 1-belief (see Lewis (1969), Aumann (1976) and Brandenburger
and Dekel (1987)).
4 This is equivalent to weakly p-common knowledge in Geanakoplos (1994).
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Event E JW is simple if E � E1 XE2 and each Ei A Fi. Whenever event
E1 XE2 is said to be simple, it should be understood that Ei A Fi, for both i.
Write Qi�o� for the (unique) element of Qi containing o. The partition Qi is
interpreted as individual i's information, so that if the true state is o, individ-
ual i knows only that the true state is an element of Qi�o�. Write P�o� for the
probability of the singleton event fog, and P�EjF � for the conditional proba-
bility of event E, given event F, if P�F � > 0. Throughout the paper, I will
assume that all information sets occur with positive probability, i.e.,
P�Qi�o�� > 0 for all o A W and i A f1; 2g. When i represents a typical individ-
ual, j will be understood to be the other individual.

An individual p-believes an event E at state o if the conditional probability
of E, given Qi�o�, is at least p. Writing B

p
i E for the set of states where i

p-believes E, we have B
p
i E 1 fo : P�EjQi�o��V pg. The following straight-

forward properties of belief operators will be used extensively:

B1: If E A Fi, then B
p
i E � E.

B2: If E1 XE2 is simple, then B
p
i �E1 XE2� � Ei XB

p
i E j.

B3: If qV p, then B
q
i E JB

p
i E.

B4: If E JF , then B
p
i E JB

p
i F .

2.1. Iterated p-belief

Event E is iterated p-belief for 1 if 1 p-believes it, 1 p-believes that 2 p-believes
it, 1 p-believes that 2 p-believes that 1 p-believes it, and so on. Writing I

p
i E for

the set of states where E is iterated p-belief for i, we have:

I
p
1 E 1B

p
1E XB

p
1B

p
2E XB

p
1B

p
2B

p
1E X � � �

I
p
2 E 1B

p
2E XB

p
2B

p
1E XB

p
2B

p
1B

p
2E X � � �

De®nition 1. (Hierarchical). Event E is iterated p-belief if it is iterated p-belief
for both players. Thus E is iterated p-belief at state o if o A I pE 1 I

p
1 E X I

p
2 E.

This de®nition corresponds to �1ÿ p;y�-approximate common knowl-
edge, in the language of Stinchcombe (1988). It is possible to give a rather
weak ``®xed point'' characterization of iterated p-belief. Say that collection of
events E is mutually p-evident if B

p
i E A E, for all events E A E and both i.

Proposition 2. (Fixed Point Characterization). Event E is iterated p-belief at o
if and only if there exists a mutually p-evident collection of events E with [1]
B

p
i E A E for both i; and [2] o A F , for all F A E.

Proof: (if ) Suppose E is mutually p-evident and [1] and [2] hold. By [1], B
p
1E A

E and B
p
2E A E. Now, by E mutually p-evident, B

p
1B

p
2E A E and B

p
2B

p
1E A E

and so B
p
1 �Bp

2B
p
1 �nE A E, B

p
2 �Bp

1B
p
2 �nE A E, �Bp

2B
p
1 �n�1E A E, �Bp

1B
p
2 �n�1E A E,

for all nV 0. Since I pE is exactly the intersection of these expressions, o A
I pE by [2].
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(only if ) Suppose E is iterated p-belief at o. Let

E� FJW :
F A fBp

1 �Bp
2B

p
1 �nE;Bp

2 �Bp
1B

p
2 �nE; �Bp

2B
p
1 �n�1E; �Bp

1B
p
2 �n�1Eg;

for some nV 0

( )
:

By de®nition of iterated p-belief, [2] holds. By construction of E, [1] holds and
E is mutually p-evident. 9

Example 3. W � f1; 2; 3; 4; 5; 6g; Q1 � �f1; 2g; f3g; f4g; f5; 6g�; Q2 � �f1; 3;
4g; f2; 5; 6g�; P�o� � 1=6 for all o A W.

If E � � f1; 2; 3g, then I 0:6E � � f3g. Let us verify this, ®rst using the hier-
archical de®nition, and then using the ®xed point characterization: B0:6

1 E � �
f1; 2; 3g; B0:6

2 E � � f1; 3; 4g; B0:6
2 B0:6

1 E � � f1; 3; 4g; and B0:6
1 B0:6

2 E � � f3; 4g.
But now since B0:6

1 f1; 3; 4g � f3; 4g and B0:6
2 f3; 4g � f1; 3; 4g, I 0:6

1 E � � f3g,
I 0:6
2 E � � f1; 3; 4g and I 0:6E � � f3g. On the other hand, consider the collec-
tion of events E � �f1; 2; 3g; f1; 3; 4g; f3; 4g�. Observe that [1] B0:6

i E � A E for

both i; [2] 3 A E for all E A E; and [3] B0:6
i E A E for all E A E and both i.

2.2. Common p-belief

An event E is common p-belief if both p-believe it, both p-believe that both p-
believe it, and so on. Formally, de®ne a ``both p-believe'' operator as follows:
Bp
�E 1B

p
1E XB

p
2E.

De®nition 4. (Hierarchical). Event E is common p-belief at o if

o A C pE 1 7
nV1

�Bp
� �nE 1Bp

�E XBp
�B

p
�E XBp

�B
p
�B

p
�E X � � �

This notion can be given a tight ®xed point characterization. Event F is p-
evident if F JBp

�F . Thus event F is p-evident exactly if E � fE : F JEg is

mutually p-evident. By B2, a simple event F1 XF2 is p-evident if F1 JB
p
1F2

and F2 JB
p
2F1.

Proposition 5. (Fixed Point Characterization). The following statements are
equivalent; [1] event E is common p-belief at o; [2] there exists a p-evident
event F such that o A F and F JBp

�E; [3] there exists a simple p-evident event
F1 XF2 such that o A F1 XF2 and Fi JB

p
i E for both i.

The equivalence of [1] and [2] is due to Monderer and Samet (1989), who
de®ned common p-belief using the ®xed point characterization.

Common p-belief may di¨er from iterated p-belief. In Example 3, B0:6
1 E �

� f1; 2; 3g; B0:6
2 E � � f1; 3; 4g, so B0:6

� E � � f1; 3g. Now B0:6
1 B0:6

� E � � f3g
and B0:6

2 B0:6
� E � � f1; 3; 4g, giving �B0:6

� �2E � � f3g. Now B0:6
1 ��B0:6

� �2E �� �
f3g and B0:6

2 �B0:6
� �2E � �q, giving �B0:6

� �3E � �q, and thus C0:6E � �q.
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2.3. Repeated common p-belief

A number of variants of common p-belief were introduced and studied around
the same time as Monderer and Samet's work. In particular, both BoÈrgers
(1994) and Fagin and Halpern (1994) considered the following notion of ap-
proximate common knowledge. An event is repeated common p-belief 5 if both
p-believe it, both p-believe it and that both p-believe it, and so on. Thus event
E is repeated common p-belief at o if

o A RpE 1Bp
�E XBp

� �E XBp
�E�XBp

� �E XBp
� �E XBp

�E��X � � �

More formally, de®ne an operator Bp
� � � ; E� : 2W ! 2W by Bp

� �F ; E� �
B

p
1 �F XE�XB

p
2 �F XE�, and let RpE �7

nV1
�Bp
� � � ; E��nE. This notion also

has an equivalent ®xed point characterization: o A RpE if and only if there
exists F such that o A F JBp

� �E XF �.
But common p-belief and repeated common p-belief deliver very similar

results for p close to 1. By de®nition, for all events E, RpE JC pE. As noted
by Monderer and Samet (1996), we have C pE JR2pÿ1E for all events E.6
Because of this almost equivalence, I will focus on common p-belief in the
ensuing analysis.

2.4. Weak common p-belief

More information can reduce the degree of common p-belief of an event.
Consider the following example.

Example 6. W � f0; 1; 2; . . .g; Q1 � �W�; Q2 � �W�; P�o� � d�1ÿ d�o for all
o A W, where d A �0; 1�.

Thus individuals 1 and 2 have no information. Consider the event
E � � f1; 2; 3 . . .g; P�E �� � 1ÿ d, so for any pU 1ÿ d, B

p
1E � � W, B

p
2E � � W,

so Bp
�E
� � W and C pE � � W. Thus for su½ciently small d, E � is always

common p-belief (for any given p < 1).
Now suppose that individuals 1 and 2 received some information about the

state of the world. In particular, the example becomes:

Example 7. W � f0; 1; 2; . . .g; Q1 � �f0g; f1; 2g; f3; 4g; . . .�; Q2 � �f0; 1g;
f2; 3g; . . .g�; P�o� � d�1ÿ d�o for all o A W, where d A �0; 1�.

Now for any pV 1=2 and oV 1, Bp
� �fo;o� 1; . . .g� � fo� 1;o� 2; . . .g.

Thus Bp
�E
� � f2; 3; . . .g, �Bp

� �nE � � fn� 1; n� 2; . . .g for all nV 0 and so
C pE � �q.

5 The terminology is due to Monderer and Samet (1996). BoÈrgers (1994) and Fagin and Halpern
(1994) describe the equivalent concept as ``common p-belief '' and ``probabilistic common knowl-
edge'' respectively.
6 If o A C pE, then there exists F with o A F and, for both i, F JB

p
i F and F JB

p
i E; the latter

implies F JB
2pÿ1
i �E XF � for both i (see equation 9). By the ®xed point characterization of re-

peated p-belief, this implies o A R2pÿ1E.
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This suggests the following alternative notion of approximate common
knowledge. Suppose that each individual i had access to information partition
Qi, but need not acquire that information. What is the maximum attainable
degree of common p-belief of a given event? Thus say that event E is weak
common p-belief if event E is common p-belief given the individuals' infor-
mation or any worse information. Formally, write Q1 �Q1;Q2� and index
belief and common p-belief operators as follows (in this section only):

B
p
Qi

E 1 fo : P�EjQi�o��V pg, B
p
QE 1B

p
Q1

E XB
p
Q2

E and C
p
QE 17

nV1
�Bp

Q�nE.

Say that Q 0 is a coarsening of Q if Qi�o�JQ 0i �o� for both i and all o A W.
Write C�Q� for the set of all coarsenings of Q.

De®nition 8. (Hierarchical). Event E is weak common p-belief at o (under Q)
if event E is common p-belief at o under some coarsening of Q, i.e., if o A
W pE 16

Q 0 AC�Q�C
p

Q 0E.

Simple event F1 XF2 is weakly p-evident if it is empty or P�F1jF2�V p and
P�F2jF1�V p.

Proposition 9. (Fixed Point Characterization). Event E is weak common
p-belief at o if and only if there exists a weakly p-evident event F1 XF2 with
o A F1 XF2 and P�EjFi�V p for both i.

This notion is due to Geanakoplos (1994, p. 1482) who called it weakly
p-common knowledge.

Proof: Suppose o A W pE. Then o A C
p

Q 0E for some Q 0 A C�Q�. By Proposition
5, there exists simple event F1 XF2 with [1] Fi JB

p

Q 0i
E for both i and [2]

Fi JB
p

Q 0i
F j for both i. But [1] implies P�EjFi�V p for both i, and [2] implies

P�F j jFi�V p for both i. On the other hand, suppose there exists a weakly

p-evident event F1 XF2 with o A F1 XF2 and P�EjFi�V p for both i. Let

Q 0i �o� �
Fi; if o A Fi

WnFi; if o B Fi

(

By construction Fi JB
p

Q 0i
E for both i, so F1 XF2 JB

p

Q 0E. But F1 X
F2 JFi XB

p

Q 0i
F j � B

p

Q 0i
�F1 XF2� for both i (by B2). Thus o A C

p

Q 0E, by

Proposition 5. 9

Corollary 10. If P�E�V p, then W pE � W.

Proof. Since W A Fi for both i, W is weakly p-evident. 9

2.5. The relation between alternative notions for p � 1

Iterated 1-belief, common 1-belief and weak common 1-belief are all
equivalent
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Proposition 11. For all events E: I 1E � C 1E �W 1E.

Proof: Observe ®rst that for both i and all collections of events fE kgyk�1,
B1

i �7kV1
E k� �7

kV1
B1

i E k. Thus I 1E JB1
i I 1E for both i, i.e., I 1E is 1-

evident. Now since I 1E JB1
�E (by de®nition), I 1E JC1E by Proposition 5.

But Lemma 14 below shows C pE J I pE for all p, so I 1E � C 1E.
Now suppose Q 0 A C�Q�. For all events E, B1

Q 0i
E JB1

Qi
E for both i, so

B1
Q 0E JB1

QE, so C1
Q 0E JC 1

QE; thus W 1E JC1E. But Lemma 15 below

shows that C pE JW pE for all p, so C 1E �W 1E. 9

The ``truth axiom'' requires that 1-beliefs are always correct, i.e., B1
i E JE

for all events E and each i. In our setting, the truth axiom is equivalent to re-
quiring that P has full support, i.e., P�o� > 0 for all o A W. Under the truth
axiom with p � 1, all three notions outlined above are equivalent to the fol-
lowing de®nition of common knowledge.

Let F� � F1 XF2. Now F� is the s-®eld generated by the meet of the
individuals' partitions.

De®nition 12 (Aumann (1976)). Event E is common knowledge at o if

o A CKE 1 fo : o A F JE; for some F A F�g:

Lemma 13. For all events E: (a) CKE J I 1E � C 1E �W 1E; (b) under the
truth axiom, CKE � I 1E � C1E �W 1E.

Proof: (a) If F A F�, then F is 1-evident. If F is 1-evident and F JE, then
F JB1

�F JB1
�E. Thus o A CKE ) o A F JE, for some F A F� ) o A

F JB1
�E, for some 1-evident F ) o A C1E, by Proposition 5.

(b) Under the truth axiom, if F is 1-evident then F A F�. Under the truth
axiom, if F is 1-evident and F JB1

�E, then F JE. Thus o A C 1E ) o A
F JB1

�E, for some 1-evident F ) o A F JE, for some F A F� ) o A
CKE. 9

2.6. The relation between alternative notions for p < 1

The equivalence of the alternative notions of approximate common knowl-
edge does not, in general, hold if p < 1. This is because the belief operator
typically fails to satisfy the distributive property that if event E is believed
with probability at least p, and event F is believed with probability at least p,
then event E XF is believed with probability at least p, so it is possible that
B

p
i �E XF� is a strict subset of B

p
i E XB

p
i F .

The following two Lemmas show that common p-belief is in general a
stronger notion than either iterated p-belief or weak common p-belief.

Lemma 14. For all events E and p A �0; 1�: C pE J I pE.

Proof: For any event E and individual i, Bp
�E JB

p
i E. Thus Bp

�B
p
�E J

B
p
2B

p
1E XB

p
1B

p
2E; by induction, we have �Bp

� �2nÿ1�E�JB
p
1 �Bp

2B
p
1 �nÿ1E X
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B
p
2 �Bp

1B
p
2 �nE and �Bp

� �2n�E�J �Bp
2B

p
1 �nE X �Bp

1B
p
2 �nE, for all nV 1. So

C pE 1 7
nV1

�Bp
� �nE J I

p
1 E X I

p
2 E 1 I pE: 9

Lemma 15. For all events E and p A �0; 1�: C pE JW pE.

Proof: C pE 1C
p
QE J6

Q 0 AC�Q�C
p

Q 0E 1W pE. 9

2.6.1. The unbounded state space case

With no restrictions on the size of the state space W, there need be no con-
nection between common p-belief and the two weaker variants. In particular,
we have:

Remark 16: For all 1=2 < rU p < 1 and 0 < e < 1, it is possible to construct
an information system containing an event E with P�I pE �V 1ÿ e, P�W pE �V
1ÿ e and C rE �q.

This is shown by the following example:

Example 17. This example is parameterized by 1=2 < rU p < 1 and 0 < e <

1. Write N for the smallest integer satisfying N VMax
1

2rÿ 1
;

2

1ÿ p

� �
and

M for the smallest integer satisfying M VMax
N 2�N�1�

e
;
N 2�N�1�

1ÿ p

� �
. Each

individual i observes a signal si A S � f1; . . . ;N �Mg. A state consists of the
pair of signals observed by the two individuals, so o1 �s1; s2� and W1S2.
Individuals' partitions re¯ect the fact that they observe only their own signals.

Thus Qi��s1; s2�� � f�s 01; s 02� A W : si � s 0ig. Let P�o� � p�o�
� P

o 0 A W

p�o 0�
� �

,

for all o A W, where p is de®ned according to table 1:7

The following notation will be useful. Let X be some collection of possible
signals, i.e., X J f1; 2; . . . ;N �Mg. Write E�i �X� for the set of states where

individual i's signal is in X, i.e., E�i �X � � f�s1; s2� : si A Xg; and write Eÿi �X �
for the set of states where individual i's signal is not in X, i.e., Eÿi �X� �f�s1; s2� : si B Xg. Abusing notation, we write Eÿi �n� for Eÿi �fng�, etc. . . Let
E � � Eÿ1 �1�.

I ®rst characterize I pE �. Some calculations for this example are summar-
ized in the Appendix; in particular, the following properties of the operator B

p
i

7 Formally, we have p�s1; s2� � N 2�Nÿn��1, if s1 � s2 � n and n � 1; . . . ;N; p�s1; s2� � N 2�Nÿn�, if
s1 � n� 1, s2 � n and n � 1; . . . ;N; p�s1; s2� � N, if s1 � s2 � n and n � N; . . . ;N �M ÿ 1;
p�s1; s2� � N, if s1 � n� 1, s2 � n and n � N � 1; . . . ;N �M ÿ 2; p�s1; s2� � 1, if s1 � N � 1
and s2 � 1; . . . ;N; p�s1; s2� � 1, if s1 � N �M and s2 � N � 1; . . . ;N �M ÿ 1; p�1;N �M� �
N 2N ; p�N �M;N �M� � N 2N�1; p�s1; s2� � 0, otherwise.
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�

N
ÿ
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0
0

0
�

N
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0
0

0
�

0
0

0
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0

0
0

�
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N

0
0

�
0

0
0

N
�
1

1
1

1
�

1
1

N
0

�
0

0
0

N
�
2

0
0

0
�

0
0

N
N

�
0

0
0

�
�

�
�

�
�

�
�

�
�

�
�

�

N
�

M
ÿ
2

0
0

0
�

0
0

0
0

�
N

0
0

N
�

M
ÿ
1

0
0

0
�

0
0

0
0

�
N

N
0

N
�

M
0

0
0

�
0

0
1

1
�

1
1

N
2
N
�1

Approximate common knowledge revisited 393



are veri®ed:

B
p
2 �Eÿ1 �n�� � Eÿ2 �n�; for all n � 1; . . . ;N; �1�

B
p
1 �Eÿ2 �n�� � Eÿ1 �n� 1�; for all n � 1; . . . ;N ÿ 1; �2�

B
p
1 �Eÿ2 �N�� � W: �3�

Since E � A F1, B
p
1E � � E � (by B1); by (1), B

p
2B

p
1E � � B

p
2E � � Eÿ2 �1�; by (2),

B
p
1B

p
2B

p
1E � � B

p
1B

p
2E � � Eÿ1 �2�; by (1), �Bp

2B
p
1 �2E � � B

p
2B

p
1B

p
2E � � Eÿ2 �2�.

Iteratively applying (1) and (2) gives

�Bp
1B

p
2 �nÿ1B

p
1E � � �Bp

1B
p
2 �nÿ1E � � Eÿ1 �n� and

�Bp
2B

p
1 �nE � � �Bp

2B
p
1 �nÿ1B

p
2E � � Eÿ2 �n�: �4�

for all n � 1; . . . ;N. By (4) and (3),

�Bp
1B

p
2 �NE � � B

p
1 ��Bp

2B
p
1 �Nÿ1B

p
2E �� � B

p
1 �Eÿ2 �N�� � W:

Thus I
p
1 E ��Eÿ1 �1; . . . ;N�, I

p
2 E � � Eÿ2 �1; . . . ;N� and I pE � � Eÿ1 �1; . . . ;N�X

Eÿ2 �1; . . . ;N�. So P�I pE� � P�Eÿ1 �1; . . . ;N�XEÿ2 �1; . . . ;N��V 1ÿ e (see
Appendix).

Now we characterize C rE �. The following properties of the operator Br
i

are veri®ed in the Appendix:

Br
2�Eÿ1 �1; . . . ; n��JEÿ2 �n�; for all n � 1; . . . ;N �M; �5�

Br
1�Eÿ2 �1; . . . ; n��JEÿ1 �n� 1�; for all n � 1; . . . ;N �M ÿ 1: �6�

Now by B1 and (5),

Br
�E
� � Br

1E
�XBr

2E
�JEÿ1 �1�XEÿ2 �1�: �7�

So

�Br
��2E � Br

1B
r
�E XBr

2Br
�E

JBr
1�Eÿ1 �1�XEÿ2 �1��XBr

2�Eÿ1 �1�XEÿ2 �1��; by �7� and B4

� Eÿ1 �1�XBr
1Eÿ2 �1�XBr

2Eÿ1 �1�XEÿ2 �1�; by B2

JEÿ1 �1; 2�XEÿ2 �1�; by�6�:

Iteratively applying (5) and (6), we have

�Br
��2nÿ2E �JEÿ1 �1; . . . ; n�XEÿ2 �1; . . . ; nÿ 1� and

�Br
��2nÿ1E �JEÿ1 �1; . . . ; n�XEÿ2 �1; . . . ; n�

for all n � 2; . . . ;N �M. Thus C rE � � �Br
��2N�2Mÿ1E � �q.
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Finally observe that P�E ��V p (see Appendix), so, by Corollary 10,
W pE � � W and P�W pE �� � 1.

The assumption in Remark 16 that r > 1=2 is important: if r < 1=2, then
event E is common r-belief with high probability whenever it is iterated
p-belief with high probability.

Remark 18: If r < 1=2 and rU p < 1, then for all events E: P�C rE �V 1ÿ
�1ÿ P�I pE �� 1ÿ r

1ÿ 2r

� �
.

Proof: Kajii and Morris (1997) have shown that if r < 1=2, then for every
simple event F:

P�C rF �V 1ÿ �1ÿ P�F �� 1ÿ r

1ÿ 2r

� �
: �8�

But Bp
�E is simple and I pE JBp

�E. So

P�C rE � � P�C rBr
�E �

VP�C rBp
�E �

V 1ÿ �1ÿ P�Bp
�E ��

1ÿ r

1ÿ 2r

� �
; by �8�

V 1ÿ �1ÿ P�I pE �� 1ÿ r

1ÿ 2r

� �
: 9

On the other hand, for any 0 < rU p < 1, it is possible to construct an infor-
mation system with o A I pE but o B C rE, for some state o and event E.

Remark 19: For all 1=2 < rU p < 1 and e > 0, it is possible to construct an
information system containing an event E with P�W pE � � 1 and I rE �
C rE �q.

Consider Example 7, with d < minfe; 1ÿ pg. For any rV 1=2, Br
1E � � E �,

Br
2B

r
1E
� � Br

2E
� � f2; 3; . . .g, Br

1B
r
2B

r
1E � � Br

1Br
2E � � f3; 4; . . .g, etc.. Thus

I rE � � C rE � �q. But P�E �� � 1ÿ d > p, so E � is weakly p-evident,

W pE � � E � and P�W pE �� � P�E �� � 1ÿ dV 1ÿ e.

2.6.2. The bounded state space case

If the state space is bounded, Proposition 2 can be used to give a bound on the
di¨erence between iterated p-belief and common p-belief.

Proposition 20. Suppose W has n elements. Then for all events E and p A �0; 1�:
I pE JC1ÿ2 n�1ÿp�E and I 1ÿ2ÿn�1ÿp�E JC pE.

Proposition 20 implies in particular that for any p < 1, there exists some
q < 1 (which depends on p and n) such that whenever an event is iterated
q-belief, it is also common p-belief.
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Proof: Suppose E1; . . . ;E K is an arbitrary collection of events and o A
B

p
i E1 XB

p
i E2 X � � � XB

p
i E K . Then P�E kjQi�o��V p for each k ) P��WnE k�j

Qi�o��U 1ÿ p for each k ) P 6
K

k�1
�WnE k�

����Qi�o�
" #

UK�1ÿ p� ) P 7
K

k�1
E k

����
"

Qi�o� � W

�
6
K

k�1
�WnE k�

 !����Qi�o�
" #

V 1ÿ K�1ÿ p�
#

. Thus o A B
1ÿK�1ÿp�
i �

�E1 X E2 X � � � XE K�; so

B
p
i E1 XB

p
i E2 X � � � XB

p
i E K JB

1ÿK�1ÿp�
i �E1 XE2 X � � � XE K�: �9�

By Proposition 2, o A I pE implies there exists a mutually p-evident collection
of events E with o A A �7

F AEF , B
p
1E A E and B

p
2E A E; thus AJB

p
i E J

B
1ÿK�1ÿp�
i E for each i; E has at most 2n elements, so, by (9), A �7

F AEF J
7

F AEB
p
i F JB

1ÿ2 n�1ÿp�
i �7

F AEF � � B
1ÿ2 n�1ÿp�
i A for both i. Thus A is

�1ÿ 2n�1ÿ p��-evident and o A C1ÿ2n�1ÿp�E by Proposition 5. 9

This result gives a (very loose) lower bound on the number of states re-
quired to allow a given divergence between iterated and common p-belief. If
there are n states and there exists a state o with o A I p�E� and o B C r�E�,
then Corollary 20 implies that rV 1ÿ 2n�1ÿ p�, so that nV log2�1ÿ r�ÿ
log2�1ÿ p�. For example, if p � 0:999 and r � 0:501, then we must have nV
9. On the other hand, Example 17 gives a (very loose) upper bound on the
number of states required to allow a given divergence. If p � 0:999 and
r � 0:501 (and eV 0:001), then the construction of Example 17 has approxi-
mately 5� 1013213 states!

3. Applications

Common knowledge assumptions are important in showing a number of
game theory and economics results. The purpose of this section is show how
di¨erent notions of approximate common knowledge are required for di¨erent
results.

3.1. Game theory

To illustrate the signi®cance of approximate common knowledge in game
theory, I will focus on simple examples. In particular, I will be interested in
symmetric two player, two action, games with two strict Nash equilibria:

G 0 1

0 a; a b; c

1 c; b d; d

where a > c and d > b. The best response dynamics are completely charac-
terized by the probability q such that each player is indi¨erent between his two
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actions if the other plays action 1 with probability q, i.e.,

q � aÿ c

�aÿ c� � �d ÿ b� :

The analysis will depend only on the parameter q. Thus the analysis of the
general game G would be the same if we restricted attention to

G 0 0 1

0 q; q 0; 0

1 0; 0 1ÿ q; 1ÿ q

.

3.1.1. Best response dynamics and iterated p-belief

Two individuals are endowed with the information structure discussed earlier
in the paper. They are playing the (degenerate) incomplete information game
where each has the two actions 0 and 1 available and payo¨s are always given
by the matrix G. A pure strategy for individual i would usually be written as a
Qi-measurable function si : W! f0; 1g. I will ®nd it useful, however, to iden-
tify an individual's strategy with the set of states where he plays action 1, i.e.,
Ei � fo : si�o� � 1g. Player i's pure strategy set is thus Fi.

I want to study the incomplete information game best response dynamics.
Assume that q is generic so that there is a unique best response. Suppose in-
dividual 1 is choosing strategy E1, i.e., playing 1 at all states in E1 and 0 at all
states not in E1. We can characterize best response functions in terms of belief
operators. If 2 assigns probability more than q to the event E1, his best re-
sponse is to play 1; if he assigns probability less than q, his best response
would be to play 1. Thus B

q
2E1 is 2's best response to E1 and B

q
1E2 is 1's best

response to E2. Thus we have a best response function, r : F1 �F2 !
F1 �F2, with r�E1;E2� � �Bq

1E2;B
q
2E1�.

One interpretation of this dynamic is the following. The incomplete infor-
mation game is played repeatedly, with a new, independent, draw of players'
types in each period. Each player starts out with an initial incomplete infor-
mation game strategy that he is unable to revise for a large number of periods.
Over time, each player learns how his strategy performed against opponents'
strategies. Then each player revises his incomplete information strategy and
the process continues. Formally, we would need an in®nite number of plays in
between strategy revisions in order for players to learn the true payo¨s; but
dynamic behavior will be similar as long as revision opportunities are much
rarer than plays of the game.8

Now we have:

Proposition 21. If players initially chose strategies �E1;E2� and revise their
strategies by best response dynamics, then action pro®le �1; 1� is always played

8 Morris (1997) shows the equivalence between incomplete information games and a class of local
interaction games. The dynamic described here has a natural interpretation with local interaction.
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if and only if the events E1 and E2 are iterated q-belief, i.e.,

7
nV0

��rn�1�E1;E2�X �rn�2�E1;E2�� � I qE1 X I qE2:

Proof: First observe that (by B2) I
q
1 E1 � E1 XB

q
1B

q
2E1 X � � � ; while I

q
1 E2 �

B
q
1E2 XB

q
1B

q
2B

q
1E2 X � � �, so

7
nV0

�rn�1�E1;E2�

� E1 XB
q
1E2 XB

q
1B

q
2E1 XB

q
1B

q
2B

q
1E2 X � � � � I

q
1 E1 X I

q
1 E2 and

7
nV0

�rn�2�E1;E2�

� E2 XB
q
2E1 XB

q
2B

q
1E2 XB

q
2B

q
1B

q
2E1 X � � � � I

q
2 E1 X I

q
2 E2:

Thus

7
nV0

��rn�1�E1;E2�X �rn�2�E1;E2��

� I
q
1 E1 X I

q
1 E2 X I

q
2 E1 X I

q
2 E2 � I qE1 X I qE2: 9

The following example is in the spirit of Rubinstein (1989).

Example 22. Let the information structure be that of Example 7. Suppose that
initially player 2 played action 1 everywhere except at states 0 and 1, and
player 1 played action 1 everywhere except at state 0. Thus E1 � f1; 2; . . .g
and E2 � f2; 3; . . .g. Now suppose that q > 1=2, so that �0; 0� is the risk
dominant equilibrium of the game. Then best response dynamics gives us:

rn�E1;E2� �
�fn� 1; n� 2; . . .g; fn� 2; n� 3; . . .g�; if n is even

�fn� 2; n� 3; . . .g; fn� 1; n� 2; . . .g�; if n is odd

(
:

Thus 7
nV0
��rn�1�E1;E2�X �rn�2�E1;E2�� � I qE1 X I qE2 �q.

3.1.2. Equilibrium, iterated deletion of dominated strategies and common
p-belief

Consider the following related problem. Individuals are endowed again with
the information system discussed earlier. Now they are playing an incomplete
information game where payo¨s are given by the matrix G at all states, except
that each individual i has a dominant strategy to play 0 at all states not in
event Ei A Fi. As before, identify individual i's strategy with the set of states
where he plays 1.

Proposition 23. �Bq
1C q�E1 XE2�;Bq

2C q�E1 XE2�� is a pure strategy equilibrium
of this game. On the other hand, if pure strategy Fi survives iterated deletion of
strictly dominated strategies, then Fi JB

q
i C q�E1 XE2�.
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This is a version of results in Morris, Rob and Shin (1995). Monderer and
Samet (1989) ®rst proved general results relating common p-belief to equilib-
ria of incomplete information games.

Proof: [1] I will show that strategy B
q
1C q�E1 XE2� is a best response to

B
q
2C q�E1 XE2�. If o A B

q
1C q�E1 XE2�JE1, player i attaches probability at

least q to player 2 choosing action 1. Since payo¨s are given by matrix G,
action 1 is a best response. If o A E1nBq

1C q�E1 XE2�, player i attaches prob-
ability less than q to player 2 choosing action 1. Since payo¨s are given by
matrix G, action 0 is the best response. Finally, if o B E1, action 0 is a domi-
nant action.

[2] Let Un
i JFi be the set of player i strategies which survive n rounds

iterated deletion of strictly interim dominated strategies. Clearly, Fi A U1
i )

Fi JEi. I will show by induction on nV 2 that Fi A Un
i ) Fi JB

q
i �Bq

� �nÿ2 �
�E1 XE2�. Suppose Fi A U2

i : since U2
i JU1

i , Fi JEi; since player i attaches
positive probability only to strategies F j JE j, we must have Fi JB

q
i E j.

So Fi JEi XB
q
i E j � B

p
i �E1 XE2� (by B2). Now suppose that the inductive

hypothesis is true for n. Suppose Fi A Un�1
i : since Un�1

i JUn
i , Fi JB

q
i �Bq

� �nÿ2 ��E1 XE2�; since player i attaches positive probability only to strategies

F j JB
q
j �Bq
� �nÿ2�E1 XE2�, we must have Fi JB

q
i B

q
j �Bq
� �nÿ2�E1 XE2�. So

Fi JB
q
i �Bq

� �nÿ2�E1 XE2�XB
q
i B

q
j �Bq
� �nÿ2�E1 XE2��B

q
i ��Bq

� �nÿ1�E1 XE2�� (by
B2). 9

Example 24. De®ne game G 00 by

G 00 0 1

0 0; 0 0;ÿ10

1 ÿ10; 0 9; 9

.

Note that q � 10=19, so equilibrium �0; 0� is ( just) risk dominant; but equi-
librium �1; 1� is Pareto-dominant. Now suppose the information structure is
given by Example 17, where 1=2 < r < 10=19. Let player 2's payo¨s always
be given by matrix G 00; player 1's payo¨s are given by matrix G 00, except that
player has a dominant strategy to play action 0 if he observes signal 1. Thus
E1 � E � � Eÿ1 �1� and E2 � W.

Since C q�E1 XE2�JC r�E1 XE2� � C r�Eÿ1 �1�� �q, the unique strategy
surviving iterated deletion of dominated strategies for each player is q. Thus
action 0 is never played despite the fact that it is iterated p-belief that payo¨s
are given by G 00, with high probability and for any p.

3.2. Agreeing to disagree, no trade and weak common p-belief

Write X for the set of functions, x : W! �0; 1�. Let E�xjF� be the expected
value of x A X given event F with P�F � > 0:
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E�xjF� �
P

o AF

x�o�P�o�
� �

P
o AF

P�o�
� � :

Let Ei be the expectation operator for individual i, so that Ei�xjo� �
E�xjQi�o��. Let P�i �x; q� be the set of states where individual i's expected
value of x is at least q, let Pÿi �x; q� be the set of states where individual i's
expected value of x is at most q, and let P i�x; q� be the set of states where
individual i's expected value of x is exactly q:

P�i �x; q� � fo : Ei�xjo�V qg;
Pÿi �x; q� � fo : Ei�xjo�U qg;

and P i�x; q� � fo : Ei�xjo� � qg � P�i �x; q�XPÿi �x; q�:

Let T�x; q1; q2� be the set of states where individual 1's expected value of x is
at least q1, while individual 2's expected value is no more than q2:

T�x; q1; q2� � P�1 �x; q1�XPÿ2 �x; q2�
� fo : E1�xjo�V q1 and E2�xjo�U q2g:

If T�x; q1; q2� is empty for all x A X and all q1 and q2 with q1 signi®cantly
bigger than q2, then we say there is approximate no trade.

Let D�x; q1; q2� be the set of states where individual 1's expected value of x
is exactly q1, while individual 2's expected value is exactly q2.

D�x; q1; q2� � P1�x; q1�XP2�x; q2�
� fo : E1�xjo� � q1 and E2�xjo� � q2g

Thus 1 and 2 disagree by jq1 ÿ q2j about the expected value of x. If
D�x; q1; q2� is empty for all x A X and all q1 and q2 with jq1 ÿ q2j large, then
we say there is approximate agreement.

Proposition 25. If there is weak common p-belief that individuals are prepared to
trade, then the gains from trade must be small for large p. Speci®cally, if
W p�T�x; q1; q2��0q, then q1 ÿ q2 U 2�1ÿ p�.

Since D�x; q1; q2�JT�x; q1; q2�, the trade result extends to agreeing to
disagree.

Corollary 26. If there is weak common p-belief that individuals disagree, then
the disagreement must be small for large p. Speci®cally, if W p�D�x; q1; q2��0
q, then jq1 ÿ q2jU 2�1ÿ p�.

Monderer and Samet (1989) ®rst proved a version of Corollary 26, for
common p-belief. Neeman (1996a) improved the bound to 1ÿ p. Geanako-
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plos (1994) observed that essentially the same proof works for weak common
p-belief. Sonsino (1995) showed a version of Proposition 25 for common
p-belief.9

Proof: (of Proposition 25). First observe that T�x; q1; q2� is a simple event, by
construction. Thus W p�T�x; q1; q2�� is non-empty if and only if there exists
F1 A F1nq and F2 A F2nq with F1 JP�1 �x; q1�, F2 JPÿ2 �x; q2�, P�F1jF2�V
p and P�F2jF1� > p. Observe that

q1 UE�xjF1�
� E�xjF1 XF2� � P�F2jF1� � E�xj�F1nF2�� � �1ÿ P�F2jF1��
UE�xjF1 XF2� � P�F2jF1� � 1ÿ P�F2jF1�
UE�xjF1 XF2� � �1ÿ p�;

while

q2 VE�xjF2�
� E�xjF1 XF2� � P�F1jF2� � E�xj�F2nF1�� � �1ÿ P�F1jF2��
VE�xjF1 XF2� � P�F1jF2�
VE�xjF1 XF2� ÿ �1ÿ p�:

Thus q1 ÿ q2 U 2�1ÿ p�. 9

Thus approximate common knowledge of trade implies small gains from
trade (Proposition 25) and approximate common knowledge of posteriors
implies small disagreement (Corollary 26). Each of these results has a partial
converse.

Proposition 27. Suppose E is a ®nite simple event, P�E � > 0 and W pE �q.
Then there exists x A X such that E JD�x; 1=2� �1=4��1ÿ p�; 1=2ÿ
�1=4��1ÿ p��.

Since D�x; q1; q2�JT�x; q1; q2�, the agreeing to disagree result extends to
trade.

Corollary 28. Suppose E is a ®nite simple event, P�E � > 0 and W pE �q. Then
there exists x A X such that E JT�x; 1=2� �1=4��1ÿ p�; 1=2ÿ �1=4��1ÿ p��.

Proposition 27 is a converse to Corollary 26, since it shows that if an event
is not weak common p-belief, then there exists a random variable for which

9 One must be careful interpreting Proposition 25. Consider the game where each player must
either accept or reject the trade. Neeman (1996b) has noted that equilibrium trade (with risk
neutral traders and the common prior assumption) always requires some ex ante probability that
traders are irrational. But Proposition 25 shows that even with some ex ante probability that
traders are irrational, there is no trade if there is weak common p-belief of rationality (if there is
even a small transaction cost associated with accepting trade).
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there is large disagreement. Corollary 28 is a converse to Proposition 25, since
it shows that if an event is not weak common p-belief, then there exists a
trade, which is accepted with large gains from trade, when everyone is rational
on that event (and perhaps irrational outside it).

Proof: Write E � E1 XE2, each Ei A Fi. Write Q�i � fF A Qi : F JEig and
Ti � Q�i W fWnEig. Note that Ti is a ®nite partition of W which coarsens
Qi. For any �F1;F2� A T1 � T2, let p�F1;F2� �

P
o AF1XF2

P�o�. Consider the

following linear programming problem. Choose y : T1 � T2 ! �0; 1� and
d A �0; 1=2� to maximize d subject to

�i�
X

F2 AT2

y�F1;F2�p�F1;F2�

� 1

2
� d

� � X
F2 AT2

p�F1;F2�; for all F1 A Q�1 ;

�ii�
X

F1 AT1

y�F1;F2�p�F1;F2�

� 1

2
ÿd

� � X
F1 AT1

p�F1;F2�; for all F2 A Q�2 ;

�iii� y�F1;F2�V 0; for all �F1;F2� A T1 � T2; and

�iv� y�F1;F2�U 1; for all �F1;F2� A T1 � T2:

�10�

Observe ®rst that the maximand d is less than 1=2. If d � 1=2, then we
would have E�xjE1� � 1 and E�xjE2� � 0, which implies P�E1 XE2� � 0, a
contradiction.

By standard linear programming arguments, we have that if �y; d� is a so-
lution to this problem, we must have l1 : T1 ! R, l2 : T2 ! R, z : T1�
T2 ! R� and x : T1 � T2 ! R�, such that:

�i� l1�F1�p�F1;F2� ÿ l2�F2�p�F1;F2�
� z�F1;F2� ÿ x�F1;F2� � 0; for all �F1;F2� A Q�1 � Q�2 ;

�ii� l1�F1�p�F1;WnE2� � z�F1;WnE2�
ÿ x�F1;WnE2� � 0; for all F1 A Q�1 ;

�iii� ÿ l2�F2�p�WnE1;F2� � z�WnE1;F2�
ÿ x�WnE1;F2� � 0; for all F2 A Q�2 ;

�iv� z�F1;F2� > 0) y�F1;F2� � 0; and

�v� x�F1;F2� > 0) y�F1;F2� � 1:

�11�
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First suppose that li�Fi�U 0 for all Fi A Q�i and both i. Then d would remain a
solution if we replace [i] and [ii] in (10) with:

�i��
X

F2 AT2

y�F1;F2�p�F1;F2�

U
1

2
� d

� � X
F2 AT2

p�F1;F2�; for all F1 A Q�1 ; and

�ii��
X

F1 AT1

y�F1;F2�p�F1;F2�

V
1

2
ÿ d

� � X
F1 AT1

p�F1;F2�; for all F2 A Q�2 :

�12�

But this revised problem has solution 1=2 (e.g., set y�F1;F2� � 1=2, for all
�F1;F2� A T1 � T2). This contradicts our earlier result that d < 1=2.

Now suppose that there exists F �i with li�F �i � > 0 and li�F �i � > lj�Fj� for
all Fj A Q�j . Without loss of generality, take i � 1. But now parts [i] and [ii] of

(11) imply that x�F �1 ;F2� > 0 for all F2 A T2; so by part [v] of (11), y�F �1 ;F2� �
1 for all F2 A T2; so by part [i] of (10), d � 1=2, again a contradiction.

So if we let l� be the largest value in the range of l1 and l2, and let Q��i �fFi A Q�i : li�Fi� � l�g, we know that each Q��i is non-empty. By (11), we must

have y�F1;F2� � 1 if F1 A Q��1 and F2 B Q��2 ; and y�F1;F2� � 0 if F2 A Q��2 and
F1 B Q��1 . So parts [i] and [ii] of (10) become:

�i���
X

F2 AQ
��
2

y��F1;F2�p�F1;F2� �
X

F2 AT2nQ��2
p�F1;F2�

� 1

2
� d

� � X
F2 AT2

p�F1;F2�; for all F1 A Q��1 ; and

�ii���
X

F1 AQ
��
1

y��F1;F2�p�F1;F2�

� 1

2
ÿ d

� � X
F1 AT1

p�F1;F2�; for all F2 A Q��2 :

Now let F �i �6
Fi AQ

��
i

Fi; x�o� � y��T1�o�;T2�o��, where Ti�o� is the ele-

ment of Ti containing state o; a � E�xjF �1 XF �2 � and pi � P�F �j jF �i � for each
j 0 i. We have 1=2ÿ d � E2�xjF �2 �U a, so

1=2� d � E1�xjF �1 �
� p1a� �1ÿ p1�
V p1�1=2ÿ d� � �1ÿ p1�:
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Re-arranging gives dV �1=2��1ÿ p1�=�1� p1�V �1=4��1ÿ p1�. Analo-
gously, we have 1=2� d � E1�xjF �1 �V a, so

1=2ÿ d � E2�xjF �2 �
� p2a

U p2�1=2� d�:

Re-arranging gives dV �1=2��1ÿ p2�=�1� p2�V �1=4��1ÿ p2�. But since
E1 XE2 is not weakly p-evident, we must have either p1 or p2 less than p.
Thus dV �1=4��1ÿ p�. 9

4. Conclusion

This paper documented some major di¨erences between alternative de®nitions
of approximate common knowledge. To sum up the results, it was shown that
common p-belief implies iterated p-belief and weak common p-belief (see
Lemmas 14 and 15). Iterated p-belief may be much weaker than common p-
belief (see Remark 16). Weak common p-belief may be much weaker than
both iterated p-belief and common p-belief (see Remark 19).10

This paper also provided results relating each of the natural alternative
de®nitions of approximate common knowledge to a class of applications. The
relation between common p-belief and the equilibria of incomplete informa-
tion games is well known and robust. It was also shown that iterated p-belief
was relevant for the analysis of dynamics in incomplete information games.
The particular dynamic studied was not especially compelling (it was chosen
to give a precise connection with iterated p-belief ). The important point to
learn from this example is that dynamic processes will typically depend on
players' higher order beliefs and a hierarchical de®nition of approximate
common knowledge will be relevant. Generalized dynamic processes would be
related to other hierarchical notions of approximate common knowledge. But
such variations on iterated p-belief will remain very di¨erent from the notions
of approximate common knowledge with tight ®xed point characterizations.

A striking feature of common p-belief (illustrated by Examples 6 and 7) is
that improved information may reduce the degree of common p-belief. More
information is not necessarily better for achieving co-ordination in strategic
environments because common p-belief is what matters in achieving co-ordi-
nation in strategic environments. Weak common p-belief can be thought of as
common p-belief with the constraint built in that more information must be
better. There is thus a signi®cant and intuitive gap between the two concepts.
This paper showed that that gap corresponds to the di¨erences between gen-
eral strategic interaction and important economic problems concerning no
disagreement and no trade.

10 However, it was not possible to provide a complete characterization of the relation. In partic-
ular, it was not shown whether iterated p-belief is necessarily a stronger requirement than weak
common p-belief. Speci®cally, for arbitrary 1=2 < rU p < 1, is it possible to have o A I pE but
o B W rE ? This remains an open question.
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In conclusion, I will discuss the role of two maintained assumptions in this
paper. I focussed on the case of two individuals for simplicity. Many of the
results generalize to many individuals. For example, iterated p-belief is natu-
rally de®ned (hierarchically) as follows. Let I be a collection of individuals,
each with a partition Qi giving belief operator B

p
i . Let F �n� be the collection of

functions f : f1; . . . ; ng ! I. De®ne

I pE 1 7
nV1; f AF�n�

B
p
f �1�B

p
f �2� � � �Bp

f �n�E:

Say that collection of events EJ 2W is mutually p-evident if B
p
i F A E for all

F A E. Then Proposition 2 remains true essentially as stated: Event E is iter-
ated p-belief at o if and only if there exists a mutually p-evident collection of
events E with [1] B

p
i E A E for all i A I; and [2] o A F , for all F A E.

The common prior assumption was another maintained assumption. For
the characterizations of common p-belief, iterated p-belief and the game the-
oretic results, the assumption played no role. On the other hand, the charac-
terization of weak common p-belief and the no trade/agreement results
depend on the common prior. Assuming a common prior made it harder
to show the large divergence between common p-belief and iterated p-belief.

Appendix: Properties for example 17

First note that the de®nitions of N and M imply:

�1� 1

N � 1
U

2

N � 2
U

1

2
; �2� N � 1

2N � 1
U r;

�3� N 2N�1

N 2N�1 �M
U

1

2
; �4� N

N � 1
V p; and �5� 2N ÿ 1

2N
V p:

These inequalities will be used extensively in the following calculations.

Ex ante probabilities

. P�Eÿ1 �1; . . . ;N�XEÿ2 �1; . . . ;N��Vmax�1ÿ e; p�.

Write F � Eÿ1 �1; . . . ;N�XEÿ2 �1; . . . ;N�.

p�F � �M ÿ 1� �2M ÿ 3�N �N 2N�1

VM

V
N 2�N�1�

e
:
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p�WnF � � N ÿ 1� �1�N � � � � �N 2N�

� N ÿ 1�N 2N�1 ÿ 1

N ÿ 1

UN �N 2N�1

UN 2�N�1�:

Thus P�F � � p�F �
p�F � � p�WnF � V

N 2�N�1�=e

N 2�N�1�=e�N 2�N�1� �
1

1� e
V 1ÿ e. A

symmetric argument shows P�F �V p.

. P�E ��V p.

Eÿ1 �1; . . . ;N�XEÿ2 �1; . . . ;N�JE �, so
P�E ��VP�Eÿ1 �1; . . . ;N�XEÿ2 �1; . . . ;N��V p.

Properties of B
p
i

. B
p
2 �Eÿ1 �n�� � Eÿ2 �n�, for all n � 1; . . . ;N.

For n � 1,

P�Eÿ1 �n�jE�2 �m�� �

N 2Nÿ2 � 1

N 2Nÿ1 �N 2Nÿ2 � 1
U

2

N � 2
U

1

2
< p; if m � 1

N 2N�1

N 2N �N 2N�1 �
N

N � 1
V p; if m �M �N

1; for all other m

8>>>>><>>>>>:
:

For n � 2; . . . ;N ÿ 1,

P�Eÿ1 �n� jE�2 �m�� �

N 2�Nÿn� � 1

N 2�Nÿn��1 �N 2�Nÿn� � 1
U

2

N � 2
U

1

2
< p; if m � n

N 2�Nÿn��1 � 1

N 2�Nÿn��1 �N 2�Nÿn� � 1
V

N

N � 1
Vp; if m � nÿ 1

1; for all other m

8>>>>>><>>>>>>:
:

For n � N,

P�Eÿ1 �n�jE�2 �m�� �

1

N � 1
U

1

2
< p; if m � N

N 3 � 1

N 3 �N 2 � 1
V

N

N � 1
V p; if m � N ÿ 1

1; for all other m

8>>>>><>>>>>:
:
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. B
p
1 �Eÿ2 �n�� � Eÿ1 �n� 1�, for all n � 1; . . . ;N ÿ 1.

For n � 1; . . . ;N ÿ 1,

P�Eÿ2 �n�jE�1 �m�� �

1

N � 1
U

1

2
< p; if m � n� 1

N

N � 1
V p; if m � n

2N ÿ 1

2N
V p; if m � N � 1

1; for all other m

8>>>>>>>>>><>>>>>>>>>>:
:

. B
p
1 �Eÿ2 �N�� � W.

P�Eÿ2 �N�jE�1 �m�� �

N

N � 1
V p; if m � N

2N ÿ 1

2N
V p; if m � N � 1

1; for all other m

8>>>>><>>>>>:
:

Properties of Br
i

. Br
2�Eÿ1 �1; . . . ; n��JEÿ2 �n�, for all n � 1; . . . ;N �M.

For n � 1; . . . ;N ÿ 1,

P�Eÿ1 �1; . . . ; n�jE�2 �n�� �
N 2�Nÿn� � 1

N 2�Nÿn��1 �N 2�Nÿn� � 1
U

2

N � 2
U

1

2
< r:

For n � N,

P�Eÿ1 �1; . . . ; n�jE�2 �n�� �
1

N � 1
U

1

2
< r:

For n � N � 1; . . . ;N �M ÿ 2,

P�Eÿ1 �1; . . . ; n�jE�2 �n�� �
N � 1

2N � 1
< r:

For n � N �M ÿ 1,

P�Eÿ1 �1; . . . ; n�jE�2 �n�� �
1

N � 1
U

1

2
< r:

For n � N �M,

P�Eÿ1 �1; . . . ; n�jE�2 �n�� � 0 < r:
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. Br
1�Eÿ2 �1; . . . ; n��JEÿ1 �n� 1�, for all n � 1; . . . ;N �M ÿ 1.

For n � 1; . . . ;N ÿ 1,

P�Eÿ2 �1; . . . ; n�jE�1 �n� 1�� � 1

N � 1
U

1

2
< r:

For n � N; . . . ;N �M ÿ 2,

P�Eÿ2 �1; . . . ; n�jE�1 �n� 1�� � 1

2
< r:

For n � N �M ÿ 1,

P�Eÿ2 �1; . . . ; n�jE�1 �n� 1�� � N 2N�1

N 2N�1 �M
U

1

2
< r:
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