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Efficiency, Justified Envy, and Incentives in 
Priority-Based Matching†

By Atila Abdulkadiroǧlu, Yeon-Koo Che, Parag A. Pathak, 
Alvin E. Roth, and Olivier Tercieux*

Top trading cycles (TTC ) is Pareto efficient and strategy-proof in 
priority-based matching, but so are other mechanisms including 
serial dictatorship. We show that TTC minimizes justified envy among 
all Pareto-efficient and strategy-proof mechanisms in one-to-one 
matching. In many-to-one matching, TTC admits less justified envy 
than serial dictatorship in an average sense. Empirical evidence 
from New Orleans OneApp and Boston Public Schools shows that 
TTC has significantly less justified envy than serial dictatorship. 
(JEL C78, D61)

Important resources such as housing, organs, and school seats are allocated based 
on the participants’ preferences and their priorities. Priorities reflect public policy 
or fairness considerations, such as seniority, the severity of needs or waiting list 
times, and geographic location or test scores. Two prominent mechanisms used for 
priority-based matching are Gale and Shapley’s (1962) deferred acceptance (DA)
and Gale’s top trading cycles (TTC) (Shapley and Scarf 1974). Both mechanisms
are strategy-proof: truthful reporting of preferences is a weakly dominant strategy 
for individuals.1 DA eliminates justified envy; that is, no individual prefers another 
assignment over her assignment and has a higher priority than someone else assigned 
to the preferred assignment. TTC is Pareto efficient.

1 For original proofs for the one-to-one matching models, see Dubins and Freedman (1981), Roth (1982a), and 
Roth (1982b).
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There is no mechanism that is both Pareto efficient and without justified envy.2 
Gale and Shapley (1962) showed that DA is constrained optimal since the DA 
matching weakly Pareto dominates any other matching without justified envy. In 
contrast, there are many Pareto-efficient and strategy-proof mechanisms. Does TTC 
provide a comparable constrained-optimal solution but with regard to elimination of 
justified envy?

This paper provides such a result for TTC in one-to-one matching. We define a 
partial order over efficient mechanisms by comparing instances of justified envy 
problem by problem. Specifically, mechanism ​​φ​1​​​ has less justified envy than mech-
anism ​​φ​2​​​ if, in each problem, every justified envy instance of ​​φ​1​​​ is also a justified 
envy instance of ​​φ​2​​​. That is, if an individual prefers another assignment over her ​​φ​1​​​ 
assignment and has a higher priority than someone else assigned to the preferred 
assignment, the individual also prefers another assignment over her ​​φ​2​​​ assignment 
and has a higher priority than someone else assigned to the preferred assignment. 
Our main result states that there is no Pareto-efficient and strategy-proof mechanism 
that has less justified envy than TTC in one-to-one matching. In other words, TTC is 
“justified envy minimal” according to set inclusion of justified envy instances within 
that class. However, our result does not mean that TTC is the unique such mecha-
nism. Any two justified envy–minimal mechanisms are not comparable according to 
our partial order. This is in a similar vein with two Pareto-efficient mechanisms not 
being comparable with respect to the Pareto-domination relationship.

While TTC need not be the only justified envy–minimal mechanism, we formal-
ize a sense in which TTC uses priorities correctly. Consider a class of mechanisms 
that are implemented by running TTC with some “artificial” priorities. If artificial 
priorities of such a mechanism differ from true priorities even for one individual at 
one object, the mechanism is no longer justified envy minimal. This class includes 
serial dictatorship (SD), a popular Pareto-efficient and strategy-proof mechanism.

Justified envy minimality of TTC does not extend to the many-to-one matching 
environment. We show, however, TTC outperforms SD—an obvious efficient alter-
native—by admitting less justified envy in an average sense when every possible 
priority profile is considered or when participants’ priorities are drawn uniform ran-
domly. Real-world data for priorities and preferences from New Orleans and Boston 
school assignment show that TTC has significantly fewer instances of justified envy 
compared to SD with uniformly drawn random serial orders.

The absence of a rigorous but simple description of the role of priorities in TTC 
may explain its limited use in practice. A 2005 Boston task force initially recom-
mended TTC over DA for school assignment, stating the following (Landsmark, 
Dajer, and Gonsalves 2004):

The Gale-Shapley algorithm…cuts down on the amount of choice 
afforded to families. The Top Trading Cycles algorithm also takes into 
account priorities while leaving some room for choice.…Choice was 
very important to many families who attended community forums.

2 This trade-off is highlighted by Abdulkadiroǧlu and Sönmez (2003), and it is a consequence of an example 
due to Roth (1982b).
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This recommendation was eventually overturned for DA (Abdulkadiroǧlu et al. 
2005). The final report criticized TTC as follows (BPS Strategic Planning Team 
2005):

[TTC’s] trading shifts the emphasis onto the priority and away from the 
goals BPS is trying to achieve by granting these priorities in the first 
place.

TTC was adopted in New Orleans as part of its OneApp assignment system in 
2012 (Vanacore 2012). As far as we know, New Orleans is the only place that TTC 
has ever been used in practice. However, after one year, officials abandoned TTC for 
DA, in part due to its treatment of priorities. Our clarification of the role of priorities 
in TTC provides new ammunition for considering TTC in priority-based matching, 
particularly in the one-to-one case.

This paper is related to several on axiomatic mechanism design. Ma’s (1994) 
TTC characterization for the housing market model is closest. The characterizations 
in Pápai (2000) and Pycia and Ünver (2017) are also related, but neither concerns 
justified envy. Dur (2013) and Morrill (2015) each characterize TTC by relying on 
additional axioms, which are distinct from our result.

I.  The Model

A priority-based matching problem has the following ingredients:

	 (i)	 agents ​I  = ​ {​i​1​​, … , ​i​n​​}​​,

	 (ii)	 objects ​S  = ​ {​s​1​​, … , ​s​m​​}​​,

	 (iii)	 strict agent preferences ​P  = ​ (​P​​i​1​​​​, … , ​P​​i​n​​​​)​​, and

	 (iv)	 strict object priorities ​≻  = ​ (​≻​​s​1​​​​, … , ​≻​​s​m​​​​)​​.

Note, ​​P​i​​​ is ​i​’s strict preference relation over ​S  ∪  ​{i}​​, where ​s ​P​i​​ i​ means ​i​ strictly 
prefers ​s​ to being unassigned. Let ​​R​i​​​ denote the “at least as good as” relation induced 
by ​​P​i​​​. Further, ​​≻​s​​​ is a complete, irreflexive, and transitive binary priority relation 
over ​I​. Thus, ​i ​≻​s​​ j​ means that ​i​ has strictly higher priority at ​s​ than ​j​.

We fix the set of agents and the set of objects throughout. The pair ​​(P, ≻)​​ denotes 
a problem (or simply an economy).

The outcome of a problem is a matching, ​μ  :  I  →  S  ∪  I​, where ​μ​(i)​  ∉  S  ⇒  
μ​(i)​  =  i​ for any ​i  ∈  I​ and ​| ​μ​​ −1​​(s)​ |  ≤  1​. We refer to ​μ​(i)​​ as the assignment of ​i​ 
under ​μ​. A matching ​μ​ Pareto dominates matching ​ν​, if ​μ​(i)​  ​R​i​​  ν​(i)​​ for all ​i  ∈  I​ 
and ​μ​(i)​ ​P​i​​  ν​(i)​​ for some ​i  ∈  I​. A matching is Pareto efficient if it is not Pareto 
dominated by any other matching.

A matching ​μ​ is blocked by an agent if it is not individually rational, meaning 
that there is ​i  ∈  I​ who prefers remaining unassigned to ​μ​(i)​​. A matching is blocked 
by a pair if there is an agent-object pair ​​(i, s)​​ where ​i​ prefers ​s​ to her assignment  
​μ​(i)​​ and either ​s​ has not been assigned under ​μ​ or there is a lower priority agent ​j​ 



428 AER: INSIGHTS DECEMBER 2020

who was assigned ​s​ under ​μ​. A matching eliminates justified envy if it is not blocked 
by any agent or by any pair.

A mechanism ​φ​ selects a matching for each economy. Let ​φ​(P, ≻)​​ denote the 
matching selected by ​φ​ for economy ​​(P, ≻)​​. Let ​φ​(P, ≻)​​(i)​​ denote the assignment 
of ​i​ in matching ​φ​(P, ≻)​​. A mechanism is Pareto efficient if it only selects Pareto-
efficient matchings. A mechanism eliminates justified envy if it only selects justified 
envy-free matchings. A mechanism ​φ​ is strategy-proof if reporting true preferences 
is a weakly dominant strategy for every agent in the preference revelation game 
induced by ​φ.​

A. Mechanisms

Aside from Gale and Shapley’s agent-proposing DA algorithm, there are two 
other important mechanisms for priority-based resource allocation. The first is serial 
dictatorship. Given a preference profile and an ordering of agents, a serial dictator-
ship assigns the highest ranked agent her first choice, the second highest ranked 
agent her top choice among remaining objects, and so on. SD is strategy-proof and 
Pareto efficient.

The second mechanism is Abdulkadiroǧlu and Sönmez’s (2003) adaptation of 
Gale’s TTC for settings with priorities. TTC finds a matching via the following 
algorithm. Initially all agents and objects are available. At each step, each avail-
able agent points to her top choice among all available objects. If an agent has 
no acceptable objects among the remaining ones, she is assigned to herself and 
becomes unavailable. Each available object points to the agent who has the high-
est priority for the object among all available agents. There is at least one cycle. A 
cycle ​c  = ​​ {​s​k​​, ​i​k​​}​​k=1,…,K​​​ is an ordered list of objects and agents such that ​​s​k​​​ points 
to ​​i​k​​​ and ​​i​k​​​ points to ​​s​k+1​​​ for every ​k​, where ​​s​K+1​​  = ​ s​1​​​. Moreover, each object or 
agent can be part of at most one cycle. Every agent in a cycle is assigned the object 
she points to and is removed. The assigned object becomes unavailable. The algo-
rithm terminates when no more agents can be assigned objects. TTC is strategy-proof 
and Pareto efficient.

B. Comparing Mechanisms

Our problem-wise comparison between mechanisms is defined as follows.

DEFINITION 1: Mechanism ​φ​ has less justified envy than ​ψ​ at ​≻​, if for any ​P​ and 
agent-object pair ​​(i, s)​​, if pair ​​(i, s)​​ blocks ​φ​(P, ≻)​​, then pair ​​(i, s)​​ blocks ​ψ​(P, ≻)​.​  
A mechanism ​φ​ has less justified envy than ​ψ​ if it has less justified envy than ​ψ​ at 
each ​≻​. A mechanism ​φ​ has strictly less justified envy than ​ψ​ if ​φ​ has less justified 
envy than ​ψ​, but ​ψ​ does not have less justified envy than ​φ​.

If ​φ​ has less justified envy than ​ψ​, then the set of agent-object blocking pairs 
under ​φ​ is a subset of that under ​ψ​ for each problem.

DEFINITION 2: Given a class of mechanisms ​​, ​φ​ is justified envy minimal in  if 
there is no other mechanism ​ψ​ in  that has strictly less justified envy than ​φ​.
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Our problem-wise comparison is related to Chen and Kesten (2017), who com-
pare mechanisms according to problems where they produce stable outcomes. Our 
notion allows us to also compare mechanisms that needn’t produce stable outcomes.

II.  TTC as Justified Envy Minimizer

Our main result establishes the following constrained-optimality property of TTC 
in one-to-one matching.

THEOREM 1: TTC is justified envy minimal in the class of Pareto-efficient and 
strategy-proof mechanisms.

PROOF:
Let ​φ​ be a Pareto-efficient and strategy-proof mechanism. We show that if ​φ​ has 

less justified envy than ​TTC​ at ​≻​, then ​φ​( · , ≻)​  =  TTC​( · , ≻)​​.
To the contrary, suppose there exists ​P​ such that

	​ φ​(P, ≻)​  ≠  TTC​(P, ≻)​.​

Let ​​I​k​​​(P, ≻)​​ be the set of agents who are matched in step ​k​ of ​TTC​(P, ≻)​​, and let  
​ℓ​ be the smallest ​k​ such that ​​I​k​​​(P, ≻)​​ contains an agent who is assigned differently 
between ​TTC​ and ​φ​. By definition, for some ​i  ∈ ​ I​ℓ​​​(P, ≻)​​,

	​ φ​(P, ≻)​​(i)​  ≠  TTC​(P, ≻)​​(i)​.​

Let ​c  = ​​ {​s​k​​, ​i​k​​}​​k=1,…,K​​​ be the cycle in which ​i​ is matched with ​TTC​(P, ≻)​​(i)​​ 
and ​i  = ​ i​K​​​.

Consider the preference relation:

	​​ P​ ​i​K​​​ ′ ​ : ​s​1​​, ​s​K​​, …​

Since we’ve only altered the preferences of ​​i​K​​​ in ​c​ and ​TTC​(P, ≻)​​(​i​K​​)​  = ​ s​1​​​ has 
become her first choice, the ​TTC​ matching remains the same:

	​ TTC​(​P​ ​i​K​​​ ′ ​, ​P​−{​i​K​​}​​, ≻)​  =  TTC(P, ≻).​

Since

	​ φ​(P, ≻)​​(​i​K​​)​  ≠ ​​  TTC​(P, ≻)​​(​i​K​​)​  


 ​​ 
=​s​1​​

​ ​ ,​

and ​φ​(P, ≻)​​(​i​K​​)​​ is still available at step ​ℓ​, we obtain

(1)	​ ​s​1​​  ​P​​i​K​​​​ φ​(P, ≻)​​(​i​K​​)​.​

But since ​TTC​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​(​i​K​​)​  = ​ s​1​​  ​P​ ​i​K​​​ ′ ​ ​s​K​​​, ​​(​i​K​​, ​s​K​​)​​ does not block  
​TTC​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​.
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Since ​φ​ has less justified envy than ​TTC​ at ​≻​, ​​(​i​K​​, ​s​K​​)​​ should not block  
​φ​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​. Since ​​s​K​​​ points to ​​i​K​​​ in cycle ​c​, ​​i​K​​ ​≻​​s​K​​​​ j​ for all ​j  ≠ ​ i​K​​​ who are still 
unassigned at step ​ℓ​. Given that ​​s​K​​​ will be assigned one of the agents still unassigned 
at step ​ℓ​, by construction, we must then have

	​ φ​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​(​i​K​​)​  ∈ ​ {​s​1​​, ​s​K​​}​.​

Given (1), strategy-proofness of ​φ​ implies

	​ φ​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​(​i​K​​)​  = ​ s​K​​;​

otherwise ​​i​K​​​ would be able to manipulate ​φ​ in economy ​​(P, ≻)​​ by submit-
ting ​​P​ ​i​K​​​ ′ ​​ to obtain ​​s​1​​​. Hence, ​​i​K​​​ obtains her second choice under ​​P​ ​i​K​​​ ′ ​​. Now we have ​
φ​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​(​i​K−1​​)​  ≠ ​ s​K​​  =  TTC​(​P​ ​i​K​​​ ′ ​, ​P​−​{​i​K​​}​​​, ≻)​​(​i​K−1​​)​​, and so we can apply the 
same argument for ​​i​K−1​​​.

By iterating the argument for ​​i​K−1​​, … , ​i​1​​​, and for every agent in the cycle ​c​, we 
obtain that

	​ φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​k​​)​  = ​ s​k​​,​

where ​​P​ c​ ′ ​  = ​​ {​P​ ​i​k​​​ ′ ​}​​​i​k​​∈c​​​ and ​​P​ ​i​k​​​ ′ ​ : ​s​k+1​​, ​s​k​​, …​.
To see this, note that at the last step of the argument, we have

	​ φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​1​​)​  = ​ s​1​​  ≠  φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​K​​)​.​

Since

	​ TTC​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​K​​)​ ​R​ ​i​K​​​ ′ ​ ​s​K​​,​

we know ​​(​i​K​​, ​s​K​​)​​ does not block ​TTC​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​, and because ​φ​ has less justified 
envy than TTC, it does not block ​φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​. Since, by definition of TTC, ​​i​K​​ ​≻​​s​K​​​​ j,​ 
for all ​j  ≠  i​ remaining in step ​ℓ​ of ​TTC​, and, by construction, ​​s​K​​​ gets matched one 
of the agents remaining at step ​ℓ​,

	​ φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​K​​)​ ​R​ ​i​K​​​ ′ ​ ​s​K​​,​

which implies

	​ φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​K​​)​  = ​ s​K​​.​

Hence, starting from ​φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​1​​)​  = ​ s​1​​​, we obtain ​φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​K​​)​  = ​ s​K​​.​ 
Applying the argument iteratively, we find ​φ​(​P​ c​ ′ ​, ​P​−c​​, ≻)​​(​i​k​​)​  = ​ s​k​​​ for all ​k​. But this 
contradicts Pareto efficiency of ​φ​ because every agent in the cycle will be better off 
if every ​​i​k​​​ is matched with ​​s​k+1​​​ (modulo ​k​) without changing the matching of other 
agents, establishing the claim. ∎

Theorem 1 does not imply that TTC is the only justified envy–minimal mechanism 
among Pareto-efficient and strategy-proof mechanisms. However, among a subclass 
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that includes SD, TTC is the only justified envy–minimal mechanism among Pareto-
efficient and strategy-proof mechanisms. To define that subclass, for each object ​s​, 
let ​​f​s​​​(≻)​​ be a priority relation for ​s​ obtained by a function of ​≻​, and ​f  = ​ ( ​  f​s​​ )​s​​​. The 
subclass consists of priority-adjusted TTC mechanisms, ​φ( · , · )  =  TTC( · , f ( · )​), 
which are obtained by running TTC under priorities ​f ​( · )​​ that may differ from true 
priorities. Observe that every ​φ​ in this class is Pareto efficient and strategy-proof. 
Serial dictatorship is obtained if each object’s priority is the same.

PROPOSITION 1: Suppose ​​f​s​​​(≻)​  ≠ ​ ≻​s​​​ for some ​s​. Then, the mechanism  
​φ​( · , · )​  =  TTC​( · , f  ​( · )​)​​ is not justified envy minimal in the class of Pareto-efficient 
and strategy-proof mechanisms.

PROOF:
Assume there is an object ​s  ∈  S​ for which ​​≻​ s​ ′ ​  ≔ ​ f​s​​​(​≻​s​​)​  ≠ ​ ≻​s​​​. This means 

there are at least two agents ​​i​1​​​ and ​​i​2​​​ such that ​​i​1​​ ​≻​s​​ ​i​2​​​, but ​​i​2​​ ​≻​ s​ ′ ​ ​i​1​​​. Let ​​≻​s​​​ be the 
priorities of object ​s​, and further assume all objects ​s​′ have the same priorities as 
object ​s​. This means DA is Pareto efficient at this profile of priorities. Clearly, DA is 
a strategy-proof, Pareto-efficient, and justified envy-free mechanism at this profile 
of priorities. Now, consider a profile of preferences where all agents except ​​i​1​​​ and ​​i​2​​​ 
rank all objects as unacceptable. In turn, ​​i​1​​​ and ​​i​2​​​ find only object ​s​ acceptable. 
Obviously in such a case, the “distorted” TTC fails to select a justified envy-free 
assignment. Hence, DA​​( · , ≻)​​ has strictly less justified envy than ​φ​( · , ≻)​​ at ​≻​. This 
implies the “distorted” TTC cannot be justified envy minimal. ∎

This result shows that the justified envy minimality of TTC is nontrivial. It also 
highlights the roles played by the priorities: justified envy minimality fails with 
a minimal modification of priorities. This result clarifies the role of priorities in 
TTC relative to an important class of other Pareto-efficient and strategy-proof 
mechanisms.

Our characterization is also “tight” in the sense that relaxing any of the assump-
tions yields a mechanism with less justified envy and the remaining properties. When 
we drop efficiency, TTC does not minimize justified envy among strategy-proof 
mechanisms. DA does.

When we drop strategy-proofness, TTC also does not minimize envy in the class 
of Pareto-efficient mechanisms. Consider a mechanism ​φ​ that produces ​DA​(P, ≻)​​ 
when ​DA​(P, ≻)​​ is Pareto efficient and produces ​TTC​(P, ≻)​​ otherwise. Clearly, ​φ​ is 
Pareto efficient and has less justified envy than TTC. Our main result implies ​φ​ is 
not strategy-proof.3

III.  Many-to-One Matching

Models of one-to-one matching account for important applications such as hous-
ing and organs. Other applications, notably school assignment, involve many-to-one 
matching. Our model can be extended to this setting by assuming that each ​​s​i​​​ 

3 Kesten (2010) shows that there is no mechanism that is Pareto efficient and strategy-proof and selects a match-
ing eliminating justified envy whenever it exists.
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has ​​q​​s​i​​​​  ∈  핅​ copies and that a matching must satisfy ​| ​μ​​ −1​​(​s​i​​)​ |  ≤ ​ q​​s​i​​​​​ for each ​​s​i​​  ∈  S​. 
TTC is also easily adapted to the many-to-one environment with a simple modifi-
cation (see Abdulkadiroǧlu and Sönmez 2003): when an object is in a cycle, a sin-
gle copy is assigned, and the object becomes unavailable when all its copies are 
assigned. The resulting mechanism continues to be efficient and strategy-proof.

The following example illustrates that TTC is not justified envy minimal in this 
setting.

EXAMPLE 1: There are three agents ​I  = ​ {​i​1​​, ​i​2​​, ​i​3​​}​​ and two objects ​S  = ​ {​s​1​​, ​s​2​​}​​, 
with ​​q​​s​1​​​​  =  2​ and ​​q​​s​2​​​​  =  1​. The preferences and priorities are given by

​​P​​i​1​​​​​ ​​P​​i​2​​​​​ ​​P​​i​3​​​​​ ​​≻​​s​1​​​​​ ​​≻​​s​2​​​​​

.
​​s​2​​​ ​​s​1​​​ ​​s​2​​​ ​​i​1​​​ ​​i​2​​​
​​s​1​​​ ​​s​2​​​ ​​s​1​​​ ​​i​2​​​ ​​i​3​​​

​​i​3​​​ ​​i​1​​​

TTC produces

	​​ (​ 
​i​1​​​  ​i​2​​​  ​i​3​​​ ​s​2​​

​  ​s​1​​
​  ​s​1​​

​)​,​

where agent ​​i​3​​​ has justified envy and is unable to get ​​s​2​​​ despite having a higher 
priority than ​​i​1​​​. If DA were used for the above priority profile, it would eliminate 
justified envy but also produce efficient matchings, regardless of the individuals’ 
preferences.4 If one were to use DA only for the above priority and TTC for the other 
priorities, then the resulting mechanism is Pareto efficient, strategy-proof, and has 
strictly less justified envy than TTC.

With multiple copies available for a given object, multiple agents effectively have 
top priority at that object; in the above example, both ​​i​1​​​ and ​​i​2​​​ are guaranteed to be 
assigned ​​s​1​​​. Unlike one-to-one matching, an agent can be associated with multiple 
cycles, and which cycle is cleared first matters. For instance, if ​​i​2​​​ were assigned 
through a self-cycle instead of one with ​​i​1​​​, the second matching would have been 
obtained. Unfortunately, no general method is known for clearing the “right” cycles, 
and thus there is no obvious practical mechanism that is efficient, strategy-proof and 
justified envy minimal.5

In light of this, one may ask whether TTC still reduces justified envy in 
many-to-one matching in comparison with SD. It is not possible to compare the two 
mechanisms uniformly across all priorities and all serial orders for a given prefer-
ence profile. Therefore, we compare mechanisms in terms of “average” incidences 

4 This follows since the priority structure is acyclic in the sense of Ergin (2002), a sufficient condition for DA 
to be Pareto efficient. At the same time, the above priority structure is not acyclic in the sense of Kesten (2006), 
as implied by justified envy present in TTC. In this sense, this example exploits the “gap” between the Ergin 
acyclicity and Kesten acyclicity. Although these conditions are suggestive of why many-to-one matching differs 
from one-to-one matching, they do not explain why TTC is justified envy minimal, as claimed by Theorem 1, in 
one-to-one matching, since that result applies even when Ergin acyclicity fails. 

5 Morrill (2015) proposes a variant of TTC where self-cycles are cleared first. This variant as well as others 
proposed in the literature, such as the equitable top trading cycle mechanism proposed by Hakimov and Kesten 
(2014), fail to be justified envy minimal, however, as discussed in our working paper.
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of justified envy, where the average is taken with respect to all possible priorities and 
all possible serial orders under which SD may be run for a given preference profile. 
It is analytically more convenient to take a “probabilistic” perspective in which TTC 
is run with the priorities randomly drawn according to the uniform distribution and, 
given a priority profile, SD is run with its serial order drawn according to the uni-
form distribution. Note that the latter mechanism corresponds to the random serial 
dictatorship (RSD). For comparison in the “average” sense, we consider whether 
one mechanism dominates another in a probabilistic sense.

Consider the many-to-one matching model in which objects’ priorities ​≻​ are ran-
domly generated from draws of a uniform distribution. Further assume that the total 
number of objects’ copies equals the number of individuals (i.e., ​​∑ k​ 

  ​​ ​q​​s​k​​​​  =  n​).6 To 
state our next result, we introduce notation that counts blocking pairs for a given 
agent ​i​ and object ​s​. For mechanism ​ϕ  ∈ ​ {TTC, RSD}​​ and any pair ​​(i, s)​​ where ​i​ is 
assigned to an object ranked lower than ​s​, let ​​N​​ ϕ​​(i, s)​​ denote the number of agents 
assigned object ​s​ with lower priority at ​s​ than ​i​. Since priorities are random, ​​N​​ ϕ​​(i, s)​​ 
is a random variable.

We compare ​​N​​ ϕ​​(i, s)​​ between TTC and RSD as follows.

THEOREM 2: Given an agent-object pair ​​(i, s)​​, ​​N​​ RSD​​(i, s)​​ first-order stochastically 
dominates ​​N​​ TTC​​(i, s)​​, that is, for any ​ℓ  ≥  0​,

(2)	​ Pr​{​N​​ TTC​​(i, s)​  ≥  ℓ}​  ≤  Pr​{​N​​ RSD​​(i, s)​  ≥  ℓ}​​.7

The proof is in the Appendix. This theorem shows that the number of priorities 
under which ​i​ justifiably envies ​ℓ​ or more agents over ​s​ in the TTC assignment is 
weakly less than the expected number of priorities under which ​i​ justifiably envies ​ℓ​ 
or more agents over ​s​ in the RSD assignment. The intuition boils down to the fol-
lowing observation. Unlike RSD, which ignores priorities, TTC uses priorities. But 
does it use them to reduce justified envy? The answer depends on the types of cycles 
through which an agent is assigned. If an agent is assigned via a short cycle—that 
is, the agent points to an object that in turn points back to that agent—then no justi-
fied envy occurs since any agent who may envy her will still remain at the round of 
assignment and, hence, must have a lower priority than her. Meanwhile, if an agent 
is assigned via a longer cycle, one that involves more than one agent, then the agent 
assigned that object has the same probability of having higher priority than those 
who may envy her. TTC assigns some agents via short cycles, which do not create 
justified envy. Agents assigned via long cycles create the same amount of justified 
envy as RSD. Theorem 2 immediately allows us to establish the following corollary.

6 In this context, Pathak and Sethuraman (2011) show that agents have the same random allocation under TTC 
with random priorities and under random serial dictatorship. This equivalence does not imply that both mechanisms 
are equivalent in terms of justified envy. To see this, suppose two agents rank two objects the same. Under TTC, 
whichever object they both prefer is assigned to the agent with the highest priority at that object. Hence, no justified 
envy ever arises. But under random serial dictatorship, the commonly preferred object may be assigned to the agent 
with lower priority with positive probability, in which case the higher priority agent would have justified envy.

7 In addition, if, under TTC, agent i prefers object s to his assignment with strictly positive probability, then the 
inequality is strict for each ℓ  =  1, …, ​​q​s​​​.
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COROLLARY 1: When priorities are drawn uniformly randomly, the expected 
number of agents with justified envy, the expected number of blocking pairs, and the 
expected number of agents each agent justifiably envies are all smaller under TTC 
than under RSD.

This result formalizes how TTC admits less justified envy than serial dictator-
ship “on average” when objects may have multiple copies. In our working paper, 
we show our result extends when we relax the assumption of uniformly randomly 
drawn priorities to accommodate priorities that are correlated across objects and 
location-based priorities. Moreover, this result persists as the economy grows large, 
when the number of copies per object are large relative to the number of objects 
as in Abdulkadiroǧlu, Che, and Yasuda (2015) and Azevedo and Leshno (2016). 
Under this asymptotic sequence, using our characterization results in the Appendix 
(Propositions 2 and 3), we can show that the expected number of agents each agent 
justifiably envies is strictly smaller under TTC than under RSD in the limit economy 
when the probability measure over preferences has full support.8

IV.  Comparing Mechanisms in New Orleans and Boston

While Corollary 1 provides a clear comparison of TTC versus RSD in an average 
sense for all possible priorities, in reality priorities are determined by applicants’ 
home address, siblings’ enrollment status, and other criteria. We therefore compare 
TTC and RSD with actual priorities using data from New Orleans and Boston (New 
Orleans Recovery School District 2012b, Boston Public Schools 2013).

In 2011–2012, the New Orleans Recovery School District pioneered a unified 
enrollment process called OneApp, integrating admissions to all types of schools 
under a single offer system. Officials identified three major priority groups: sibling, 
applying from a closing school, and geography. The discussion about mechanism 
centered on the trade-off between efficiency and eliminating justified envy, and 
eventually TTC was selected based on the desire for “as many students as possible 
to get into their top choice school” (New Orleans Recovery School District 2012a). 
Vanacore (2011) and Vanacore (2012) provide additional details.

We use data from elementary and high school applicants in grades prekinder-
garten (PK) and nine in the 2011–2012 school year and compare TTC, RSD, and 
DA. There are a total of 46 schools assigned to students in grades PK and nine. 
Applicants can rank up to eight choices; in practice, less than 5 percent of applicants 
rank 8 choices, so we simulate the algorithms holding preferences fixed since truth 
telling is a weakly dominant strategy in each mechanism without a constraint.9

8 However, when the number of copies is fixed and the number of individuals and objects grow at the same rate, 
TTC may not admit significantly less justified envy than RSD. More specifically, Che and Tercieux (2018) study 
TTC in a one-to-one matching model in which both applicants’ preferences and their priorities are randomly drawn 
according to the uniform distribution. They show that, as the economy grows large, the incidences of justified envy 
under TTC and RSD become indistinguishable. A rough intuition is that as the economy grows arbitrarily large, 
most of the agents are assigned via long cycles at least in the one-to-one matching, so the distinction between TTC 
and RSD vanishes. Under these assumptions, the advantage of TTC over RSD vanishes asymptotically.

9 Strictly speaking, when the number of choices is constrained, none of the mechanisms is strategy-proof. 
But for the 95 percent of applicants who ranked fewer than eight choices, they could have ranked an additional 



435ABDULKADIROǦLU ET AL.: JUSTIFIED ENVY IN PRIORITY-BASED MATCHINGVOL. 2 NO. 4

We fix preferences and use the actual priorities. The priorities are coarse, and 
lotteries are used to break ties in priorities. We draw 100 sets of lottery numbers, 
one for each applicant, and run the assignment algorithms for each lottery draw. 
For SD, we order applicants according to the realized lottery order. Table 1 reports 
the average across lottery draws and two grades. For comparison purposes, we also 
report the corresponding numbers in Boston Public Schools.

Both TTC and SD assign more applicants to their first choices than DA, but the 
difference in the aggregate rank distribution is small.10 This comes at the cost of 
creating instances of justified envy. Whereas DA is justified envy free, on average in 
New Orleans, 213 students exhibit justified envy under SD in comparison to 158 stu-
dents under TTC. The number of schools involved in a blocking pair increases from 
7 under TTC to 12 under SD. Strikingly, the number of justified envy instances at 
which a student may make a complaint against another student at a more preferred 

choice, and so there is little reason to strategize among the choices they submitted (see Haeringer and Klijn 2009 
and Pathak and Sönmez 2013).

10 Unlike New Orleans and Boston, there is a substantial difference in the aggregate rank distribution between 
TTC and DA in NYC (see Abdulkadiroǧlu, Pathak, and Roth 2009 and Che and Tercieux 2019).

Table 1—Comparison of Mechanisms in New Orleans and Boston

New Orleans OneApp Boston 

TTC SD

Student-
proposing 

DA TTC SD

Student-
proposing 

DA

(1) (2) (3) (4) (5) (6)
Panel A. Choice assigned
1 772 777 762 1,240 1,236 1,227
2 126 121 137 322 315 336
3 46 44 51 134 132 138
4 18 17 19 56 51 57
5+ 11 8 10 39 34 40
Unassigned 222 228 217 102 124 96
Total 1,196 1,196 1,196 1,893 1,893 1,893

Panel B. Statistics on blocking pairs
Students with justified envy 158 213 0 129 280 0
Schools involved in blocking pairs 7 12 0 18 44 0
Blocking pairs (i, s) 228 308 0 160 369 0
Instances of justified envy (i, (  j, s)) 1,111 6,546 0 768 3,650 0

Notes: In New Orleans, the data are from 2011–2012 and grades PK and nine. In Boston, the  data cover four school 
years from 2009–2010 through 2012–2013 and grades K1, K2, six, and nine. TTC is defined in Abdulkadiroǧlu 
and Sonmez (2003). A student has justified envy if there exists a school s where (i, s) is a blocking pair. School s 
involved in blocking pairs means there is a school s such that there exists student i such that (i, s) is a blocking pair.  
Blocking pairs (i, s) means there exists at least one applicant j such that (i,( j, s)) is a blocking instance. Instance 
of justified envy (i,( j, s)) means student i has justified envy for student j’s assignment at s. The numbers represent 
averages of 100 different lottery draws for each grade. In New Orleans, there are a total of 46 schools in PK and 
grade nine. The standard deviation across lottery draws in column 1 for first choice assigned is 5.2, for unassigned 
is 5.2, for students with justified envy is 8.5, for schools involved in blocking pairs is 0.4, for blocking pairs is 20.2, 
and for instances of justified envy is 110.7. Standard deviations are similar for columns 2 and 3. In Boston, there 
is an average of 124 schools across the four years. The standard deviation across lottery draws in column 4 for first 
choice assigned is 6.8, for unassigned is 5.2, for students with justified envy is 16.9, for schools involved in block-
ing pairs is 2.4, for blocking pairs is 21.6, and for instances of justified envy is 98.6. Standard deviations are simi-
lar for columns 5 and 6.
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school is almost six times as high under SD as under TTC. Our empirical analysis 
in Boston yields similar results.

This evidence complements Theorem 1 and Corollary 1 in supporting the idea 
that TTC performs well in terms of “economizing” on justified envy when schools 
have more than one seat and under real-world priority structures.

V.  Conclusion

This paper provides arguments for TTC over other Pareto-efficient and 
strategy-proof mechanisms for priority-based resource allocation. Our main result 
is a counterpart to DA’s constrained-optimality result for the one-to-one match-
ing model. We also show that TTC outperforms SD in an average sense for the 
many-to-one environment. Finally, using data from New Orleans and Boston, we 
also show that TTC has significantly less justified envy than SD with real-world 
priorities and preferences.

In the field, there is growing momentum for DA over TTC (see Abdulkadiroǧlu 
2013 and Pathak 2017). This trend may be driven by a first-mover advantage of DA 
and its use in other contexts. New York City and Boston adopted DA in 2003 and 
2005, and DA is widely used in residency matching (Roth and Peranson 1999). In 
2013, New Orleans also switched from TTC to DA. One of the most important rea-
sons for this switch involved challenges in explaining how TTC handles priorities. 
Under DA, officials could explain that an applicant did not obtain an assignment at 
a higher ranked seat because another applicant with higher priority was assigned to 
that seat. At the time of the change, a clear explanation of how TTC reflects priori-
ties was not available.

It remains to be seen whether TTC will be used in the field again. But policymak-
ers cannot ignore efficiency, which TTC delivers but DA does not. For this reason, 
TTC should remain a serious policy option. Our formal results may make it easier 
to explain how TTC incorporates priorities. It’s possible that TTC would have been 
chosen in some settings with knowledge of this result, and at the very least, advo-
cates now have a new argument in its favor.

Appendix: Proof of Theorem 2

Given an agent ​i​, let TTC​​(i)​​ denote the assignment of agent ​i​. Given an object ​s​, 
we abuse notation and let TTC​​(s)​​ denote the set of agents assigned to object ​s​. Recall 
that a short cycle is a cycle in which an agent points to an object and the object 
points to that agent at some step of TTC. A long cycle is a cycle that is not short.

For some agent ​j  ∈​ TTC​​(s)​​, let ​k​( j)​​ be the agent pointed to by object ​s​ when 
agent ​j​ is part of a cycle (if this is a short cycle, then ​k​( j)​  =  j​). Let ​​ k ¯ ​​ denote the 
agent in ​​∪​j∈TTC​(s)​​​k​( j)​​ with the lowest priority.

The set of agents in TTC​​(s)​​ can be partitioned into two sets ​​J​1​​ ∪ ​J​2​​​:

	​​ J​1​​​:	 agents in ​​J​1​​​ have a weakly higher priority than ​​ k ¯ ​​, and

	​​ J​2​​​:	 agents in ​​J​2​​​ have a strictly lower priority than ​​ k ¯ ​​.
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Here, ​​N​​ TTC​​(i, s)​​ is the number of agents receiving object ​s​ that agent ​i​ justifiably 
envies under TTC. We consider the event ​​{​N​​ TTC​​(i, s)​  ≥  ℓ}​​ that agent ​i​ justifiably 
envies ​ℓ​ or more agents assigned to object ​s​ by TTC. Also let ​​​ i​ TTC​​(s)​​ denote the 
event that agent ​i​ prefers ​s​ to TTC​​(i)​​.

PROPOSITION 2 (A TTC Characterization Result): Given any ​​(i, s)​​ and ​ℓ  ≥  1​,

	​ Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ ​|​​ ​​ i​ TTC​​(s)​​}​  =  E​[max​
{

1 − ​  ℓ _ 
​|​J​2​​|​ + 1

 ​, 0
}

​ ​|​​​ ​ i​ TTC​​(s)​]​.​

In addition,

	​ Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ ​|​​ ¬ ​​ i​ TTC​​(s)​​}​  =  0.​

PROOF:
If agent ​i​ does not prefer ​s​ to ​TTC​(i)​​ (that is, ​​​ i​ TTC​​(s)​​ does not hold), she never 

justifiably envies an agent assigned ​s​. If ​​​ i​ TTC​​(s)​​ holds, there may be positive proba-
bility that agent ​i​ has justified envy toward an agent assigned ​s​. The following claim 
is the main step of the proof.

CLAIM 1: Fix ​ℓ  ≥  1​. For any ​J  ⊂  I​, we must have

	​ Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ ​|​​ ​​ i​ TTC​​(s)​ and ​J​2​​​  =  J}​  =  max​
{

1 − ​  ℓ _ 
​|J|​ + 1

 ​, 0
}

​.​

PROOF:
Let ​J  ≡ ​ {​j​1​​, … , ​j​​|J|​​​}​​. We first show that

(3)  ​  Pr​{​J​2​​  = ​ {​j​1​​, … , ​j​​|J|​​​}​, i ​≻​s​​ ​j​1​​ ​≻​s​​  ⋯ ​ ≻​s​​  ​j​​|J|​​​, ​​ i​ TTC​​(s)​}​​

    ​    =  Pr​{​J​2​​  = ​ {​j​1​​, … , ​j​​|J|​​​}​, π​(i)​ ​≻​s​​ π​(​  j​1​​)​ ​≻​s​​  ⋯ ​ ≻​s​​ π​(​ j​​|J|​​​)​, ​​ i​ TTC​​(s)​}​,​

where ​π  :  J  ∪ ​ {i}​  →  J  ∪ ​ {i}​​ is an arbitrary permutation of ​J  ∪ ​ {i}​​.
Consider any realization of priorities ​≻​ under which

	​ ​{​J​2​​  = ​ {​j​1​​, …, ​j​​|J|​​​}​, i ​≻​s​​  ​j​1​​ ​≻​s​​  ⋯ ​ ≻​s​​  ​j​​|J|​​​, ​​ i​ TTC​​(s)​}​​

holds. Note first that any agent in ​​J​2​​​ must be assigned via a long cycle. If some 
agent ​j  ∈ ​ J​2​​​ is assigned via a short cycle, then ​j  =  k​( j)​​. Since by definition of  
​​ k ¯ ​​, ​k​(j)​ ​⪰​s​​ ​ k ¯ ​,​ we have ​j ​⪰​s​​ ​ k ¯ ​.​ But then agent ​j​ cannot belong to ​​J​2​​​ by construction 
of ​​J​2​​​.

Next, recall that, by definition, ​​ k ¯ ​ ​≻​s​​ j​ for any ​j  ∈ ​ J​2​​​. Moreover, ​​ k ¯ ​ ​≻​s​​ i​ since  
​​​ i​ TTC​​(s)​​ holds. Hence, if we start from ​≻​ and permute the priority of agent ​i​ and 
agents in ​​J​2​​​ according to ​π​, then TTC yields exactly the same assignment as under 
the permuted priority. This is because at any step of TTC involving object ​s​ before 
the permutation, the cycle that is formed involving ​s​ is unchanged after the permu-
tation. Since object ​s​ points to ​k​(  j)​ ​⪰​s​​ ​ k ¯ ​​ before the permutation and since ​​ k ¯ ​ ​≻​s​​ i​ 
and ​​ k ¯ ​ ​≻​s​​ j​ for any ​j  ∈  J​, ​s​ continues to point to ​k​( j)​​ after the permutation.
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After permutation ​π​, the set ​​J​2​​​ consists of exactly the same agents since the 
permutation leaves all the steps of TTC unchanged and since this permutation is 
restricted to agents in ​J  ∪  ​{i}​​ who all have a strictly lower priority than ​​ k ¯ ​​, which 
leaves ​​ k ¯ ​​ unchanged after the permutation. Hence, after the permutation, the event

	​ ​{​J​2​​  = ​ {​j​1​​, … , ​j​​|J|​​​}​, π​(i)​ ​≻​s​​ π​(​ j​1​​)​ ​≻​s​​  ⋯ ​ ≻​s​​ π​(​j​​|J|​​​)​, ​​ i​ TTC​​(s)​}​​

occurs, and the sets ​​J​1​​​ and ​​J​2​​​ must also remain the same.
Let ​​​1​​​ and ​​​2​​​ be the set of priorities giving rise to

	​ ​{​J​2​​  = ​ {​j​1​​, … , ​j​​|J|​​​}​, i ​≻​s​​ ​j​1​​ ​≻​s​​  ⋯ ​ ≻​s​​  ​j​​|J|​​​, ​​ i​ TTC​​(s)​}​​

and

	​ ​{​J​2​​  = ​ {​j​1​​, … , ​j​​|J|​​​}​, π​(i)​ ​≻​s​​ π​( ​j​1​​)​ ​≻​s​​  ⋯ ​ ≻​s​​ π​(​j​​|J|​​​)​, ​​ i​ TTC​​(s)​}​,​

respectively. We have constructed an injection from ​​​1​​​ to ​​​2​​​ and so ​​|​ ​1​​ |​  ≤ ​ |​ ​2​​ |​​. 
This follows from the fact that distinct priority profiles within ​​​1​​​ yield distinct pri-
ority profiles in ​​​2​​​ upon permuting.

Using a similar argument, we can also build an injection from ​​​2​​​ to ​​​1​​​ to show 
that

	​ ​|​ ​1​​ |​  = ​ | ​​2​​ |​.​

Since objects’ priorities ​≻​ are uniform random, (3) follows.
Consequently, conditional on ​​​ i​ TTC​​(s)​ and ​{​J​2​​  =  J}​​, agent ​i​ has a lower prior-

ity than any agent in TTC​​(s)​\J​, and the priority ordering of agents ​​{i}​  ∪  J​ by ​s​ is 
uniform random. Hence, for ​ℓ  ≤  | J |​, the conditional probability that ​i​ justifiably 
envies ​ℓ​ or more agents obtaining ​s​, or equivalently the conditional probability that ​i​ 
is not among the ​ℓ​ th lowest priority agents for ​s​, is

	​ 1 − ​  ℓ _ 
​| J |​ + 1

 ​.​

Obviously, the conditional probability is 0 for ​ℓ  >  |J|​. ∎
Using the claim, we have

    ​    Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ​|​​​​ i​ TTC​​(s)​​}​​

       ​       =  ​∑ 
J
​  ​​ Pr​(​J​2​​  = ​ J ​|​​ ​​ i​ TTC​​(s)​​)​Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ ​|​​ ​​ i​ TTC​​(s)​, ​J​2​​​  =  J}​​

	​ = ​ ∑ 
J
​  ​​ Pr​(​J​2​​  = ​ J ​|​​ ​​ i​ TTC​​(s)​​)​max​

{
1 − ​  ℓ _ 

​| J |​ + 1
 ​, 0

}
​​

	​ =  E​[max​
{

1 − ​  ℓ _ 
​|​J​2​​|​ + 1

 ​, 0
}

​ ​|​​ ​​ i​ TTC​​(s)​]​​,

which completes the proof. ∎
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We also have an analogous result for RSD. Let ​​​ i​ RSD​​(s)​​ be the event that agent ​i​ 
prefers ​s​ to RSD​​(i)​​, and recall that ​​N​​ RSD​​(i, s)​​ stands for the number of agents assigned 
to object ​s​ that agent ​i​ justifiably envies under RSD.

PROPOSITION 3: Given any ​​(i, s)​​ and ​ℓ  ≥  1​, we have

	​ Pr​{​N​​ RSD​​(i, s)​  ≥  ℓ ​|​​ ​​ i​ RSD​​(s)​}​  =  max​{1 − ​  ℓ _ ​q​s​​ + 1 ​, 0}​.​

In addition,

	​ Pr​{​N​​ RSD​​(i, s)​  ≥ ​ ℓ ​|​​ ¬​​ i​ RSD​​(s)​​}​  =  0.​

Propositions 2 and 3 allow us to prove Theorem 2.

PROOF OF THEOREM 2:
Fix any positive integer ​ℓ  ≥  1​ (the argument is trivial for ​ℓ  =  0​). Then

  ​  Pr​{​N​​ TTC​​(i, s)​  ≥  ℓ}​  =  Pr​{​​ i​ TTC​​(s)​}​Pr​{​N​​ TTC​​(i, s)​  ≥ ​ ℓ ​|​​ ​​ i​ TTC​​(s)​​}​ 

	 =  Pr​{​​ i​ TTC​​(s)​}​E​[max​
{

1 − ​  ℓ _ 
​|​J​2​​|​ + 1

 ​, 0
}

​ ​|​​​ ​ i​ TTC​​(s)​]​ 

	 ≤  Pr​{​​ i​ TTC​​(s)​}​max​{1 − ​  ℓ _ ​q​s​​ + 1 ​, 0}​ 

	 =  Pr​{​​ i​ RSD​​(s)​}​max​{1 − ​  ℓ _ ​q​s​​ + 1 ​, 0}​ 

	 =  Pr​{​​ i​ RSD​​(s)​}​Pr​{​N​​ RSD​​(i, s)​  ≥ ​ ℓ ​|​​​ ​ i​ TTC​​(s)​​}​ 

	 =  Pr​{​N​​ RSD​​(i, s)​  ≥  ℓ}​,​

where the first and second equalities use Proposition 2, the first inequality uses the 
fact that ​​|​ J​2​​ |​  ≤ ​ q​s​​​, the third equality uses the Pathak and Sethuraman (2011) equiv-
alence result, while the last two equalities use Proposition 3. ∎
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